1
|
Fu W, Zhao M, Ding S, Xin M, Yang K, Jiang L, Wu F, Wu X, Wang J, Chen J, Gao F, He S. Efficacy and safety of anticoagulants on venous thromboembolism: a systematic review and network meta-analysis of randomized controlled trials. Front Pharmacol 2025; 15:1519869. [PMID: 39845789 PMCID: PMC11750681 DOI: 10.3389/fphar.2024.1519869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
Background Anticoagulants are the primary means for the treatment and prevention of venous thromboembolism (VTE), but their clinical standardized application still remains controversial. The present study intends to comprehensively compare the efficacy and safety of various anticoagulants in VTE. Methods Medline, Embase, and Cochrane Library from their inception up to August 2023 were searched to compare the efficacy and safety of various anticoagulants in VTE. We extracted data on study settings, baseline characteristics, interventions, and outcomes, applying the intention-to-treat principle. Two researchers assessed study bias using the Cochrane tool, resolving disagreements through discussion or third-party adjudication. Network meta-analyses were performed based on Bayesian generalized linear models, and a frequentist framework with multivariate random effects was used to fit the model. Results In terms of treatment, 58 trials with 119,417 patients proved eligible, while 125 trials with 225,414 patients were included in terms of prevention. All anticoagulants were found to reduce the recurrence or incidence of VTE compared with Placebo, of which high-level evidence indicated that direct thrombin inhibitors (TIs) and novel oral anticoagulants (NOACs) were the two most effective drugs. For treatment, low molecular weight heparin (LMWH), unfractionated heparin (UFH), and vitamin K antagonists (VKAs) significantly increased the risk of major bleeding in comparison to Placebo. For prevention, only UFH (OR 2.0, 95% CI 1.2-3.3) and NOACs (OR 1.8, 95% CI 1.2-2.6) showed significant increased risks in major bleeding. Additionally, after an exhaustive analysis of NOACs, analysis showed that apixaban (RR 0.5, 95%CI 0.17-1.46) had a superior performance in major bleeding compared to rivaroxaban (RR 3.87, 95%CI 1.48-10.09). Conclusion TIs and NOACs were superior in efficacy with minimal side effects, making them pivotal choices for both prevention and treatment of VTE. Clinical practitioners must carefully weigh drug characteristics, indications, and contraindications to optimize treatment outcomes. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=466775.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Feng Gao
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, China
| | - Siyi He
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
2
|
Tan Y, Yan Z, Chen M, Wang Y. Fondaparinux sodium combined with conventional therapy improves subchorionic hematoma with protein S deficiency. Technol Health Care 2025; 33:353-361. [PMID: 39240599 DOI: 10.3233/thc-241035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
BACKGROUND Fondaparinux sodium can prevent and treat acute illnesses and venous thromboembolism in patients undergoing surgery. At present, no studies have reported on treating subchorionic hematoma combined with protein S deficiency using fondaparinux sodium. OBJECTIVE To investigate the clinical efficacy of fondaparinux sodium in the treatment of patients with subchorionic hematoma combined with protein S deficiency. METHODS This single-center, open-ended, and prospective study enrolled 78 patients with subchorionic hematoma and protein S deficiency. They were randomly assigned to the treatment and control groups. The control group received conventional treatment, and the observation group received subepithelial injections of fondaparinux sodium (2.5 mg/day) based on conventional treatment. After 30 days of continuous treatment, the hematoma was evaluated by ultrasonography. RESULTS After treatment with fondaparinux sodium, a significant improvement in subchorionic hematoma was observed in the observation group compared with that in the control group (p< 0.05). A substantial improvement in prothrombin time and activated partial thromboplastin time was observed in the observation group after fondaparinux sodium treatment (p< 0.05). Furthermore, after fondaparinux sodium treatment, the duration of hematoma maintenance and incidence of adverse pregnancy outcomes were significantly reduced in the observation group compared with that in the control group (p< 0.05). CONCLUSION With a favorable safety profile, fondaparinux sodium is effective in treating subchorionic hematoma combined with protein S deficiency. The results provide new ideas and methods for treating this disease, which is worthy of further promotion and application in clinical practice.
Collapse
Affiliation(s)
- Yan Tan
- Department of Obstetrics, Guangzhou Red Cross Hospital, the Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhenjiao Yan
- Department of Obstetrics, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Minhong Chen
- Department of Obstetrics, First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yinglan Wang
- Department of Obstetrics, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| |
Collapse
|
3
|
Polavarapu A, Bhushan A, Duarte-Celada W, Windisch T, Bhushan B. Enoxaparin Failure in Patient With Cerebral Venous Sinus Thrombosis and Prothrombin G20210A Mutation: Case Report. Neurologist 2024:00127893-990000000-00159. [PMID: 39505562 DOI: 10.1097/nrl.0000000000000591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
INTRODUCTION Cerebral venous sinus thrombosis (CVST) is a rare, serious, and complex cerebrovascular disease. The prothrombin G20210A mutation is the second most common inherited thrombophilia and is considered to be one of the etiologies of CVST. The optimal heparinoid medication for treatment remains a topic of debate. CASE REPORT This case report describes a young woman with CVST who did not respond to low-molecular-weight heparin (LMWH). The patient was initially treated with LMWH; however, her symptoms and clot burden in the sagittal sinus worsened, and coagulation studies showed no evidence of therapeutic anticoagulation despite good compliance. Unfractionated heparin was then initiated, and the patient's symptoms improved dramatically within 24 hours, along with the recanalization of the cerebral venous sinuses. Genetic testing revealed a heterozygous mutation in the prothrombin gene (G20210A). This mutation is a known risk factor for CVST. However, it is unclear why the patient did not respond to LMWH but responded appropriately to unfractionated heparin. CONCLUSION This case report highlights the potential for LMWH resistance in patients with CVST and prothrombin gene mutations. These findings also emphasize the importance of close monitoring of coagulation parameters and clinical response in patients with CVST receiving LMWH.
Collapse
Affiliation(s)
| | | | - Walter Duarte-Celada
- Department of Neurology, University Medical Center, Texas Tech University Health Sciences Center, Lubbock, TX
- Departments of Neurology, Covenant Medical Center, Lubbock, TX
| | - Thomas Windisch
- Department of Interventional Radiology, Covenant Medical Center, Lubbock, TX
| | - Bharat Bhushan
- Hospitalist Program, Department of Family and Community Medicine, University Medical Centre, Texas Tech University Health Sciences Center, Lubbock, TX
| |
Collapse
|
4
|
Cheng S, Ji H, Xu T, Liu X, Xu L, Zhao W, Zhao C. Development of substrate-independent heparin coating to mitigate surface-induced thrombogenesis: efficacy and mechanism. J Mater Chem B 2024; 12:10994-11011. [PMID: 39352074 DOI: 10.1039/d4tb01779j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Heparin coatings are widely applied on blood-contact materials to reduce the use of anticoagulants during blood treatment. However, the previous heparin coatings formed via covalent binding or electrostatic bonding commonly require complex surface premodification, and the blood coagulation pathway was significantly inhibited to potentially increase the bleeding risk. This contradicts the intended purpose and deviates from the anticoagulation mechanism of the heparin coatings. Herein, we present a facile and substrate-independent coating, achieved through the co-deposition of dopamine/chitosan followed by electrostatic interaction between heparin and the immobilized chitosan, which could be prepared within 1 hour. This coating prolonged the plasma re-calcification time (PRT) to over 60 minutes, effectively preventing surface-induced thrombosis. Favorable hemocompatibility was reflected in a hemolysis ratio of less than 2%, low levels of platelet adhesion and activation, and low levels of fibrinogen adhesion. We also systematically elucidate the anticoagulant mechanism of the coating, demonstrating why the coating can prevent thrombogenesis without the bleeding risk. Our work not only offers a promising and readily available heparin coating for blood-contact materials, but more importantly, the mechanism exploration supports the practical feasibility of heparin coating in various applications.
Collapse
Affiliation(s)
- Shengjun Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Haifeng Ji
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Tao Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Xianda Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Lin Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
5
|
Qiao M, Wang Z, Zhang J, Li Y, Chen LA, Zhang F, Dordick JS, Linhardt RJ, Cai C, Huang H, Zhang X. Nanopore-regulated in situ polymerization for synthesis of homogeneous heparan sulfate with low dispersity. Carbohydr Polym 2024; 341:122297. [PMID: 38876729 DOI: 10.1016/j.carbpol.2024.122297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/26/2024] [Accepted: 05/19/2024] [Indexed: 06/16/2024]
Abstract
The biological activities of heparan sulfate (HS) are intimately related to their molecular weights, degree and pattern of sulfation and homogeneity. The existing methods for synthesizing homogeneous sugar chains of low dispersity involve multiple steps and require stepwise isolation and purification processes. Here, we designed a mesoporous metal-organic capsule for the encapsulation of glycosyltransferase and obtained a microreactor capable of enzymatically catalyzing polymerization reactions to prepare homogeneous heparosan of low dispersity, the precursor of HS and heparin. Since the sugar chain extension occurs in the pores of the microreactor, low molecular weight heparosan can be synthesized through space-restricted catalysis. Moreover, the glycosylation co-product, uridine diphosphate (UDP), can be chelated with the exposed metal sites of the metal-organic capsule, which inhibits trans-cleavage to reduce the molecular weight dispersity. This microreactor offers the advantages of efficiency, reusability, and obviates the need for stepwise isolation and purification processes. Using the synthesized heparosan, we further successfully prepared homogeneous 6-O-sulfated HS of low dispersity with a molecular weight of approximately 6 kDa and a polydispersity index (PDI) of 1.032. Notably, the HS generated exhibited minimal anticoagulant activity, and its binding affinity to fibroblast growth factor 1 was comparable to that of low molecular weight heparins.
Collapse
Affiliation(s)
- Meng Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Zhe Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Junjie Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yanqi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Liang-An Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fuming Zhang
- Departments of Chemical and Biological Engineering, and Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jonathan S Dordick
- Departments of Chemical and Biological Engineering, and Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Departments of Chemical and Biological Engineering, and Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
6
|
Yu Y, Song Y, Zhao Y, Wang N, Wei B, Linhardt RJ, Dordick JS, Zhang F, Wang H. Quality control, safety assessment and preparation approaches of low molecular weight heparin. Carbohydr Polym 2024; 339:122216. [PMID: 38823901 DOI: 10.1016/j.carbpol.2024.122216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 06/03/2024]
Abstract
Low Molecular Weight Heparins (LMWHs) are well-established for use in the prevention and treatment of thrombotic diseases, and as a substitute for unfractionated heparin (UFH) due to their predictable pharmacokinetics and subcutaneous bioavailability. LMWHs are produced by various depolymerization methods from UFH, resulting in heterogeneous compounds with similar biochemical and pharmacological properties. However, the delicate supply chain of UFH and potential contamination from animal sources require new manufacturing approaches for LMWHs. Various LMWH preparation methods are emerging, such as chemical synthesis, enzymatic or chemical depolymerization and chemoenzymatic synthesis. To establish the sameness of active ingredients in both innovator and generic LMWH products, the Food and Drug Administration has implemented a stringent scientific method of equivalence based on physicochemical properties, heparin source material and depolymerization techniques, disaccharide composition and oligosaccharide mapping, biological and biochemical properties, and in vivo pharmacodynamic profiles. In this review, we discuss currently available LMWHs, potential manufacturing methods, and recent progress for manufacturing quality control of these LMWHs.
Collapse
Affiliation(s)
- Yanlei Yu
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Yue Song
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Yunjie Zhao
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Ningning Wang
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China; Binjiang Cyberspace Security Institute of ZJUT, Hangzhou 310056, China
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China; Binjiang Cyberspace Security Institute of ZJUT, Hangzhou 310056, China.
| |
Collapse
|
7
|
Grill FD, Pilstl L, Ritschl LM, Bomhard AV, Stimmer H, Kolk A, Loeffelbein DJ, Wolff KD, Mücke T, Fichter AM. Perioperative anticoagulation in head and neck free flap reconstructions: Experience of an anticoagulative scheme and its modification. Microsurgery 2024; 44:e31096. [PMID: 37602929 DOI: 10.1002/micr.31096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 06/07/2023] [Accepted: 07/06/2023] [Indexed: 08/22/2023]
Abstract
OBJECTIVES Microvascular anastomoses in microvascular reconstructions induce rheological changes in the anastomosed vessels and are usually counteracted by anticoagulative medication. There is no regimen commonly agreed on. This study provides an easy to use anticoagulative regimen. PATIENTS AND METHODS Consecutive cases of either anticoagulative regimen between 2013 and 2018 that underwent microvascular reconstruction in the head and neck area were included in this retrospective study, resulting in 400 cases in total. Two different anticoagulative regimens were applied to 200 patients in each group: (a) intraoperatively administered unfractionated 5000 I.U. high molecular weight heparin (HMWH) and postoperatively low molecular weight heparin (LMWH, Enoxaparin) 1 mg/kg/body weight postoperatively and (b) intraoperatively LMWH 0.5 mg/kg/body weight as well as 12 h later and 1 mg/kg/body weight postoperatively. RESULTS The LMWH cohort showed fewer overall thromboembolic (8.5% vs. 11%; p = .40) and peripheral thrombotic events (1% vs. 3.5%; p = .18) and lung embolisms (3% vs. 4%; p = .59). The number of thromboses at the site of the anastomosis was equally distributed. In regard to flap-specific complications, LMWH was associated with a positive effect, in particular with respect to total flap losses (5% vs. 7%; p = .40) and wound-healing disorders (14.5% vs. 20%; p = .145). CONCLUSION Findings indicate that intra- and postoperatively administered LMWH as the only anticoagulative medication seems reliable in our clinical routine of head and neck free flap reconstructions.
Collapse
Affiliation(s)
- Florian D Grill
- Department of Oral and Maxillofacial Surgery, School of Medicine, Technische Universität München, Munich, Germany
| | - Lisa Pilstl
- Department of Oral and Maxillofacial Surgery, School of Medicine, Technische Universität München, Munich, Germany
| | - Lucas M Ritschl
- Department of Oral and Maxillofacial Surgery, School of Medicine, Technische Universität München, Munich, Germany
| | - Achim von Bomhard
- Department of Oral and Maxillofacial Surgery, School of Medicine, Technische Universität München, Munich, Germany
- INN TAL MKG, Private Practice, Rosenheim, Germany
| | - Herbert Stimmer
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technische Universität München, Munich, Germany
| | - Andreas Kolk
- Department of Oral and Maxillofacial Surgery Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Denys J Loeffelbein
- Department of Oral and Maxillofacial Surgery, School of Medicine, Technische Universität München, Munich, Germany
- Department of Oral and Maxillofacial Plastic Surgery, Helios Klinikum München West, Academic Teaching Hospital of Ludwig-Maximilians-Universität München, Munich, Germany
| | - Klaus-Dietrich Wolff
- Department of Oral and Maxillofacial Surgery, School of Medicine, Technische Universität München, Munich, Germany
| | - Thomas Mücke
- Department of Oral and Maxillofacial Surgery, School of Medicine, Technische Universität München, Munich, Germany
| | - Andreas M Fichter
- Department of Oral and Maxillofacial Surgery, School of Medicine, Technische Universität München, Munich, Germany
| |
Collapse
|
8
|
Iqbal Z, Sadaf S. Scientific considerations in the regulatory approval of generic (or biosimilar) version of enoxaparin sodium - A lifesaving carbohydrate polymer. Regul Toxicol Pharmacol 2023; 143:105446. [PMID: 37532121 DOI: 10.1016/j.yrtph.2023.105446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/25/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023]
Abstract
Enoxaparin sodium (Clexane®/Klexane®/Lovenox®) is one amongst the few drugs that have assumed a central role as drug of treatment and/or prevention against thromboembolic complications during COVID-19. The increase in demand resulting in many generic (or biosimilar) versions entering the market has increased the risks of quality and safety (including immunogenicity) related issues. Under the circumstances, development of stringent regulatory approaches has received much attention as investigation of new drug delivery systems for improved therapeutic activity. As one of the measures to increase quality testing and ensure uninterrupted supply of this life-saving drug globally, determination of enoxaparin molecular weight (MW) has been added in the United States Pharmacopoeia (USP) monograph for enoxaparin sodium. In addition, the presence of a unique 1,6-anhydro-ring structure at the reducing end of about 15-25% of the poly (oligo) saccharide chains of the generic (or biosimilar) product has been set as a mandatory requirement. This article presents an overview of the scientific considerations in the quality manufacturing and testing of the generic (or biosimilar) enoxaparin for regulatory review and approval. In certain cases of strong analytical similarity (structural and functional), abandonment of in vivo testing in animals and humans represents a major advancement in the approval of generic (or biosimilar) version of innovator enoxaparin sodium (lovenox®, injections).
Collapse
Affiliation(s)
- Zarina Iqbal
- IP and Litigation Department, PakPat World Intellectual Property Protection Services, Lahore, Pakistan.
| | - Saima Sadaf
- Biopharmaceutical and Biomarkers Discovery Lab, School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
9
|
Valke LLFG, Rijpma S, Meijer D, Schols SEM, van Heerde WL. Thrombin generation assays to personalize treatment in bleeding and thrombotic diseases. Front Cardiovasc Med 2022; 9:1033416. [PMID: 36440026 PMCID: PMC9684194 DOI: 10.3389/fcvm.2022.1033416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Treatment of bleeding and thrombotic disorders is highly standardized and based on evidence-based medicine guidelines. These evidence-based treatment schemes are well accepted but may lead to either insufficient treatment or over-dosing, because the individuals' hemostatic properties are not taken into account. This can potentially introduce bleeding or thrombotic complications in individual patients. With the incorporation of pharmacokinetic (PK) and pharmacodynamic (PK-PD) parameters, based on global assays such as thrombin generation assays (TGAs), a more personalized approach can be applied to treat either bleeding or thrombotic disorders. In this review, we will discuss the recent literature about the technical aspects of TGAs and the relation to diagnosis and management of bleeding and thrombotic disorders. In patients with bleeding disorders, such as hemophilia A or factor VII deficiency, TGAs can be used to identify patients with a more severe bleeding phenotype and also in the management with non-replacement therapy and/or bypassing therapy. These assays have also a role in patients with venous thrombo-embolism, but the usage of TGAs in patients with arterial thrombosis is less clear. However, there is a potential role for TGAs in the monitoring of (long-term) antithrombotic therapy, for example with the use of direct oral anticoagulants. Finally this review will discuss controversies, limitations and knowledge gaps in relation to the introduction of TGAs to personalize medicine in daily medical practice.
Collapse
Affiliation(s)
- Lars L. F. G. Valke
- Department of Hematology, Radboud University Medical Center, Nijmegen, Netherlands
- Hemophilia Treatment Center, Nijmegen, Netherlands
| | - Sanna Rijpma
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Danielle Meijer
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Saskia E. M. Schols
- Department of Hematology, Radboud University Medical Center, Nijmegen, Netherlands
- Hemophilia Treatment Center, Nijmegen, Netherlands
| | - Waander L. van Heerde
- Department of Hematology, Radboud University Medical Center, Nijmegen, Netherlands
- Hemophilia Treatment Center, Nijmegen, Netherlands
- Enzyre BV, Novio Tech Campus, Nijmegen, Netherlands
| |
Collapse
|
10
|
Zhou Z, Zhang L, Wu X, Luo L, Wu J, Xu D, Wu M. Chemical synthesis and pharmacological properties of heparin pentasaccharide analogues. Eur J Med Chem 2022; 234:114256. [DOI: 10.1016/j.ejmech.2022.114256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/26/2022]
|
11
|
Production, characteristics and applications of microbial heparinases. Biochimie 2022; 198:109-140. [DOI: 10.1016/j.biochi.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022]
|
12
|
Karlsson R, Chopra P, Joshi A, Yang Z, Vakhrushev SY, Clausen TM, Painter CD, Szekeres GP, Chen YH, Sandoval DR, Hansen L, Esko JD, Pagel K, Dyer DP, Turnbull JE, Clausen H, Boons GJ, Miller RL. Dissecting structure-function of 3-O-sulfated heparin and engineered heparan sulfates. SCIENCE ADVANCES 2021; 7:eabl6026. [PMID: 34936441 PMCID: PMC8694587 DOI: 10.1126/sciadv.abl6026] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/08/2021] [Indexed: 06/01/2023]
Abstract
Heparan sulfate (HS) polysaccharides are master regulators of diverse biological processes via sulfated motifs that can recruit specific proteins. 3-O-sulfation of HS/heparin is crucial for anticoagulant activity, but despite emerging evidence for roles in many other functions, a lack of tools for deciphering structure-function relationships has hampered advances. Here, we describe an approach integrating synthesis of 3-O-sulfated standards, comprehensive HS disaccharide profiling, and cell engineering to address this deficiency. Its application revealed previously unseen differences in 3-O-sulfated profiles of clinical heparins and 3-O-sulfotransferase (HS3ST)–specific variations in cell surface HS profiles. The latter correlated with functional differences in anticoagulant activity and binding to platelet factor 4 (PF4), which underlies heparin-induced thrombocytopenia, a known side effect of heparin. Unexpectedly, cells expressing the HS3ST4 isoenzyme generated HS with potent anticoagulant activity but weak PF4 binding. The data provide new insights into 3-O-sulfate structure-function and demonstrate proof of concept for tailored cell-based synthesis of next-generation heparins.
Collapse
Affiliation(s)
- Richard Karlsson
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Apoorva Joshi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
- GlycoDisplay ApS, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sergey Y. Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Thomas Mandel Clausen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chelsea D. Painter
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gergo P. Szekeres
- Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Yen-Hsi Chen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
- GlycoDisplay ApS, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Daniel R. Sandoval
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lars Hansen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Jeffrey D. Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin Pagel
- Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Douglas P. Dyer
- Wellcome Centre for Cell-Matrix Research, Geoffrey Jefferson Brain Research Centre, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Jeremy E. Turnbull
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
- Centre for Glycobiology, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Science, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands
| | - Rebecca L. Miller
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
13
|
Binder NB, Depasse F, Mueller J, Wissel T, Schwers S, Germer M, Hermes B, Turecek PL. Clinical use of thrombin generation assays. J Thromb Haemost 2021; 19:2918-2929. [PMID: 34592058 PMCID: PMC9292855 DOI: 10.1111/jth.15538] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022]
Abstract
Determining patient's coagulation profile, i.e. detecting a bleeding tendency or the opposite, a thrombotic risk, is crucial for clinicians in many situations. Routine coagulation assays and even more specialized tests may not allow a relevant characterization of the hemostatic balance. In contrast, thrombin generation assay (TGA) is a global assay allowing the dynamic continuous and simultaneous recording of the combined effects of both thrombin generation and thrombin inactivation. TGA thus reflects the result of procoagulant and anticoagulant activities in blood and plasma. Because of this unique feature, TGA has been widely used in a wide array of settings from both research, clinical and pharmaceutical perspectives. This includes diagnosis, prognosis, prophylaxis, and treatment of inherited and acquired bleeding and thrombotic disorders. In addition, TGA has been shown to provide relevant information for the diagnosis of coagulopathies induced by infectious diseases, comprising also disturbance of the coagulation system in COVID-19, or for the assessment of early recurrence in breast cancer. This review article aims to document most clinical applications of TGA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Björn Hermes
- DIN e.V. – DIN Standards Committee Medicine (NAMed)
| | | |
Collapse
|
14
|
Bai W, Zhang X, Sun S, Wang Q, Li C, Zhang X, Zhao A. Effect of low-molecular-weight heparins on anti-Xa peak levels and adverse reactions in Chinese patients with recurrent spontaneous abortion: a single-center, observational study. BMC Pregnancy Childbirth 2021; 21:683. [PMID: 34620101 PMCID: PMC8495441 DOI: 10.1186/s12884-021-04161-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/24/2021] [Indexed: 11/28/2022] Open
Abstract
Objective To compare three commonly used low-molecular-weight heparins (LWMHs) in the treatment of recurrent spontaneous abortion (RSA) by evaluating the anti-Xa peak levels and adverse reactions. Methods In this single-center, observational study, we enrolled 310 patients with RSA in whom anti-Xa levels were measured during pregnancy. Patients were divided into three groups according to the LMWH they used: the nadroparin group, enoxaparin group and dalteparin group. We compared the peak anti-Xa levels and the coagulation status of each group, and analyzed the incidence of adverse reactions, including local allergy, liver and renal dysfunction, and the impact on platelet. Results Patients in the enoxaparin group had a higher anti-Xa peak level than those in the nadroparin group (0.80 ± 0.22 IU/ml vs. 0.61 ± 0.24 IU/ml; P < 0.0001), although most patients in the three groups reached the target concentration of anti-Xa. Furthermore, patients in the enoxaparin group had a more stable anti-Xa levels during pregnancy. In addition, patients in the nadroparin group had a higher rate of local allergy than those in the enoxaparin group (60.5% vs. 42.5%; P = 0.004) and those in the dalteparin group (60.5% vs. 33.3%; P = 0.002). Further examination by the type of local allergy indicated a dramatic difference in pruritus and induration between the nadroparin group and the other two groups. No difference was found in the incidence of liver and renal dysfunction and thrombocytopenia. Conclusion Compared with nadroparin and daltepatin, enoxaparin showed a better performance regarding anti-Xa levels and the incidence of adverse reactions in the treatment of RSA.
Collapse
Affiliation(s)
- Wenxin Bai
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong District, 200127, Shanghai, China
| | - Xinyang Zhang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong District, 200127, Shanghai, China
| | - Si Sun
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong District, 200127, Shanghai, China
| | - Qiaohong Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong District, 200127, Shanghai, China
| | - Congcong Li
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong District, 200127, Shanghai, China
| | - Xiaoxin Zhang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong District, 200127, Shanghai, China
| | - Aimin Zhao
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong District, 200127, Shanghai, China.
| |
Collapse
|
15
|
Kuznetsova TA, Andryukov BG, Makarenkova ID, Zaporozhets TS, Besednova NN, Fedyanina LN, Kryzhanovsky SP, Shchelkanov MY. The Potency of Seaweed Sulfated Polysaccharides for the Correction of Hemostasis Disorders in COVID-19. Molecules 2021; 26:2618. [PMID: 33947107 PMCID: PMC8124591 DOI: 10.3390/molecules26092618] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Hemostasis disorders play an important role in the pathogenesis, clinical manifestations, and outcome of COVID-19. First of all, the hemostasis system suffers due to a complicated and severe course of COVID-19. A significant number of COVID-19 patients develop signs of hypercoagulability, thrombocytopenia, and hyperfibrinolysis. Patients with severe COVID-19 have a tendency toward thrombotic complications in the venous and arterial systems, which is the leading cause of death in this disease. Despite the success achieved in the treatment of SARS-CoV-2, the search for new effective anticoagulants, thrombolytics, and fibrinolytics, as well as their optimal dose strategies, continues to be relevant. The wide therapeutic potential of seaweed sulfated polysaccharides (PSs), including anticoagulant, thrombolytic, and fibrinolytic activities, opens up new possibilities for their study in experimental and clinical trials. These natural compounds can be important complementary drugs for the recovery from hemostasis disorders due to their natural origin, safety, and low cost compared to synthetic drugs. In this review, the authors analyze possible pathophysiological mechanisms involved in the hemostasis disorders observed in the pathological progression of COVID-19, and also focus the attention of researchers on seaweed PSs as potential drugs aimed to correction these disorders in COVID-19 patients. Modern literature data on the anticoagulant, antithrombotic, and fibrinolytic activities of seaweed PSs are presented, depending on their structural features (content and position of sulfate groups on the main chain of PSs, molecular weight, monosaccharide composition and type of glycosidic bonds, the degree of PS chain branching, etc.). The mechanisms of PS action on the hemostasis system and the issues of oral bioavailability of PSs, important for their clinical use as oral anticoagulant and antithrombotic agents, are considered. The combination of the anticoagulant, thrombolytic, and fibrinolytic properties, along with low toxicity and relative cheapness of production, open up prospects for the clinical use of PSs as alternative sources of new anticoagulant and antithrombotic compounds. However, further investigation and clinical trials are needed to confirm their efficacy.
Collapse
Affiliation(s)
- Tatyana A. Kuznetsova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (I.D.M.); (T.S.Z.); (N.N.B.); (M.Y.S.)
| | - Boris G. Andryukov
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (I.D.M.); (T.S.Z.); (N.N.B.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
| | - Ilona D. Makarenkova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (I.D.M.); (T.S.Z.); (N.N.B.); (M.Y.S.)
| | - Tatyana S. Zaporozhets
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (I.D.M.); (T.S.Z.); (N.N.B.); (M.Y.S.)
| | - Natalya N. Besednova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (I.D.M.); (T.S.Z.); (N.N.B.); (M.Y.S.)
| | - Ludmila N. Fedyanina
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
| | - Sergey P. Kryzhanovsky
- Medical Association of the Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Mikhail Yu. Shchelkanov
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (I.D.M.); (T.S.Z.); (N.N.B.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
- Federal Scientific Center of the Eastern Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, 690091 Vladivostok, Russia
- National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, 690091 Vladivostok, Russia
| |
Collapse
|
16
|
Bareille M, Hardy M, Douxfils J, Roullet S, Lasne D, Levy JH, Stépanian A, Susen S, Frère C, Lecompte T, Mullier F. Viscoelastometric Testing to Assess Hemostasis of COVID-19: A Systematic Review. J Clin Med 2021; 10:jcm10081740. [PMID: 33923851 PMCID: PMC8072929 DOI: 10.3390/jcm10081740] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Infection by SARS-CoV-2 is associated with a high risk of thrombosis. The laboratory documentation of hypercoagulability and impaired fibrinolysis remains a challenge. Our aim was to assess the potential usefulness of viscoelastometric testing (VET) to predict thrombotic events in COVID-19 patients according to the literature. We also (i) analyzed the impact of anticoagulation and the methods used to neutralize heparin, (ii) analyzed whether maximal clot mechanical strength brings more information than Clauss fibrinogen, and (iii) critically scrutinized the diagnosis of hypofibrinolysis. We performed a systematic search in PubMed and Scopus databases until 31st December 2020. VET methods and parameters, and patients' features and outcomes were extracted. VET was performed for 1063 patients (893 intensive care unit (ICU) and 170 non-ICU, 44 studies). There was extensive heterogeneity concerning study design, VET device used (ROTEM, TEG, Quantra and ClotPro) and reagents (with non-systematic use of heparin neutralization), timing of assay, and definition of hypercoagulable state. Notably, only 4 out of 25 studies using ROTEM reported data with heparinase (HEPTEM). The common findings were increased clot mechanical strength mainly due to excessive fibrinogen component and impaired to absent fibrinolysis, more conspicuous in the presence of an added plasminogen activator. Only 4 studies out of the 16 that addressed the point found an association of VETs with thrombotic events. So-called functional fibrinogen assessed by VETs showed a variable correlation with Clauss fibrinogen. Abnormal VET pattern, often evidenced despite standard prophylactic anticoagulation, tended to normalize after increased dosing. VET studies reported heterogeneity, and small sample sizes do not support an association between the poorly defined prothrombotic phenotype of COVID-19 and thrombotic events.
Collapse
Affiliation(s)
- Marion Bareille
- Namur Thrombosis and Hemostasis Center (NTHC), CHU UCL Namur, Université Catholique de Louvain, 5530 Yvoir, Belgium;
- Correspondence:
| | - Michaël Hardy
- Service D’anesthésiologie, CHU UCL Namur, Université Catholique de Louvain, 5530 Yvoir, Belgium;
| | - Jonathan Douxfils
- Namur Thrombosis and Hemostasis Center (NTHC), Département de Pharmacie, Université de Namur, 5000 Namur, Belgium;
- Qualiblood S.A., 5000 Namur, Belgium
| | - Stéphanie Roullet
- CHU Bordeaux, Service D’Anesthésie-Réanimation Tripode, 33000 Bordeaux, France;
- Biologie des Maladies Cardiovasculaire, University Bordeaux, INSERM U1034, 33600 Pessac, France
| | - Dominique Lasne
- Laboratoire D’hématologie Générale, Hôpital Universitaire Necker-Enfants Malades, AP-HP, 75015 Paris, France;
| | - Jerrold H. Levy
- Departments of Anesthesiology, Critical Care, and Surgery (Cardiothoracic), Duke University School of Medicine, Durham, NC 27710, USA;
| | - Alain Stépanian
- Hôpital Lariboisière, Service D’Hématologie Biologique, Institut de Recherche Saint-Louis, Université de Paris, AP-HP Nord-Université de Paris, EA 3518, 75010 Paris, France;
| | - Sophie Susen
- Laboratoire D’Hématologie-Hémostase, Université de Lille, CHU Lille, 59037 Lille, France;
| | - Corinne Frère
- Department of Hematology, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, INSERM UMRS_1166, Sorbonne Université, 75013 Paris, France;
| | - Thomas Lecompte
- Départements de Médecine, Service D’angiologie et D’hémostase et Faculté de Médecine Geneva Platelet Group (GpG), Université de Genève et Hôpitaux Universitaires de Genève, 1205 Genève, Switzerland;
| | - François Mullier
- Namur Thrombosis and Hemostasis Center (NTHC), CHU UCL Namur, Université Catholique de Louvain, 5530 Yvoir, Belgium;
| |
Collapse
|
17
|
Lima-Oliveira G, Brennan-Bourdon LM, Varela B, Arredondo ME, Aranda E, Flores S, Ochoa P. Clot activators and anticoagulant additives for blood collection. A critical review on behalf of COLABIOCLI WG-PRE-LATAM. Crit Rev Clin Lab Sci 2020; 58:207-224. [PMID: 33929278 DOI: 10.1080/10408363.2020.1849008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the clinical laboratory, knowledge of and the correct use of clot activators and anticoagulant additives are critical to preserve and maintain samples in optimal conditions prior to analysis. In 2017, the Latin America Confederation of Clinical Biochemistry (COLABIOCLI) commissioned the Latin American Working Group for Preanalytical Phase (WG-PRE-LATAM) to study preanalytical variability and establish guidelines for preanalytical procedures to be applied by clinical laboratories and health care professionals. The aim of this critical review, on behalf of COLABIOCLI WG-PRE-LATAM, is to provide information to understand the mechanisms of the interactions and reactions that occur between blood and clot activators and anticoagulant additives inside evacuated tubes used for laboratory testing. Clot activators - glass, silica, kaolin, bentonite, and diatomaceous earth - work by surface dependent mechanism whereas extrinsic biomolecules - thrombin, snake venoms, ellagic acid, and thromboplastin - start in vitro coagulation when added to blood. Few manufacturers of evacuated tubes state the type and concentration of clot activators used in their products. With respect to anticoagulant additives, sodium citrate and oxalate complex free calcium and ethylenediaminetetraacetic acid chelates calcium. Heparin potentiates antithrombin and hirudin binds to active thrombin, inactivating the thrombin irreversibly. Blood collection tubes have improved continually over the years, from the glass tubes containing clot activators or anticoagulant additives that were prepared by laboratory personnel to the current standardized evacuated systems that permit more precise blood/additive ratios. Each clot activator and anticoagulant additive demonstrates specific functionality, and both manufacturers of tubes and laboratory professional strive to provide suitable interference-free sample matrices for laboratory testing. Both manufacturers of in vitro diagnostic devices and laboratory professionals need to understand all aspects of venous blood sampling so that they do not underestimate the impact of tube additives on laboratory testing.
Collapse
Affiliation(s)
- G Lima-Oliveira
- Latin American Working Group for Preanalytical Phase (WG-PRE-LATAM), Latin America Confederation of Clinical Biochemistry (COLABIOCLI), Montevideo, Uruguay.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - L M Brennan-Bourdon
- Latin American Working Group for Preanalytical Phase (WG-PRE-LATAM), Latin America Confederation of Clinical Biochemistry (COLABIOCLI), Montevideo, Uruguay.,Comisión Para la Protección Contra Riesgos Sanitarios del Estado de Jalisco (COPRISJAL), Secretaria de Salud, Guadalajara, México
| | - B Varela
- Latin American Working Group for Preanalytical Phase (WG-PRE-LATAM), Latin America Confederation of Clinical Biochemistry (COLABIOCLI), Montevideo, Uruguay.,Quality Assurance, LAC, Montevideo, Uruguay
| | - M E Arredondo
- Latin American Working Group for Preanalytical Phase (WG-PRE-LATAM), Latin America Confederation of Clinical Biochemistry (COLABIOCLI), Montevideo, Uruguay.,Management Area, Clinical Laboratory, BIONET S.A, Santiago, Chile
| | - E Aranda
- Latin American Working Group for Preanalytical Phase (WG-PRE-LATAM), Latin America Confederation of Clinical Biochemistry (COLABIOCLI), Montevideo, Uruguay.,Laboratory of Thrombosis and Hemostasis, Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - S Flores
- Latin American Working Group for Preanalytical Phase (WG-PRE-LATAM), Latin America Confederation of Clinical Biochemistry (COLABIOCLI), Montevideo, Uruguay.,Clinical Laboratory, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - P Ochoa
- Latin American Working Group for Preanalytical Phase (WG-PRE-LATAM), Latin America Confederation of Clinical Biochemistry (COLABIOCLI), Montevideo, Uruguay.,Facultad de Medicina, Universidad Católica de Cuenca, Cuenca, Ecuador
| |
Collapse
|
18
|
Qiao M, Lin L, Xia K, Li J, Zhang X, Linhardt RJ. Recent advances in biotechnology for heparin and heparan sulfate analysis. Talanta 2020; 219:121270. [PMID: 32887160 PMCID: PMC7474733 DOI: 10.1016/j.talanta.2020.121270] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 01/07/2023]
Abstract
Heparan sulfate (HS) is a class of linear, sulfated, anionic polysaccharides, called glycosaminoglycans (GAGs), which present on the mammalian cell surfaces and extracellular matrix. HS GAGs display a wide range of critical biological functions, particularly in cell signaling. HS is composed of repeating units of 1 → 4 glucosidically linked uronic acid and glucosamine residues. Heparin, a pharmacologically important version of HS, having higher sulfation and a higher content of iduronic acid than HS, is a widely used clinical anticoagulant. However, due to their heterogeneity and complex structure, HS and heparin are very challenging to analyze, limiting biological studies and even resulting in safety concerns in their therapeutic application. Therefore, reliable methods of structural analysis of HS and heparin are critically needed. In addition to the structural analysis of heparin, its concentration in blood needs to be closely monitored to avoid complications such as thrombocytopenia or hemorrhage caused by heparin overdose. This review summarizes the progress in biotechnological approaches in the structural characterization of HS and heparin over the past decade and includes the development of the ultrasensitive approaches for detection and measurement in biological samples.
Collapse
Affiliation(s)
- Meng Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China
| | - Lei Lin
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China.
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
19
|
Song C, Li Y, Wang B, Hong Y, Xue C, Li Q, Shen E, Cui D. A novel anticoagulant affinity membrane for enhanced hemocompatibility and bilirubin removal. Colloids Surf B Biointerfaces 2020; 197:111430. [PMID: 33125976 DOI: 10.1016/j.colsurfb.2020.111430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 01/20/2023]
Abstract
Affinity membrane is widely employed to promote specific adsorption of toxins and reduce the blood purification therapeutic time. However, it suffers from insufficient toxin binding and low hemocompatibility. Herein, a novel anticoagulant affinity membrane (AAM) was developed to clear bilirubin from human blood in a pore-flow-through way. Firstly, a nylon net membrane with a regularly arranged pore as the matrix was coated with poly(pyrrole-3-carboxylic acid) via chemical vapor deposition (CVD) method. Then, poly(L-arginine) (PLA) as a highly specific ligand of bilirubin, was immobilized onto the surface of the composited membrane after the modification of heparin. Owing to the 3-dimensional molecular architecture of PLA, up to 86.1 % of bilirubin was efficiently cleared. Besides, the AAM exhibited effective anticoagulant activity in the measurement of clotting time, with suppressed thrombus formation, low hemolysis ratio, minimized platelet and leukocyte adhesion, and excellent biosafety. Therefore, the AAM has enormous potential in blood purification therapy for enhancing hemocompatibility and bilirubin removal.
Collapse
Affiliation(s)
- Cunfeng Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yugang Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Baocan Wang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Yuping Hong
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Cuili Xue
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qichao Li
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - E Shen
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, 600 Xishan Road, Shanghai 200233, China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
20
|
Baytas SN, Linhardt RJ. Advances in the preparation and synthesis of heparin and related products. Drug Discov Today 2020; 25:2095-2109. [PMID: 32947045 DOI: 10.1016/j.drudis.2020.09.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/04/2020] [Accepted: 09/10/2020] [Indexed: 01/01/2023]
Abstract
Heparin is a naturally occurring glycosaminoglycan from livestock, principally porcine intestine, and is clinically used as an anticoagulant drug. A limitation to heparin production is that it depends on a single animal species and potential problems have been associated with animal-derived heparin. The contamination crisis in 2008 led to a search for new animal sources and the investigation of non-animal sources of heparin. Over the past 5 years, new animal sources, chemical, and chemoenzymatic methods have been introduced to prepare heparin-based drugs. In this review, we describe advances in the preparation and synthesis of heparin and related products.
Collapse
Affiliation(s)
- Sultan N Baytas
- Department of Chemistry & Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Robert J Linhardt
- Department of Chemistry & Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
21
|
Sathler PC. Hemostatic abnormalities in COVID-19: A guided review. AN ACAD BRAS CIENC 2020; 92:e20200834. [PMID: 32844987 DOI: 10.1590/0001-3765202020200834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already taken on pandemic proportions, affecting over 213 countries in a matter of weeks. In this context, several studies correlating hemostatic disorders with the infection dynamics of the new coronavirus have emerged. These studies have shown that a portion of the patients affected by Coronavirus Disease 2019 (COVID-19) have prolonged prothrombin time (PT) and activated partial thromboplastin time (APTT), elevated D-dimer levels and other fibrinolytic products, antithrombin (AT) activity reduced and decrease of platelet count. Based on these hallmarks, this review proposes to present possible pathophysiological mechanisms involved in the hemostatic changes observed in the pathological progression of COVID-19. In this analysis, it is pointed the relationship between the downregulation of angiotensin-converting enzyme 2 (ACE2) and storm cytokines action with the onset of hypercoagulability state, other than the clinical events involved in thrombocytopenia and hyperfibrinolysis progression.
Collapse
Affiliation(s)
- PlÍnio C Sathler
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|