1
|
Juza R, Musilek K, Mezeiova E, Soukup O, Korabecny J. Recent advances in dopamine D 2 receptor ligands in the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:55-211. [PMID: 36111795 DOI: 10.1002/med.21923] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1-5 Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2 Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2 R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2 R affinity. Four to six atoms chains are optimal for D2 R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2 R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2 R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2 R ligands, which have been developed in the last decade (2010-2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2 R ligands and D2 R modulators from patents are not discussed in this review.
Collapse
Affiliation(s)
- Radomir Juza
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
2
|
Zhong Z, He X, Ge J, Zhu J, Yao C, Cai H, Ye XY, Xie T, Bai R. Discovery of small-molecule compounds and natural products against Parkinson's disease: Pathological mechanism and structural modification. Eur J Med Chem 2022; 237:114378. [DOI: 10.1016/j.ejmech.2022.114378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/08/2021] [Accepted: 04/09/2022] [Indexed: 11/24/2022]
|
3
|
Research progress in pharmacological activities and structure-activity relationships of tetralone scaffolds as pharmacophore and fluorescent skeleton. Eur J Med Chem 2021; 227:113964. [PMID: 34743062 DOI: 10.1016/j.ejmech.2021.113964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/03/2022]
Abstract
The tetralone and tetralone derivatives, as crucial structural scaffolds of potential novel drugs targeted at multiple biological end-points, are normally found in several natural compounds and also, it can be used as parental scaffold and/or intermediate for the synthesis of a series of pharmacologically active compounds with a broad-spectrum of bioactivities including antibacterial, antitumor, CNS effect and so on. Meanwhile, SAR information of its analogues has drawn attentions among medicinal chemists, which could contribute to the further research related to tetralone derivatives aimed at multiple targets. This review encompasses pharmacological activities, SAR analysis and docking study of tetralone and its derivatives, expecting to provide a general retrospect and prospect on tetralone derivatives.
Collapse
|
4
|
Seo J, Kim D, Ko HM. Benzyne‐Induced Ring Opening Reactions of DABCO: Synthesis of 1,4‐Disubstituted Piperazines and Piperidines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jeongseob Seo
- Department of Bio-Nano ChemistryWonkwang University 460 Iksandae-ro, Iksan Jeonbuk 54538 Republic of Korea
| | - Daegeun Kim
- Department of Bio-Nano ChemistryWonkwang University 460 Iksandae-ro, Iksan Jeonbuk 54538 Republic of Korea
| | - Haye Min Ko
- Department of Bio-Nano ChemistryWonkwang University 460 Iksandae-ro, Iksan Jeonbuk 54538 Republic of Korea
| |
Collapse
|
5
|
Targeting alpha synuclein and amyloid beta by a multifunctional, brain-penetrant dopamine D2/D3 agonist D-520: Potential therapeutic application in Parkinson's disease with dementia. Sci Rep 2019; 9:19648. [PMID: 31873106 PMCID: PMC6927976 DOI: 10.1038/s41598-019-55830-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 11/28/2019] [Indexed: 01/07/2023] Open
Abstract
A significant number of people with Parkinson’s disease (PD) develop dementia in addition to cognitive dysfunction and are diagnosed as PD with dementia (PDD). This is characterized by cortical and limbic alpha synuclein (α-syn) accumulation, and high levels of diffuse amyloid beta (Aβ) plaques in the striatum and neocortical areas. In this regard, we evaluated the effect of a brain-penetrant, novel multifunctional dopamine D2/D3 agonist, D-520 on the inhibition of Aβ aggregation and disintegration of α-syn and Aβ aggregates in vitro using purified proteins and in a cell culture model that produces intracellular Aβ-induced toxicity. We further evaluated the effect of D-520 in a Drosophila model of Aβ1-42 toxicity. We report that D-520 inhibits the formation of Aβ aggregates in vitro and promotes the disaggregation of both α-syn and Aβ aggregates. Finally, in an in vivo Drosophila model of Aβ1-42 dependent toxicity, D-520 exhibited efficacy by rescuing fly eyes from retinal degeneration caused by Aβ toxicity. Our data indicate the potential therapeutic applicability of D-520 in addressing motor dysfunction and neuroprotection in PD and PDD, as well as attenuating dementia in people with PDD.
Collapse
|
6
|
Elmabruk A, Das B, Yedlapudi D, Xu L, Antonio T, Reith MEA, Dutta AK. Design, Synthesis, and Pharmacological Characterization of Carbazole Based Dopamine Agonists as Potential Symptomatic and Neuroprotective Therapeutic Agents for Parkinson's Disease. ACS Chem Neurosci 2019; 10:396-411. [PMID: 30301349 DOI: 10.1021/acschemneuro.8b00291] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have developed a series of carbazole-derived compounds based on our hybrid D2/D3 agonist template to design multifunctional compounds for the symptomatic and disease-modifying treatment of Parkinson's disease (PD). The lead molecules (-)-11b (D-636), (-)-15a (D-653), and (-)-15c (D-656) exhibited high affinity for both D2 and D3 receptors and in GTPγS functional assay, the compounds showed potent agonist activity at both D2 and D3 receptors (EC50 (GTPγS); D2 = 48.7 nM, D3 = 0.96 nM for 11b, D2 = 0.87 nM, D3 = 0.23 nM for 15a and D2 = 2.29 nM, D3 = 0.22 nM for 15c). In an animal model of PD, the test compounds exhibited potent in vivo activity in reversing hypolocomotion in reserpinized rats with a long duration of action compared to the reference drug ropinirole. In a cellular antioxidant assay, compounds (-)-11b, (-)-15a, and (-)-15c exhibited potent activity in reducing oxidative stress induced by neurotoxin 6-hydroxydopamine (6-OHDA). Also, in a cell-based PD neuroprotection model, these lead compounds significantly increased cell survival from toxicity of 6-OHDA, thereby producing a neuroprotective effect. Additionally, compounds (-)-11b and (-)-15a inhibited aggregation and reduced toxicity of recombinant alpha synuclein protein in a cell based in vitro assay. These observations suggest that the lead carbazole-based dopamine agonists may be promising multifunctional molecules for a viable symptomatic and disease-modifying therapy of PD and should be further investigated.
Collapse
Affiliation(s)
- Asma Elmabruk
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Banibrata Das
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Deepthi Yedlapudi
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Liping Xu
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Tamara Antonio
- Department of Psychiatry, New York University, New York, New York 10016, United States
| | - Maarten E. A. Reith
- Department of Psychiatry, New York University, New York, New York 10016, United States
| | - Aloke K. Dutta
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
7
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Moritz AE, Free RB, Sibley DR. Advances and challenges in the search for D 2 and D 3 dopamine receptor-selective compounds. Cell Signal 2017; 41:75-81. [PMID: 28716664 DOI: 10.1016/j.cellsig.2017.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/30/2022]
Abstract
Compounds that target D2-like dopamine receptors (DRs) are currently used as therapeutics for several neuropsychiatric disorders including schizophrenia (antagonists) and Parkinson's disease (agonists). However, as the D2R and D3R subtypes are highly homologous, creating compounds with sufficient subtype-selectivity as well as drug-like properties for therapeutic use has proved challenging. This review summarizes the progress that has been made in developing D2R- or D3R-selective antagonists and agonists, and also describes the experimental conditions that need to be considered when determining the selectivity of a given compound, as apparent selectivity can vary widely depending on assay conditions. Future advances in this field may take advantage of currently available structural data to target alternative secondary binding sites through creating bivalent or bitopic chemical structures. Alternatively, the use of high-throughput screening techniques to identify novel scaffolds that might bind to the D2R or D3R in areas other than the highly conserved orthosteric site, such as allosteric sites, followed by iterative medicinal chemistry will likely lead to exceptionally selective compounds in the future. More selective compounds will provide a better understanding of the normal and pathological functioning of each receptor subtype, as well as offer the potential for improved therapeutics.
Collapse
Affiliation(s)
- Amy E Moritz
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, MD 20892-3723, United States
| | - R Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, MD 20892-3723, United States
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, MD 20892-3723, United States.
| |
Collapse
|
9
|
Das B, Rajagopalan S, Joshi GS, Xu L, Luo D, Andersen JK, Todi SV, Dutta AK. A novel iron (II) preferring dopamine agonist chelator D-607 significantly suppresses α-syn- and MPTP-induced toxicities in vivo. Neuropharmacology 2017; 123:88-99. [PMID: 28533164 DOI: 10.1016/j.neuropharm.2017.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 12/28/2022]
Abstract
Here, we report the characterization of a novel hybrid D2/D3 agonist and iron (II) specific chelator, D-607, as a multi-target-directed ligand against Parkinson's disease (PD). In our previously published report, we showed that D-607 is a potent agonist of dopamine (DA) D2/D3 receptors, exhibits efficacy in a reserpinized PD animal model and preferentially chelates to iron (II). As further evidence of its potential as a neuroprotective agent in PD, the present study reveals D-607 to be protective in neuronal PC12 cells against 6-OHDA toxicity. In an in vivo Drosophila melanogaster model expressing a disease-causing variant of α-synuclein (α-Syn) protein in fly eyes, the compound was found to significantly suppress toxicity compared to controls, concomitant with reduced levels of aggregated α-Syn. Furthermore, D-607 was able to rescue DAergic neurons from MPTP toxicity in mice, a well-known PD neurotoxicity model, following both sub-chronic and chronic MPTP administration. Mechanistic studies indicated that possible protection of mitochondria, up-regulation of hypoxia-inducible factor, reduction in formation of α-Syn aggregates and antioxidant activity may underlie the observed neuroprotection effects. These observations strongly suggest that D-607 has potential as a promising multifunctional lead molecule for viable symptomatic and disease-modifying therapy for PD.
Collapse
Affiliation(s)
- Banibrata Das
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | - Gnanada S Joshi
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | - Liping Xu
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Dan Luo
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Julie K Andersen
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | - Aloke K Dutta
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
10
|
Das B, Kandegedara A, Xu L, Antonio T, Stemmler T, Reith MEA, Dutta AK. A Novel Iron(II) Preferring Dopamine Agonist Chelator as Potential Symptomatic and Neuroprotective Therapeutic Agent for Parkinson's Disease. ACS Chem Neurosci 2017; 8:723-730. [PMID: 28106982 DOI: 10.1021/acschemneuro.6b00356] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder, and development of disease-modifying treatment is still an unmet medical need. Considering the implication of free iron(II) in PD, we report here the design and characterization of a novel hybrid iron chelator, (-)-12 (D-607) as a multitarget-directed ligand against PD. Binding and functional assays at dopamine D2/D3 receptors indicate potent agonist activity of (-)-12. The molecule displayed an efficient preferential iron(II) chelation properties along with potent in vivo activity in a reserpinized PD animal model. The compound also rescued PC12 cells from toxicity induced by iron delivered intracellularly in a dose-dependent manner. However, Fe3+ selective dopamine agonist 1 and a well-known antiparkinsonian drug pramipexole produced little to no neuroprotection effect under the same experimental condition. These observations strongly suggest that (-)-12 should be a promising multifunctional lead molecule for a viable symptomatic and disease modifying therapy of PD.
Collapse
Affiliation(s)
- Banibrata Das
- Department
of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Ashoka Kandegedara
- Department
of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Liping Xu
- Department
of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Tamara Antonio
- Department
of Psychiatry, New York University, New York, New York 10016, United States
| | - Timothy Stemmler
- Department
of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Maarten E. A. Reith
- Department
of Psychiatry, New York University, New York, New York 10016, United States
| | - Aloke K. Dutta
- Department
of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
11
|
Inhibition of alpha-synuclein aggregation by multifunctional dopamine agonists assessed by a novel in vitro assay and an in vivo Drosophila synucleinopathy model. Sci Rep 2016; 6:38510. [PMID: 27917933 PMCID: PMC5137034 DOI: 10.1038/srep38510] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/09/2016] [Indexed: 11/08/2022] Open
Abstract
Aggregation of alpha synuclein (α-syn) leading to dopaminergic neuronal death has been recognized as one of the main pathogenic factors in the initiation and progression of Parkinson's disease (PD). Consequently, α-syn has been targeted for the development of therapeutics for PD. We have developed a novel assay to screen compounds with α-syn modulating properties by mimicking recent findings from in vivo animal studies involving intrastriatal administration of pre-formed fibrils in mice, resulting in increased α-syn pathology accompanying the formation of Lewy-body (LB) type inclusions. We found that in vitro generated α-syn pre-formed fibrils induce seeding of α-syn monomers to produce aggregates in a dose-and time-dependent manner under static conditions in vitro. These aggregates were toxic towards rat pheochromocytoma cells (PC12). Our novel multifunctional dopamine agonists D-519 and D-520 exhibited significant neuroprotection in this assay, while their parent molecules did not. The neuroprotective properties of our compounds were further evaluated in a Drosophila model of synucleinopathy. Both of our compounds showed protective properties in fly eyes against the toxicity caused by α-syn. Thus, our in vitro results on modulation of aggregation and toxicity of α-syn by our novel assay were further validated with the in vivo experiments.
Collapse
|
12
|
Mochona B, Jackson T, McCauley D, Mazzio E, Redda KK. Synthesis and Cytotoxic Evaluation of Pyrrole Hetarylazoles Containing Benzimidazole/Pyrazolone/1,3,4-Oxadiazole Motifs. J Heterocycl Chem 2016; 53:1871-1877. [PMID: 27956751 PMCID: PMC5147751 DOI: 10.1002/jhet.2501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Azomethine linked pyrrole bishetarylazoles containing benzimidazole/pyrazolone/1,3,4-oxadiazole were synthesized in satisfactory yields. Their structures were confirmed by IR, 1H-NMR, 13C-NMR and elemental analysis. Evaluation for the cytotoxic activities In vitro against a panel of breast cancer cell lines (MDA-AB-231, BT-474 and Ishikawa cells) revealed that the pyrrole-benzimidazole hybrids are more potent than the pyrazolone and 1,3,4-oxadiazole hybrids in all cell lines. Compound (9) displayed promising cytotoxicity against BT-474 cell line with IC50 values, 7.7 µM.
Collapse
Affiliation(s)
- Bereket Mochona
- Department of Chemistry, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307
| | - Timothy Jackson
- Department of Chemistry, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307
| | - DeCoria McCauley
- Department of Chemistry, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307
| | - Elizabeth Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307
| | - Kinfe K. Redda
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307
| |
Collapse
|
13
|
Ofori E, Zhu XY, Etukala JR, Peprah K, Jordan KR, Adkins AA, Bricker BA, Kang HJ, Huang XP, Roth BL, Ablordeppey SY. Design and synthesis of dual 5-HT1A and 5-HT7 receptor ligands. Bioorg Med Chem 2016; 24:3464-71. [PMID: 27312422 DOI: 10.1016/j.bmc.2016.05.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/17/2016] [Accepted: 05/26/2016] [Indexed: 12/18/2022]
Abstract
5-HT1A and 5-HT7 receptors have been at the center of discussions recently due in part to their major role in the etiology of major central nervous system diseases such as depression, sleep disorders, and schizophrenia. As part of our search to identify dual targeting ligands for these receptors, we have carried out a systematic modification of a selective 5HT7 receptor ligand culminating in the identification of several dual 5-HT1A and 5-HT7 receptor ligands. Compound 16, a butyrophenone derivative of tetrahydroisoquinoline (THIQ), was identified as the most potent agent with low nanomolar binding affinities to both receptors. Interestingly, compound 16 also displayed moderate affinity to other clinically relevant dopamine receptors. Thus, it is anticipated that compound 16 may serve as a lead for further exploitation in our quest to identify new ligands with the potential to treat diseases of CNS origin.
Collapse
Affiliation(s)
- Edward Ofori
- Division of Basic Pharmaceutical Sciences, Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, USA
| | - Xue Y Zhu
- Division of Basic Pharmaceutical Sciences, Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, USA
| | - Jagan R Etukala
- Division of Basic Pharmaceutical Sciences, Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, USA
| | - Kwakye Peprah
- Division of Basic Pharmaceutical Sciences, Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, USA
| | - Kamanski R Jordan
- Division of Basic Pharmaceutical Sciences, Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, USA
| | - Adia A Adkins
- Division of Basic Pharmaceutical Sciences, Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, USA
| | - Barbara A Bricker
- Division of Basic Pharmaceutical Sciences, Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, USA
| | - Hye J Kang
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA; National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| | - Xi-Ping Huang
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA; National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| | - Bryan L Roth
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA; National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA; Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7360, USA
| | - Seth Y Ablordeppey
- Division of Basic Pharmaceutical Sciences, Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, USA
| |
Collapse
|
14
|
Das B, Vedachalam S, Luo D, Antonio T, Reith MEA, Dutta AK. Development of a Highly Potent D2/D3 Agonist and a Partial Agonist from Structure-Activity Relationship Study of N(6)-(2-(4-(1H-Indol-5-yl)piperazin-1-yl)ethyl)-N(6)-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine Analogues: Implication in the Treatment of Parkinson's Disease. J Med Chem 2015; 58:9179-95. [PMID: 26555041 PMCID: PMC6250127 DOI: 10.1021/acs.jmedchem.5b01031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Our structure-activity relationship studies with N(6)-(2-(4-(1H-indol-5-yl)piperazin-1-yl)ethyl)-N(6)-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine derivatives led to development of a lead compound (-)-21a which exhibited very high affinity (Ki, D2 = 16.4 nM, D3 = 1.15 nM) and full agonist activity (EC50 (GTPγS); D2 = 3.23 and D3 = 1.41 nM) at both D2 and D3 receptors. A partial agonist molecule (-)-34 (EC50 (GTPγS); D2 = 21.6 (Emax = 27%) and D3 = 10.9 nM) was also identified. In a Parkinson's disease (PD) animal model, (-)-21a was highly efficacious in reversing hypolocomotion in reserpinized rats with a long duration of action, indicating its potential as an anti-PD drug. Compound (-)-34 was also able to elevate locomotor activity in the above PD animal model significantly, implying its potential application in PD therapy. Furthermore, (-)-21a was shown to be neuroprotective in protecting neuronal PC12 from toxicity of 6-OHDA. This report, therefore, underpins the notion that a multifunctional drug like (-)-21a might have the potential not only to ameliorate motor dysfunction in PD patients but also to modify disease progression by protecting DA neurons from progressive degeneration.
Collapse
Affiliation(s)
- Banibrata Das
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Seenuvasan Vedachalam
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Dan Luo
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Tamara Antonio
- Department of Psychiatry, New York University, New York, New York 10016, United States
| | - Maarten E. A. Reith
- Department of Psychiatry, New York University, New York, New York 10016, United States
- Department of Biochemistry and Molecular Pharmacology, New York University, New York, New York 10016, United States
| | - Aloke K. Dutta
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
15
|
Modi G, Antonio T, Reith M, Dutta A. Structural modifications of neuroprotective anti-Parkinsonian (-)-N6-(2-(4-(biphenyl-4-yl)piperazin-1-yl)-ethyl)-N6-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine (D-264): an effort toward the improvement of in vivo efficacy of the parent molecule. J Med Chem 2014; 57:1557-72. [PMID: 24471976 PMCID: PMC3983390 DOI: 10.1021/jm401883v] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In our overall goal to develop multifunctional dopamine D2/D3 agonist drugs for the treatment of Parkinson's disease (PD), we previously synthesized potent D3 preferring agonist D-264 (1a), which exhibited neuroprotective properties in two animal models of PD. To enhance the in vivo efficacy of 1a, a structure-activity relationship study was carried out. Competitive binding and [(35)S]GTPγS functional assays identified compound (-)-9b as one of the lead molecules with preferential D3 agonist activity (EC50(GTPγS); D3 = 0.10 nM; D2/D3 (EC50): 159). Compounds (-)-9b and (-)-8b exhibited high in vivo activity in two PD animal models, reserpinized and 6-hydroxydopamine (OHDA)-induced unilateral lesioned rats. On the other hand, 1a failed to show any in vivo activity in these models unless the compound was dissolved in 5-10% beta-hydroxy propyl cyclodextrin solution. Lead compounds exhibited appreciable radical scavenging activity. In vitro experiments with dopaminergic MN9D cells indicated neuroprotection by both 1a and (-)-9b from toxicity of MPP+.
Collapse
Affiliation(s)
- Gyan Modi
- Department of Pharmaceutical Sciences, Wayne State University , Detroit, Michigan 48202, United States
| | | | | | | |
Collapse
|
16
|
Modi G, Sharma H, Kharkar PS, Dutta AK. Understanding the Structural Requirements of Hybrid (S)-6-((2-(4-Phenylpiperazin-1-yl)ethyl)(propyl)amino)-5,6,7,8-tetrahydronaphthalen-1-ol and its Analogs as D2/D3 Receptor Ligands: A Three-Dimensional Quantitative Structure-Activity Relationship (3D QSAR) Investigation. MEDCHEMCOMM 2014; 5:1384-1399. [PMID: 25221669 DOI: 10.1039/c4md00159a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To gain insights into the structural requirements for dopamine D2 and D3 agonists in the treatment of Parkinson's disease (PD) and to elucidate the basis of selectivity for D3 over D2 (D2/D3), 3D quantitative structure-activity relationship (3D QSAR) investigations using CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indices analysis) methods were performed on a series of 45 structurally related D2 and D3 dopaminergic ligands. Two alignment methods (atom-based and flexible) and two charge calculation methods (Gasteiger-Hückel and AM1) were used in the present study. Overall, D2 affinity and selectivity (D2/D3) models performed better with r2cv values of 0.71 and 0.63 for CoMFA and 0.71 and 0.79 for CoMSIA, respectively. The corresponding predictive r2 values for the CoMFA and CoMSIA models were 0.92 and 0.86 and 0.91 and 0.78, respectively. The CoMFA models generated using flexible alignment outperformed the models with the atom-based alignment in terms of relevant statistics and interpretability of the generated contour maps while CoMSIA models obtained using atom-based alignment showed superiority in terms of internal and external predictive abilities. The presence of carbonyl group (C=O) attached to the piperazine ring and the hydrophobic biphenyl ring were found to be the most important features responsible for the D3 selectivity over D2. This study can be further utilized to design and develop selective and potent dopamine agonists to treat PD.
Collapse
Affiliation(s)
- Gyan Modi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmaceutical and Health Sciences (EACPHS), Wayne State University, Detroit, MI 48201. USA
| | - Horrick Sharma
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmaceutical and Health Sciences (EACPHS), Wayne State University, Detroit, MI 48201. USA
| | - Prashant S Kharkar
- Department of Pharmaceutical Chemistry, SPP School of Pharmacy and Technology Management (SPPSPTM), SVKM's NMIMS, Mumbai-400 056. India
| | - Aloke K Dutta
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmaceutical and Health Sciences (EACPHS), Wayne State University, Detroit, MI 48201. USA
| |
Collapse
|
17
|
Abdel-Fattah MAO, Lehmann J, Abadi AH. An Interactive SAR Approach to Discover Novel Hybrid Thieno Probes as Ligands for D2-Like Receptors with Affinities in the Subnanomolar Range. Chem Biodivers 2013; 10:2247-66. [DOI: 10.1002/cbdv.201300204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Indexed: 11/06/2022]
|
18
|
Santra S, Xu L, Shah M, Johnson M, Dutta A. D-512 and D-440 as novel multifunctional dopamine agonists: characterization of neuroprotection properties and evaluation of in vivo efficacy in a Parkinson's disease animal model. ACS Chem Neurosci 2013; 4:1382-92. [PMID: 23906010 DOI: 10.1021/cn400106n] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this article, we have demonstrated the in vivo efficacy of D-512 and D-440 in a 6-OHDA-induced unilaterally lesioned rat model experiment, a Parkinson's disease animal model. D-512 is a novel highly potent D2/D3 agonist, and D-440 is a novel highly selective D3 agonist. We evaluated the neuroprotective properties of D-512 and D-440 in the dopaminergic MN9D cells. Cotreatment of these two drugs with 6-OHDA and MPP+ significantly attenuated and reversed 6-OHDA- and MPP+-induced toxicity in a dose-dependent manner in the dopaminergic MN9D cells. The inhibition of caspase 3/7 and lipid peroxidation activities along with the restoration of tyrosine hydroxylase levels by D-512 in 6-OHDA-treated cells may partially explain the mechanism of its neuroprotective property. Furthermore, studies were carried out to elucidate the time-dependent changes in the pERK1/2 and pAkt, two kinases implicated in cell survival and apoptosis, levels upon treatment with 6-OHDA in presence of D-512. The neuroprotective property exhibited by these drugs was independent of their dopamine-agonist activity, which is consistent with our multifunctional drug-development approach that is focused on the generation of disease-modifying symptomatic-treatment agents for Parkinson's disease.
Collapse
Affiliation(s)
- Soumava Santra
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United
States
| | - Liping Xu
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United
States
| | - Mrudang Shah
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United
States
| | - Mark Johnson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United
States
| | - Aloke Dutta
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United
States
| |
Collapse
|
19
|
Ye N, Neumeyer JL, Baldessarini RJ, Zhen X, Zhang A. Update 1 of: Recent Progress in Development of Dopamine Receptor Subtype-Selective Agents: Potential Therapeutics for Neurological and Psychiatric Disorders. Chem Rev 2013; 113:PR123-78. [DOI: 10.1021/cr300113a] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Na Ye
- CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory (SOMCL), Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| | - John L. Neumeyer
- Medicinal Chemistry Laboratory,
McLean Hospital, Harvard Medical School, Massachusetts 02478, United States
| | | | - Xuechu Zhen
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China 215123
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory (SOMCL), Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| |
Collapse
|
20
|
Gopishetty B, Zhang S, Kharkar PS, Antonio T, Reith M, Dutta AK. Modification of agonist binding moiety in hybrid derivative 5/7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-1-ol/-2-amino versions: impact on functional activity and selectivity for dopamine D2/D3 receptors. Bioorg Med Chem 2013; 21:3164-74. [PMID: 23623679 DOI: 10.1016/j.bmc.2013.03.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/07/2013] [Accepted: 03/16/2013] [Indexed: 02/08/2023]
Abstract
The goal of the present study was to explore, in our previously developed hybrid template, the effect of introduction of additional heterocyclic rings (mimicking catechol hydroxyl groups as bioisosteric replacement) on selectivity and affinity for the D3 versus D2 receptor. In addition, we wanted to explore the effect of derivatization of functional groups of the agonist binding moiety in compounds developed by us earlier from the hybrid template. Binding affinity (K(i)) of the new compounds was measured with tritiated spiperone as the radioligand and HEK-293 cells expressing either D2 or D3 receptors. Functional activity of selected compounds was assessed in the GTPγS binding assay. In the imidazole series, compound 10a exhibited the highest D3 affinity whereas the indole derivative 13 exhibited similar high D3 affinity. Functionalization of the amino group in agonist (+)-9d with different sulfonamides derivatives improved the D3 affinity significantly with (+)-14f exhibiting the highest affinity. However, functionalization of the hydroxyl and amino groups of 15 and (+)-9d, known agonist and partial agonist, to sulfonate ester and amide in general modulated the affinity. In both cases loss of agonist potency resulted from such derivatization.
Collapse
Affiliation(s)
- Bhaskar Gopishetty
- Wayne State University, Department of Pharmaceutical Sciences, 259 Mack Ave, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
21
|
Johnson M, Antonio T, Reith MEA, Dutta AK. Structure-activity relationship study of N⁶-(2-(4-(1H-Indol-5-yl)piperazin-1-yl)ethyl)-N⁶-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine analogues: development of highly selective D3 dopamine receptor agonists along with a highly potent D2/D3 agonist and their pharmacological characterization. J Med Chem 2012; 55:5826-40. [PMID: 22642365 DOI: 10.1021/jm300268s] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In our effort to develop multifunctional drugs against Parkinson's disease, a structure-activity-relationship study was carried out based on our hybrid molecular template targeting D2/D3 receptors. Competitive binding with [(3)H]spiroperidol was used to evaluate affinity (K(i)) of test compounds. Functional activity of selected compounds in stimulating [(35)S]GTPγS binding was assessed in CHO cells expressing either human D2 or D3 receptors. Our results demonstrated development of highly selective compounds for D3 receptor (for (-)-40K(i), D3 = 1.84 nM, D2/D3 = 583.2; for (-)-45K(i), D3 = 1.09 nM, D2/D3 = 827.5). Functional data identified (-)-40 (EC(50), D2 = 114 nM, D3 = 0.26 nM, D2/D3 = 438) as one of the highest D3 selective agonists known to date. In addition, high affinity, nonselective D3 agonist (-)-19 (EC(50), D2 = 2.96 nM and D3 = 1.26 nM) was also developed. Lead compounds with antioxidant activity were evaluated using an in vivo PD animal model.
Collapse
Affiliation(s)
- Mark Johnson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | | | | | | |
Collapse
|
22
|
Cai J. N-(4-{4-[2-(Trifluoromethoxy)phenyl]piperazin-1-yl}butyl)thiophene-2-carboxamide dihydrate. Acta Crystallogr Sect E Struct Rep Online 2011; 67:o125. [PMID: 21522636 PMCID: PMC3050331 DOI: 10.1107/s160053681005155x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/09/2010] [Indexed: 11/10/2022]
Abstract
In the title compound, C20H24F3N3O2S·2H2O, a dopamine D3 ligand, the piperazine ring adopts a chair conformation while the piperazine and benzene rings form a dihedral angle of 47.71 (6)°. In the crystal, molecules are linked by intermolecular N—H⋯O and O—H⋯O hydrogen bonds. In the molecular structure, the F atoms of the trifluoromethyl group are disordered over two sites with occupancies of 0.69 (11) and 0.31 (11).
Collapse
|
23
|
Kortagere S, Cheng SY, Antonio T, Zhen J, Reith MEA, Dutta AK. Interaction of novel hybrid compounds with the D3 dopamine receptor: Site-directed mutagenesis and homology modeling studies. Biochem Pharmacol 2010; 81:157-63. [PMID: 20833147 DOI: 10.1016/j.bcp.2010.08.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/05/2010] [Accepted: 08/30/2010] [Indexed: 12/14/2022]
Abstract
The dopamine D3 receptor has been implicated as a potential target for drug development in various complex psychiatric disorders including psychosis, drug dependence, and Parkinson's disease. In our overall goal to develop molecules with preferential affinity at D3 receptors, we undertook a hybrid drug development approach by combining a known dopamine agonist moiety with a substituted piperazine fragment. In the present study, three compounds produced this way with preferential D3 agonist activity, were tested at D3 receptors with mutations in the agonist binding pocket of three residues known to be important for agonist binding activity. At S192A and T369V, the hybrid agonist compounds produced an interaction profile in [(3)H]spiperone binding assays similar to that of the parent 5-OH-DPAT and 7-OH-DPAT molecules. The loss of affinity at the S192A mutant was most prominent for 5-OH-DPAT and its corresponding hybrid compound D237. D110N did not show any radioligand binding. Homology modeling indicated that 7-OH-DPAT-derived D315 uniquely shares H-bonding with Tyr365 which produced favorable interaction and no loss of H-bonding in the S192A mutant, suggesting that agonist activity may not be solely controlled by residues in the binding pocket.
Collapse
Affiliation(s)
- Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | | | |
Collapse
|
24
|
Varghese HT, Panicker CY, Pillai KM, Sheena MY, Raju K, Manojkumar TK, Bielenica A, Van Alsenoy C. Spectroscopic investigations and computational study of 4-(3-bromopropyl)-4-azatricyclo [5.2.2.0(2,6)]undecane-3,5,8-trione. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2010; 76:513-522. [PMID: 20471906 DOI: 10.1016/j.saa.2010.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/09/2010] [Accepted: 04/14/2010] [Indexed: 05/29/2023]
Abstract
Fourier-transform (FT)-Raman and FT-infrared spectrum of 4-(3-bromopropyl)-4-azatricyclo [5.2.2.0(2,6)]undecane-3,5,8-trione were recorded and analyzed. The vibrational wavenumbers were examined theoretically using the Gaussian03 set of quantum chemistry codes, and the normal modes were assigned by potential energy distribution (PED) calculations. The first hyperpolarizability, predicted infrared intensities and Raman activities are reported. The calculated first hyperpolarizability is comparable with reported values of similar structures which makes this compound an attractive object for future studies of nonlinear optics. The calculated first hyperpolarizability was found to be very high and it is due to the pi-electron cloud movement from donor to acceptor which makes the molecule highly polarized and the intermolecular charge transfer interaction which is justified by the FT-IR spectrum due to the presence of strong broad bands in the region 2873-2000cm(-1). Optimized geometrical parameters of the compound are in agreement with similar reported structures.
Collapse
Affiliation(s)
- Hema Tresa Varghese
- Department of Physics, Fatima Mata National College, Kollam 691001, Kerala, India.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ghosh B, Antonio T, Gopishetty B, Reith M, Dutta A. Further delineation of hydrophobic binding sites in dopamine D(2)/D(3) receptors for N-4 substituents on the piperazine ring of the hybrid template 5/7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-2-ol. Bioorg Med Chem 2010; 18:5661-74. [PMID: 20605099 DOI: 10.1016/j.bmc.2010.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/04/2010] [Accepted: 06/07/2010] [Indexed: 12/11/2022]
Abstract
Here we report a structure-activity relationship (SAR) study of analogues of 5/7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-2-ol. Our SAR is focused on introduction of various substitutions in the piperazine ring of the hybrid template. The goal behind this study is to delineate the nature of the binding pocket for N-aryl substitution in the piperazine ring by observing the effect of various hydrophobic and other heteroaromatic substitutions on binding affinity (K(i)), as measured with tritiated spiperone and HEK-293 cells expressing either D(2) or D(3) receptors. Functional activity of selected compounds was assessed with the GTPgammaS binding assay. Compound 8d was the most selective for the D(3) receptor in the spiperone binding assay. An interesting similarity in binding affinity was observed between isoquinoline derivative D-301 and the 2-substituted pyridine derivative 8d, suggesting the importance of relative spatial relationships between the N-atom of the ligand and the molecular determinants of the binding pocket in D(2)/D(3) receptors. Functional activity assays demonstrated high potency and selectivity of (+)-8a and (-)-28b (D(2)/D(3) (ratio of EC(50)): 105 and 202, respectively) for the D(3) receptor and both compounds were more selective compared to the reference drug ropinirole (D(2)/D(3) (ratio of EC(50)): 29.5).
Collapse
Affiliation(s)
- Balaram Ghosh
- Wayne State University, Department of Pharmaceutical Sciences, Applebaum College of Pharmacy & Health Sciences, Rm# 3128, Detroit, MI 48202, United States
| | | | | | | | | |
Collapse
|
26
|
Panicker CY, Varghese HT, Pillai KM, Mary YS, Raju K, Manojkumar TK, Bielenica A, Van Alsenoy C. Quantum chemical DFT study of 4-azatricyclo [5.2.2.0(2,6)] undecane-3,5,8-trione. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2010; 75:1559-1565. [PMID: 20226726 DOI: 10.1016/j.saa.2010.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 02/08/2010] [Accepted: 02/15/2010] [Indexed: 05/28/2023]
Abstract
Fourier-transform-Raman and infrared spectrum of 4-azatricyclo [5.2.2.0(2,6)] undecane-3,5,8-trione were recorded and analyzed. The vibrational wavenumbers were examined theoretically using the Gaussian03 set of quantum chemistry codes, and the normal modes were assigned by potential energy distribution (PED) calculations. The first hyperpolarizability, predicted infrared intensities and Raman activities are reported. The calculated first hyperpolarizability is comparable with reported values of similar structures which makes this compound an attractive object for future studies of nonlinear optics. Optimized geometrical parameters of the compound are in agreement with similar reported structures. The red shift of the NH stretching wavenumber in the infrared spectrum from the computational wavenumber indicates the weakening of NH bond.
Collapse
Affiliation(s)
- C Yohannan Panicker
- Department of Physics, TKM College of Arts and Science, Kollam, Kerala 691005, India.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ghosh B, Antonio T, Reith MEA, Dutta AK. Discovery of 4-(4-(2-((5-Hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)(propyl)amino)ethyl)piperazin-1-yl)quinolin-8-ol and its analogues as highly potent dopamine D2/D3 agonists and as iron chelator: in vivo activity indicates potential application in symptomatic and neuroprotective therapy for Parkinson's disease. J Med Chem 2010; 53:2114-25. [PMID: 20146482 DOI: 10.1021/jm901618d] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The role of iron in the pathogenesis of Parkinson's disease (PD) has been implicated strongly because of generation of oxidative stress leading to dopamine cell death. In our overall goal to develop bifunctional/multifunctional drugs, we designed dopamine D2/D3 agonist molecules with a capacity to bind to iron. Binding assays were carried out with HEK-293 cells expressing either D2 or D3 receptor with tritiated spiperone to evaluate inhibition constants (K(i)). Functional activity of selected compounds was carried out with GTPgammaS binding assay. SAR results identified compounds (+)-19a and (-)-19b as two potent agonists for both D2 and D3 receptors (EC(50) (GTPgammaS); D2 = 4.51 and 1.69 nM and D3 = 1.58 and 0.74 nM for (-)-19b and (+)-19a, respectively). In vitro complexation studies with 19b demonstrated efficient chelation with iron. Furthermore, the deoxyribose assay with 19b demonstrated potent antioxidant activity. In PD animal model study, (-)-19b exhibited potent in vivo activity in reversing locomotor activity in reserpinized rats and also in producing potent rotational activity in 6-OHDA lesioned rats. This reports initial development of unique lead molecules that might find potential use in symptomatic and neuroprotective treatment of PD.
Collapse
Affiliation(s)
- Balaram Ghosh
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
28
|
Ghosh B, Antonio T, Zhen J, Kharkar P, Reith MEA, Dutta AK. Development of (S)-N6-(2-(4-(isoquinolin-1-yl)piperazin-1-yl)ethyl)-N6-propyl-4,5,6,7-tetrahydrobenzo[d]-thiazole-2,6-diamine and its analogue as a D3 receptor preferring agonist: potent in vivo activity in Parkinson's disease animal models. J Med Chem 2010; 53:1023-37. [PMID: 20038106 DOI: 10.1021/jm901184n] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Here we report structure-activity relationship study of a novel hybrid series of compounds where structural alteration of aromatic hydrophobic moieties connected to the piperazine ring and bioisosteric replacement of the aromatic tetralin moieties were carried out. Binding assays were carried out with HEK-293 cells expressing either D2 or D3 receptors with tritiated spiperone to evaluate inhibition constants (K(i)). Functional activity of selected compounds in stimulating GTPgammaS binding was assessed with CHO cells expressing human D2 receptors and AtT-20 cells expressing human D3 receptors. SAR results identified compound (-)-24c (D-301) as one of the lead molecules with preferential agonist activity for D3 receptor (EC(50) (GTP gamma S); D3 = 0.52 nM; D2/D3 (EC(50)): 223). Compounds (-)-24b and (-)-24c exhibited potent radical scavenging activity. The two lead compounds, (-)-24b and (-)-24c, exhibited high in vivo activity in two Parkinson's disease (PD) animal models, reserpinized rat model and 6-OHDA induced unilaterally lesioned rat model. Future studies will explore potential use of these compounds in the neuroprotective therapy for PD.
Collapse
Affiliation(s)
- Balaram Ghosh
- Wayne State University, Department of Pharmaceutical Sciences, Detroit, Michigan 48202, USA
| | | | | | | | | | | |
Collapse
|
29
|
Investigation of various N-heterocyclic substituted piperazine versions of 5/7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-2-ol: effect on affinity and selectivity for dopamine D3 receptor. Bioorg Med Chem 2009; 17:3923-33. [PMID: 19427222 DOI: 10.1016/j.bmc.2009.04.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 04/03/2009] [Accepted: 04/09/2009] [Indexed: 11/22/2022]
Abstract
Here we report on the design and synthesis of several heterocyclic analogues belonging to the 5/7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-2-ol series of molecules. Compounds were subjected to [(3)H]spiperone binding assays, carried out with HEK-293 cells expressing either D2 or D3 dopamine receptors, in order to evaluate their inhibition constant (K(i)) at these receptors. Results indicate that N-substitution on the piperazine ring can accommodate various substituted indole rings. The results also show that in order to maintain high affinity and selectivity for the D3 receptor the heterocyclic ring does not need to be connected directly to the piperazine ring as the majority of compounds included here are linked either via an amide or a methylene linker to the heterocyclic moiety. The enantiomers of the most potent racemic compound 10e exhibited differential activity with (-)-10e (K(i); D2=47.5 nM, D3=0.57 nM) displaying higher affinity at both D2 and D3 receptors compared to its enantiomer (+)-10e (K(i); D2=113 nM, D3=3.73 nM). Additionally, compound (-)-10e was more potent and selective for the D3 receptor compared to either 7-OH-DPAT or 5-OH-DPAT. Among the bioisosteric derivatives, the indazole derivative 10g and benzo[b]thiophene derivative 10i exhibited the highest affinity for D2 and D3 receptors. In the functional GTPgammaS binding study, one of the lead molecules, (-)-15, exhibited potent agonist activity at both D2 and D3 receptors with preferential affinity at D3.
Collapse
|
30
|
Brown DA, Kharkar PS, Parrington I, Reith MEA, Dutta AK. Structurally constrained hybrid derivatives containing octahydrobenzo[g or f]quinoline moieties for dopamine D2 and D3 receptors: binding characterization at D2/D3 receptors and elucidation of a pharmacophore model. J Med Chem 2008; 51:7806-19. [PMID: 19053758 DOI: 10.1021/jm8008629] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A series of structurally constrained analogues based on hybrid compounds containing octahydrobenzo[g or f]quinoline moieties were designed, synthesized, and characterized for their binding to dopamine D2 and D3 receptors expressed in HEK-293 cells. Among the newly developed constrained molecules, trans-octahydrobenzo[f]quinolin-7-ol (8) exhibited the highest affinity for D2 and D3 receptors, the (-)-isomer being the eutomer. Interestingly, this hybrid constrained version 8 showed significant affinity over the corresponding nonhybrid version 1 (representing a constrained version of the aminotetralin structure only) when assayed under same conditions (K(i) of 49.1 and 14.9 nM for 8 vs 380 and 96.0 nM for 1 at D2 and D3, respectively). Similar results were found with other lead hybrid compounds, indicating a contribution of the piperazine moiety in the observed enhanced affinity. On the basis of the data of new lead constrained derivatives and other lead hybrid derivatives developed by us, a unique pharmacophore model was proposed consisting of three pharmacophoric centers, two with aromatic/hydrophobic and one with cationic features.
Collapse
Affiliation(s)
- Dennis A Brown
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | |
Collapse
|
31
|
Kossakowski J. 4-Azatricyclo[5.2.2.02,6]undecane-3,5,8-triones as potential pharmacological agents. Molecules 2008; 13:1570-83. [PMID: 18794773 PMCID: PMC6245055 DOI: 10.3390/molecules13081570] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 06/19/2008] [Accepted: 07/25/2008] [Indexed: 11/21/2022] Open
Abstract
A series of twenty six arylpiperazine and aminoalkanol derivatives of 4-aza-tricyclo[5.2.2.02,6]undecane-3,5,8-trione have been prepared. The synthesized compounds were evaluated for their cytotoxicity and anti-HIV-1 activity in MT-4 cells.
Collapse
Affiliation(s)
- Jerzy Kossakowski
- Department of Medical Chemistry, The Medical University of Warsaw, 3 Oczki Street, 02-007 Warsaw, Poland; Tel./Fax. +48(22)6280679
- Author to whom correspondence should be addressed; E-Mail:
| |
Collapse
|
32
|
Biswas S, Hazeldine S, Ghosh B, Parrington I, Kuzhikandathil E, Reith MEA, Dutta AK. Bioisosteric Heterocyclic Versions of 7-{[2-(4-Phenyl-piperazin-1-yl)ethyl]propylamino}-5,6,7,8-tetrahydronaphthalen-2-ol: Identification of Highly Potent and Selective Agonists for Dopamine D3 Receptor with Potent in Vivo Activity. J Med Chem 2008; 51:3005-19. [DOI: 10.1021/jm701524h] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Swati Biswas
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Department of Psychiatry, Millhauser Laboratories, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103
| | - Stuart Hazeldine
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Department of Psychiatry, Millhauser Laboratories, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103
| | - Balaram Ghosh
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Department of Psychiatry, Millhauser Laboratories, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103
| | - Ingrid Parrington
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Department of Psychiatry, Millhauser Laboratories, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103
| | - Eldo Kuzhikandathil
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Department of Psychiatry, Millhauser Laboratories, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103
| | - Maarten E. A. Reith
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Department of Psychiatry, Millhauser Laboratories, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103
| | - Aloke K. Dutta
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Department of Psychiatry, Millhauser Laboratories, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103
| |
Collapse
|
33
|
Biswas S, Zhang S, Fernandez F, Ghosh B, Zhen J, Kuzhikandathil E, Reith MEA, Dutta AK. Further Structure–Activity Relationships Study of Hybrid 7-{[2-(4-Phenylpiperazin-1-yl)ethyl]propylamino}-5,6,7,8-tetrahydronaphthalen-2-ol Analogues: Identification of a High-Affinity D3-Preferring Agonist with Potent in Vivo Activity with Long Duration of Action. J Med Chem 2007; 51:101-17. [DOI: 10.1021/jm070860r] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Swati Biswas
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Millhauser Laboratories, Department of Psychiatry, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ—New Jersey Medical School, Newark, New Jersey 07103
| | - Suhong Zhang
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Millhauser Laboratories, Department of Psychiatry, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ—New Jersey Medical School, Newark, New Jersey 07103
| | - Fernando Fernandez
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Millhauser Laboratories, Department of Psychiatry, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ—New Jersey Medical School, Newark, New Jersey 07103
| | - Balaram Ghosh
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Millhauser Laboratories, Department of Psychiatry, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ—New Jersey Medical School, Newark, New Jersey 07103
| | - Juan Zhen
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Millhauser Laboratories, Department of Psychiatry, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ—New Jersey Medical School, Newark, New Jersey 07103
| | - Eldo Kuzhikandathil
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Millhauser Laboratories, Department of Psychiatry, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ—New Jersey Medical School, Newark, New Jersey 07103
| | - Maarten E. A. Reith
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Millhauser Laboratories, Department of Psychiatry, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ—New Jersey Medical School, Newark, New Jersey 07103
| | - Aloke K. Dutta
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Millhauser Laboratories, Department of Psychiatry, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ—New Jersey Medical School, Newark, New Jersey 07103
| |
Collapse
|
34
|
Zhang A, Neumeyer JL, Baldessarini RJ. Recent progress in development of dopamine receptor subtype-selective agents: potential therapeutics for neurological and psychiatric disorders. Chem Rev 2007; 107:274-302. [PMID: 17212477 DOI: 10.1021/cr050263h] [Citation(s) in RCA: 267] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ao Zhang
- Bioorganic and Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | | | | |
Collapse
|
35
|
Boeckler F, Gmeiner P. The structural evolution of dopamine D3 receptor ligands: structure-activity relationships and selected neuropharmacological aspects. Pharmacol Ther 2006; 112:281-333. [PMID: 16905195 DOI: 10.1016/j.pharmthera.2006.04.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 04/13/2006] [Indexed: 01/13/2023]
Abstract
"Evolution consists largely of molecular tinkering."-Following the famous concept of the molecular geneticist and medicine Nobel laureate François Jacob, in this review we describe the structural evolution of dopamine D3 receptor ligands from the natural agonist dopamine (DA) to highly potent and subtype selective new agents by bioisosteric tinkering with well-established and privileged or novel and fancy chemical functionalities and scaffolds. Some of the more than 200 ligands presented herein have already achieved therapeutic or scientific value up to now, some will most likely achieve it in the future. Hence, great importance is not only attached to the relationship between structure and activity of the ligands, but also to their utility as pharmacological tools in animal models or as therapeutics in patients with neurological diseases or other disorders.
Collapse
Affiliation(s)
- Frank Boeckler
- Department of Medicinal Chemistry, Emil Fischer Center, Friedrich-Alexander University Erlangen-Nürnberg, Schuhstrasse 19, 91052 Erlangen, Germany.
| | | |
Collapse
|
36
|
Newman AH, Grundt P, Nader MA. Dopamine D3 receptor partial agonists and antagonists as potential drug abuse therapeutic agents. J Med Chem 2005; 48:3663-79. [PMID: 15916415 DOI: 10.1021/jm040190e] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amy Hauck Newman
- National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, Maryland 21224, USA.
| | | | | |
Collapse
|