1
|
Hammouda MM, Gaffer HE, Elattar KM. Insights into the medicinal chemistry of heterocycles integrated with a pyrazolo[1,5- a]pyrimidine scaffold. RSC Med Chem 2022; 13:1150-1196. [PMID: 36325400 PMCID: PMC9580358 DOI: 10.1039/d2md00192f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/25/2022] [Indexed: 09/10/2023] Open
Abstract
Pyrazolo[1,5-a]pyrimidines are the dominant motif of many drugs; for instance, zaleplon and indiplon are sedative agents and ocinaplon was identified as an anxiolytic agent. The importance of this class of compounds lies in its varied and significant biological activities, and accordingly, considerable methods have been devised to prepare these compounds. Hence, other derivatives of this class of compounds were prepared by substitution reactions with different nucleophiles exploiting the activity of groups linked to the ring carbon and nitrogen atoms. The methods used vary through the condensation reactions of the aminopyrazoles with 1,2-allenic, enaminonitriles, enaminones, 1,3-diketones, unsaturated nitriles, or unsaturated ketones. Alternatively, these compounds are prepared through the reactions of acyclic reagents, as these methods were recently developed efficiently with high yields. The current review highlighted the recent progress of the therapeutic potential of pyrazolo[1,5-a]pyrimidines as antimicrobial, anticancer, antianxiety, anti-proliferative, analgesic, and antioxidant agents, carboxylesterase, translocator protein and PDE10A inhibitors, and selective kinase inhibitors.
Collapse
Affiliation(s)
- Mohamed M Hammouda
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University El-Gomhoria Street Mansoura 35516 Egypt
| | - Hatem E Gaffer
- Dyeing and Printing Department, Textile Research Division, National Research Center Dokki Cairo 12622 Egypt
| | - Khaled M Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University El-Gomhoria Street Mansoura 35516 Egypt +201010655354
| |
Collapse
|
2
|
Elattar KM, El-Mekabaty A. Bicyclic 5-6 Systems: Comprehensive Synthetic Strategies for the Annulations of Pyrazolo[ 1,5-a]pyrimidines. Curr Org Synth 2021; 18:547-586. [PMID: 33966620 DOI: 10.2174/1570179418666210509015108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 11/22/2022]
Abstract
Pyrazolopyrimidines are a privileged class of 5-6 bicyclic systems with three or four nitrogen atoms, including four possible isomeric structures. The significance of this class of compounds is that they can be applied in medical and pharmaceutical fields due to their unlimited biological aptitude, hence it is the basic skeleton of several synthetic drugs. The current review aimed to highlight all the synthetic routes that have been applied to construct the pyrazolo[1,5-a]pyrimidine ring systems up to date. The sections in this study included the synthesis of pyrazolo[1,5- a]pyrimidines by condensation reactions of 5-aminopyrazoles with each of β-diketones, 1,5-diketones, β- ketoaldehydes, α-cyanoaldehydes, β-enaminones, enamines, enaminonitriles, ethers, with unsaturated ketones, unsaturated thiones, unsaturated esters, unsaturated dienones "1,2-allenic", unsaturated aldehydes, unsaturated imines, and unsaturated nitriles. The routes adopted to synthesize this class of heterocyclic compounds were extended for ring construction from acyclic reagents and multicomponent reactions under catalytic or catalyst-free conditions.
Collapse
Affiliation(s)
- Khaled M Elattar
- Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt
| | - Ahmed El-Mekabaty
- Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt
| |
Collapse
|
3
|
Giordani A, Menziani MC, Moresco RM, Matarrese M, Paolino M, Saletti M, Giuliani G, Anzini M, Cappelli A. Exploring Translocator Protein (TSPO) Medicinal Chemistry: An Approach for Targeting Radionuclides and Boron Atoms to Mitochondria. J Med Chem 2021; 64:9649-9676. [PMID: 34254805 DOI: 10.1021/acs.jmedchem.1c00379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Translocator protein 18 kDa [TSPO or peripheral-type benzodiazepine receptor (PBR)] was identified in the search of binding sites for benzodiazepine anxiolytic drugs in peripheral regions. In these areas, binding sites for TSPO ligands were recognized in steroid-producing tissues. TSPO plays an important role in many cellular functions, and its coding sequence is highly conserved across species. TSPO is located predominantly on the membrane of mitochondria and is overexpressed in several solid cancers. TSPO basal expression in the CNS is low, but it becomes high in neurodegenerative conditions. Thus, TSPO constitutes not only as an outstanding drug target but also as a valuable marker for the diagnosis of a number of diseases. The aim of the present article is to show the lesson we have learned from our activity in TSPO medicinal chemistry and in approaching the targeted delivery to mitochondria by means of TSPO ligands.
Collapse
Affiliation(s)
- Antonio Giordani
- Rottapharm Biotech S.p.A., Via Valosa di Sopra 9, 20900 Monza, Italy
| | - Maria Cristina Menziani
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, Via Campi 103, 41121 Modena, Italy
| | - Rosa Maria Moresco
- Department of Medicine and Surgery, University of Milan-Bicocca, Nuclear Medicine Department, San Raffaele Scientific Institute, IBFM-CNR, Via Olgettina 60, 20132 Milano, Italy
| | - Mario Matarrese
- Department of Medicine and Surgery, University of Milan-Bicocca, Nuclear Medicine Department, San Raffaele Scientific Institute, IBFM-CNR, Via Olgettina 60, 20132 Milano, Italy
| | - Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Mario Saletti
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Germano Giuliani
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Maurizio Anzini
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
4
|
Augmentation of steroidal β-formylenamide with pyrazolo and benzimidazo moieties: A tandem approach to highly fluorescent steroidal heterocycles. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Khoramjouy M, Rezaee E, Khoshnevis A, Nazari M, Nematpour M, Shahhosseini S, Tabatabai SA, Faizi M. Synthesis of 4,6-diphenylpyrimidin-2-ol derivatives as new benzodiazepine receptor ligands. Bioorg Chem 2021; 109:104737. [PMID: 33631464 DOI: 10.1016/j.bioorg.2021.104737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Benzodiazepines (BZDs) have been widely used in neurological disorders such as insomnia, anxiety, and epilepsy. The use of classical BZDs, e.g., diazepam, has been limited due to adverse effects such as interaction with alcohol, ataxia, amnesia, psychological and physical dependence, and tolerance. In the quest for new benzodiazepine agonists with more selectivity and low adverse effects, novel derivatives of 4,6-diphenylpyrimidin-2-ol were designed, synthesized, and evaluated. In this series, compound 2, 4-(2-(benzyloxy)phenyl)-6-(4-fluorophenyl)pyrimidin-2-ol, was the most potent analogue in radioligand binding assay with an IC50 value of 19 nM compared to zolpidem (IC50 = 48 nM), a nonbenzodiazepine central BZD receptor (CBR) agonist. Some compounds with a variety of affinities in radioligand receptor binding assay were selected for in vivo evaluations. Compound 3 (IC50 = 25 nM), which possessed chlorine instead of fluorine in position 4 of the phenyl ring, exhibited an excellent ED50 value in most in vivo tests. Proper sedative-hypnotic effects, potent anticonvulsant activity, appropriate antianxiety effect, and no memory impairment probably served compound 3, a desirable candidate as a benzodiazepine agonist. The pharmacological effects of compound 3 were antagonized by flumazenil, a selective BZD receptor antagonist, confirming the BZD receptors' involvement in the biological effects of the novel ligand.
Collapse
Affiliation(s)
- Mona Khoramjouy
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Rezaee
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshan Khoshnevis
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Nazari
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Manijeh Nematpour
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soraya Shahhosseini
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayyed Abbas Tabatabai
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
An update into the medicinal chemistry of translocator protein (TSPO) ligands. Eur J Med Chem 2020; 209:112924. [PMID: 33081988 DOI: 10.1016/j.ejmech.2020.112924] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 01/16/2023]
Abstract
The Translocator Protein 18 kDa (TSPO) has been discovered in 1977 as an alternative binding site for the benzodiazepine diazepam. It is an evolutionary well-conserved and tryptophan-rich 169-amino acids protein with five alpha helical transmembrane domains stretching the outer mitochondrial membrane, with the carboxyl-terminus in the cytosol and a short amino-terminus in the intermembrane space of mitochondrion. At this level, together with the voltage-dependent anion channel (VDAC) and the adenine nucleotide translocase (ANT), it forms the mitochondrial permeability transition pore (MPTP). TSPO expression is ubiquitary, with higher levels in steroid producing tissues; in the central nervous system, it is mainly expressed in glial cells and in neurons. TSPO is implicated in a variety of fundamental cellular processes including steroidogenesis, heme biosynthesis, mitochondrial respiration, mitochondrial membrane potential, cell proliferation and differentiation, cell life/death balance, oxidative stress. Altered TSPO expression has been found in some pathological conditions. In particular, high TSPO expression levels have been documented in cancer, neuroinflammation, and brain injury. Conversely, low TSPO expression levels have been evidenced in anxiety disorders. Therefore, TSPO is not only an interesting drug target for therapeutic purpose (anticonvulsant, anxiolytic, etc.), but also a valid diagnostic marker of related-diseases detectable by fluorescent or radiolabeled ligands. The aim of this report is to present an update of previous reviews dealing with the medicinal chemistry of TSPO and to highlight the most outstanding advances in the development of TSPO ligands as potential therapeutic or diagnostic tools, especially referring to the last five years.
Collapse
|
7
|
Hieu Tran V, Park H, Park J, Kwon YD, Kang S, Ho Jung J, Chang KA, Chul Lee B, Lee SY, Kang S, Kim HK. Synthesis and evaluation of novel potent TSPO PET ligands with 2-phenylpyrazolo[1,5-a]pyrimidin-3-yl acetamide. Bioorg Med Chem 2019; 27:4069-4080. [PMID: 31353076 DOI: 10.1016/j.bmc.2019.07.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/09/2019] [Accepted: 07/19/2019] [Indexed: 12/23/2022]
Abstract
Translocator protein (TSPO) expression is closely related with neuroinflammation and neuronal damage which might cause several central nervous system diseases. Herein, a series of TSPO ligands (11a-c and 13a-d) with a 2-phenylpyrazolo[1,5-a]pyrimidin-3-yl acetamide structure were prepared and evaluated via an in vitro binding assay. Most of the novel ligands exhibited a nano-molar affinity for TSPO, which was better than that of DPA-714. Particularly, 11a exhibited a subnano-molar TSPO binding affinity with suitable lipophilicity for in vivo brain studies. After radiolabeling with fluorine-18, [18F]11a was used for a dynamic positron emission tomography (PET) study in a rat LPS-induced neuroinflammation model; the inflammatory lesion was clearly visualized with a superior target-to-background ratio compared to [18F]DPA-714. An immunohistochemical examination of the dissected brains confirmed that the uptake location of [18F]11a in the PET study was consistent with a positively activated microglia region. This study proved that [18F]11a could be employed as a potential PET tracer for detecting neuroinflammation and could give possibility for diagnosis of other diseases, such as cancers related with TSPO expression.
Collapse
Affiliation(s)
- Van Hieu Tran
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
| | - Hyunjun Park
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea; Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| | - Jaekyung Park
- Gachon Advanced Institute for Health Sciences and Technology, Graduate School, Gachon University, Incheon 21936, Republic of Korea
| | - Young-Do Kwon
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Shinwoo Kang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Jae Ho Jung
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon 16229, Republic of Korea
| | - Keun-A Chang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea; Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon 16229, Republic of Korea
| | - Sang-Yoon Lee
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea; Gachon Advanced Institute for Health Sciences and Technology, Graduate School, Gachon University, Incheon 21936, Republic of Korea; Department of Neuroscience, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Soosung Kang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Republic of Korea.
| |
Collapse
|
8
|
Kwon YD, Kang S, Park H, Cheong IK, Chang KA, Lee SY, Jung JH, Lee BC, Lim ST, Kim HK. Novel potential pyrazolopyrimidine based translocator protein ligands for the evaluation of neuroinflammation with PET. Eur J Med Chem 2018; 159:292-306. [PMID: 30296688 DOI: 10.1016/j.ejmech.2018.09.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/06/2018] [Accepted: 09/28/2018] [Indexed: 01/06/2023]
Abstract
Translocator protein (TSPO) is an interesting biological target because TSPO overexpression is associated with microglial activation caused by neuronal damage or neuroinflammation, and these activated microglia are involved in several central nervous system diseases. Herein, novel fluorinated ligands (14a-c and 16a-c) based on a 2-phenylpyrazolo[1,5-a]pyrimidin-3-yl acetamide scaffold were synthesized, and in vitro characterization of each of the novel ligands was performed to elucidate structure activity relationships. All of the newly synthesized ligands displayed nano-molar affinity for TSPO. Particularly, an in vitro affinity study suggests that 2-(5,7-diethyl-2-(4-(3-fluoro-2-methylpropoxy)phenyl)pyrazolo[1,5-a]pyrimidin-3-yl)-N,N-diethylacetamide (14a), which exhibited high nano-molar affinity for TSPO and proper lipophilicity, was suitable for in vivo brain studies. Thus, radiosynthesis from tosylate precursor 13a using fluorine-18 was performed, and [18F]14a was obtained in a 31% radiochemical yield (decay-corrected). Dynamic positron emission tomography (PET) imaging studies were performed in a lipopolysaccharide (LPS)-induced neuroinflammation rat model using [18F]14a to identify the location of inflammation in the brain with a high target-to-background signal ratio. In addition, we validated that the locations of inflammatory lesions found by PET imaging were consistent with the locations observed by histological examination of dissected brains using antibodies. These results suggest that [18F]14a is a novel promising PET imaging agent for diagnosing neuroinflammation, and it may also prove to be applicable for diagnosing other diseases, including cancers associated with altered TSPO expression, using PET techniques.
Collapse
Affiliation(s)
- Young-Do Kwon
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea
| | - Shinwoo Kang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, 21936, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon, 21565, Republic of Korea
| | - Hyunjun Park
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, 21936, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon, 21565, Republic of Korea; Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, 21936, Republic of Korea
| | - Il-Koo Cheong
- Neuroscience Research Institute, Gachon University, Incheon, 21565, Republic of Korea; Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, 21936, Republic of Korea
| | - Keun-A Chang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, 21936, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon, 21565, Republic of Korea; Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, 21936, Republic of Korea.
| | - Sang-Yoon Lee
- Neuroscience Research Institute, Gachon University, Incheon, 21565, Republic of Korea; Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, 21936, Republic of Korea; Department of Neuroscience, College of Medicine, Gachon University, Incheon, 21936, Republic of Korea
| | - Jae Ho Jung
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea; Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon, 16229, Republic of Korea
| | - Seok Tae Lim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, 54907, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, 54907, Republic of Korea.
| |
Collapse
|
9
|
Sasikumar A, Mohanasrinivasan V, Ajeesh Kumar AK, Krishnaswamy D. Design, Synthesis, and Evaluation of the Anticancer Properties of a Novel Series of α-(Benzoylamino)-β-substituted Acrylic Amide Derivatives of Pyrazolo[1,5-a
]pyrimidine. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.3029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- A. Sasikumar
- Anthem Biosciences Pvt. Ltd.; # 49, Bommasandra Industrial Area, Bommasandra Bangalore 560 099 Karnataka India
- Department of Biomedical Sciences, School of Bio Sciences and Technology; VIT University; Tamilnadu 632014 India
| | - V. Mohanasrinivasan
- Department of Biomedical Sciences, School of Bio Sciences and Technology; VIT University; Tamilnadu 632014 India
| | - A. K. Ajeesh Kumar
- Anthem Biosciences Pvt. Ltd.; # 49, Bommasandra Industrial Area, Bommasandra Bangalore 560 099 Karnataka India
| | - D. Krishnaswamy
- Anthem Biosciences Pvt. Ltd.; # 49, Bommasandra Industrial Area, Bommasandra Bangalore 560 099 Karnataka India
| |
Collapse
|
10
|
Aggarwal R, Singh G, Kumar S, McCabe T, Rozas I. Preparation of 4,7-Dihydro-1H-pyrazolo[3,4-b]pyridine-5-nitriles in a Multicomponent Domino Process. ChemistrySelect 2016. [DOI: 10.1002/slct.201601201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry; Kurukshetra University; Kurukshetra- 136119, Haryana India
| | - Gulshan Singh
- Department of Chemistry; Kurukshetra University; Kurukshetra- 136119, Haryana India
| | - Suresh Kumar
- Department of Chemistry; Kurukshetra University; Kurukshetra- 136119, Haryana India
| | - Thomas McCabe
- School of Chemistry, Trinity Biomedical Sciences Institute; Trinity College Dublin; 154-160 Pearse St. Dublin 2 Ireland
| | - Isabel Rozas
- School of Chemistry, Trinity Biomedical Sciences Institute; Trinity College Dublin; 154-160 Pearse St. Dublin 2 Ireland
| |
Collapse
|
11
|
Cherukupalli S, Karpoormath R, Chandrasekaran B, Hampannavar GA, Thapliyal N, Palakollu VN. An insight on synthetic and medicinal aspects of pyrazolo[1,5-a]pyrimidine scaffold. Eur J Med Chem 2016; 126:298-352. [PMID: 27894044 DOI: 10.1016/j.ejmech.2016.11.019] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/19/2016] [Accepted: 11/08/2016] [Indexed: 11/26/2022]
Abstract
Pyrazolo[1,5-a]pyrimidine scaffold is one of the privileged hetrocycles in drug discovery. Its application as a buliding block for developing drug-like candidates has displayed broad range of medicinal properties such as anticancer, CNS agents, anti-infectious, anti-inflammatory, CRF1 antagonists and radio diagnostics. The structure-activity relationship (SAR) studies have acquired greater attention amid medicinal chemists, and many of the lead compounds were derived for various disease targets. However, there is plenty of room for the medicinal chemists to further exploit this privileged scaffold in developing potential drug candidates. The present review briefly outlines relevant synthetic strategies employed for pyrazolo[1,5-a]pyrimidine derivatives. It also extensively reveals significant biological properties along with SAR studies. To the best of our understanding current review is the first attempt made towards the compilation of significant advances made on pyrazolo[1,5-a]pyrimidines reported since 1980s.
Collapse
Affiliation(s)
- Srinivasulu Cherukupalli
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Balakumar Chandrasekaran
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Girish A Hampannavar
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Neeta Thapliyal
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Venkata Narayana Palakollu
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
12
|
Selvaraj V, Tu LN. Current status and future perspectives: TSPO in steroid neuroendocrinology. J Endocrinol 2016; 231:R1-R30. [PMID: 27422254 DOI: 10.1530/joe-16-0241] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022]
Abstract
The mitochondrial translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), has received significant attention both as a diagnostic biomarker and as a therapeutic target for different neuronal disease pathologies. Recently, its functional basis believed to be mediating mitochondrial cholesterol import for steroid hormone production has been refuted by studies examining both in vivo and in vitro genetic Tspo-deficient models. As a result, there now exists a fundamental gap in the understanding of TSPO function in the nervous system, and its putative pharmacology in neurosteroid production. In this review, we discuss several recent findings in steroidogenic cells that are in direct contradiction to previous studies, and necessitate a re-examination of the purported role for TSPO in de novo neurosteroid biosynthesis. We critically examine the pharmacological effects of different TSPO-binding drugs with particular focus on studies that measure neurosteroid levels. We highlight the basis of key misconceptions regarding TSPO that continue to pervade the literature, and the need for interpretation with caution to avoid negative impacts. We also summarize the emerging perspectives that point to new directions that need to be investigated for understanding the molecular function of TSPO, only after which the true potential of this therapeutic target in medicine may be realized.
Collapse
Affiliation(s)
- Vimal Selvaraj
- Department of Animal ScienceCornell University, Ithaca, New York, USA
| | - Lan N Tu
- Department of Animal ScienceCornell University, Ithaca, New York, USA
| |
Collapse
|
13
|
Li J, Schulte ML, Nickels ML, Manning HC. New structure-activity relationships of N-acetamide substituted pyrazolopyrimidines as pharmacological ligands of TSPO. Bioorg Med Chem Lett 2016; 26:3472-7. [PMID: 27353534 DOI: 10.1016/j.bmcl.2016.06.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 11/26/2022]
Abstract
Translocator protein (TSPO) represents an attractive target for molecular imaging and therapy due to its prevalence and critical roles played in oncology and other pathologies. Based upon our previously optimized pyrazolopyrimidine scaffold, we elucidated new structure activity relationships related to N,N-disubstitutions of the terminal acetamide on pyrazolopyrimidines and further explored the impacts of these substituents on lipophilicity and plasma protein binding. Several novel chemical probes reported here exhibited significantly increased binding affinity, suitable lipophilicity and protein binding compared with contemporary TSPO ligands. We illustrate that N,N-acetamide disubstitution affords opportunities to introduce diverse chemical moieties distal to the central pyrazolopyrimidine core, without sacrificing TSPO affinity. We anticipate that further exploration of N-acetamide substitutions may yield additional TSPO ligands capable of furthering the field of precision medicine.
Collapse
Affiliation(s)
- Jun Li
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN 37232, United States; Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Michael L Schulte
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Michael L Nickels
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - H Charles Manning
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN 37232, United States; Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, United States; Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| |
Collapse
|
14
|
Santoro A, Mattace Raso G, Taliani S, Da Pozzo E, Simorini F, Costa B, Martini C, Laneri S, Sacchi A, Cosimelli B, Calignano A, Da Settimo F, Meli R. TSPO-ligands prevent oxidative damage and inflammatory response in C6 glioma cells by neurosteroid synthesis. Eur J Pharm Sci 2016; 88:124-31. [PMID: 27094781 DOI: 10.1016/j.ejps.2016.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 11/30/2022]
Abstract
Translocator protein 18kDa (TSPO) is predominantly located in the mitochondrial outer membrane, playing an important role in steroidogenesis, inflammation, cell survival and proliferation. Its expression in central nervous system, mainly in glial cells, has been found to be upregulated in neuropathology, and brain injury. In this study, we investigated the anti-oxidative and anti-inflammatory effects of a group of TSPO ligands from the N,N-dialkyl-2-phenylindol-3-ylglyoxylamide class (PIGAs), highlighting the involvement of neurosteroids in their pharmacological effects. To this aim we used a well-known in vitro model of neurosteroidogenesis: the astrocytic C6 glioma cell line, where TSPO expression and localization, as well as cell response to TSPO ligand treatment, have been established. All PIGAs reduced l-buthionine-(S,R)-sulfoximine (BSO)-driven cell cytotoxicity and lipid peroxidation. Moreover, an anti-inflammatory effect was observed due to the reduction of inducible nitric oxide synthase and cyclooxygenase-2 induction in LPS/IFNγ challenged cells. Both effects were blunted by aminoglutethimide (AMG), an inhibitor of pregnenolone synthesis, suggesting neurosteroids' involvement in PIGA protective mechanism. Finally, pregnenolone evaluation in PIGA exposed cells revealed an increase in its synthesis, which was prevented by AMG pre-treatment. These findings indicate that these TSPO ligands reduce oxidative stress and pro-inflammatory enzymes in glial cells through the de novo synthesis of neurosteroids, suggesting that these compounds could be potential new therapeutic tools for the treatment of inflammatory-based neuropathologies with beneficial effects possibly comparable to steroids, but potentially avoiding the negative side effects of long-term therapies with steroid hormones.
Collapse
Affiliation(s)
- Anna Santoro
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, University of Pisa, 56126 Pisa, Italy
| | - Giuseppina Mattace Raso
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, University of Pisa, 56126 Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | | | - Barbara Costa
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, University of Pisa, 56126 Pisa, Italy
| | - Antonia Sacchi
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, University of Pisa, 56126 Pisa, Italy
| | - Barbara Cosimelli
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, University of Pisa, 56126 Pisa, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, University of Pisa, 56126 Pisa, Italy
| | | | - Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
15
|
Radiopharmaceuticals for PET imaging of neuroinflammation. MEDECINE NUCLEAIRE-IMAGERIE FONCTIONNELLE ET METABOLIQUE 2016. [DOI: 10.1016/j.mednuc.2016.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
16
|
Bassoude I, Tber Z, Essassi EM, Guillaumet G, Berteina-Raboin S. A one-pot process for the microwave-assisted synthesis of 7-substituted pyrazolo[1,5-a]pyrimidine. RSC Adv 2016. [DOI: 10.1039/c5ra23417d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficient synthesis of 7-substituted pyrazolo[1,5-a]pyrimidines using a one-pot, two-step process via Pd-catalyzed direct CH-arylation followed by a saponification–decarboxylation reaction is reported.
Collapse
Affiliation(s)
- Ibtissam Bassoude
- Institut de Chimie Organique et Analytique
- Université d'Orléans
- UMR CNRS 7311
- 45067 Orléans Cédex
- France
| | - Zahira Tber
- Institut de Chimie Organique et Analytique
- Université d'Orléans
- UMR CNRS 7311
- 45067 Orléans Cédex
- France
| | - El Mokhtar Essassi
- Laboratoire de Chimie Organique Hétérocyclique URAC 21
- Université Mohammed V-Agdal
- Faculté des Sciences
- 10100 Rabat
- Morocco
| | - Gérald Guillaumet
- Institut de Chimie Organique et Analytique
- Université d'Orléans
- UMR CNRS 7311
- 45067 Orléans Cédex
- France
| | - Sabine Berteina-Raboin
- Institut de Chimie Organique et Analytique
- Université d'Orléans
- UMR CNRS 7311
- 45067 Orléans Cédex
- France
| |
Collapse
|
17
|
Ghelani SM, Naliapara YT. Design, Multicomponent Synthesis and Characterization of Diversely Substituted Pyrazolo[1,5-a] Pyrimidine Derivatives. J Heterocycl Chem 2015. [DOI: 10.1002/jhet.2496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Satish M. Ghelani
- Department of Chemistry; Saurashtra University; Rajkot Gujarat India
| | | |
Collapse
|
18
|
Louiz S, Labiadh H, Abderrahim R. Synthesis and spectroscopy studies of the inclusion complex of 3-amino-5-methyl pyrazole with beta-cyclodextrin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 134:276-282. [PMID: 25022499 DOI: 10.1016/j.saa.2014.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/19/2014] [Accepted: 06/03/2014] [Indexed: 06/03/2023]
Abstract
Amino pyrazole belongs to anti-inflammatory class, and is characterized by a low solubility in water. (In order to increase its solubility in water, inclusion complex of amino pyrazole with β-CD was obtained.) The inclusion complex obtained between AMP and β-cyclodextrin, was characterized by FT-IR, (1)H NMR, (1)H-(1)H NOESY, (13)C NMR, DEPT, XHCOR, spectra, through TG analysis, DTA, DSC and Scanning Electron Microscopy (SEM). The stoichiometry of inclusion complex is 1:1 (guest-host) and K stability is 1.1 × 10(4)M(-1).
Collapse
Affiliation(s)
- S Louiz
- Laboratory of Physics of Lamellaires Materials and Hybrids Nanomaterials, University of Carthage, Faculty of Sciences of Bizerte, Zarzouna 7021, Bizerte, Tunisia
| | - H Labiadh
- Laboratory of Synthesis and Nanomateriaux Structures, University of Carthage, Faculty of Sciences of Bizerte, Zarzouna 7021, Bizerte, Tunisia
| | - R Abderrahim
- Laboratory of Physics of Lamellaires Materials and Hybrids Nanomaterials, University of Carthage, Faculty of Sciences of Bizerte, Zarzouna 7021, Bizerte, Tunisia.
| |
Collapse
|
19
|
Shekarrao K, Kaishap PP, Gogoi S, Gogoi S, Boruah RC. A facile synthesis of steroidal D-ring fused pyrazolo[1,5-a]pyrimidines. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.07.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
p-Toluenesulfonic acid-catalyzed solvent-free synthesis and biological evaluation of new 1-(4′,6′-dimethylpyrimidin-2′-yl)-5-amino-4H-3-arylpyrazole derivatives. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0751-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Guo WZ, Miao YL, An LN, Wang XY, Pan NL, Ma YQ, Chen HX, Zhao N, Zhang H, Li YF, Mi WD. Midazolam provides cytoprotective effect during corticosterone-induced damages in rat astrocytes by stimulating steroidogenesis. Neurosci Lett 2013; 547:53-8. [DOI: 10.1016/j.neulet.2013.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 04/30/2013] [Accepted: 05/03/2013] [Indexed: 10/26/2022]
|
22
|
Bassoude I, Berteina-Raboin S, Essassi EM, Guillaumet G, El Ammari L. N-(2-Bromo-4-methyl-phen-yl)-2-(5-methyl-2-phenyl-pyrazolo-[1,5-a]pyrimidin-7-yl)acetamide. Acta Crystallogr Sect E Struct Rep Online 2013; 69:o829. [PMID: 23795019 PMCID: PMC3684917 DOI: 10.1107/s1600536813011811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 04/30/2013] [Indexed: 11/10/2022]
Abstract
The fused pyrazole and pyrimidine rings in the title compound, C22H19BrN4O, are almost coplanar, their planes being inclined to one another by 2.08 (13)°. The dihedral angles formed by the mean plane of the fused ring system and the phenyl and benzene rings are 16.21 (4) and 82.84 (4)°, respectively. An intramolecular N—H⋯N hydrogen bond is observed. In the crystal, molecules form inversion dimers via pairs of C—H⋯O hydrogen bonds. π–π interactions, with centroid–centroid distances of 3.4916 (9) Å, connect the dimers into a three-dimensional network.
Collapse
Affiliation(s)
- Ibtissam Bassoude
- Laboratoire de Chimie Organique Hétérocyclique URAC21, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco ; Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 6005, BP 6759, 45067 Orléans Cedex 2, France
| | | | | | | | | |
Collapse
|
23
|
Bassoude I, Berteina-Raboin S, Essassi EM, Guillaumet G, El Ammari L. Ethyl 7-methyl-2-phenyl-pyrazolo-[1,5-a]pyrimidine-5-carboxyl-ate. Acta Crystallogr Sect E Struct Rep Online 2013; 69:o740. [PMID: 23723891 PMCID: PMC3648271 DOI: 10.1107/s1600536813009902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 04/10/2013] [Indexed: 11/12/2022]
Abstract
The fused pyrazole and pyrimidine rings in the title compound, C16H15N3O2, are almost coplanar, being inclined to one another by 1.31 (12)°. The mean plane of this fused ring system is nearly coplanar with the phenyl ring, as indicated by the dihedral angle between their planes of 1.31 (12)°. The fused-ring system and the phenyl ring are nearly coplanar, as indicated by the dihedral angle of 1.27 (10)°. In the crystal, molecules form inversion dimers via pairs of C—H⋯O hydrogen bonds. C—H⋯N interactions connect the dimers into a three-dimensional network. In addition, π–π contacts are observed, with centroid–centroid distances of 3.426 (2) Å.
Collapse
Affiliation(s)
- Ibtissam Bassoude
- Laboratoire de Chimie Organique Hétérocyclique URAC21, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco ; Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 6005, BP 6759, 45067 Orléans Cedex 2, France
| | | | | | | | | |
Collapse
|
24
|
Bassoude I, Berteina-Raboin S, Essassi EM, Guillaumet G, El Ammari L. 7-Chloro-5-methyl-2-phenyl-pyrazolo-[1,5-a]pyrimidine. Acta Crystallogr Sect E Struct Rep Online 2013; 69:o749. [PMID: 23723898 PMCID: PMC3648278 DOI: 10.1107/s1600536813009896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 04/10/2013] [Indexed: 11/10/2022]
Abstract
The fused pyrazole and pyrimidine rings in the title compound, C13H10ClN3, are almost coplanar, their planes being inclined to one another by 0.8 (2)°. The mean plane of the fused ring system is nearly coplanar with the phenyl ring, as indicated by the dihedral angle between their planes of 9.06 (7)°.
Collapse
Affiliation(s)
- Ibtissam Bassoude
- Laboratoire de Chimie Organique Hétérocyclique URAC21, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco ; Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 6005, BP 6759, 45067 Orléans Cedex 2, France
| | | | | | | | | |
Collapse
|
25
|
Cerutti E, Damont A, Dollé F, Baroni S, Aime S. Synthesis and characterization of an MRI Gd-based probe designed to target the translocator protein. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2013; 51:116-122. [PMID: 23303709 DOI: 10.1002/mrc.3919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/12/2012] [Accepted: 12/11/2012] [Indexed: 06/01/2023]
Abstract
DPA-713 is the lead compound of a recently reported pyrazolo[1,5-a]pyrimidineacetamide series, targeting the translocator protein (TSPO 18 kDa), and as such, this structure, as well as closely related derivatives, have been already successfully used as positron emission tomography radioligands. On the basis of the pharmacological core of this ligands series, a new magnetic resonance imaging probe, coded DPA-C(6)-(Gd)DOTAMA was designed and successfully synthesized in six steps and 13% overall yield from DPA-713. The Gd-DOTA monoamide cage (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) represents the magnetic resonance imaging reporter, which is spaced from the phenylpyrazolo[1,5-a]pyrimidineacetamide moiety (DPA-713 motif) by a six carbon-atom chain. DPA-C(6)-(Gd)DOTAMA relaxometric characterization showed the typical behavior of a small-sized molecule (relaxivity value: 6.02 mM(-1) s(-1) at 20 MHz). The good hydrophilicity of the metal chelate makes DPA-C(6)-(Gd)DOTAMA soluble in water, affecting thus its biodistribution with respect to the parent lipophilic DPA-713 molecule. For this reason, it was deemed of interest to load the probe to a large carrier in order to increase its residence lifetime in blood. Whereas DPA-C(6)-(Gd)DOTAMA binds to serum albumin with a low affinity constant, it can be entrapped into liposomes (both in the membrane and in the inner aqueous cavity). The stability of the supramolecular adduct formed by the Gd-complex and liposomes was assessed by a competition test with albumin.
Collapse
Affiliation(s)
- Erika Cerutti
- Dipartimento di Chimica and Centro di Imaging Molecolare, Università degli Studi di Torino, Torino, Italy
| | | | | | | | | |
Collapse
|
26
|
A practical, multigram synthesis of the 2-(2-(4-alkoxyphenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide (DPA) class of high affinity translocator protein (TSPO) ligands. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.05.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Cappelli A, Bini G, Valenti S, Giuliani G, Paolino M, Anzini M, Vomero S, Giorgi G, Giordani A, Stasi LP, Makovec F, Ghelardini C, Di Cesare Mannelli L, Concas A, Porcu P, Biggio G. Synthesis and Structure–Activity Relationship Studies in Translocator Protein Ligands Based on a Pyrazolo[3,4-b]quinoline Scaffold. J Med Chem 2011; 54:7165-75. [DOI: 10.1021/jm200770f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Cappelli
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Giulia Bini
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Salvatore Valenti
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Germano Giuliani
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Marco Paolino
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Maurizio Anzini
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Salvatore Vomero
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Gianluca Giorgi
- Dipartimento di Chimica, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | | | | | | | - Carla Ghelardini
- Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”, Università degli Studi di Firenze,Viale G. Pieraccini 6, 50139 Firenze, Italy
| | - Lorenzo Di Cesare Mannelli
- Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”, Università degli Studi di Firenze,Viale G. Pieraccini 6, 50139 Firenze, Italy
| | - Alessandra Concas
- Dipartimento di Biologia Sperimentale “B. Loddo”, Università degli Studi di Cagliari, Cittadella Universitaria, SS 554 (km 4.500), 09042 Monserrato (Cagliari), Italy
| | - Patrizia Porcu
- Dipartimento di Biologia Sperimentale “B. Loddo”, Università degli Studi di Cagliari, Cittadella Universitaria, SS 554 (km 4.500), 09042 Monserrato (Cagliari), Italy
| | - Giovanni Biggio
- Dipartimento di Biologia Sperimentale “B. Loddo”, Università degli Studi di Cagliari, Cittadella Universitaria, SS 554 (km 4.500), 09042 Monserrato (Cagliari), Italy
| |
Collapse
|
28
|
Aggarwal R, Sumran G, Garg N, Aggarwal A. A regioselective synthesis of some new pyrazol-1′-ylpyrazolo[1,5-a]pyrimidines in aqueous medium and their evaluation as antimicrobial agents. Eur J Med Chem 2011; 46:3038-46. [DOI: 10.1016/j.ejmech.2011.04.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 10/18/2022]
|
29
|
Costa B, Da Pozzo E, Chelli B, Simola N, Morelli M, Luisi M, Maccheroni M, Taliani S, Simorini F, Da Settimo F, Martini C. Anxiolytic properties of a 2-phenylindolglyoxylamide TSPO ligand: Stimulation of in vitro neurosteroid production affecting GABAA receptor activity. Psychoneuroendocrinology 2011; 36:463-72. [PMID: 20728278 DOI: 10.1016/j.psyneuen.2010.07.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/28/2010] [Accepted: 07/28/2010] [Indexed: 12/15/2022]
Abstract
A number of neurosteroids have been demonstrated to exert anxiolytic properties by means of a positive modulation of inhibitory GABAergic neurotransmission. The observation that neurosteroid synthesis can be pharmacologically regulated by ligands to the mitochondrial translocator protein (TSPO) has prompted the search for new, more selective TSPO ligands able to stimulate steroidogenesis with great efficacy. In the present study, the potential anxiolytic activity of a selective TSPO ligand, N,N-di-n-propyl-2-(4-methylphenyl)indol-3-ylglyoxylamide (MPIGA), was tested by means of the elevated plus maze paradigm. Moreover, the in vitro effects on synaptoneurosomal GABA(A) receptor (GABA(A)R) activity exerted by the conditioned salt medium from MPIGA-treated ADF human glial cells were investigated. MPIGA (30mg/kg) was found to affect rats' performance in the elevated plus maze test significantly, leading to an increase in both entries and time spent in the open arms. This same dose of MPIGA had no effect on rats' spontaneous exploratory activity. The conditioned salt medium from MPIGA-treated ADF cells potentiated the (36)Cl(-) uptake into cerebral cortical synaptoneurosomes. The exposure of ADF cells to MPIGA stimulated the production of pregnelonone derivatives including allopregnanolone, one of the major positive GABA(A)R allosteric modulator. In conclusion, the TSPO ligand MPIGA is a promising anxiolytic drug. The mechanism of action by which MPIGA exerts its anxiolytic activity was identified in the stimulation of endogenous neurosteroid production, which in turn determined a positive modulation of GABA(A)R activity, thus opening the way to the potential use of this TSPO ligand in anxiety and depressive disorders.
Collapse
Affiliation(s)
- Barbara Costa
- Department of Human Morphology and Applied Biology, University of Pisa, via Volta, 4-56126 Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Schüle C, Eser D, Baghai TC, Nothdurfter C, Kessler JS, Rupprecht R. Neuroactive steroids in affective disorders: target for novel antidepressant or anxiolytic drugs? Neuroscience 2011; 191:55-77. [PMID: 21439354 DOI: 10.1016/j.neuroscience.2011.03.025] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/13/2011] [Accepted: 03/14/2011] [Indexed: 11/18/2022]
Abstract
In the past decades considerable evidence has emerged that so-called neuroactive steroids do not only act as transcriptional factors in the regulation of gene expression but may also alter neuronal excitability through interactions with specific neurotransmitter receptors such as the GABA(A) receptor. In particular, 3α-reduced neuroactive steroids such as allopregnanolone or allotetrahydrodeoxycorticosterone have been shown to act as positive allosteric modulators of the GABA(A) receptor and to play an important role in the pathophysiology of depression and anxiety. During depression, the concentrations of 3α,5α-tetrahydroprogesterone and 3α,5β-tetrahydroprogesterone are decreased, while the levels of 3β,5α-tetrahydroprogesterone, a stereoisomer of 3α,5α-tetrahydroprogesterone, which may act as an antagonist for GABAergic steroids, are increased. Antidepressant drugs such as selective serotonin reuptake inhibitors (SSRIs) or mirtazapine apparently have an impact on key enzymes of neurosteroidogenesis and have been shown to normalize the disequilibrium of neuroactive steroids in depression by increasing 3α-reduced pregnane steroids and decreasing 3β,5α-tetrahydroprogesterone. Moreover, 3α-reduced neuroactive steroids have been demonstrated to possess antidepressant- and anxiolytic-like effects both in animal and human studies for themselves. In addition, the translacator protein (18 kDa) (TSPO), previously called peripheral benzodiazepine receptor, is the key element of the mitochondrial import machinery supplying the substrate cholesterol to the first steroidogenic enzyme (P450scc), which transforms cholesterol into pregnenolone, the precursor of all neurosteroids. TSPO ligands increase neurosteroidogenesis and are a target of novel anxiolytic drugs producing anxiolytic effects without causing the side effects normally associated with conventional benzodiazepines such as sedation or tolerance. This article is part of a Special Issue entitled: Neuroactive Steroids: Focus on Human Brain.
Collapse
Affiliation(s)
- C Schüle
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Nussbaumstrasse 7, 80336 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Bassoude I, Berteina-Raboin S, Leger JM, Jarry C, Essassi EM, Guillaumet G. One-step reaction leading to new pyrazolo[1,5-a]pyrimidines by condensation of 2-pyrone with 5(3)-amino-3(5)-arylpyrazoles. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.01.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
32
|
Aggarwal R, Kumar V, Kumar R, Singh SP. Approaches towards the synthesis of 5-aminopyrazoles. Beilstein J Org Chem 2011; 7:179-97. [PMID: 21448263 PMCID: PMC3063075 DOI: 10.3762/bjoc.7.25] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 12/10/2010] [Indexed: 11/25/2022] Open
Abstract
The biological and medicinal properties of 5-aminopyrazoles have prompted enormous research aimed at developing synthetic routes to these heterocyles. This review focuses on the biological properties associated with this system. Various synthetic methods developed up to 2010 for these compounds are described, particularly those that involve the reactions of β-ketonitriles, malononitrile, alkylidenemalononitriles and their derivatives with hydrazines, as well as some novel miscellaneous methods.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra-136 119, Haryana, India
| | | | | | | |
Collapse
|
33
|
Petrov AA, Emelina EE, Selivanov SI. α-aminoazoles in synthesis of heterocycles: IV. Regiodirection of 3(5)-amino-5(3)-methylpyrazole reaction with hexafluoroacetylacetone. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2011. [DOI: 10.1134/s1070428008020139] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Owen DRJ, Gunn RN, Rabiner EA, Bennacef I, Fujita M, Kreisl WC, Innis RB, Pike VW, Reynolds R, Matthews PM, Parker CA. Mixed-affinity binding in humans with 18-kDa translocator protein ligands. J Nucl Med 2011; 52:24-32. [PMID: 21149489 PMCID: PMC3161826 DOI: 10.2967/jnumed.110.079459] [Citation(s) in RCA: 291] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED 11C-PBR28 PET can detect the 18-kDa translocator protein (TSPO) expressed within macrophages. However, quantitative evaluation of the signal in brain tissue from donors with multiple sclerosis (MS) shows that PBR28 binds the TSPO with high affinity (binding affinity [Ki], ∼4 nM), low affinity (Ki, ∼200 nM), or mixed affinity (2 sites with Ki, ∼4 nM and ∼300 nM). Our study tested whether similar binding behavior could be detected in brain tissue from donors with no history of neurologic disease, with TSPO-binding PET ligands other than 11C-PBR28, for TSPO present in peripheral blood, and with human brain PET data acquired in vivo with 11C-PBR28. METHODS The affinity of TSPO ligands was measured in the human brain postmortem from donors with a history of MS (n=13), donors without any history of neurologic disease (n=20), and in platelets from healthy volunteers (n=13). Binding potential estimates from thirty-five 11C-PBR28 PET scans from an independent sample of healthy volunteers were analyzed using a gaussian mixture model. RESULTS Three binding affinity patterns were found in brains from subjects without neurologic disease in similar proportions to those reported previously from studies of MS brains. TSPO ligands showed substantial differences in affinity between subjects classified as high-affinity binders (HABs) and low-affinity binders (LABs). Differences in affinity between HABs and LABs are approximately 50-fold with PBR28, approximately 17-fold with PBR06, and approximately 4-fold with DAA1106, DPA713, and PBR111. Where differences in affinity between HABs and LABs were low (∼4-fold), distinct affinities were not resolvable in binding curves for mixed-affinity binders (MABs), which appeared to express 1 class of sites with an affinity approximately equal to the mean of those for HABs and LABs. Mixed-affinity binding was detected in platelets from an independent sample (HAB, 69%; MAB, 31%), although LABs were not detected. Analysis of 11C-PBR28 PET data was not inconsistent with the existence of distinct subpopulations of HABs, MABs, and LABs. CONCLUSION With the exception of 11C-PK11195, all TSPO PET ligands in current clinical application recognize HABs, LABs, and MABs in brain tissue in vitro. Knowledge of subjects' binding patterns will be required to accurately quantify TSPO expression in vivo using PET.
Collapse
Affiliation(s)
- David R J Owen
- Division of Experimental Medicine, Imperial College, Hammersmith Hospital, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kim I, Song JH, Park CM, Jeong JW, Kim HR, Ha JR, No Z, Hyun YL, Cho YS, Sook Kang N, Jeon DJ. Design, synthesis, and evaluation of 2-aryl-7-(3',4'-dialkoxyphenyl)-pyrazolo[1,5-a]pyrimidines as novel PDE-4 inhibitors. Bioorg Med Chem Lett 2009; 20:922-6. [PMID: 20053559 DOI: 10.1016/j.bmcl.2009.12.070] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 10/20/2022]
Abstract
Described herein is design, synthesis, and biological evaluation of novel series of 2-aryl-7-(3',4'-dialkoxyphenyl)-pyrazolo[1,5-a]pyrimidines acting as inhibitors of type 4 phosphodiesterase (PDE4) which is known as a good target for the treatment of asthma and COPD. For this purpose, structure optimization was conducted with the aid of structure-based drug design using the known X-ray crystallography. Also, biological effects of these compounds on the target enzyme were evaluated by using in vitro assays, leading to the potent and selective PDE-4 inhibitor (IC(50)<10nM).
Collapse
Affiliation(s)
- Ikyon Kim
- Medicinal Chemistry Research Center, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tuccinardi T, Taliani S, Bellandi M, Da Settimo F, Da Pozzo E, Martini C, Martinelli A. A Virtual Screening Study of the 18 kDa Translocator Protein using Pharmacophore Models Combined with 3D-QSAR Studies. ChemMedChem 2009; 4:1686-94. [DOI: 10.1002/cmdc.200900254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Da Settimo F, Simorini F, Taliani S, La Motta C, Marini AM, Salerno S, Bellandi M, Novellino E, Greco G, Cosimelli B, Da Pozzo E, Costa B, Simola N, Morelli M, Martini C. Anxiolytic-like effects of N,N-dialkyl-2-phenylindol-3-ylglyoxylamides by modulation of translocator protein promoting neurosteroid biosynthesis. J Med Chem 2008; 51:5798-806. [PMID: 18729350 DOI: 10.1021/jm8003224] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel N,N-disubstituted indol-3-ylglyoxylamides (1-56), bearing different combinations of substituents R 1-R 5, were synthesized and evaluated as ligands of the translocator protein (TSPO), the 18 kDa protein representing the minimal functional unit of the "peripheral-type benzodiazepine receptor" (PBR). Most of the new compounds showed a nanomolar/subnanomolar affinity for TSPO and stimulated steroid biosynthesis in rat C6 glioma cells with a potency similar to or higher than that of classic TSPO ligands such as PK 11195. Moreover, when evaluated in vivo by means of the elevated-plus-maze (EPM) paradigm in the rat, compound 32, the best-performing derivative in terms of TSPO affinity and pregnenolone production, showed clear anxiolytic effects. The results of this study suggested that the novel N,N-disubstituted indol-3-ylglyoxylamides may represent a promising class of compounds potentially suited for the treatment of anxiety disorders.
Collapse
Affiliation(s)
- Federico Da Settimo
- Dipartimento di Scienze Farmaceutiche and Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Università di Pisa,Via Bonanno 6, 56126 Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Damont A, Hinnen F, Kuhnast B, Schöllhorn‐Peyronneau M, James M, Luus C, Tavitian B, Kassiou M, Dollé F. Radiosynthesis of [18F]DPA‐714, a selective radioligand for imaging the translocator protein (18 kDa) with PET. J Labelled Comp Radiopharm 2008. [DOI: 10.1002/jlcr.1523] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
An H, Eum SJ, Koh M, Lee SK, Park SB. Diversity-Oriented Synthesis of Privileged Benzopyranyl Heterocycles from s-cis-Enones. J Org Chem 2008; 73:1752-61. [DOI: 10.1021/jo702196f] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Heeseon An
- Department of Chemistry, Seoul National University, Seoul, 151-747, Korea, and Bioinformatics & Molecular Design Research Center, Seoul, 120-749, Korea
| | - Sung-Jin Eum
- Department of Chemistry, Seoul National University, Seoul, 151-747, Korea, and Bioinformatics & Molecular Design Research Center, Seoul, 120-749, Korea
| | - Minseob Koh
- Department of Chemistry, Seoul National University, Seoul, 151-747, Korea, and Bioinformatics & Molecular Design Research Center, Seoul, 120-749, Korea
| | - Sung Kwang Lee
- Department of Chemistry, Seoul National University, Seoul, 151-747, Korea, and Bioinformatics & Molecular Design Research Center, Seoul, 120-749, Korea
| | - Seung Bum Park
- Department of Chemistry, Seoul National University, Seoul, 151-747, Korea, and Bioinformatics & Molecular Design Research Center, Seoul, 120-749, Korea
| |
Collapse
|
40
|
Roy K, Toropov A, Raska I. QSAR Modeling of PeripheralVersus Central Benzodiazepine Receptor Binding Affinity of 2-Phenylimidazo[1,2-a]pyridineacetamides using Optimal Descriptors Calculated with SMILES. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/qsar.200630072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Thominiaux C, Mattner F, Greguric I, Boutin H, Chauveau F, Kuhnast B, Grégoire MC, Loc′h C, Valette H, Bottlaender M, Hantraye P, Tavitian B, Katsifis A, Dollé F. Radiosynthesis of 2-[6-chloro-2-(4-iodophenyl)imidazo[1,2-a]pyridin-3-yl]-N-ethyl-N-[11C]methyl-acetamide, [11C]CLINME, a novel radioligand for imaging the peripheral benzodiazepine receptors with PET. J Labelled Comp Radiopharm 2007. [DOI: 10.1002/jlcr.1258] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Bennacef I, Haile CN, Schmidt A, Koren AO, Seibyl JP, Staley JK, Bois F, Baldwin RM, Tamagnan G. Synthesis and receptor binding studies of halogenated N,N-dialkylel-(2-phenyl-1H-indol-3-yl)glyoxylamides to visualize peripheral benzodiazepine receptors with SPECT or PET. Bioorg Med Chem 2006; 14:7582-91. [PMID: 16908169 DOI: 10.1016/j.bmc.2006.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 06/29/2006] [Accepted: 07/01/2006] [Indexed: 11/23/2022]
Abstract
A library of halogenated 2-arylindolyl-3-oxocarboxamides was prepared to develop radioligands to visualize cerebral PBR by SPECT and PET imaging. In vitro evaluation showed that most of the synthesized compounds were selective,high-affinity PBR ligands with adequate lipophilicity (log D7.4 in the range of 1.6-2.4). The iodinated derivative 11 (Ki = 2.6 nM) and the fluorinated analog 26 (Ki = 6.2 nM) displayed higher affinity than reference compounds.
Collapse
Affiliation(s)
- Idriss Bennacef
- Yale School of Medicine, VA Connecticut HCS (116A2), West Haven, CT 06516, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Veenman L, Gavish M. The peripheral-type benzodiazepine receptor and the cardiovascular system. Implications for drug development. Pharmacol Ther 2006; 110:503-24. [PMID: 16337685 DOI: 10.1016/j.pharmthera.2005.09.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 09/27/2005] [Indexed: 11/16/2022]
Abstract
Peripheral-type benzodiazepine receptors (PBRs) are abundant in the cardiovascular system. In the cardiovascular lumen, PBRs are present in platelets, erythrocytes, lymphocytes, and mononuclear cells. In the walls of the cardiovascular system, PBR can be found in the endothelium, the striated cardiac muscle, the vascular smooth muscles, and the mast cells. The subcellular location of PBR is primarily in mitochondria. The PBR complex includes the isoquinoline binding protein (IBP), voltage-dependent anion channel (VDAC), and adenine nucleotide transporter (ANT). Putative endogenous ligands for PBR include protoporphyrin IX, diazepam binding inhibitor (DBI), triakontatetraneuropeptide (TTN), and phospholipase A2 (PLA2). Classical synthetic ligands for PBR are the isoquinoline 1-(2-chlorophenyl)-N-methyl-N-(1-methyl-propyl)-3-isoquinolinecarboxamide (PK 11195) and the benzodiazepine 7-chloro-5-(4-chlorophenyl)-1,3-dihydro-1-methyl-2H-1,4-benzodiazepin-2-one (Ro5 4864). Novel PBR ligands include N,N-di-n-hexyl 2-(4-fluorophenyl)indole-3-acetamide (FGIN-1-27) and 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (SSR180575), both possessing steroidogenic properties, but while FGIN-1-27 is pro-apoptotic, SSR180575 is anti-apoptotic. Putative PBR functions include regulation of steroidogenesis, apoptosis, cell proliferation, the mitochondrial membrane potential, the mitochondrial respiratory chain, voltage-dependent calcium channels, responses to stress, and microglial activation. PBRs in blood vessel walls appear to take part in responses to trauma such as ischemia. The irreversible PBR antagonist, SSR180575, was found to reduce damage correlated with ischemia. Stress, anxiety disorders, and neurological disorders, as well as their treatment, can affect PBR levels in blood cells. PBRs in blood cells appear to play roles in several aspects of the immune response, such as phagocytosis and the secretion of interleukin-2, interleukin-3, and immunoglobulin A (IgA). Thus, alterations in PBR density in blood cells may have immunological consequences in the affected person. In conclusion, PBR in the cardiovascular system may represent a new target for drug development.
Collapse
Affiliation(s)
- Leo Veenman
- Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Department of Pharmacology, Ephron Street, P.O. Box 9649, Bat-Galim, Haifa 31096, Israel
| | | |
Collapse
|