1
|
Yu JS, Kim HJ, Kim YE, Yang HO, Shin YK, Kim H, Park S, Lee G. Lipidomic Assessment of the Inhibitory Effect of Standardized Water Extract of Hydrangea serrata (Thunb.) Ser. Leaves during Adipogenesis. Nutrients 2024; 16:1508. [PMID: 38794745 PMCID: PMC11124303 DOI: 10.3390/nu16101508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Obesity is primarily exacerbated by excessive lipid accumulation during adipogenesis, with triacylglycerol (TG) as a major lipid marker. However, as the association between numerous lipid markers and various health conditions has recently been revealed, investigating the lipid metabolism in detail has become necessary. This study investigates the lipid metabolic effects of Hydrangea serrata (Thunb.) Ser. hot water leaf extract (WHS) on adipogenesis using LC-MS-based lipidomics analysis of undifferentiated, differentiated, and WHS-treated differentiated 3T3-L1 cells. WHS treatment effectively suppressed the elevation of glycerolipids, including TG and DG, and prevented a molecular shift in fatty acyl composition towards long-chain unsaturated fatty acids. This shift also impacted glycerophospholipid metabolism. Additionally, WHS stabilized significant lipid markers such as the PC/PE and LPC/PE ratios, SM, and Cer, which are associated with obesity and related comorbidities. This study suggests that WHS could reduce obesity-related risk factors by regulating lipid markers during adipogenesis. This study is the first to assess the underlying lipidomic mechanisms of the adipogenesis-inhibitory effect of WHS, highlighting its potential in developing natural products for treating obesity and related conditions. Our study provides a new strategy for the development of natural products for the treatment of obesity and related diseases.
Collapse
Affiliation(s)
- Jae Sik Yu
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea; (J.S.Y.); (H.J.K.); (Y.E.K.); (H.O.Y.)
- Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| | - Hee Ju Kim
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea; (J.S.Y.); (H.J.K.); (Y.E.K.); (H.O.Y.)
- Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| | - Yeo Eun Kim
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea; (J.S.Y.); (H.J.K.); (Y.E.K.); (H.O.Y.)
- Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| | - Hyun Ok Yang
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea; (J.S.Y.); (H.J.K.); (Y.E.K.); (H.O.Y.)
- Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| | - Yu-Kyong Shin
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Republic of Korea; (Y.-K.S.); (H.K.); (S.P.)
| | - Hyunjae Kim
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Republic of Korea; (Y.-K.S.); (H.K.); (S.P.)
| | - Soyoon Park
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Republic of Korea; (Y.-K.S.); (H.K.); (S.P.)
| | - Gakyung Lee
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea; (J.S.Y.); (H.J.K.); (Y.E.K.); (H.O.Y.)
- Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
2
|
Du S, Chen X, Ren R, Li L, Zhang B, Wang Q, Meng Y, Qiu Z, Wang G, Zheng G, Hu J. Integration of network pharmacology, lipidomics, and transcriptomics analysis to reveal the mechanisms underlying the amelioration of AKT-induced nonalcoholic fatty liver disease by total flavonoids in vine tea. Food Funct 2024; 15:5158-5174. [PMID: 38630029 DOI: 10.1039/d4fo00586d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the main reason for chronic liver diseases and malignancies. Currently, there is a lack of approved drugs for the prevention or treatment of NAFLD. Vine tea (Ampelopsis grossedentata) has been used as a traditional Chinese beverage for centuries. Vine tea carries out several biological activities including the regulation of plasma lipids and blood glucose, hepato-protective function, and anti-tumor activity and contains the highest content of flavonoids. However, the underlying mechanisms of total flavonoids from vine tea (TF) in the attenuation of NAFLD remain unclear. Therefore, we investigated the interventions and mechanisms of TF in mice with NAFLD using an integrated analysis of network pharmacology, lipidomics, and transcriptomics. Staining and biochemical tests revealed a significant increase in AKT-overexpression-induced (abbreviated as AKT-induced) NAFLD in mice. Lipid accumulation in hepatic intracellular vacuoles was alleviated after TF treatment. In addition, TF reduced the hepatic and serum triglyceride levels in mice with AKT-induced NAFLD. Lipidomics results showed 32 differential lipids in the liver, mainly including triglycerides (TG), diglycerides (DG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE). Transcriptomic analysis revealed that 314 differentially expressed genes were commonly upregulated in the AKT group and downregulated in the TF group. The differential regulation of lipids by the genes Pparg, Scd1, Chpt1, Dgkz, and Pla2g12b was further revealed by network enrichment analysis and confirmed by RT-qPCR. Furthermore, we used immunohistochemistry (IHC) to detect changes in the protein levels of the key proteins PPARγ and SCD1. In summary, TF can improve hepatic steatosis by targeting the PPAR signaling pathway, thereby reducing de novo fatty acid synthesis and modulating the glycerophospholipid metabolism.
Collapse
Affiliation(s)
- Siyu Du
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
- Hubei Shizhen Laboratory, Wuhan, People's Republic of China
| | - Xin Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
- Hubei Shizhen Laboratory, Wuhan, People's Republic of China
| | - Rumeng Ren
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Li Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Baohui Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
- Hubei Shizhen Laboratory, Wuhan, People's Republic of China
| | - Qi Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
- Hubei Shizhen Laboratory, Wuhan, People's Republic of China
| | - Yan Meng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
- Hubei Shizhen Laboratory, Wuhan, People's Republic of China
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
- Hubei Shizhen Laboratory, Wuhan, People's Republic of China
| | - Guihong Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
| | - Guohua Zheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
- Hubei Shizhen Laboratory, Wuhan, People's Republic of China
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
- Hubei Shizhen Laboratory, Wuhan, People's Republic of China
| |
Collapse
|
3
|
Bertran L, Capellades J, Abelló S, Durán-Bertran J, Aguilar C, Martinez S, Sabench F, Correig X, Yanes O, Auguet T, Richart C. LC/MS-Based Untargeted Metabolomics Study in Women with Nonalcoholic Steatohepatitis Associated with Morbid Obesity. Int J Mol Sci 2023; 24:9789. [PMID: 37372937 DOI: 10.3390/ijms24129789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
This study investigated the importance of a metabolomic analysis in a complex disease such as nonalcoholic steatohepatitis (NASH) associated with obesity. Using an untargeted metabolomics technique, we studied blood metabolites in 216 morbidly obese women with liver histological diagnosis. A total of 172 patients were diagnosed with nonalcoholic fatty liver disease (NAFLD), and 44 were diagnosed with normal liver (NL). Patients with NAFLD were classified into simple steatosis (n = 66) and NASH (n = 106) categories. A comparative analysis of metabolites levels between NASH and NL demonstrated significant differences in lipid metabolites and derivatives, mainly from the phospholipid group. In NASH, there were increased levels of several phosphatidylinositols and phosphatidylethanolamines, as well as isolated metabolites such as diacylglycerol 34:1, lyso-phosphatidylethanolamine 20:3 and sphingomyelin 38:1. By contrast, there were decreased levels of acylcarnitines, sphingomyelins and linoleic acid. These findings may facilitate identification studies of the main pathogenic metabolic pathways related to NASH and may also have a possible applicability in a panel of metabolites to be used as biomarkers in future algorithms of the disease diagnosis and its follow-up. Further confirmatory studies in groups with different ages and sexes are necessary.
Collapse
Affiliation(s)
- Laia Bertran
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| | - Jordi Capellades
- Department of Electronic Engineering, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Sonia Abelló
- Servei de Recursos Científics i Tècnics, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Joan Durán-Bertran
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| | - Carmen Aguilar
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| | - Salomé Martinez
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| | - Fàtima Sabench
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
- Unitat de Cirurgia, Facultad de Medicina i Ciències de la Salut, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43204 Reus, Spain
| | - Xavier Correig
- Department of Electronic Engineering, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Oscar Yanes
- Department of Electronic Engineering, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Teresa Auguet
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| | - Cristóbal Richart
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| |
Collapse
|
4
|
Ancajas CF, Alam S, Alves DS, Zhou Y, Wadsworth NM, Cassilly CD, Ricks TJ, Carr AJ, Reynolds TB, Barrera FN, Best MD. Cellular Labeling of Phosphatidylserine Using Clickable Serine Probes. ACS Chem Biol 2023; 18:377-384. [PMID: 36745020 DOI: 10.1021/acschembio.2c00813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phosphatidylserine (PS) is a key lipid that plays important roles in disease-related biological processes, and therefore, the means to track PS in live cells are invaluable. Herein, we describe the metabolic labeling of PS in Saccharomyces cerevisiae cells using analogues of serine, a PS precursor, derivatized with azide moieties at either the amino (N-l-SerN3) or carbonyl (C-l-SerN3) groups. The conservative click tag modification enabled these compounds to infiltrate normal lipid biosynthetic pathways, thereby producing tagged PS molecules as supported by mass spectrometry studies, thin-layer chromatography (TLC) analysis, and further derivatization with fluorescent reporters via click chemistry to enable imaging in yeast cells. This approach shows strong prospects for elucidating the complex biosynthetic and trafficking pathways involving PS.
Collapse
Affiliation(s)
- Christelle F Ancajas
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Shahrina Alam
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Daiane S Alves
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Yue Zhou
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Nicholas M Wadsworth
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Chelsi D Cassilly
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tanei J Ricks
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Adam J Carr
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Todd B Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Michael D Best
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
5
|
Shama S, Jang H, Wang X, Zhang Y, Shahin NN, Motawi TK, Kim S, Gawrieh S, Liu W. Phosphatidylethanolamines Are Associated with Nonalcoholic Fatty Liver Disease (NAFLD) in Obese Adults and Induce Liver Cell Metabolic Perturbations and Hepatic Stellate Cell Activation. Int J Mol Sci 2023; 24:ijms24021034. [PMID: 36674549 PMCID: PMC9861886 DOI: 10.3390/ijms24021034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Pathogenesis roles of phospholipids (PLs) in nonalcoholic fatty liver disease (NAFLD) remain incompletely understood. This study investigated the role of PLs in the progression of NAFLD among obese individuals via studying the alterations in serum PL composition throughout the spectrum of disease progression and evaluating the effects of specific phosphatidylethanolamines (PEs) on FLD development in vitro. A total of 203 obese subjects, who were undergoing bariatric surgery, were included in this study. They were histologically classified into 80 controls (C) with normal liver histology, 93 patients with simple hepatic steatosis (SS), 16 with borderline nonalcoholic steatohepatitis (B-NASH) and 14 with progressive NASH (NASH). Serum PLs were profiled by automated electrospray ionization tandem mass spectrometry (ESI-MS/MS). HepG2 (hepatoma cells) and LX2 (immortalized hepatic stellate cells or HSCs) were used to explore the roles of PL in NAFLD/NASH development. Several PLs and their relative ratios were significantly associated with NAFLD progression, especially those involving PE. Incubation of HepG2 cells with two phosphatidylethanolamines (PEs), PE (34:1) and PE (36:2), resulted in significant inhibition of cell proliferation, reduction of mitochondrial mass and membrane potential, induction of lipid accumulation and mitochondrial ROS production. Meanwhile, treatment of LX2 cells with both PEs markedly increased cell activation and migration. These effects were associated with a significant change in the expression levels of genes involved in lipogenesis, lipid oxidation, autophagy, apoptosis, inflammation, and fibrosis. Thus, our study demonstrated that elevated level of PEs increases susceptibility to the disease progression of obesity associated NAFLD, likely through a causal cascade of impacts on the function of different liver cells.
Collapse
Affiliation(s)
- Samaa Shama
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
- Cell-Based Analysis Unit, Reference Laboratory, Egyptian Drug Authority, Cairo 12618, Egypt
| | - Hyejeong Jang
- Biostatistics and Bioinformatics Core, Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xiaokun Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Yang Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Nancy Nabil Shahin
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Tarek Kamal Motawi
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence: (T.K.M.); (W.L.); Tel.: +20-122-313-8667 (T.K.M.); +1-313-577-3375 (W.L.)
| | - Seongho Kim
- Biostatistics and Bioinformatics Core, Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Samer Gawrieh
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Correspondence: (T.K.M.); (W.L.); Tel.: +20-122-313-8667 (T.K.M.); +1-313-577-3375 (W.L.)
| |
Collapse
|
6
|
Chandra A, Datta A. A Peptide-Based Fluorescent Sensor for Anionic Phospholipids. ACS OMEGA 2022; 7:10347-10354. [PMID: 35382295 PMCID: PMC8973094 DOI: 10.1021/acsomega.1c06981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Anionic phospholipids are key cell signal mediators. The distribution of these lipids on the cell membrane and intracellular organelle membranes guides the recruitment of signaling proteins leading to the regulation of cellular processes. Hence, fluorescent sensors that can detect anionic phospholipids within living cells can provide a handle into revealing molecular mechanisms underlying lipid-mediated signal regulation. A major challenge in the detection of anionic phospholipids is related to the presence of these phospholipids mostly in the inner leaflet of the plasma membrane and in the membranes of intracellular organelles. Hence, cell-permeable sensors would provide an advantage by enabling the rapid detection and tracking of intracellular pools of anionic phospholipids. We have developed a peptide-based, cell-permeable, water-soluble, and ratiometric fluorescent sensor that entered cells within 15 min of incubation via the endosomal machinery and showed punctate labeling in the cytoplasm. The probe could also be introduced into living cells via lipofection, which allows bypassing of endosomal uptake, to image anionic phospholipids in the cell membrane. We validated the ability of the sensor toward detection of intracellular anionic phospholipids by colocalization studies with a fluorescently tagged lipid and a protein-based anionic phospholipid sensor. Further, the sensor could image the externalization of anionic phospholipids during programmed cell death, indicating the ability of the probe toward detection of both intra- and extracellular anionic phospholipids based on the biological context.
Collapse
|
7
|
Barth ND, Mendive‐Tapia L, Subiros‐Funosas R, Ghashghaei O, Lavilla R, Maiorino L, He X, Dransfield I, Egeblad M, Vendrell M. A Bivalent Activatable Fluorescent Probe for Screening and Intravital Imaging of Chemotherapy-Induced Cancer Cell Death. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202113020. [PMID: 38505298 PMCID: PMC10947113 DOI: 10.1002/ange.202113020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 11/11/2022]
Abstract
The detection and quantification of apoptotic cells is a key process in cancer research, particularly during the screening of anticancer therapeutics and in mechanistic studies using preclinical models. Intravital optical imaging enables high-resolution visualisation of cellular events in live organisms; however, there are few fluorescent probes that can reliably provide functional readouts in situ without interference from tissue autofluorescence. We report the design and optimisation of the fluorogenic probe Apotracker Red for real-time detection of cancer cell death. The strong fluorogenic behaviour, high selectivity, and excellent stability of Apotracker Red make it a reliable optical reporter for the characterisation of the effects of anticancer drugs in cells in vitro and for direct imaging of chemotherapy-induced apoptosis in vivo in mouse models of breast cancer.
Collapse
Affiliation(s)
- Nicole D. Barth
- Centre for Inflammation ResearchThe University of EdinburghUK
| | | | | | - Ouldouz Ghashghaei
- Laboratory of Medicinal ChemistryFaculty of Pharmacy and Institute of Biomedicine (IBUB)University of BarcelonaSpain
| | - Rodolfo Lavilla
- Laboratory of Medicinal ChemistryFaculty of Pharmacy and Institute of Biomedicine (IBUB)University of BarcelonaSpain
| | - Laura Maiorino
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
| | - Xue‐Yan He
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
| | - Ian Dransfield
- Centre for Inflammation ResearchThe University of EdinburghUK
| | - Mikala Egeblad
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghUK
| |
Collapse
|
8
|
Barth ND, Mendive‐Tapia L, Subiros‐Funosas R, Ghashghaei O, Lavilla R, Maiorino L, He X, Dransfield I, Egeblad M, Vendrell M. A Bivalent Activatable Fluorescent Probe for Screening and Intravital Imaging of Chemotherapy-Induced Cancer Cell Death. Angew Chem Int Ed Engl 2022; 61:e202113020. [PMID: 34762762 PMCID: PMC8991960 DOI: 10.1002/anie.202113020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 11/21/2022]
Abstract
The detection and quantification of apoptotic cells is a key process in cancer research, particularly during the screening of anticancer therapeutics and in mechanistic studies using preclinical models. Intravital optical imaging enables high-resolution visualisation of cellular events in live organisms; however, there are few fluorescent probes that can reliably provide functional readouts in situ without interference from tissue autofluorescence. We report the design and optimisation of the fluorogenic probe Apotracker Red for real-time detection of cancer cell death. The strong fluorogenic behaviour, high selectivity, and excellent stability of Apotracker Red make it a reliable optical reporter for the characterisation of the effects of anticancer drugs in cells in vitro and for direct imaging of chemotherapy-induced apoptosis in vivo in mouse models of breast cancer.
Collapse
Affiliation(s)
- Nicole D. Barth
- Centre for Inflammation ResearchThe University of EdinburghUK
| | | | | | - Ouldouz Ghashghaei
- Laboratory of Medicinal ChemistryFaculty of Pharmacy and Institute of Biomedicine (IBUB)University of BarcelonaSpain
| | - Rodolfo Lavilla
- Laboratory of Medicinal ChemistryFaculty of Pharmacy and Institute of Biomedicine (IBUB)University of BarcelonaSpain
| | - Laura Maiorino
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
| | - Xue‐Yan He
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
| | - Ian Dransfield
- Centre for Inflammation ResearchThe University of EdinburghUK
| | - Mikala Egeblad
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghUK
| |
Collapse
|
9
|
Bhatta M, Shenoy GN, Loyall JL, Gray BD, Bapardekar M, Conway A, Minderman H, Kelleher RJ, Carreno BM, Linette G, Shultz LD, Odunsi K, Balu-Iyer SV, Pak KY, Bankert RB. Novel phosphatidylserine-binding molecule enhances antitumor T-cell responses by targeting immunosuppressive exosomes in human tumor microenvironments. J Immunother Cancer 2021; 9:jitc-2021-003148. [PMID: 34599030 PMCID: PMC8488709 DOI: 10.1136/jitc-2021-003148] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2021] [Indexed: 12/21/2022] Open
Abstract
Background The human tumor microenvironment (TME) is a complex and dynamic milieu of diverse acellular and cellular components, creating an immunosuppressive environment, which contributes to tumor progression. We have previously shown that phosphatidylserine (PS) expressed on the surface of exosomes isolated from human TMEs is causally linked to T-cell immunosuppression, representing a potential immunotherapeutic target. In this study, we investigated the effect of ExoBlock, a novel PS-binding molecule, on T-cell responses in the TME. Methods We designed and synthesized a new compound, (ZnDPA)6-DP-15K, a multivalent PS binder named ExoBlock. The PS-binding avidity of ExoBlock was tested using an in vitro competition assay. The ability of this molecule to reverse exosome-mediated immunosuppression in vitro was tested using human T-cell activation assays. The in vivo therapeutic efficacy of ExoBlock was then tested in two different human tumor xenograft models, the melanoma-based xenomimetic (X-)mouse model, and the ovarian tumor-based omental tumor xenograft (OTX) model. Results ExoBlock was able to bind PS with high avidity and was found to consistently and significantly block the immunosuppressive activity of human ovarian tumor and melanoma-associated exosomes in vitro. ExoBlock was also able to significantly enhance T cell-mediated tumor suppression in vivo in both the X-mouse and the OTX model. In the X-mouse model, ExoBlock suppressed tumor recurrence in a T cell-dependent manner. In the OTX model, ExoBlock treatment resulted in an increase in the number as well as function of CD4 and CD8 T cells in the TME, which was associated with a reduction in tumor burden and metastasis, as well as in the number of circulating PS+ exosomes in tumor-bearing mice. Conclusion Our results establish that targeting exosomal PS in TMEs with ExoBlock represents a promising strategy to enhance antitumor T-cell responses.
Collapse
Affiliation(s)
| | - Gautam N Shenoy
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York, USA
| | - Jenni L Loyall
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York, USA
| | - Brian D Gray
- Molecular Targeting Technologies Inc, West Chester, Pennsylvania, USA
| | - Meghana Bapardekar
- Flow & Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Alexis Conway
- Flow & Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Hans Minderman
- Flow & Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Raymond J Kelleher
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York, USA
| | - Beatriz M Carreno
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Gerald Linette
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Kunle Odunsi
- University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo-The State University of New York, Buffalo, New York, USA
| | - Koon Yan Pak
- Molecular Targeting Technologies Inc, West Chester, Pennsylvania, USA
| | - Richard B Bankert
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
10
|
Jurkeviciute E, Januskevicius A, Rimkunas A, Palacionyte J, Malakauskas K. α 4β 1 and α Mβ 2 Integrin Expression and Pro-Proliferative Properties of Eosinophil Subtypes in Asthma. J Pers Med 2021; 11:jpm11090829. [PMID: 34575607 PMCID: PMC8467456 DOI: 10.3390/jpm11090829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 12/02/2022] Open
Abstract
Eosinophilic inflammation is one of the main pathophysiological features in asthma. Two subtypes of eosinophils exist in the lung and systemic circulation: lung-resident eosinophils (rEOS) and inflammatory eosinophils (iEOS). We evaluated the expression of α4β1 and αMβ2 integrins of eosinophil subtypes and their influence on airway smooth muscle (ASM) cell proliferation and viability in asthma. We included 16 severe non-allergic eosinophilic asthma (SNEA) patients, 13 steroid-free, non-severe allergic asthma (AA) patients, and 12 healthy control subjects (HS). For AA patients, a bronchial allergen challenge with Dermatophagoides pteronyssinus was performed. The eosinophil subtypes were distinguished using magnetic bead-labeled antibodies against surface CD62L, and individual combined cell cultures were prepared with ASM cells. The integrins gene expression was analyzed by a quantitative real-time polymerase chain reaction. Proliferation was assessed by the Alamar blue assay, and viability by annexin V and propidium iodide staining. rEOS-like cells were characterized by the relatively higher gene expression of the β1 integrin subunit, whereas iEOS-like cells were characterized by the αM and β2 integrin subunits. The inclusion of either eosinophil subtypes in co-culture significantly increased the proliferation of ASM cells, and the effect of rEOS-like cells was stronger than iEOS-like cells (p < 0.05). Furthermore, rEOS-like cells had a more pronounced effect on reducing ASM cell apoptosis compared to that of iEOS-like cells (p < 0.05). Lastly, the bronchial allergen challenge significantly enhanced only the iEOS-like cells’ effect on ASM cell proliferation and viability in AA patients (p < 0.05). These findings highlight the different expression of α4β1 and αMβ2 integrins on distinct eosinophil subtypes in asthma. Therefore, rEOS-like cells have a stronger effect in stimulating ASM cell proliferation and viability; however, contact with specific allergens mainly enhances pro-proliferative iEOS-like cell properties.
Collapse
Affiliation(s)
- Egle Jurkeviciute
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
- Correspondence: ; Tel.: +370-653-61275
| | - Andrius Januskevicius
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Airidas Rimkunas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Jolita Palacionyte
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Kestutis Malakauskas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| |
Collapse
|
11
|
Phosphatidylserine Supplementation as a Novel Strategy for Reducing Myocardial Infarct Size and Preventing Adverse Left Ventricular Remodeling. Int J Mol Sci 2021; 22:ijms22094401. [PMID: 33922385 PMCID: PMC8122843 DOI: 10.3390/ijms22094401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Phosphatidylserines are known to sustain skeletal muscle activity during intense activity or hypoxic conditions, as well as preserve neurocognitive function in older patients. Our previous studies pointed out a potential cardioprotective role of phosphatidylserine in heart ischemia. Therefore, we investigated the effects of phosphatidylserine oral supplementation in a mouse model of acute myocardial infarction (AMI). We found out that phosphatidylserine increases, significantly, the cardiomyocyte survival by 50% in an acute model of myocardial ischemia-reperfusion. Similar, phosphatidylserine reduced significantly the infarcted size by 30% and improved heart function by 25% in a chronic model of AMI. The main responsible mechanism seems to be up-regulation of protein kinase C epsilon (PKC-ε), the main player of cardio-protection during pre-conditioning. Interestingly, if the phosphatidylserine supplementation is started before induction of AMI, but not after, it selectively inhibits neutrophil's activation, such as Interleukin 1 beta (IL-1β) expression, without affecting the healing and fibrosis. Thus, phosphatidylserine supplementation may represent a simple way to activate a pre-conditioning mechanism and may be a promising novel strategy to reduce infarct size following AMI and to prevent myocardial injury during myocardial infarction or cardiac surgery. Due to the minimal adverse effects, further investigation in large animals or in human are soon possible to establish the exact role of phosphatidylserine in cardiac diseases.
Collapse
|
12
|
Chen YY, Lo CF, Chiu TY, Hsu CY, Yeh TK, Chen CP, Huang CL, Huang CY, Wang MH, Huang YC, Ho HH, Chao YS, Shih JC, Tsou LK, Chen CT. BPRDP056, a novel small molecule drug conjugate specifically targeting phosphatidylserine for cancer therapy. Transl Oncol 2020; 14:100897. [PMID: 33069101 PMCID: PMC7569237 DOI: 10.1016/j.tranon.2020.100897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022] Open
Abstract
Zinc(II)-dipicolylamine (Zn-DPA) has been shown to specifically identify and bind to phosphatidylserine (PS), which exists in bulk in the tumor microenvironment. BPRDP056, a Zn-DPA-SN38 conjugate was designed to provide PS-targeted drug delivery of a cytotoxic SN38 to the tumor microenvironment, thereby allowing a lower dosage of SN38 that induces apoptosis in cancer cells. Micro-Western assay showed that BPRDP056 exhibited apoptotic signal levels similar to those of CPT-11 in the treated tumors growing in mice. Pharmacokinetic study showed that BPRDP056 has excellent systemic stability in circulation in mice and rats. BPRDP056 is accumulated in tumors and thus increases the cytotoxic effects of SN38. The in vivo antitumor activities of BPRDP056 have been shown to be significant in subcutaneous pancreas, prostate, colon, liver, breast, and glioblastoma tumors, included an orthotopic pancreatic tumor, in mice. BPRDP056 shrunk tumors at a lower (~20% only) dosing intensity of SN38 compared to that of SN38 conjugated in CPT-11 in all tumor models tested. A wide spectrum of antitumor activities is expected to treat all cancer types of PS-rich tumor microenvironments. BPRDP056 is a first-in-class small molecule drug conjugate for cancer therapy.
Collapse
Affiliation(s)
- Yun-Yu Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Chen-Fu Lo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Tai-Yu Chiu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Chia-Yu Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Ching-Ping Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Chen-Lung Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Chung-Yu Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Min-Hsien Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Yu-Chen Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Hsuan-Hui Ho
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Yu-Sheng Chao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Joe C Shih
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Lun K Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC.
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC.
| |
Collapse
|
13
|
Lou J, Best MD. Strategies for altering lipid self-assembly to trigger liposome cargo release. Chem Phys Lipids 2020; 232:104966. [PMID: 32888913 DOI: 10.1016/j.chemphyslip.2020.104966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 01/21/2023]
Abstract
While liposomes have proven to be effective drug delivery nanocarriers, their therapeutic attributes could be improved through the development of clinically viable triggered release strategies in which encapsulated drug contents could be selectively released at the sites of diseased cells. As such, a significant amount of research has been reported involving the development of stimuli-responsive liposomes and a broad range of strategies have been explored for driving content release. These have included the introduction of trigger groups at either the lipid headgroup or within the acyl chains that alter lipid self-assembly properties of known lipids as well as the rational design of lipid analogs programed to undergo conformational changes induced by events such as binding interactions. This review article describes advances in the design of stimuli-responsive liposome strategies with an eye towards emerging trends in the field.
Collapse
Affiliation(s)
- Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Dr, Knoxville, TN, 37996, USA
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Dr, Knoxville, TN, 37996, USA.
| |
Collapse
|
14
|
Tan H, Abudupataer M, Qiu L, Mao W, Xiao J, Cheng D, Shi H. 99m Tc-labeled Duramycin for detecting and monitoring cardiomyocyte death and assessing atorvastatin cardioprotection in acute myocardial infarction. Chem Biol Drug Des 2020; 97:210-220. [PMID: 32881342 DOI: 10.1111/cbdd.13773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/19/2020] [Accepted: 07/25/2020] [Indexed: 12/19/2022]
Abstract
This study aimed to dynamically monitor myocardial cell death using 99m Tc-Duramycin single-photon emission computed tomography/computed tomography (micro-SPECT/CT) imaging in acute myocardial infarction (AMI) and the anti-apoptosis effect of atorvastatin for cardioprotection. Mice were randomized into three groups: AMI group, AMI with atorvastatin treatment (T-AMI) group, and sham group. Three groups of model mice were randomly selected at day 1 (D1), day 3 (D3), and day 7 (D7) day after surgery with 99m Tc-Duramycin micro-SPECT/CT imaging. The lesion-to-normal myocardial tissue ratio (L/N) average values were 2.62 on D1, 3.89 on D3, and 1.20 on D7 for the uptake of 99m Tc-duramycin in the infarcted region in the AMI group. The sham group presented no positive imaging in myocardium, and the L/N average values were 1.09, 1.14, and 1.10 on D1, D3, and D7, respectively. Meanwhile, 99m Tc-linear-duramycin imaging showed no radioactive uptake in the infarction region. The T-AMI group imaging showed tracer uptake decreased obviously compared to the uptake in the infarcted region in AMI mice. 99m Tc-Duramycin SPECT/CT imaging allowed non-invasive monitoring of myocardial cell death in a mouse model of AMI and an assessment of atorvastatin anti-apoptosis effect for cardioprotection by in vivo molecular imaging.
Collapse
Affiliation(s)
- Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Mieradilijiang Abudupataer
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Qiu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Wujian Mao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Jie Xiao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| |
Collapse
|
15
|
Li T, Chiou B, Gilman CK, Luo R, Koshi T, Yu D, Oak HC, Giera S, Johnson‐Venkatesh E, Muthukumar AK, Stevens B, Umemori H, Piao X. A splicing isoform of GPR56 mediates microglial synaptic refinement via phosphatidylserine binding. EMBO J 2020; 39:e104136. [PMID: 32452062 PMCID: PMC7429740 DOI: 10.15252/embj.2019104136] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/31/2022] Open
Abstract
Developmental synaptic remodeling is important for the formation of precise neural circuitry, and its disruption has been linked to neurodevelopmental disorders such as autism and schizophrenia. Microglia prune synapses, but integration of this synapse pruning with overlapping and concurrent neurodevelopmental processes, remains elusive. Adhesion G protein-coupled receptor ADGRG1/GPR56 controls multiple aspects of brain development in a cell type-specific manner: In neural progenitor cells, GPR56 regulates cortical lamination, whereas in oligodendrocyte progenitor cells, GPR56 controls developmental myelination and myelin repair. Here, we show that microglial GPR56 maintains appropriate synaptic numbers in several brain regions in a time- and circuit-dependent fashion. Phosphatidylserine (PS) on presynaptic elements binds GPR56 in a domain-specific manner, and microglia-specific deletion of Gpr56 leads to increased synapses as a result of reduced microglial engulfment of PS+ presynaptic inputs. Remarkably, a particular alternatively spliced isoform of GPR56 is selectively required for microglia-mediated synaptic pruning. Our present data provide a ligand- and isoform-specific mechanism underlying microglial GPR56-mediated synapse pruning in the context of complex neurodevelopmental processes.
Collapse
Affiliation(s)
- Tao Li
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
- Department of MedicineBoston Children's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Brian Chiou
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
| | - Casey K Gilman
- Department of MedicineBoston Children's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Rong Luo
- Department of MedicineBoston Children's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Tatsuhiro Koshi
- Department of MedicineBoston Children's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Diankun Yu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
| | - Hayeon C Oak
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
| | - Stefanie Giera
- Department of MedicineBoston Children's Hospital and Harvard Medical SchoolBostonMAUSA
| | | | - Allie K Muthukumar
- F. M. Kirby Neurobiology CenterChildren's HospitalHarvard Medical SchoolBostonMAUSA
| | - Beth Stevens
- F. M. Kirby Neurobiology CenterChildren's HospitalHarvard Medical SchoolBostonMAUSA
- Howard Hughes Medical InstituteBoston Children's HospitalBostonMAUSA
| | - Hisashi Umemori
- F. M. Kirby Neurobiology CenterChildren's HospitalHarvard Medical SchoolBostonMAUSA
| | - Xianhua Piao
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
- Department of MedicineBoston Children's Hospital and Harvard Medical SchoolBostonMAUSA
- F. M. Kirby Neurobiology CenterChildren's HospitalHarvard Medical SchoolBostonMAUSA
- Weill Institute for NeuroscienceUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
- Division of NeonatologyDepartment of PediatricsUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
- Newborn Brain Research InstituteUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
| |
Collapse
|
16
|
Khoshbakht S, Beiki D, Geramifar P, Kobarfard F, Sabzevari O, Amini M, Bolourchian N, Shamshirian D, Shahhosseini S. Design, Synthesis, Radiolabeling, and Biologic Evaluation of Three 18F-FDG-Radiolabeled Targeting Peptides for the Imaging of Apoptosis. Cancer Biother Radiopharm 2019; 34:271-279. [PMID: 30835137 DOI: 10.1089/cbr.2018.2709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Early detection of apoptosis is very important for therapy and follow-up treatment in various pathologic conditions. Annexin V interacts strongly and specifically with phosphatidylserine, specific biomarkers of apoptosis with some limitations. Small peptides are suitable alternatives to annexin V. A reliable and noninvasive in vivo technique for the detection of apoptosis is in great demand. Based on our previous studies, three new peptide analogs of LIKKPF (Leu-Ile-Lys-Lys-Pro-Phe) as apoptosis imaging agents were developed. Materials and Methods: Aoa-LIKKP-Cl-F, Aoe-LIKKP-Pyr-F, and Aoe-LIKKP-Nap-F were synthesized, functionalized with aminooxy, and radiolabeled with 18F-FDG. Their biologic properties were evaluated in vitro using apoptotic Jurkat cells. 18F-FDG-Aoe-LIKKP-Pyr-F peptide was injected into normal and apoptotic mice models for biodistribution and in vivo positron emission tomography/computed tomography imaging studies. Results: 18F-FDG-Aoe-LIKKP-Pyr-F peptide showed higher affinity for apoptotic cells. The localization of peptide in apoptotic liver mice was confirmed in biodistribution and imaging studies. Conclusion: The results showed that Aoe-LIKKP-Pyr-F peptide is an auspicious agent for molecular imaging of apoptosis.
Collapse
Affiliation(s)
- Sepideh Khoshbakht
- 1 Shohada-E-Tajrish Hospital, School of Medicine, Shahid Behesti University of Medical Sciences, Tehran, Iran
| | - Davood Beiki
- 2 Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Geramifar
- 2 Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Kobarfard
- 3 Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Sabzevari
- 4 Department of Toxicology and Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- 5 Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Bolourchian
- 6 Department of Pharmaceutics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Danial Shamshirian
- 7 PET/CT Center, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soraya Shahhosseini
- 8 Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Protein Technology Research Center, Shahid Behesti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Aoki M, Odani A, Ogawa K. Development of radiolabeled bis(zinc(II)-dipicolylamine) complexes for cell death imaging. Ann Nucl Med 2019; 33:317-325. [DOI: 10.1007/s12149-019-01339-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 01/16/2019] [Indexed: 12/12/2022]
|
18
|
Schimming JP, Ter Braak B, Niemeijer M, Wink S, van de Water B. System Microscopy of Stress Response Pathways in Cholestasis Research. Methods Mol Biol 2019; 1981:187-202. [PMID: 31016656 DOI: 10.1007/978-1-4939-9420-5_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exposure to oxidative radical species and cytokine-mediated inflammatory stress are established contributors to hepatocyte cell death during cholestasis. Cellular counter measures against those stressors are called adaptive stress response pathways. While in early stages of the disease adaptive stress pathways protect the hepatocytes, in later stages during prolonged stressed conditions they fail. The quantitative imaging-based assessment of cellular stress response pathways using the HepG2 BAC-GFP response reporter platform is a powerful strategy to evaluate the impact of chemical substances and gene knockdown on activation of adaptive stress response pathways, hence allowing systematic screening for positive or negative influences on cholestasis progression. This protocol allows the application of a highly versatile screening tool for a systematic evaluation of the effect of compounds having cholestasis liability and affected genes during cholestatic injury on cellular adaptive stress pathway activation. The approach involves high-throughput live-cell visualization of GFP-tagged key proteins of the oxidative stress response/Nrf2 pathway and inflammatory cytokine signaling. Quantitative image analysis of temporal responses of individual cells is followed by informatics analysis. The overall practical approaches are discussed in this chapter.
Collapse
Affiliation(s)
- Johannes P Schimming
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Bas Ter Braak
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Marije Niemeijer
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Steven Wink
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands.
| |
Collapse
|
19
|
Nie X, Zhang Z, Wang CH, Fan YS, Meng QY, You YZ. Interactions in DNA Condensation: An Important Factor for Improving the Efficacy of Gene Transfection. Bioconjug Chem 2018; 30:284-292. [DOI: 10.1021/acs.bioconjchem.8b00805] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuan Nie
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ze Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | | | | | | | - Ye-Zi You
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
20
|
Lou J, Zhang X, Best MD. Lipid Switches: Stimuli-Responsive Liposomes through Conformational Isomerism Driven by Molecular Recognition. Chemistry 2018; 25:20-25. [PMID: 30133869 DOI: 10.1002/chem.201803389] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/21/2018] [Indexed: 11/10/2022]
Abstract
Advancements in the field of liposomal drug carriers have culminated in greatly improved delivery properties. An important aspect of this work entails development of designer liposomes for release of contents triggered by environmental changes. The majority of these systems are driven by chemical reactions in the presence of different stimuli. However, a promising new paradigm instead focuses on molecular recognition events as the impetus for content release. In certain cases, these platforms exploit synthetic lipid switches designed to undergo conformational changes upon binding to target ions or molecules that perturb membrane assembly, thereby triggering cargo release. Examples of this approach reported thus far showcase how rational design of lipid switches can result in dramatic changes in lipid assembly properties. These strategies show great promise for opening up new pathophysiological stimuli that can be harnessed for programmed content release in drug delivery applications.
Collapse
Affiliation(s)
- Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Xiaoyu Zhang
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| |
Collapse
|
21
|
Nishie A, Togao O, Tamura C, Yamato M, Ichikawa K, Nohara S, Ito Y, Kato N, Yoshise S, Honda H. In Vitro and In Vivo Detection of Drug-induced Apoptosis Using Annexin V-conjugated Ultrasmall Superparamagnetic Iron Oxide (USPIO): A Pilot Study. Magn Reson Med Sci 2018; 18:142-149. [PMID: 30282879 PMCID: PMC6460121 DOI: 10.2463/mrms.mp.2017-0157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Purpose: To investigate the binding potential of newly developed Annexin V-conjugated ultrasmall superparamagnetic iron oxide (V-USPIO) for detection of drug-induced apoptosis in vitro and in vivo. Methods: Apoptotic cells induced by camptothecin were incubated with or without Annexin V-USPIO at a concentration of 0.089 mmol Fe/L in vitro. T2 values of the two cell suspensions were measured by 0.47T nuclear magnetic resonance (NMR) spectrometer. Tumor-bearing mice were subjected to 1.5T MR scanner at 2 h after intraperitoneal injection of etoposide and cyclophosphamide. Following the pre-contrast T1- and T2-weighted imaging (0 h), the post-contrast scan was performed at 2, 4, 6 and 24 h after intravenous injection of Annexin V-USPIO (100 μmol Fe/kg). As a control, MRI was also obtained at 4 h after injection of USPIO without Annexin V. The ratio of tumor signal intensity (SI) on post-MRI for that on pre-MRI (Post/Pre-SI ratio) was calculated. After scanning, tumors were resected for pathological analysis to evaluate the distribution of iron and apoptotic cells. Results: The suspension of apoptotic cells incubated with Annexin V-USPIO showed shorter T2 value than that without it. On T1-weighted imaging post/pre-SI ratio at 4 h after injection of Annexin V-USPIO showed 1.46, while after injection of USPIO without Annexin V was 1.17. The similar distribution of iron and apoptotic cells was observed in concordance with high signal intensity area on post-T1-weighted imaging. Conclusion: A newly developed Annexin V-USPIO could have the potential for detection of drug-induced apoptosis.
Collapse
Affiliation(s)
- Akihiro Nishie
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University
| | - Chihiro Tamura
- Innovation Center for Medical Redox Navigation, Kyushu University
| | - Mayumi Yamato
- Innovation Center for Medical Redox Navigation, Kyushu University
| | | | | | | | | | | | - Hiroshi Honda
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University
| |
Collapse
|
22
|
Nieto-Garai JA, Glass B, Bunn C, Giese M, Jennings G, Brankatschk B, Agarwal S, Börner K, Contreras FX, Knölker HJ, Zankl C, Simons K, Schroeder C, Lorizate M, Kräusslich HG. Lipidomimetic Compounds Act as HIV-1 Entry Inhibitors by Altering Viral Membrane Structure. Front Immunol 2018; 9:1983. [PMID: 30233582 PMCID: PMC6131562 DOI: 10.3389/fimmu.2018.01983] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022] Open
Abstract
The envelope of Human Immunodeficiency Virus type 1 (HIV-1) consists of a liquid-ordered membrane enriched in raft lipids and containing the viral glycoproteins. Previous studies demonstrated that changes in viral membrane lipid composition affecting membrane structure or curvature can impair infectivity. Here, we describe novel antiviral compounds that were identified by screening compound libraries based on raft lipid-like scaffolds. Three distinct molecular structures were chosen for mode-of-action studies, a sterol derivative (J391B), a sphingosine derivative (J582C) and a long aliphatic chain derivative (IBS70). All three target the viral membrane and inhibit virus infectivity at the stage of fusion without perturbing virus stability or affecting virion-associated envelope glycoproteins. Their effect did not depend on the expressed envelope glycoproteins or a specific entry route, being equally strong in HIV pseudotypes carrying VSV-G or MLV-Env glycoproteins. Labeling with laurdan, a reporter of membrane order, revealed different membrane structure alterations upon compound treatment of HIV-1, which correlated with loss of infectivity. J582C and IBS70 decreased membrane order in distinctive ways, whereas J391B increased membrane order. The compounds' effects on membrane order were reproduced in liposomes generated from extracted HIV lipids and thus independent both of virion proteins and of membrane leaflet asymmetry. Remarkably, increase of membrane order by J391B required phosphatidylserine, a lipid enriched in the HIV envelope. Counterintuitively, mixtures of two compounds with opposite effects on membrane order, J582C and J391B, did not neutralize each other but synergistically inhibited HIV infection. Thus, altering membrane order, which can occur by different mechanisms, constitutes a novel antiviral mode of action that may be of general relevance for enveloped viruses and difficult to overcome by resistance development.
Collapse
Affiliation(s)
- Jon Ander Nieto-Garai
- Departamento de Bioquímica y Biología Molecular, Instituto Biofisika (CSIC, UPV/EHU), Universidad del País Vasco, Bilbao, Spain
| | - Bärbel Glass
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | | | | | | | - Beate Brankatschk
- JADO Technologies, Dresden, Germany.,Membrane Biochemistry Group, Paul-Langerhans-Institute Dresden, Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus, Dresden, Germany
| | - Sameer Agarwal
- JADO Technologies, Dresden, Germany.,Department of Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Kathleen Börner
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - F Xabier Contreras
- Departamento de Bioquímica y Biología Molecular, Instituto Biofisika (CSIC, UPV/EHU), Universidad del País Vasco, Bilbao, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Hans-Joachim Knölker
- JADO Technologies, Dresden, Germany.,Department of Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Claudia Zankl
- JADO Technologies, Dresden, Germany.,Department of Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Kai Simons
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Cornelia Schroeder
- JADO Technologies, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Department of Anatomy, Medical Faculty Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Maier Lorizate
- Departamento de Bioquímica y Biología Molecular, Instituto Biofisika (CSIC, UPV/EHU), Universidad del País Vasco, Bilbao, Spain
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| |
Collapse
|
23
|
Zhao H, Zhou P, Huang K, Deng G, Zhou Z, Wang J, Wang M, Zhang Y, Yang H, Yang S. Amplifying Apoptosis Homing Nanoplatform for Tumor Theranostics. Adv Healthc Mater 2018; 7:e1800296. [PMID: 29745029 DOI: 10.1002/adhm.201800296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/10/2018] [Indexed: 02/05/2023]
Abstract
Nanomedicine has significantly impacted cancer theranostics. However, its efficiency is restricted by the limited enhanced permeability and retention effect of nanomaterials and insufficient density/specificity of receptors of tumor cells. Herein, an apoptosis-homing nanoplatform based on zinc(II) dipicolylamine (ZnDPA) conjugated Fe/Fe3 O4 nanoparticles (MNPs/ZnDPA), which demonstrates amplified magnetic resonance signal and photothermal therapy, is developed. In an apoptotic xenograft model constructed by doxorubicin, due to the high affinity between ZnDPA and the upregulated level of phosphatidylserine on the outer surface of apoptotic cancer cells, the accumulation value of MNPs/ZnDPA is enhanced two-fold and the tumor/muscle ratio of T2 values is decreased to 50% compared to that in the normal xenograft model. In the apoptotic xenograft model, the amplifying photothermal therapy is confirmed by the changes of the relative tumor volume and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling staining. This nanoplatform provides a promising strategy to improve the targeting efficiency of nanoparticles and the enhancement of tumor-targeting theranostics.
Collapse
Affiliation(s)
- Heng Zhao
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Ping Zhou
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Kai Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province; Shenzhen University; Shenzhen 518060 China
| | - Guang Deng
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Zhiguo Zhou
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Jing Wang
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Mingwei Wang
- Department of Nuclear Medicine; Fudan University Shanghai Cancer Center; Shanghai 200032 China
- Department of Oncology; Shanghai Medical College; Fudan University; Shanghai 200032 China
- Shanghai Engineering Research; Center for Molecular Imaging Probes; Shanghai 200032 China
| | - Yingjian Zhang
- Department of Nuclear Medicine; Fudan University Shanghai Cancer Center; Shanghai 200032 China
- Department of Oncology; Shanghai Medical College; Fudan University; Shanghai 200032 China
- Shanghai Engineering Research; Center for Molecular Imaging Probes; Shanghai 200032 China
| | - Hong Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| |
Collapse
|
24
|
Shao J, Wang C, Li L, Liang H, Dai J, Ling X, Tang H. Luteoloside Inhibits Proliferation and Promotes Intrinsic and Extrinsic Pathway-Mediated Apoptosis Involving MAPK and mTOR Signaling Pathways in Human Cervical Cancer Cells. Int J Mol Sci 2018; 19:ijms19061664. [PMID: 29874795 PMCID: PMC6032149 DOI: 10.3390/ijms19061664] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
Cervical cancer is a common gynecological malignancy with high incidence and mortality. Drugs commonly used in chemotherapy are often accompanied by strong side-effects. To find an anti-cervical cancer drug with high effects and low toxicity, luteoloside was used to treat the cervical cancer cell line Hela to investigate its effects on cell morphology, proliferation, apoptosis, and related proteins. The study demonstrated that luteoloside could inhibit proliferation remarkably; promote apoptosis and cytochrome C release; decrease the mitochondrial membrane potential and reactive oxygen species level; upregulate the expression of Fas, Bax, p53, phospho-p38, phospho-JNK, and cleaved PARP; downregulate the expression of Bcl-2 and phospho-mTOR; activate caspase-3 and caspase-8; change the nuclear morphology, and fragmentate DNA in Hela cells. These results strongly suggest that luteoloside can significantly inhibit the proliferation and trigger apoptosis in Hela cells. In contrast, luteoloside had less proliferation inhibiting effects on the normal cell lines HUVEC12 and LO2, and minor apoptosis promoting effects on HUVEC12 cells. Furthermore, the luteoloside-induced apoptosis in Hela cells is mediated by both intrinsic and extrinsic pathways and the effects of luteoloside may be regulated by the mitogen-activated protein kinases and mTOR signaling pathways via p53.
Collapse
Affiliation(s)
- Junli Shao
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Chaoxi Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Linqiu Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Hairong Liang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Juanxiu Dai
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Xiaoxuan Ling
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
25
|
Rybczynska AA, Boersma HH, de Jong S, Gietema JA, Noordzij W, Dierckx RAJO, Elsinga PH, van Waarde A. Avenues to molecular imaging of dying cells: Focus on cancer. Med Res Rev 2018. [PMID: 29528513 PMCID: PMC6220832 DOI: 10.1002/med.21495] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Successful treatment of cancer patients requires balancing of the dose, timing, and type of therapeutic regimen. Detection of increased cell death may serve as a predictor of the eventual therapeutic success. Imaging of cell death may thus lead to early identification of treatment responders and nonresponders, and to “patient‐tailored therapy.” Cell death in organs and tissues of the human body can be visualized, using positron emission tomography or single‐photon emission computed tomography, although unsolved problems remain concerning target selection, tracer pharmacokinetics, target‐to‐nontarget ratio, and spatial and temporal resolution of the scans. Phosphatidylserine exposure by dying cells has been the most extensively studied imaging target. However, visualization of this process with radiolabeled Annexin A5 has not become routine in the clinical setting. Classification of death modes is no longer based only on cell morphology but also on biochemistry, and apoptosis is no longer found to be the preponderant mechanism of cell death after antitumor therapy, as was earlier believed. These conceptual changes have affected radiochemical efforts. Novel probes targeting changes in membrane permeability, cytoplasmic pH, mitochondrial membrane potential, or caspase activation have recently been explored. In this review, we discuss molecular changes in tumors which can be targeted to visualize cell death and we propose promising biomarkers for future exploration.
Collapse
Affiliation(s)
- Anna A Rybczynska
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Genetics, University of Groningen, Groningen, the Netherlands
| | - Hendrikus H Boersma
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy & Pharmacology, University of Groningen, Groningen, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Jourik A Gietema
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Walter Noordzij
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Philip H Elsinga
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aren van Waarde
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
26
|
Induction of Apoptosis in Metastatic Breast Cancer Cells: XV. Downregulation of DNA Polymerase-α - Helicase Complex (Replisomes) and Glyco-Genes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:199-221. [PMID: 30637700 DOI: 10.1007/978-981-13-3065-0_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In normal and cancer cells, successful cell division requires accurate duplication of chromosomal DNA. All cells require a multiprotein DNA duplication system (replisomes) for their existence. However, death of normal cells in our body occurs through the apoptotic process. During apoptotic process several crucial genes are downregulated with the upregulation of caspase pathways, leading to ultimate degradation of genomic DNA. In metastatic cancer cells (SKBR-3, MCF -7, and MDA-462), this process is inhibited to achieve immortality as well as overexpression of the enzymes for the synthesis of marker molecules. It is believed that the GSL of the lacto family such as LeX, SA-LeX, LeY, Lea, and Leb are markers on the human colon and breast cancer cells. Recently, we have characterized that a few apoptotic chemicals (cis-platin, L-PPMP, D-PDMP, GD3 ganglioside, GD1b ganglioside, betulinic acid, tamoxifen, and melphalan) in low doses kill metastatic breast cancer cells. The apoptosis-inducing agent (e.g., cis-platin) showed inhibition of DNA polymerase/helicase (part of the replisomes) and also modulated (positively) a few glycolipid-glycosyltransferase (GSL-GLTs) transcriptions in the early stages (within 2 h after treatment) of apoptosis. These Lc-family GSLs are also present on the surfaces of human breast and colon carcinoma cells. It is advantageous to deliver these apoptotic chemicals through the metastatic cell surfaces containing high concentration of marker glycolipids (Lc-GSLs). Targeted application of apoptotic chemicals (in micro scale) to kill the cancer cells would be an ideal way to inhibit the metastatic growth of both breast and colon cancer cells. It was observed in three different breast cancer lines (SKBR-3, MDA-468, and MCF-7) that in 2 h very little apoptotic process had started, but predominant biochemical changes (including inactivation of replisomes) started between 6 and 24 h of the drug treatments. The contents of replisomes (replisomal complexes) during induction of apoptosis are not known. It is known that DNA helicase activities (major proteins catalyze the melting of dsDNA strands) change during apoptotic induction process. Previously DNA Helicase-III was characterized as a component of the replication complexes isolated from carcinoma cells and normal rapid growing embryonic chicken brain cells. Helicase activities were assayed by a novel method (combined immunoprecipitation-ROME assay), and DNA polymerase-alpha activities were determined by regular chain extension of nicked "ACT-DNA," by determining values obtained from +/- aphidicolin added to the incubation mixtures. Very little is known about the stability of the "replication complexes" (or replisomes) during the apoptotic process. DNA helicases are motor proteins that catalyze the melting of genomic DNA during replication, repair, and recombination processes. In all three breast carcinoma cell lines (SKBR-3, MCF-7, and MDA-468), a common trend, decrease of activities of DNA polymerase-alpha and Helicase-III (estimated and detected with a polyclonal antibody), was observed, after cis-platin- and L-PPMP-induced apoptosis. Previously our laboratory has documented downregulation (within 24-48 h) of several GSL-GLTs with these apoptotic reagents in breast and colon cancer cells also. Perhaps induced apoptosis would improve the prognosis in metastatic breast and colon cancer patients.
Collapse
|
27
|
|
28
|
Pyrshev KA, Yesylevskyy SO, Mély Y, Demchenko AP, Klymchenko AS. Caspase-3 activation decreases lipid order in the outer plasma membrane leaflet during apoptosis: A fluorescent probe study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2123-2132. [PMID: 28784460 DOI: 10.1016/j.bbamem.2017.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/12/2017] [Accepted: 08/03/2017] [Indexed: 12/23/2022]
Abstract
In this research we investigate the connection between the cytoplasmic machinery of apoptosis and the plasma membrane organization by studying the coupling of caspase-3 activation and inhibition with PS exposure and the change of lipid order in plasma membrane sensed by a fluorescent membrane probe NR12S. First, we performed in silico molecular dynamics simulations, which suggest that the mechanism of response of NR12S to lipid order may combine both sensitivity to membrane polarity/hydration and change in the fluorophore orientation. Second, cellular studies revealed that upon triggering apoptosis with IPA-3 and camptothecin the NR12S response is similar to that observed after decrease of lipid order induced by cholesterol depletion, 7-ketocholesterol enrichment or sphingomyelin hydrolysis. NR12S response can be influenced by a caspase-3 inhibitor Z-DEVD-FMK. Flow cytometry data further indicate that the NR12S response correlates with the response of FITC-labeled DEVD-FMK peptide and GFP-labeled Annexin V on the whole time scale (0-24h) of apoptosis induction by camptothecin. We conclude that fine changes in lipid order observed by NR12S are coupled with early steps of cellular events in apoptosis.
Collapse
Affiliation(s)
- Kyrylo A Pyrshev
- Laboratoire de Biophotonique et Pharmacologie UMR 7213 CNRS/Université de Strasbourg, Illkirch, France; Laboratory of Nanobiotechnologies, Department of Molecular Immunology, O.V. Palladin Institute of Biochemistry of NASU, Kyiv 01601, Ukraine.
| | - Semen O Yesylevskyy
- Department of Physics of Biological Systems, Institute of Physics of NASU, Kyiv 03680, Ukraine
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie UMR 7213 CNRS/Université de Strasbourg, Illkirch, France
| | - Alexander P Demchenko
- Laboratory of Nanobiotechnologies, Department of Molecular Immunology, O.V. Palladin Institute of Biochemistry of NASU, Kyiv 01601, Ukraine
| | - Andrey S Klymchenko
- Laboratoire de Biophotonique et Pharmacologie UMR 7213 CNRS/Université de Strasbourg, Illkirch, France
| |
Collapse
|
29
|
Combinatory Evaluation of Transcriptome and Metabolome Profiles of Low Temperature-induced Resistant Ascites Syndrome in Broiler Chickens. Sci Rep 2017; 7:2389. [PMID: 28539642 PMCID: PMC5443777 DOI: 10.1038/s41598-017-02492-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 04/13/2017] [Indexed: 12/23/2022] Open
Abstract
To select metabolic biomarkers and differentially expressed genes (DEGs) associated with resistant-ascites syndrome (resistant-AS), we used innovative techniques such as metabolomics and transcriptomics to comparatively examine resistant-AS chickens and AS controls. Metabolomic evaluation of chicken serum using ultra-performance liquid chromatography-quadruple time-of-flight high-sensitivity mass spectrometry (UPLC-QTOF/HSMS) showed significantly altered lysoPC(18:1), PE(18:3/16:0), PC(20:1/18:3), DG(24:1/22:6/0:0), PS(18:2/18:0), PI(16:0/16:0), PS(18:0/18:1), PS(14:1/14:0), dihydroxyacetone, ursodeoxycholic acid, tryptophan, L-valine, cycloserine, hypoxanthine, and 4-O-Methylmelleolide concentrations on day 21 and LysoPC(18:0), LysoPE(20:1/0:0), LysoPC(16:0), LysoPE(16:0/0:0), hypoxanthine, dihydroxyacetone, 4-O-Methylmelleolide, LysoPC(18:2), and PC(14:1/22:1) concentrations on day 35, between the susceptible and resistant groups. Compared to the susceptible group, transcriptomic analysis of liver samples using RNA-seq revealed 413 DEGs on day 21 and 214 DEGs on day 35 in the resistant group. Additional evaluations using gene ontology (GO) indicate that significant enrichment occurred in the oxygen transportation, defensive reactions, and protein modifications of the decreased DEGs as well as in the cell morphological formation, neural development, and transforming growth factor (TGF)-beta signalling of the increased DEGs on day 21. Oxygen transportation was also significantly enriched for downregulated DEGs on day 35. The combinatory evaluation of the metabolome and the transcriptome suggests the possible involvement of glycerophospholipid metabolism in the development of resistant-AS in broilers.
Collapse
|
30
|
Raoufi Rad N, McRobb LS, Zhao Z, Lee VS, Patel NJ, Qureshi AS, Grace M, McHattan JJ, Amal Raj JV, Duong H, Kashba SR, Stoodley MA. Phosphatidylserine Translocation after Radiosurgery in an Animal Model of Arteriovenous Malformation. Radiat Res 2017; 187:701-707. [PMID: 28414573 DOI: 10.1667/rr14646.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phosphatidylserine (PS) is asymmetrically distributed across the plasma membrane, located predominantly on the inner leaflet in healthy cells. Translocation of PS to the outer leaflet makes it available as a target for biological therapies. We examined PS translocation after radiosurgery in an animal model of brain arteriovenous malformation (AVM). An arteriovenous fistula was created by end-to-side anastomosis of the left external jugular vein to the common carotid artery in 6-week-old, male Sprague Dawley rats. Six weeks after AVM creation, 15 rats underwent Gamma Knife stereotactic radiosurgery receiving a single 15 Gy dose to the margin of the fistula; 15 rats received sham treatment. Externalization of PS was examined by intravenous injection of a PS-specific near-infrared probe, PSVue-794, and in vivo fluorescence optical imaging at 1, 7, 21, 42, 63 and 84 days postirradiation. Fluorescent signaling indicative of PS translocation to the luminal cell surface accumulated in the AVM region, in both irradiated and nonirradiated animals, at all time points. Fluorescence was localized specifically to the AVM region and was not present in any other anatomical sites. Translocated PS increased over time in irradiated rats (P < 0.001) but not in sham-irradiated rats and this difference reached statistical significance at day 84 (P < 0.05). In summary, vessels within the mature rat AVM demonstrate elevated PS externalization compared to normal vessels. A single dose of ionizing radiation can increase PS externalization in a time-dependent manner. Strict localization of PS externalization within the AVM region suggests that stereotactic radiosurgery can serve as an effective priming agent and PS may be a suitable candidate for vascular-targeting approaches to AVM treatment.
Collapse
Affiliation(s)
- Newsha Raoufi Rad
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia
| | - Lucinda S McRobb
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia
| | - Zhenjun Zhao
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia
| | - Vivienne S Lee
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia
| | - Nirav J Patel
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia
| | - Anas Sarwar Qureshi
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia
| | - Michael Grace
- b Genesis Cancer Care, Macquarie University Hospital, New South Wales, Australia
| | | | - Jude V Amal Raj
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia
| | - Hong Duong
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia
| | - Saleh R Kashba
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia.,d Department of Neurosurgery, Misurata Cancer Institute, Misurata University, Misurata, Libya
| | - Marcus A Stoodley
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia
| |
Collapse
|
31
|
Nanoparticle targeting of Gram-positive and Gram-negative bacteria for magnetic-based separations of bacterial pathogens. APPLIED NANOSCIENCE 2017. [DOI: 10.1007/s13204-017-0548-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Murcar-Evans BI, Cabral AD, Toutah K, de Araujo ED, Lai A, Macdonald PM, Berger-Becvar A, Kraskouskaya D, Gunning PT. ProxyPhos sensors for the detection of negatively charged membranes. Analyst 2017; 142:4511-4521. [DOI: 10.1039/c7an00568g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ProxyPhos sensors selectively detect negatively charged phospholipid membranes.
Collapse
Affiliation(s)
- Bronte I. Murcar-Evans
- Department of Chemistry and Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Mississauga
- Canada L5L 1C6
| | - Aaron D. Cabral
- Department of Chemistry and Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Mississauga
- Canada L5L 1C6
| | - Krimo Toutah
- Department of Chemistry and Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Mississauga
- Canada L5L 1C6
| | - Elvin D. de Araujo
- Department of Chemistry and Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Mississauga
- Canada L5L 1C6
| | - Angel Lai
- Department of Chemistry and Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Mississauga
- Canada L5L 1C6
| | - Peter M. Macdonald
- Department of Chemistry and Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Mississauga
- Canada L5L 1C6
| | - Angelika Berger-Becvar
- Department of Chemistry and Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Mississauga
- Canada L5L 1C6
| | - Dziyana Kraskouskaya
- Department of Chemistry and Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Mississauga
- Canada L5L 1C6
| | - Patrick T. Gunning
- Department of Chemistry and Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Mississauga
- Canada L5L 1C6
| |
Collapse
|
33
|
Sophonnithiprasert T, Mahabusarakam W, Nakamura Y, Watanapokasin R. Goniothalamin induces mitochondria-mediated apoptosis associated with endoplasmic reticulum stress-induced activation of JNK in HeLa cells. Oncol Lett 2016; 13:119-128. [PMID: 28123531 PMCID: PMC5245090 DOI: 10.3892/ol.2016.5381] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/24/2016] [Indexed: 12/24/2022] Open
Abstract
Goniothalamin, a natural occurring styryl-lactone isolated from Goniothalamus macrophyllus (Blume) Hook. f. & Thomson var. macrophyllus, can trigger cancer cell death in various types of cancer cell. The present study focused on elucidation of the mitochondria-mediated apoptosis associated with endoplasmic reticulum (ER) stress-induced activation of c-Jun NH2-terminal kinase (JNK) by goniothalamin in HeLa cervical cancer cells. Cell viability was determined using an MTT assay, and DNA condensation and loss of mitochondrial membrane potential were determined using Hoechst 33342 and JC-1 staining, respectively. Flow cytometry was used for cell cycle and phosphatidyl-serine exposure analyses. Apoptotic-associated ER stress signaling pathways were determined using immunoblotting, reverse transcription-polymerase chain reaction (RT-PCR) and RT-quantitative PCR analyses. The results suggested that goniothalamin suppressed cell proliferation in a time- and dose-dependent manner. The induction of apoptosis was confirmed by increased DNA condensation, loss of mitochondrial membrane potential and cell surface phosphatidyl-serine presentation. The cell cycle analysis demonstrated that the goniothalamin-treated HeLa cells were in G2/M arrest. Determination of the caspase cascade and apoptotic proteins indicated the induction of apoptosis through the intrinsic pathway. In addition, the levels of phosphorylated JNK and the transcription factor, C/EBP homologous protein (CHOP), an ER stress-associated apoptotic molecule, were increased in the goniothalamin-treated cells. These data indicated that goniothalamin exerted a cytotoxic effect against HeLa cells via the induction of mitochondria-mediated apoptosis, associated with ER stress-induced activation of JNK.
Collapse
Affiliation(s)
- Thanet Sophonnithiprasert
- Department of Biochemistry, Faculty of Medicine, Srinkharinwirot University, Bangkok 10110, Thailand
| | - Wilawan Mahabusarakam
- Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Yukio Nakamura
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Ramida Watanapokasin
- Department of Biochemistry, Faculty of Medicine, Srinkharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
34
|
Identification of the minimum pharmacophore of lipid-phosphatidylserine (PS) binding peptide-peptoid hybrid PPS1D1. Bioorg Med Chem 2016; 24:4470-4477. [PMID: 27485601 DOI: 10.1016/j.bmc.2016.07.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/17/2016] [Accepted: 07/20/2016] [Indexed: 12/26/2022]
Abstract
We previously reported a unique peptide-peptoid hybrid, PPS1 that specifically recognizes lipid-phosphatidylserine (PS) and a few other negatively charged phospholipids, but not neutral phospholipids, on the cell membrane. The dimeric version of PPS1, i.e., PPS1D1 triggers strong cancer cell cytotoxicity and has been validated in lung cancer models both in vitro and in vivo. Given that PS and other negatively charged phospholipids are abundant in almost all tumor microenvironments, PPS1D1 is an attractive drug lead that can be developed into a globally applicable anti-cancer agent. Therefore, it is extremely important to identify the minimum pharmacophore of PPS1D1. In this study, we have synthesized alanine/sarcosine derivatives as well as truncated derivatives of PPS1D1. We performed ELISA-like competitive binding assay to evaluate the PS-recognition potential and standard MTS cell viability assay on HCC4017 lung cancer cells to validate the cell cytotoxicity effects of these derivatives. Our studies indicate that positively charged residues at the second and third positions, as well as four hydrophobic residues at the fifth through eighth positions, are imperative for the binding and activity of PPS1D1. Methionine at the first position was not essential, whereas the positively charged Nlys at the fourth position was minimally needed, as two derivatives that were synthesized replacing this residue were almost as active as PPS1D1.
Collapse
|
35
|
Khoshbakht S, Beiki D, Geramifar P, Kobarfard F, Sabzevari O, Amini M, Shahhosseini S. 18FDG-labeled LIKKPF: a PET tracer for apoptosis imaging. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-4793-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
36
|
Bakri NM, Ibrahim SF, Osman NA, Hasan N, Jaffar FHF, Rahman ZA, Osman K. Embryo apoptosis identification: Oocyte grade or cleavage stage? Saudi J Biol Sci 2015; 23:S50-5. [PMID: 26858565 PMCID: PMC4705312 DOI: 10.1016/j.sjbs.2015.10.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/29/2015] [Accepted: 10/29/2015] [Indexed: 11/25/2022] Open
Abstract
Apoptosis is a programed cell death that is vital for tissue homeostasis. However, embryo apoptosis had been known to be related to embryo fragmentation which should be avoided in in vitro fertilization (IVF). The purpose of this study was to evaluate the relationship of embryo apoptosis with the grade of immature oocytes and cleavage stage of in vitro produced (IVP) cattle embryos. This study consisted of 345 oocytes collected through ovary slicing. Immature oocytes were graded as A, B and C. This grading was based on cumulus cell thickness and compactness. All oocytes then underwent an in vitro maturation (IVM) procedure. An IVF was done 24 h after IVM culture. Prior to staining, stage of cleaved embryos was determined and classified as either 2, 4, 8 or >8-cell embryo stage. Apoptosis status of cleaved IVP embryos was determined by using annexin V-FITC staining technique at 48 and 72 h post insemination (hpi). Apoptosis status for each embryo was classified as either early or late. The result showed that there was no significant difference (p > 0.05) of apoptosis status among grade A, B and C embryos. All grades of oocytes showed embryo apoptosis where 1.5% late apoptosis for grade A, 4.5% and 10.4% of early and late apoptosis for grade B and grade C. Early apoptosis was not seen in grade A embryo. We also noted no significant difference (p > 0.05) of apoptosis status between 2, 4, 8 and >8-cell embryo stage. Early apoptosis was also not seen in >8-cell stage. Even though there were no differences in apoptosis expression between the three classes, the cleavage rate of grade A oocytes was significantly higher (p < 0.01) than grade B and grade C. In conclusion, the apoptosis expression in the embryo can occur regardless of the oocyte quality and the cleavage stage of the embryo produced.
Collapse
Key Words
- ART, assisted reproductive technologies
- Apoptosis
- BO, Brackett and Oliphant
- BSA, bovine serum albumin
- CC, cumulus cells
- CO2, carbon dioxide
- COC, cumulus–oocyte complex
- CR1aa, Charles Rosenkran’s 1 amino acid
- CaI, calcium ionophore
- Cleavage stage
- DNA, deoxyribonucleic acid
- DO, denuded oocyte
- EA, early apoptosis
- FBS, fetal bovine serum
- FITC, fluorescein isothiocyanate
- FSH, follicle stimulating hormone
- GSH, glutathione
- IVC, in vitro culture
- IVF, in vitro fertilization
- IVM, in vitro maturation
- IVP, in vitro produced
- LA, late apoptosis
- LH, luteinizing hormone
- Oocyte grading
- PBS, phosphate buffered saline
- PI, propidium iodide
- PS, phosphatidylserine
- TUNEL, terminal deoxynucleotidyl transfer-mediated dUTP nick end-labeling.
- hpi, hours post insemination
Collapse
Affiliation(s)
- Noraina Mohd Bakri
- Physiology Department, Preclinical Building, Faculty of Medicine, Canselor Tuanku Muhriz Hospital, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Wilayah Persekutuan, Kuala Lumpur, Malaysia
| | - Siti Fatimah Ibrahim
- Physiology Department, Preclinical Building, Faculty of Medicine, Canselor Tuanku Muhriz Hospital, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Wilayah Persekutuan, Kuala Lumpur, Malaysia
| | - Nurul Atikah Osman
- Physiology Department, Preclinical Building, Faculty of Medicine, Canselor Tuanku Muhriz Hospital, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Wilayah Persekutuan, Kuala Lumpur, Malaysia
| | - Nurhaslina Hasan
- Faculty of Dentistry, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Farah Hanan Fathihah Jaffar
- Physiology Department, Preclinical Building, Faculty of Medicine, Canselor Tuanku Muhriz Hospital, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Wilayah Persekutuan, Kuala Lumpur, Malaysia
| | - Zulaiha Abdul Rahman
- Faculty of Dentistry, Universiti Sains Islam Malaysia, Level 15, Tower B, Persiaran MPAJ, Jalan Pandan Utama, 55100 Kuala Lumpur, Malaysia
| | - Khairul Osman
- Department of Forensic Sciences, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Tentler JJ, Ionkina AA, Tan AC, Newton TP, Pitts TM, Glogowska MJ, Kabos P, Sartorius CA, Sullivan KD, Espinosa JM, Eckhardt SG, Diamond JR. p53 Family Members Regulate Phenotypic Response to Aurora Kinase A Inhibition in Triple-Negative Breast Cancer. Mol Cancer Ther 2015; 14:1117-29. [PMID: 25758253 DOI: 10.1158/1535-7163.mct-14-0538-t] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 02/24/2015] [Indexed: 12/17/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive disease with a poor prognosis. Advances in the treatment of TNBC have been hampered by the lack of novel effective targeted therapies. The primary goal of this study was to evaluate the efficacy of targeting Aurora kinase A (AurA), a key regulator of mitosis, in TNBC models. A secondary objective was to determine the role of the p53 family of transcriptional regulators, commonly mutated in TNBC, in determining the phenotypic response to the AurA inhibitor alisertib (MLN8237). Alisertib exhibited potent antiproliferative and proapoptotic activity in a subset of TNBC models. The induction of apoptosis in response to alisertib exposure was dependent on p53 and p73 activity. In the absence of functional p53 or p73, there was a shift in the phenotypic response following alisertib exposure from apoptosis to cellular senescence. In addition, senescence was observed in patient-derived tumor xenografts with acquired resistance to alisertib treatment. AurA inhibitors are a promising class of novel therapeutics in TNBC. The role of p53 and p73 in mediating the phenotypic response to antimitotic agents in TNBC may be harnessed to develop an effective biomarker selection strategy in this difficult to target disease.
Collapse
Affiliation(s)
- John J Tentler
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anastasia A Ionkina
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Aik Choon Tan
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Timothy P Newton
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Todd M Pitts
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Magdalena J Glogowska
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Peter Kabos
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Carol A Sartorius
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kelly D Sullivan
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado
| | - Joaquin M Espinosa
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado
| | - S Gail Eckhardt
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer R Diamond
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
38
|
Zeng W, Wang X, Xu P, Liu G, Eden HS, Chen X. Molecular imaging of apoptosis: from micro to macro. Theranostics 2015; 5:559-82. [PMID: 25825597 PMCID: PMC4377726 DOI: 10.7150/thno.11548] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/18/2015] [Indexed: 12/21/2022] Open
Abstract
Apoptosis, or programmed cell death, is involved in numerous human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer, and is often confused with other types of cell death. Therefore strategies that enable visualized detection of apoptosis would be of enormous benefit in the clinic for diagnosis, patient management, and development of new therapies. In recent years, improved understanding of the apoptotic machinery and progress in imaging modalities have provided opportunities for researchers to formulate microscopic and macroscopic imaging strategies based on well-defined molecular markers and/or physiological features. Correspondingly, a large collection of apoptosis imaging probes and approaches have been documented in preclinical and clinical studies. In this review, we mainly discuss microscopic imaging assays and macroscopic imaging probes, ranging in complexity from simple attachments of reporter moieties to proteins that interact with apoptotic biomarkers, to rationally designed probes that target biochemical changes. Their clinical translation will also be our focus.
Collapse
|
39
|
The HIV-1 nucleocapsid protein recruits negatively charged lipids to ensure its optimal binding to lipid membranes. J Virol 2014; 89:1756-67. [PMID: 25410868 DOI: 10.1128/jvi.02931-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED The HIV-1 Gag polyprotein precursor composed of the matrix (MA), capsid (CA), nucleocapsid (NC), and p6 domains orchestrates virus assembly via interactions between MA and the cell plasma membrane (PM) on one hand and NC and the genomic RNA on the other hand. As the Gag precursor can adopt a bent conformation, a potential interaction of the NC domain with the PM cannot be excluded during Gag assembly at the PM. To investigate the possible interaction of NC with lipid membranes in the absence of any interference from the other domains of Gag, we quantitatively characterized by fluorescence spectroscopy the binding of the mature NC protein to large unilamellar vesicles (LUVs) used as membrane models. We found that NC, either in its free form or bound to an oligonucleotide, was binding with high affinity (∼ 10(7) M(-1)) to negatively charged LUVs. The number of NC binding sites, but not the binding constant, was observed to decrease with the percentage of negatively charged lipids in the LUV composition, suggesting that NC and NC/oligonucleotide complexes were able to recruit negatively charged lipids to ensure optimal binding. However, in contrast to MA, NC did not exhibit a preference for phosphatidylinositol-(4,5)-bisphosphate. These results lead us to propose a modified Gag assembly model where the NC domain contributes to the initial binding of the bent form of Gag to the PM. IMPORTANCE The NC protein is a highly conserved nucleic acid binding protein that plays numerous key roles in HIV-1 replication. While accumulating evidence shows that NC either as a mature protein or as a domain of the Gag precursor also interacts with host proteins, only a few data are available on the possible interaction of NC with lipid membranes. Interestingly, during HIV-1 assembly, the Gag precursor is thought to adopt a bent conformation where the NC domain may interact with the plasma membrane. In this context, we quantitatively characterized the binding of NC, as a free protein or as a complex with nucleic acids, to lipid membranes and showed that the latter constitute a binding platform for NC. Taken together, our data suggest that the NC domain may play a role in the initial binding events of Gag to the plasma membrane during HIV-1 assembly.
Collapse
|
40
|
Kwong JMK, Hoang C, Dukes RT, Yee RW, Gray BD, Pak KY, Caprioli J. Bis(zinc-dipicolylamine), Zn-DPA, a new marker for apoptosis. Invest Ophthalmol Vis Sci 2014; 55:4913-21. [PMID: 25034598 DOI: 10.1167/iovs.13-13346] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To characterize the labeling of apoptotic cells with a molecular probe of bis(zinc(II)-dipicolylamine) (Zn-DPA) conjugated with a fluorescent reporter in a rat model of retinal ganglion cell (RGC) degeneration induced by N-methyl-D-aspartate (NMDA). METHODS Adult Wistar rats were given unilateral intravitreal injections of 3 μL 40 mM neutralized NMDA and euthanized at 1, 2, 4, 24, and 48 hours. One hour before euthanasia, 3 μL Zn-DPA conjugated with fluorescein (Zn-DPA 480) was intravitreally injected. Prelabeling of RGC with retrograde fluorogold (FG), TUNEL, and immunohistochemistry with III β-tubulin and vimentin were performed. RESULTS Fluorescence labeling of Zn-DPA 480 was observed in the retinas from 1 hour up to 24 hours after NMDA injection, whereas the labeling was reduced at 48 hours postinjection. At both 4 and 24 hours postinjection, most Zn-DPA 480-positive cells in the RGC layer were labeled by FG and III β-tubulin. The number of TUNEL-positive cells increased from 4 to 24 hours. At 24 hours, 95.7% of Zn-DPA 480-positive cells were TUNEL positive, whereas 95.1% of TUNEL-positive cells were Zn-DPA 480 positive. The numbers of Zn-DPA 480-positive cells at 1 and 2 hours after NMDA injection were significantly higher than TUNEL. CONCLUSIONS Our findings demonstrate that intravitreal injection of fluorescent Zn-DPA 480 labels retinal neurons undergoing apoptosis and that recognition of exposed phosphatidylserine appears earlier than detection of DNA fragmentation, indicating the potential of Zn-DPA as an imaging probe for tracking degenerating retinal neurons.
Collapse
Affiliation(s)
- Jacky M K Kwong
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| | - Celia Hoang
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| | - Reshil T Dukes
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| | - Richard W Yee
- Cizik Eye Clinic, Hermann University Eye Associates, Houston, Texas, United States
| | - Brian D Gray
- Molecular Targeting Technologies, Inc., West Chester, Pennsylvania, United States
| | - Koon Y Pak
- Molecular Targeting Technologies, Inc., West Chester, Pennsylvania, United States
| | - Joseph Caprioli
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| |
Collapse
|
41
|
Cooley CM, Hettie KS, Klockow JL, Garrison S, Glass TE. A selective fluorescent chemosensor for phosphoserine. Org Biomol Chem 2014; 11:7387-92. [PMID: 24065122 DOI: 10.1039/c3ob41677a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorescent chemosensor for the detection of phosphoserine is reported. The ditopic sensor features a phosphate-coordinating zinc(II)-dipicolylamine (Zn(2+)-DPA) unit tethered to an amine-binding coumarin aldehyde fluorophore. With phosphoserine, the sensor demonstrates a 30-fold fluorescence enhancement under buffered aqueous conditions.
Collapse
Affiliation(s)
- Chad M Cooley
- Department of Chemistry, University of Missouri, 601 South College Avenue, Columbia, MO 65211, USA.
| | | | | | | | | |
Collapse
|
42
|
Monitoring of membrane phospholipid scrambling in human erythrocytes and K562 cells with FM1-43 - a comparison with annexin V-FITC. Cell Mol Biol Lett 2014; 19:262-76. [PMID: 24764144 PMCID: PMC6276018 DOI: 10.2478/s11658-014-0195-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 04/16/2014] [Indexed: 12/29/2022] Open
Abstract
The styryl dye FM1-43 becomes highly fluorescent upon binding to cell membranes. The breakdown of membrane phospholipid asymmetry in ionophore-stimulated T-lymphocytes further increases this fluorescence [Zweifach, 2000]. In this study, the capacity of FM1-43 to monitor membrane phospholipid scrambling was explored using flow cytometry in human erythrocytes and human erythrocyte progenitor K562 cells. The Ca2+-dependent phosphatidylserine-specific probe annexin V-FITC was used for comparison. The presented data show that the loss of phospholipid asymmetry that could be induced in human erythrocytes by elevated intracellular Ca2+ or by structurally different membrane intercalated amphiphilic compounds increases the FM1-43 fluorescence two- to fivefold. The profile of FM1-43 fluorescence for various treatments resembles that of phosphatidylserine exposure reported by annexin V-FITC. FM1-43 detected the onset of scrambling more efficiently than annexin V-FITC. The amphiphile-induced scrambling was shown to be a Ca2+-independent process. Monitoring of scrambling in K562 cells caused by NEM-induced Ca2+-release from intracellular stores and by Ca2+ and ionophore A23187 treatment showed that the increase in FM1-43 fluorescence correlated well with the number of annexin V-FITC-detected phosphatidylserine-positive cells. The results presented here show the usefulness of FM1-43 as a Ca2+-independent marker of dissipation in asymmetric membrane phospholipid distribution induced by various stimuli in both nucleated and non-nucleated cells.
Collapse
|
43
|
Hensley H, Devarajan K, Johnson JR, Piwnica-Worms D, Godwin AK, von Mehren M, Rink L. Evaluating new therapies in gastrointestinal stromal tumor using in vivo molecular optical imaging. Cancer Biol Ther 2014; 15:911-8. [PMID: 24755645 DOI: 10.4161/cbt.28880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in the US. The majority (~85%) of GISTs possess gain-of-function mutations in KIT or PDGFRA, causing constitutive activation of the kinase receptor. GIST management has been transformed by the identification of tumor driver mutations leading to unprecedented disease control of advanced GIST with the introduction of imatinib mesylate (IM). Despite IM's efficacy, most patients experience primary and/or secondary resistance within 2 y of treatment. Additional therapies and methods to optimize screening of novel approaches in preclinical studies are warranted. Clinically, treatment efficacy is typically assessed using Response Evaluation Criteria In Solid Tumors (RECIST) guidelines or Choi criteria. Both require a period of time on therapy before changes indicative of response can be observed. In addition, neither informs directly about cell death. We evaluated the use of molecular imaging technology in an animal model using near-infrared (NIR) imaging probes together with three-dimensional fluorescence molecular tomography (FMT) for assessing therapeutic response and ultimately optimizing our understanding of the biologic effects of these agents. We determined the potential of NIR probes (PSVue(TM) 794 and cell-penetrating KcapQ647) for detecting distinct markers of apoptosis and compare this to tumor size measured by MRI in response to IM treatment in GIST-T1 xenografts. Our studies revealed statistically significant increases in apoptosis due to IM treatment using both probes as early as 24 h post IM treatment which was confirmed by IHC. Molecular imaging will allow for faster and more effective screening of novel therapies in preclinical GIST models.
Collapse
Affiliation(s)
- Harvey Hensley
- Biological Imaging Facility; Fox Chase Cancer Center; Philadelphia, PA USA
| | - Karthik Devarajan
- Department of Statistics; Fox Chase Cancer Center; Philadelphia, PA USA
| | - James R Johnson
- Mallinckrodt Institute of Radiology; Washington University School of Medicine; St. Louis, MO USA
| | - David Piwnica-Worms
- Mallinckrodt Institute of Radiology; Washington University School of Medicine; St. Louis, MO USA; Department of Cancer Systems Imaging; University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine; University of Kansas Medical Center; Kansas City, KS USA
| | - Margaret von Mehren
- Department of Medical Oncology; Fox Chase Cancer Center; Philadelphia, PA USA
| | - Lori Rink
- Department of Medical Oncology; Fox Chase Cancer Center; Philadelphia, PA USA
| |
Collapse
|
44
|
Wang H, Tang X, Tang G, Huang T, Liang X, Hu K, Deng H, Yi C, Shi X, Wu K. Noninvasive positron emission tomography imaging of cell death using a novel small-molecule probe, (18)F labeled bis(zinc(II)-dipicolylamine) complex. Apoptosis 2014; 18:1017-27. [PMID: 23613106 DOI: 10.1007/s10495-013-0852-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The synthetic bis(zinc(II)-dipicolylamine) (DPAZn2) coordination complexes are known to have a high specific and selective affinity to target the exposed phosphatidylserine (PS) on the surface of dead and dying cells. An (18)F-labeled DPAZn2 complex (4-(18)F-Fluoro-benzoyl-bis(zinc(II)-dipicolylamine), (18)F-FB-DPAZn2) as positron emission tomography (PET) tracer was developed and evaluated for in vivo imaging of tumor treated with a chemical agent. The in vitro cell stain studies revealed that fluorescent DPAZn2 complexes (Dansyl-DPAZn2) stained the same cells (apoptotic and necrotic cells) as fluorescein isothiocyanate (FITC) labeled Annexin V (FITC-Annexin V). The radiosynthesis of (18)F-FB-DPAZn2 was achieved through the amidation the precursor bis(2,2'-dipicolylamine) derivative (DPA2) with the prosthetic group N-succinimidyl-4-[(18)F]-fluorobenzoate ((18)F-SFB) and chelation with zinc nitrate. In the biodistribution study, the fast clearance of (18)F-FB-DPAZn2 from blood and kidney was observed and high uptake in liver and intestine within 90 min postinjection was also found. For the PET imaging, significantly higher tumor uptake of (18)F-FB-DPAZn2 was observed in the adriamycin (ADM)-treated Hepa1-6 hepatocellular carcinoma-bearing mice than that in the untreated tumor-model mice, while a slightly decreased tumor uptake of (18)F-FDG was found in the ADM-treated tumor-bearing mice. The results indicate that (18)F-FB-DPAZn2 has the similar capability of apoptosis detection as FITC-Annexin V and seems to be a potential PET tracer for noninvasive evaluation and monitoring of anti-tumor chemotherapy. The high uptake of (18)F-FB-DPAZn2 in the abdomen needs to optimize the structure for improving its pharmacokinetics characteristics in the future work.
Collapse
Affiliation(s)
- Hongliang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fabisiak JP, Borisenko GG, Kagan VE. Quantitative method of measuring phosphatidylserine externalization during apoptosis using electron paramagnetic resonance (EPR) spectroscopy and annexin-conjugated iron. Methods Mol Biol 2014; 1105:613-621. [PMID: 24623256 DOI: 10.1007/978-1-62703-739-6_42] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present here the application of a novel assay that measures the absolute amount of PS externalized on the surface of cells. While based on the same annexin binding principle as the fluorescent flow cytometry assay, we use paramagnetic iron as the ultimate reporter molecule, establishing a linear relationship between signal amplitude and amount of PS on the cell surface, allowing a quantitative assay of PS externalization over a wide dynamic range. The application of this technique, alone and in concert with the PS oxidation method presented in the previous chapter, will greatly aid in studying the mechanistic connection between lipid peroxidation and translocation events during apoptosis.
Collapse
Affiliation(s)
- James P Fabisiak
- Department of Environmental and Occupational Health, University of Pittsburgh, 100 Technology Drive, Bridgeside Point, Pittsburgh, PA, 15219, USA,
| | | | | |
Collapse
|
46
|
Illuminating the lipidome to advance biomedical research: peptide-based probes of membrane lipids. Future Med Chem 2013; 5:947-59. [PMID: 23682570 DOI: 10.4155/fmc.13.66] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Systematic investigation of the lipidome will reveal new opportunities for disease diagnosis and intervention. However, lipidomic research has been hampered by the lack of molecular tools to track specific lipids of interest. Accumulating reports indicate lipid recognition can be achieved with properly constructed short peptides in addition to large proteins. This review summarizes the key developments of this area within the past decade. Select lantibiotic peptides present the best examples of low-molecular-weight probes of membrane lipids, displaying selectivity comparable to lipid-binding proteins. Designed peptides, through biomimetic approaches and combinational screening, have begun to demonstrate their potential for lipid tracking in cultured cells and even in living organisms. Biophysical characterization of these lipid-targeting peptides has revealed certain features critical for selective membrane binding, including preorganized scaffolds and the balance of polar and nonpolar interactions. The knowledge summarized herein should facilitate the development of molecular tools to target a variety of membrane lipids.
Collapse
|
47
|
Liposomal temocene (m-THPPo) photodynamic treatment induces cell death by mitochondria-independent apoptosis. Biochim Biophys Acta Gen Subj 2013; 1830:4611-20. [DOI: 10.1016/j.bbagen.2013.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 11/24/2022]
|
48
|
Gong J, Archer R, Brown M, Fisher S, Chang C, Peacock M, Hughes C, Freimark B. Measuring Response to Therapy by Near-Infrared Imaging of Tumors Using a Phosphatidylserine-Targeting Antibody Fragment. Mol Imaging 2013. [DOI: 10.2310/7290.2012.00039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Jian Gong
- From the Departments of Preclinical Development, Oncology, and Process Sciences, Peregrine Pharmaceuticals, Inc., Tustin, CA, and the Department of Molecular Biology and Biochemistry, University of California, Irvine, CA
| | - Richard Archer
- From the Departments of Preclinical Development, Oncology, and Process Sciences, Peregrine Pharmaceuticals, Inc., Tustin, CA, and the Department of Molecular Biology and Biochemistry, University of California, Irvine, CA
| | - Michael Brown
- From the Departments of Preclinical Development, Oncology, and Process Sciences, Peregrine Pharmaceuticals, Inc., Tustin, CA, and the Department of Molecular Biology and Biochemistry, University of California, Irvine, CA
| | - Seth Fisher
- From the Departments of Preclinical Development, Oncology, and Process Sciences, Peregrine Pharmaceuticals, Inc., Tustin, CA, and the Department of Molecular Biology and Biochemistry, University of California, Irvine, CA
| | - Connie Chang
- From the Departments of Preclinical Development, Oncology, and Process Sciences, Peregrine Pharmaceuticals, Inc., Tustin, CA, and the Department of Molecular Biology and Biochemistry, University of California, Irvine, CA
| | - Matthew Peacock
- From the Departments of Preclinical Development, Oncology, and Process Sciences, Peregrine Pharmaceuticals, Inc., Tustin, CA, and the Department of Molecular Biology and Biochemistry, University of California, Irvine, CA
| | - Christopher Hughes
- From the Departments of Preclinical Development, Oncology, and Process Sciences, Peregrine Pharmaceuticals, Inc., Tustin, CA, and the Department of Molecular Biology and Biochemistry, University of California, Irvine, CA
| | - Bruce Freimark
- From the Departments of Preclinical Development, Oncology, and Process Sciences, Peregrine Pharmaceuticals, Inc., Tustin, CA, and the Department of Molecular Biology and Biochemistry, University of California, Irvine, CA
| |
Collapse
|
49
|
Annexin-phospholipid interactions. Functional implications. Int J Mol Sci 2013; 14:2652-83. [PMID: 23358253 PMCID: PMC3588008 DOI: 10.3390/ijms14022652] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 01/12/2013] [Accepted: 01/15/2013] [Indexed: 02/03/2023] Open
Abstract
Annexins constitute an evolutionary conserved multigene protein superfamily characterized by their ability to interact with biological membranes in a calcium dependent manner. They are expressed by all living organisms with the exception of certain unicellular organisms. The vertebrate annexin core is composed of four (eight in annexin A6) homologous domains of around 70 amino acids, with the overall shape of a slightly bent ring surrounding a central hydrophilic pore. Calcium- and phospholipid-binding sites are located on the convex side while the N-terminus links domains I and IV on the concave side. The N-terminus region shows great variability in length and amino acid sequence and it greatly influences protein stability and specific functions of annexins. These proteins interact mainly with acidic phospholipids, such as phosphatidylserine, but differences are found regarding their affinity for lipids and calcium requirements for the interaction. Annexins are involved in a wide range of intra- and extracellular biological processes in vitro, most of them directly related with the conserved ability to bind to phospholipid bilayers: membrane trafficking, membrane-cytoskeleton anchorage, ion channel activity and regulation, as well as antiinflammatory and anticoagulant activities. However, the in vivo physiological functions of annexins are just beginning to be established.
Collapse
|
50
|
Xie BW, Park D, Van Beek ER, Blankevoort V, Orabi Y, Que I, Kaijzel EL, Chan A, Hogg PJ, Löwik CWGM. Optical imaging of cell death in traumatic brain injury using a heat shock protein-90 alkylator. Cell Death Dis 2013; 4:e473. [PMID: 23348587 PMCID: PMC3563995 DOI: 10.1038/cddis.2012.207] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Traumatic brain injury is a major public health concern and is characterised by both apoptotic and necrotic cell death in the lesion. Anatomical imaging is usually used to assess traumatic brain injuries and there is a need for imaging modalities that provide complementary cellular information. We sought to non-invasively image cell death in a mouse model of traumatic brain injury using a near-infrared fluorescent conjugate of a synthetic heat shock protein-90 alkylator, 4-(N-(S-glutathionylacetyl) amino) phenylarsonous acid (GSAO). GSAO labels both apoptotic and necrotic cells coincident with loss of plasma membrane integrity. The optical GSAO specifically labelled apoptotic and necrotic cells in culture and did not accumulate in healthy organs or tissues in the living mouse body. The conjugate is a very effective imager of cell death in brain lesions. The optical GSAO was detected by fluorescence intensity and GSAO bound to dying/dead cells was detected from prolongation of the fluorescence lifetime. An optimal signal-to-background ratio was achieved as early as 3 h after injection of the probe and the signal intensity positively correlated with both lesion size and probe concentration. This optical GSAO offers a convenient and robust means to non-invasively image apoptotic and necrotic cell death in brain and other lesions.
Collapse
Affiliation(s)
- B-W Xie
- Experimental Molecular Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|