1
|
Sun J, Pang H, Chen L. Organic-Solvent-Resistant Polyimide/Hydroxyapatite Mixed Matrix Membranes for Lysozyme Adsorption. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7210. [PMID: 38005139 PMCID: PMC10672861 DOI: 10.3390/ma16227210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
This work reports new mixed matrix membranes (MMMs) for the adsorption of enzymes from organic solvents. In this work, polyimide/hydroxyapatite (PI/HAP) MMMs were prepared via phase inversion method and further crosslinked with 3-aminopropyl triethoxysilane (APTES). The chemical and structural stability of the crosslinked PI/HAP MMMs were improved and applied for lysozyme (LZ) adsorption in organic solvent. PI/HAP MMMs were crosslinked by changing the 3-aminopropyltriethoxysilane (APTES) concentration and crosslinking time. The optimal APTES crosslinking condition for PI/HAP MMMs is 6% of concentration for 8 h. The LZ adsorption performance was studied by changing solvent types. PI/HAP MMMs possessed a high LZ adsorption in organic-solvent-aqueous solutions, and the LZ adsorption capacity reached 34.1 mg/g. The MMMs had a high desorption capacity and recovery ability. The MMMs maintained 60% of their adsorption capacity and 58% of their desorption at the fourth cycle of adsorption and desorption. The MMMs provided a new technology for the purification and separation of enzymes or proteins by MMMs in organic solvents.
Collapse
Affiliation(s)
- Junfen Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, North People Road 2999, Shanghai 201620, China;
| | | | - Long Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, North People Road 2999, Shanghai 201620, China;
| |
Collapse
|
2
|
Monterrey DT, Benito-Arenas R, Revuelta J, García-Junceda E. Design of a biocatalytic cascade for the enzymatic sulfation of unsulfated chondroitin with in situ generation of PAPS. Front Bioeng Biotechnol 2023; 11:1099924. [PMID: 36726741 PMCID: PMC9885120 DOI: 10.3389/fbioe.2023.1099924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023] Open
Abstract
Sulfation of molecules in living organisms is a process that plays a key role in their functionality. In mammals, the sulfation of polysaccharides (glycosaminoglycans) that form the proteoglycans present in the extracellular matrix is particularly important. These polysaccharides, through their degree and sulfation pattern, are involved in a variety of biological events as signal modulators in communication processes between the cell and its environment. Because of this great biological importance, there is a growing interest in the development of efficient and sustainable sulfation processes, such as those based on the use of sulfotransferase enzymes. These enzymes have the disadvantage of being 3'-phosphoadenosine 5'-phosphosulfate (PAPS) dependent, which is expensive and difficult to obtain. In the present study, a modular multienzyme system was developed to allow the in situ synthesis of PAPS and its coupling to a chondroitin sulfation system. For this purpose, the bifunctional enzyme PAPS synthase 1 (PAPSS1) from Homo sapiens, which contains the ATP sulfurylase and APS kinase activities in a single protein, and the enzyme chondroitin 4-O-sulfotransferase (C4ST-1) from Rattus norvegicus were overexpressed in E. coli. The product formed after coupling of the PAPS generation system and the chondroitin sulfation module was analyzed by NMR.
Collapse
|
3
|
Bidondo L, Festari F, Freire T, Giacomini C. Immobilized peptide-N-glycosidase F onto magnetic nanoparticles: A biotechnological tool for protein deglycosylation under native conditions. Biotechnol Appl Biochem 2021; 69:209-220. [PMID: 33438294 DOI: 10.1002/bab.2099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/06/2021] [Indexed: 11/06/2022]
Abstract
The elucidation of glycans biological function is essential to understand their role in biological processes, both normal and pathological. Immobilized glycoenzymes are excellent tools for this purpose as they can selectively release glycans from glycoproteins without altering their backbone. They can be easily removed from the reaction mixture avoiding their interference in subsequent experiments. Here, we describe the immobilization of peptide-N-glycosidase F (PNGase F) onto silica magnetic nanoparticles with immobilization yields of 86% and activity yields of 12%. Immobilized PNGase F showed higher thermal stability than its soluble counterpart, and could be reused for at least seven deglycosylation cycles. It was efficient in the deglycosylation of several glycoproteins (ribonuclease B, bovine fetuin, and ovalbumin) and a protein lysate from the parasite Fasciola hepatica under native conditions, with similar performance to that of the soluble enzyme. Successful deglycosylation was evidenced by a decrease in specific lectin recognition of the glycoproteins (40%-80%). Moreover, deglycosylated F. hepatica lysate allowed us to confirm the role of parasite N-glycans in the inhibition of the lipopolysaccharide-induced maturation of dendritic cells. Immobilized PNGase F probed to be a robust biotechnological tool for deglycosylation of glycoproteins and complex biological samples under native conditions.
Collapse
Affiliation(s)
- Lucía Bidondo
- Laboratorio de Bioquímica, Departamento de Biociencias, Facultad de Química, UdelaR, Gral. Flores 2124, Montevideo, Uruguay
| | - Florencia Festari
- Laboratorio de Inmunomodulación y desarrollo de Vacunas, Departamento de Inmunobiología, Facultad de Medicina, UdelaR, Gral Flores 2125, Montevideo, Uruguay
| | - Teresa Freire
- Laboratorio de Inmunomodulación y desarrollo de Vacunas, Departamento de Inmunobiología, Facultad de Medicina, UdelaR, Gral Flores 2125, Montevideo, Uruguay
| | - Cecilia Giacomini
- Laboratorio de Bioquímica, Departamento de Biociencias, Facultad de Química, UdelaR, Gral. Flores 2124, Montevideo, Uruguay
| |
Collapse
|
4
|
Nóbile ML, Stricker AM, Iribarren AM, Lewkowicz ES. Streptomyces griseus: A new biocatalyst with N-oxygenase activity. J Biotechnol 2020; 327:36-42. [PMID: 33373628 DOI: 10.1016/j.jbiotec.2020.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022]
Abstract
Aromatic nitro compounds are key building blocks for many industrial syntheses and are also components of explosives, drugs and pesticides. Due to the environmentally unfriendly experimental conditions involved in their chemical syntheses, industrial processes would benefit from the use of biocatalysts. Among potentially useful enzymes, N-oxygenases, whose role is to oxygenate primary amines, are becoming relevant. These enzymes are involved in different secondary metabolic pathways in Streptomyces and in few other bacteria, forming part of the enzyme pools implicated in antibiotic synthesis. In this work, a group of Streptomyces strains, whose biomass was obtained from simple and novel culture media, were identified as new sources of N-oxygenase activity. Furthermore, the use of unspecific metabolic stimulation strategies allowed substantial improvements in the activity of whole cells as biocatalysts. It is remarkable the 6 to 50-fold increase in nitro compound yields compared to the biotransformation under standard conditions when Streptomyces griseus was the biocatalyst. In addition, biocatalyst substrate acceptance was studied in order to determine the biocatalytic potential of this enzyme.
Collapse
Affiliation(s)
- Matías L Nóbile
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, LBB, Roque Sáenz Peña 352, Quilmes, 1876, Argentina.
| | - Abigail M Stricker
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, LBB, Roque Sáenz Peña 352, Quilmes, 1876, Argentina
| | - Adolfo M Iribarren
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, LBB, Roque Sáenz Peña 352, Quilmes, 1876, Argentina
| | - Elizabeth S Lewkowicz
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, LBB, Roque Sáenz Peña 352, Quilmes, 1876, Argentina
| |
Collapse
|
5
|
Uhrich D, Jang HY, Park JB, von Langermann J. Characterization and application of chemical-resistant polyurethane-based enzyme and whole cell compartments. J Biotechnol 2019; 289:31-38. [PMID: 30439386 DOI: 10.1016/j.jbiotec.2018.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/23/2018] [Accepted: 11/07/2018] [Indexed: 01/28/2023]
Abstract
This study presents the preparation and physical-chemical characterization of chemical resistant polyurethane-based compartments for biocatalytic application. The artificial compartments were prepared from an emulsion of polymer precursor and an aqueous phase that includes a biocatalytic reaction system. After curing, highly dispersed aqueous domains were obtained, which still contain the entire biocatalytic reaction system and remain fixed in the solid polymer preparation. The tensile and compression behavior of the prepared polymeric material is not significantly affected by the incorporation and facilitates excellent stability against various organic solvents and acid solutions. Thereby, the compartments can be used not only for enantioselective alcohol-dehydrogenase catalyzed reduction but also for a whole cell catalyzed hydrolysis of esters. Moreover, the compartmented whole-cell system was considerably stable to allow multiple reuses without a noticeable loss of catalytic activity of the incorporated whole cell catalytic reaction system.
Collapse
Affiliation(s)
- Diana Uhrich
- Biocatalytic Synthesis Group, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Hyun-Young Jang
- Department of Food Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jan von Langermann
- Biocatalytic Synthesis Group, Institute of Chemistry, University of Rostock, Rostock, Germany.
| |
Collapse
|
6
|
A Novel Method of Affinity Tag Cleavage in the Purification of a Recombinant Thermostable Lipase from Aneurinibacillus thermoaerophilus Strain HZ. Catalysts 2018. [DOI: 10.3390/catal8100479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The development of an efficient and economical purification method is required to obtain a pure and mature recombinant protein in a simple process with high efficiency. Hence, a new technique was invented to cleave the tags from the N-terminal region of recombinant fusion HZ lipase in the absence of protease treatment. The recombinant pET32b/rHZ lipase was overexpressed into E. coli BL21 (DE3). Affinity chromatography was performed as the first step of purification. The stability of the protein was then tested in different temperatures. The fused Trx-His-S-tags to the rHZ lipase was cleaved by treatment of the fusion protein at 20 °C in 100 mM Tris-HCl buffer, pH 8.0. The precipitated tag was removed, and the mature recombinant enzyme was further characterized to specify its properties. A purification yield of 78.9% with 1.3-fold and 21.8 mg total purified mature protein was obtained from 50 mL starting a bacterial culture. N-terminal sequencing of purified recombinant HZ lipase confirmed the elimination of the 17.4 kDa tag from one amino acid before the native start codon (Methionine) of the protein. The mature rHZ lipase was highly active at 65 °C and a pH of 7.0, with a half-life of 2 h 15 min at 55 °C and 45 min at 60 °C. The rHZ lipase showed a preference for the hydrolysis of natural oil with a long carbon chain (C18) and medium-size acyl chain p-nitrophenyl esters (C10). The enzyme remained stable in the presence of nonpolar organic solvents, and its activity was increased by polar organic solvents. This study thus demonstrates a simple and convenient purification method which resulted in the high yield of mature enzyme along with unique and detailed biochemical characterization of rHZ lipase, making the enzyme favorable in various industrial applications.
Collapse
|
7
|
Comparative Study of Novel Fluorescent Cyanine Nucleotides: Hybridization Analysis of Labeled PCR Products Using a Biochip. J Fluoresc 2017; 27:2001-2016. [PMID: 28752470 DOI: 10.1007/s10895-017-2139-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 07/18/2017] [Indexed: 01/08/2023]
Abstract
This study investigated the synthesis and substrate properties of Cy5-labeled dUTP derivatives with different substituents, linkers between the dye unit and pyrimidine heterocycle and fluorophore charges. Fluorescently labeled nucleoside triphosphates were studied as substrates using multiplex PCR with Taq and Vent (exo-) DNA polymerases, the typical representatives of the A and B polymerase families. The efficiency of nucleotide incorporation during PCR was assessed with a multi-parameter hybridization analysis using a diagnostic DNA microarray. The hybridization analysis indirectly estimates the incorporation efficiency of dye-labeled nucleotides in multiplex PCR. Our results demonstrated higher efficiencies of substrates with electrically neutral dyes than electropositive and electronegative Cy5 residues.
Collapse
|
8
|
Jain A, Jayaraman S, Singh G, Srinivasan M. Single step peroxidase extraction and oxidation of highly concentrated ethanol and phenol aqueous solutions using supercritical carbon dioxide. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2016.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Zafar S, Ahmed R, Khan R. Biotransformation: a green and efficient way of antioxidant synthesis. Free Radic Res 2016; 50:939-48. [PMID: 27383446 DOI: 10.1080/10715762.2016.1209745] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antioxidant compounds play a vital role in human physiology. They prevent the oxidation of biomolecules by scavenging free radicals produced during physiochemical processes and/or as a result of several pathological states. A balance between the reactive oxygen species (free radicals) and antioxidants is essential for proper physiological conditions. Excessive free radicals cause oxidative stress which can lead to several human diseases. Therefore, synthesis of the effective antioxidants is crucial in managing the oxidative stress. Biotransformation has evolved as an effective technique for the production of structurally diverse molecules with a wide range of biological activities. This methodology surpasses the conventional chemical synthesis due to the fact that enzymes, being specific in nature, catalyze reactions affording products with excellent regio- and stereoselectivities. Structural transformation of various classes of compounds such as alkaloids, steroids, flavonoids, and terpenes has been carried out through this technique. Several bioactive molecules, especially those having antioxidant potential have also been synthesized by using different biotransformation techniques and enzymes. Hydroxylated, glycosylated, and acylated derivatives of phenols, flavonoids, cinnamates, and other molecules have proven abilities as potential antioxidants. A critical review of the biotransformation of these compounds into potent antioxidant metabolites is presented here.
Collapse
Affiliation(s)
- Salman Zafar
- a Institute of Chemical Sciences, University of Peshawar , Peshawar , Pakistan
| | - Rida Ahmed
- b Department of Basic Sciences , DHA Suffa University, DG-78, Off Khayaban-e-Tufail, Phase VII Ext. Defence Housing Authority , Karachi , Pakistan
| | - Rasool Khan
- a Institute of Chemical Sciences, University of Peshawar , Peshawar , Pakistan
| |
Collapse
|
10
|
Oueis E, Adamson C, Mann G, Ludewig H, Redpath P, Migaud M, Westwood NJ, Naismith JH. Derivatisable Cyanobactin Analogues: A Semisynthetic Approach. Chembiochem 2015; 16:2646-50. [PMID: 26507241 PMCID: PMC4736454 DOI: 10.1002/cbic.201500494] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 11/24/2022]
Abstract
Many natural cyclic peptides have potent and potentially useful biological activities. Their use as therapeutic starting points is often limited by the quantities available, the lack of known biological targets and the practical limits on diversification to fine‐tune their properties. We report the use of enzymes from the cyanobactin family to heterocyclise and macrocyclise chemically synthesised substrates so as to allow larger‐scale syntheses and better control over derivatisation. We have made cyclic peptides containing orthogonal reactive groups, azide or dehydroalanine, that allow chemical diversification, including the use of fluorescent labels that can help in target identification. We show that the enzymes are compatible and efficient with such unnatural substrates. The combination of chemical synthesis and enzymatic transformation could help renew interest in investigating natural cyclic peptides with biological activity, as well as their unnatural analogues, as therapeutics.
Collapse
Affiliation(s)
- Emilia Oueis
- Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK
| | - Catherine Adamson
- Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK
| | - Greg Mann
- Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK
| | - Hannes Ludewig
- Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK
| | - Philip Redpath
- John King Medicinal Chemistry Laboratory, School of Pharmacy, Queen's University, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Marie Migaud
- John King Medicinal Chemistry Laboratory, School of Pharmacy, Queen's University, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Nicholas J Westwood
- Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK.
| | - James H Naismith
- Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK. .,State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
Oroz-Guinea I, Hernández K, Camps Bres F, Guérard-Hélaine C, Lemaire M, Clapés P, García-Junceda E. L
-Rhamnulose-1-phosphate Aldolase from Thermotoga maritima
in Organic Synthesis: One-Pot Multistep Reactions for the Preparation of Imino- and Nitrocyclitols. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500187] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
|
13
|
Aires-Trapote A, Tamayo A, Rubio J, Rumbero A, Hernáiz MJ. Sustainable synthesis of N-acetyllactosamine using an immobilized β-galactosidase on a tailor made porous polymer. RSC Adv 2015. [DOI: 10.1039/c5ra03527a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficient enzymatic synthesis of N-acetyllactosamine has been developed in biosolvents, mediated by the action of an immobilized β-galactosidase on a tailor made porous polymer.
Collapse
Affiliation(s)
| | - Aitana Tamayo
- Instituto de Cerámica y Vidrio (ICV)
- Consejo Superior de Investigaciones Científicas (CSIC)
- Spain
| | - Juan Rubio
- Instituto de Cerámica y Vidrio (ICV)
- Consejo Superior de Investigaciones Científicas (CSIC)
- Spain
| | - Angel Rumbero
- Faculty of Science
- Autonoma University of Madrid
- Spain
| | | |
Collapse
|
14
|
Hahn P, Kasprzycka A, Szeja W. Synthesis of 2-deoxygalactopyranoside derivatives of benzyl alcohols with β-galactosidase fromAspergillus oryzae. BIOCATAL BIOTRANSFOR 2014. [DOI: 10.3109/10242422.2014.975216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Ghaffari-Moghaddam M, Eslahi H, Omay D, Zakipour-Rahimabadi E. Industrial applications of enzymes. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s2079978014040037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Ghaffari-Moghaddam M, Yekke-Ghasemi Z, Khajeh M, Rakhshanipour M, Yasin Y. Application of response surface methodology in enzymatic synthesis: A review. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2014. [DOI: 10.1134/s1068162014030054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Singh R, Vince R. 2-Azabicyclo[2.2.1]hept-5-en-3-one: Chemical Profile of a Versatile Synthetic Building Block and its Impact on the Development of Therapeutics. Chem Rev 2012; 112:4642-86. [DOI: 10.1021/cr2004822] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rohit Singh
- Center for Drug Design, Academic Health Center, University of Minnesota, 516 Delaware Street Southeast,
Minneapolis, MN 55455, United States
| | - Robert Vince
- Center for Drug Design, Academic Health Center, University of Minnesota, 516 Delaware Street Southeast,
Minneapolis, MN 55455, United States
| |
Collapse
|
18
|
Enzyme-immobilized microfluidic process reactors. Molecules 2011; 16:6041-59. [PMID: 21772235 PMCID: PMC6264325 DOI: 10.3390/molecules16076041] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/13/2011] [Accepted: 07/17/2011] [Indexed: 11/17/2022] Open
Abstract
Microreaction technology, which is an interdisciplinary science and engineering area, has been the focus of different fields of research in the past few years. Several microreactors have been developed. Enzymes are a type of catalyst, which are useful in the production of substance in an environmentally friendly way, and they also have high potential for analytical applications. However, not many enzymatic processes have been commercialized, because of problems in stability of the enzymes, cost, and efficiency of the reactions. Thus, there have been demands for innovation in process engineering, particularly for enzymatic reactions, and microreaction devices represent important tools for the development of enzyme processes. In this review, we summarize the recent advances of microchannel reaction technologies especially for enzyme immobilized microreactors. We discuss the manufacturing process of microreaction devices and the advantages of microreactors compared to conventional reaction devices. Fundamental techniques for enzyme immobilized microreactors and important applications of this multidisciplinary technology are also included in our topics.
Collapse
|
19
|
Ceni G, da Silva PC, Lerin L, Charin RM, Oliveira JV, Toniazzo G, Treichel H, Oestreicher EG, de Oliveira D. Enzyme-catalyzed production of 1-glyceryl benzoate in compressed n-butane. Enzyme Microb Technol 2010; 46:513-9. [DOI: 10.1016/j.enzmictec.2010.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 01/06/2010] [Accepted: 01/25/2010] [Indexed: 11/17/2022]
|
20
|
|
21
|
Ikai T, Okamoto Y. Structure Control of Polysaccharide Derivatives for Efficient Separation of Enantiomers by Chromatography. Chem Rev 2009; 109:6077-101. [DOI: 10.1021/cr8005558] [Citation(s) in RCA: 347] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Tomoyuki Ikai
- EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan, and College of Material Science and Chemical Engineering, Harbin Engineering University, 145 Nantong St. Harbin 150001, P. R. China
| | - Yoshio Okamoto
- EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan, and College of Material Science and Chemical Engineering, Harbin Engineering University, 145 Nantong St. Harbin 150001, P. R. China
| |
Collapse
|
22
|
Rosa CD, Morandim M, Ninow J, Oliveira D, Treichel H, Oliveira JV. Lipase-catalyzed production of fatty acid ethyl esters from soybean oil in compressed propane. J Supercrit Fluids 2008. [DOI: 10.1016/j.supflu.2008.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Quan J, Wu Q, Zhu LM, Lin XF. Chemo-enzymatic synthesis and sustained release of optically active polymeric prodrugs of chlorphenesin. POLYMER 2008. [DOI: 10.1016/j.polymer.2008.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Monsalve LN, Machado Rada MY, Ghini AA, Baldessari A. An efficient enzymatic preparation of 20-pregnane succinates: chemoenzymatic synthesis of 20β-hemisuccinyloxy-5αH-pregnan-3-one. Tetrahedron 2008. [DOI: 10.1016/j.tet.2007.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Miyazaki M, Honda T, Yamaguchi H, Briones MPP, Maeda H. Enzymatic Processing in Microfluidic Reactors. Biotechnol Genet Eng Rev 2008; 25:405-28. [PMID: 21412364 DOI: 10.5661/bger-25-405] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Primo M, Ceni G, Marcon N, Antunes O, Oliveira D, Oliveira JV, Dariva C. Effects of compressed carbon dioxide treatment on the specificity of oxidase enzymatic complexes from mate tea leaves. J Supercrit Fluids 2007. [DOI: 10.1016/j.supflu.2007.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Quan J, Xu JM, Liu BK, Zheng CZ, Lin XF. Synthesis and characterization of drug–saccharide conjugates by enzymatic strategy in organic media. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2007.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Farina V, Reeves JT, Senanayake CH, Song JJ. Asymmetric synthesis of active pharmaceutical ingredients. Chem Rev 2007; 106:2734-93. [PMID: 16836298 DOI: 10.1021/cr040700c] [Citation(s) in RCA: 384] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vittorio Farina
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, USA
| | | | | | | |
Collapse
|
29
|
Weis M, Lim EK, Bruce N, Bowles D. Regioselective glucosylation of aromatic compounds: screening of a recombinant glycosyltransferase library to identify biocatalysts. Angew Chem Int Ed Engl 2007; 45:3534-8. [PMID: 16634098 DOI: 10.1002/anie.200504505] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Markus Weis
- CNAP, Department of Biology, University of York, York YO10 5DD, UK
| | | | | | | |
Collapse
|
30
|
Quan J, Wu Q, Lin XF. Synthesis of polymeric prodrugs of chlorphenesin with saccharide branches by chemo-enzymatic regioselective strategy. POLYMER 2007. [DOI: 10.1016/j.polymer.2007.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Quan J, Chen Z, Han C, Lin X. The synthesis of amphipathic prodrugs of 1,2-diol drugs with saccharide conjugates by high regioselective enzymatic protocol. Bioorg Med Chem 2007; 15:1741-8. [PMID: 17178228 DOI: 10.1016/j.bmc.2006.11.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Revised: 11/22/2006] [Accepted: 11/27/2006] [Indexed: 11/23/2022]
Abstract
A facile, high regioselective enzymatic synthesis approach for the preparation of amphipathic prodrugs with saccharides of mephenesin and chlorphenesin was developed. Firstly, transesterification of two drugs with divinyl dicarboxylates with different carbon chain length was performed under the catalysis of Candida antarctica lipase acrylic resin and Lipozyme in anhydrous acetone at 50 degrees C, respectively. A series of lipophilic derivatives with vinyl groups of mephenesin and chlorphenesin were prepared. The influences of different organic solvents, enzyme sources, reaction time, and the acylation reagents on the synthesis of vinyl esters were investigated. And then, protease-catalyzed high regioselective acylation of D-glucose and D-mannose with vinyl esters of mephenesin and chlorphenesin gave drug-saccharide derivatives in good yields. The studies of lipophilicity and hydrolysis in vitro of prodrugs verified that drug-saccharide derivatives had amphipathic properties, and both lipophilic and amphipathic drug derivatives had obvious controlled release characteristics.
Collapse
Affiliation(s)
- Jing Quan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | | | | | | |
Collapse
|
32
|
Favrelle A, Bonnet V, Sarazin C, Djedaïni-Pilard F. Novel chemo-enzymatic access to amphiphilic cyclodextrins. J INCL PHENOM MACRO 2007. [DOI: 10.1007/s10847-006-9167-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Giordano A, Andreotti G, Tramice A, Trincone A. Marine glycosyl hydrolases in the hydrolysis and synthesis of oligosaccharides. Biotechnol J 2006; 1:511-30. [PMID: 16892287 DOI: 10.1002/biot.200500036] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The marine ecosystem can be considered a rather unexplored source of biological material (e.g. natural substances with therapeutic activity) and can also be a surprising source of enzymes carrying new and interesting catalytic activities to be applied in biocatalysis. The use of glycosyl hydrolases from marine environments dates back to the end of the 1960s and was mainly focused on the development of sensitive and reliable hydrolytic methods for the analysis of sugar chains. As a result not all the benefits of a particular enzymatic activity have been investigated, especially regarding the transglycosylation potential of these enzymes for the synthesis of glycosidic bonds. In this review, the potential of marine sources will be demonstrated reporting on the few examples found in literature for the synthesis and hydrolysis of biologically relevant oligosaccharides catalyzed by glycosyl hydrolases of marine origin. Particular emphasis is given to the synthesis of glycosidic bonds, which is easy by the use of glycosyl hydrolases. Further aspects considered in this review are applications of these biocatalysts for vegetal waste treatment in recovering useful materials, for structural identification and for preparation of target materials from new purified polysaccharides, for the synthesis or modification of food-related compounds and for glycobiology related studies.
Collapse
|
34
|
Wu Q, Wang M, Chen ZC, Lu DS, Lin XF. Enzymatic synthesis of metronidazole esters and their monosaccharide ester derivatives. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2006.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Evaluation of radish (Raphanus sativus L.) peroxidase activity after high-pressure treatment with carbon dioxide. J Supercrit Fluids 2006. [DOI: 10.1016/j.supflu.2005.11.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Miyazaki M, Maeda H. Microchannel enzyme reactors and their applications for processing. Trends Biotechnol 2006; 24:463-70. [PMID: 16934892 DOI: 10.1016/j.tibtech.2006.08.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 05/19/2006] [Accepted: 08/15/2006] [Indexed: 10/24/2022]
Abstract
Microreaction technology is an interdisciplinary field combining science and engineering. It has attracted the attention of researchers from different fields for the past few years, resulting in the development of several microreactors. Enzymes are one of the catalysts used in microreactors: they are useful for substance production in an environmentally friendly way and have high potential for analytical applications. However, few enzymatic processes have been commercialized because of problems with stability and the cost and efficiency of the reactions. Thus, there have been demands for innovation in process engineering, particularly for enzymatic reactions, and microreaction devices can serve as efficient tools for the development of enzyme processes. In this review, we summarize the recent advances of enzyme-immobilized microchannel reactors; fundamental techniques for micro enzyme-reactor design and important applications of this multidisciplinary technology in chemical processing are also included in our topics.
Collapse
Affiliation(s)
- Masaya Miyazaki
- Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga 841-0052, Japan
| | | |
Collapse
|
37
|
Agostinelli E, Belli F, Tempera G, Mura A, Floris G, Toniolo L, Vavasori A, Fabris S, Momo F, Stevanato R. Polyketone polymer: a new support for direct enzyme immobilization. J Biotechnol 2006; 127:670-8. [PMID: 17007953 DOI: 10.1016/j.jbiotec.2006.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 06/13/2006] [Accepted: 08/01/2006] [Indexed: 10/24/2022]
Abstract
Polyketone polymer -[-CO-CH(2)-CH(2)-](n)-, obtained by copolymerization of ethene and carbon monoxide, is utilized for immobilization of three different enzymes, one peroxidase from horseradish (HRP) and two amine oxidases, from bovine serum (BSAO) and lentil seedlings (LSAO). The easy immobilization procedure is carried out in diluted buffer, at pH 7.0 and 3 degrees C, gently mixing the proteins with the polymer. No bifunctional reagents and spacer arms are required for the immobilization, which occurs exclusively via a large number of hydrogen bonds between the carbonyl groups of the polymer and the -NH groups of the polypeptidic chain. Experiments demonstrate a high linking capacity of polymer for BSAO and an extraordinary strong linkage for LSAO. Moreover, activity measurements demonstrate that immobilized LSAO totally retains the catalytic characteristics of the free enzyme, where only a limited increase of K(M) value is observed. Finally, the HRP-activated polymer is successfully used as active packed bed of an enzymatic reactor for continuous flow conversion and flow injection analysis of hydrogen peroxide containing solutions.
Collapse
Affiliation(s)
- E Agostinelli
- Department of Biochemical Sciences A. Rossi Fanelli, University of Rome La Sapienza and CNR, Biology and Molecular Pathology Institutes, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Weis M, Lim EK, Bruce N, Bowles D. Regioselective Glucosylation of Aromatic Compounds: Screening of a Recombinant Glycosyltransferase Library to Identify Biocatalysts. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200504505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
39
|
de Oliveira D, Feihrmann AC, Dariva C, Cunha AG, Bevilaqua JV, Destain J, Oliveira JV, Freire DM. Influence of compressed fluids treatment on the activity of Yarrowia lipolytica lipase. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.molcatb.2006.01.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Choisnard L, Gèze A, Putaux JL, Wong YS, Wouessidjewe D. Nanoparticles of β-Cyclodextrin Esters Obtained by Self-Assembling of Biotransesterified β-Cyclodextrins. Biomacromolecules 2006; 7:515-20. [PMID: 16471924 DOI: 10.1021/bm0507655] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis of decanoate beta-cyclodextrin esters (beta-CDd) and hexanoate beta-cyclodextrin esters (beta-CDh) was biocatalyzed by thermolysin from native beta-cyclodextrin (beta-CD) and vinyl hexanoate or vinyl decanoate used as acyl donors. The products were chemically characterized by infrared, NMR, and mass spectrometry. Both beta-CDd and beta-CDh esters were identified as a mixture of beta-CD preferentially substituted on the C2 position by the corresponding acyl chain. The degree of substitution varied from 2 to 7 for beta-CDd and from 4 to 8 for beta-CDh. The ability of beta-CD esters to self-organize into nanoparticles was tested using a nanoprecipitation technique in various solvents. The mean size diameter and polydispersity measured by quasi-elastic light scattering were dramatically affected by the nature of solvent (acetone, ethanol, or tetrahydrofuran) used in the nanoprecipitation technique. When directly observed using cryo-transmission electron microscopy, beta-CDh appeared as uniformly dense nanospheres, whereas beta-CDd exhibited a multilamellar onion-like organization. A structural model was rationalized for the beta-CDd nanoparticles.
Collapse
Affiliation(s)
- Luc Choisnard
- Université Joseph Fourier, UFR de Pharmacie, ICMG DPM UMR CNRS 5063, 5 Avenue de Verdun, F-38243 Meylan Cedex, France.
| | | | | | | | | |
Collapse
|
41
|
Rustoy EM, Baldessari A. An Efficient Chemoenzymatic Synthesis of the Bactericide Lapyrium Chloride. European J Org Chem 2005. [DOI: 10.1002/ejoc.200500388] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Bioorganic & medicinal chemistry reviews and perspectives. Bioorg Med Chem 2005. [DOI: 10.1016/j.bmc.2005.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Wong CH. Bioorganic & medicinal chemistry reviews and perspectives. Bioorg Med Chem 2005. [DOI: 10.1016/j.bmc.2005.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Wong CH. Bioorganic & medicinal chemistry reviews and perspectives. Bioorg Med Chem 2005. [DOI: 10.1016/j.bmc.2004.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Giordano A, Tramice A, Andreotti G, Mollo E, Trincone A. Enzymatic syntheses and selective hydrolysis of O-β-d-galactopyranosides using a marine mollusc β-galactosidase. Bioorg Med Chem Lett 2005; 15:139-43. [PMID: 15582427 DOI: 10.1016/j.bmcl.2004.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 10/07/2004] [Accepted: 10/07/2004] [Indexed: 11/19/2022]
Abstract
The use of crude extract of the hepatopancreas of Aplysia fasciata, a large mollusc belonging to the order Anaspidea containing a beta-galactosidase activity, was reported for the synthesis of different galactosides. Good yields with polar acceptors and the uncommon beta-1-3 selectivity in the transgalactosylation reactions with most of the acceptors were observed. A beta-1-2 selectivity in the hydrolytic conditions was also observed and discussed.
Collapse
Affiliation(s)
- Assunta Giordano
- Istituto di Chimica Biomolecolare C.N.R., Via Campi Flegrei 34, 80072 Pozzuoli, Naples, Italy
| | | | | | | | | |
Collapse
|
46
|
Bioorganic & medicinal chemistry reviews and perspectives. Bioorg Med Chem 2005. [DOI: 10.1016/j.bmc.2004.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Butler MS. The role of natural product chemistry in drug discovery. JOURNAL OF NATURAL PRODUCTS 2004; 67:2141-53. [PMID: 15620274 DOI: 10.1021/np040106y] [Citation(s) in RCA: 755] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Although traditionally natural products have played an important role in drug discovery, in the past few years most Big Pharma companies have either terminated or considerably scaled down their natural product operations. This is despite a significant number of natural product-derived drugs being ranked in the top 35 worldwide selling ethical drugs in 2000, 2001, and 2002. There were 15 new natural product-derived drugs launched from 2000 to 2003, as well as 15 natural product-derived compounds in Phase III clinical trials or registration at the end of 2003. Recently, there has been a renewed interest in natural product research due to the failure of alternative drug discovery methods to deliver many lead compounds in key therapeutic areas such as immunosuppression, anti-infectives, and metabolic diseases. To continue to be competitive with other drug discovery methods, natural product research needs to continually improve the speed of the screening, isolation, and structure elucidation processes, as well addressing the suitability of screens for natural product extracts and dealing with issues involved with large-scale compound supply.
Collapse
Affiliation(s)
- Mark S Butler
- MerLion Pharmaceuticals, 1 Science Park Road, The Capricorn #05-01, Singapore Science Park II, 117528, Singapore.
| |
Collapse
|
48
|
Bioorganic & Medicinal Chemistry Reviews. Bioorg Med Chem 2004. [DOI: 10.1016/j.bmc.2004.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|