1
|
Korbecki J, Rębacz-Maron E, Kupnicka P, Chlubek D, Baranowska-Bosiacka I. Synthesis and Significance of Arachidonic Acid, a Substrate for Cyclooxygenases, Lipoxygenases, and Cytochrome P450 Pathways in the Tumorigenesis of Glioblastoma Multiforme, Including a Pan-Cancer Comparative Analysis. Cancers (Basel) 2023; 15:cancers15030946. [PMID: 36765904 PMCID: PMC9913267 DOI: 10.3390/cancers15030946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive gliomas. New and more effective therapeutic approaches are being sought based on studies of the various mechanisms of GBM tumorigenesis, including the synthesis and metabolism of arachidonic acid (ARA), an omega-6 polyunsaturated fatty acid (PUFA). PubMed, GEPIA, and the transcriptomics analysis carried out by Seifert et al. were used in writing this paper. In this paper, we discuss in detail the biosynthesis of this acid in GBM tumors, with a special focus on certain enzymes: fatty acid desaturase (FADS)1, FADS2, and elongation of long-chain fatty acids family member 5 (ELOVL5). We also discuss ARA metabolism, particularly its release from cell membrane phospholipids by phospholipase A2 (cPLA2, iPLA2, and sPLA2) and its processing by cyclooxygenases (COX-1 and COX-2), lipoxygenases (5-LOX, 12-LOX, 15-LOX-1, and 15-LOX-2), and cytochrome P450. Next, we discuss the significance of lipid mediators synthesized from ARA in GBM cancer processes, including prostaglandins (PGE2, PGD2, and 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2)), thromboxane A2 (TxA2), oxo-eicosatetraenoic acids, leukotrienes (LTB4, LTC4, LTD4, and LTE4), lipoxins, and many others. These lipid mediators can increase the proliferation of GBM cancer cells, cause angiogenesis, inhibit the anti-tumor response of the immune system, and be responsible for resistance to treatment.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ewa Rębacz-Maron
- Department of Ecology and Anthropology, Institute of Biology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Correspondence: ; Tel.: +48-914-661-515
| |
Collapse
|
2
|
Santos Nascimento IJD, de Aquino TM, da Silva Júnior EF. Computer-Aided Drug Design of Anti-inflammatory Agents Targeting Microsomal Prostaglandin E2 Synthase-1 (mPGES-1). Curr Med Chem 2022; 29:5397-5419. [PMID: 35301943 DOI: 10.2174/0929867329666220317122948] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022]
Abstract
Inflammation is a natural process in response to external stimuli associated with organism protection. However, this reaction could be exaggerated, leading to severe damages related to physiopathological processes, such as rheumatoid arthritis, cancer, diabetes, allergies, infections, among others. Inflammation is mainly characterized by pain, increased temperature, flushing, and edema, which can be controlled using anti-inflammatory drugs. In this context, prostaglandin E2 (PGE2) inhibition has been targeted for designing new compounds with anti-inflammatory properties. It is a bioactive lipid overproduced during an inflammatory process, in which its increased production is carried out mainly by COX-1, COX-2, and microsomal prostaglandin E2 synthase-1 (mPGES-1). Recently, studies have demonstrated that mPGES-1 inhibition is a safe strategy to develop anti-inflammatory agents, which could protect against pain, acute inflammation, arthritis, autoimmune diseases, and different types of cancers. To decrease production costs and increase the probability of discovering active substances, computer-aided drug design (CADD) approaches have been increasingly used for designing new inhibitors. Thus, this review will cover all aspects involving high-throughput virtual screening, molecular docking, dynamics, fragment-based drug design, quantitative structure-activity relationship in seeking new promising mPGES-1 inhibitors.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Laboratory of Synthesis and Research in Medicinal Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.
- Department of Pharmacy, Estácio of Alagoas College, Maceió, Brazil
| | - Thiago Mendonça de Aquino
- Laboratory of Synthesis and Research in Medicinal Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| | - Edeildo Ferreira da Silva Júnior
- Laboratory of Synthesis and Research in Medicinal Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| |
Collapse
|
3
|
DREAM-in-CDM Approach and Identification of a New Generation of Anti-inflammatory Drugs Targeting mPGES-1. Sci Rep 2020; 10:10187. [PMID: 32576928 PMCID: PMC7311425 DOI: 10.1038/s41598-020-67283-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/01/2020] [Indexed: 11/28/2022] Open
Abstract
Microsomal prostaglandin E2 synthase-1 (mPGES-1) is known as an ideal target for next generation of anti-inflammatory drugs without the side effects of currently available anti-inflammatory drugs. However, there has been no clinically promising mPGES-1 inhibitor identified through traditional drug discovery and development route. Here we report a new approach, called DREAM-in-CDM (Drug Repurposing Effort Applying Integrated Modeling-in vitro/vivo-Clinical Data Mining), to identify an FDA-approved drug suitable for use as an effective analgesic targeting mPGES-1. The DREAM-in-CDM approach consists of three steps: computational screening of FDA-approved drugs; in vitro and/or in vivo assays; and clinical data mining. By using the DREAM-in-CDM approach, lapatinib has been identified as a promising mPGES-1 inhibitor which may have significant anti-inflammatory effects to relieve various forms of pain and possibly treat various inflammation conditions involved in other inflammation-related diseases such as the lung inflammation caused by the newly identified COVID-19. We anticipate that the DREAM-in-CDM approach will be used to repurpose FDA-approved drugs for various new therapeutic indications associated with new targets.
Collapse
|
4
|
Zhou S, Zhou Z, Ding K, Yuan Y, Zheng F, Zhan CG. In Silico Observation of the Conformational Opening of the Glutathione-Binding Site of Microsomal Prostaglandin E2 Synthase-1. J Chem Inf Model 2019; 59:3839-3845. [DOI: 10.1021/acs.jcim.9b00289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Scarpati M, Qi Y, Govind S, Singh S. A combined computational strategy of sequence and structural analysis predicts the existence of a functional eicosanoid pathway in Drosophila melanogaster. PLoS One 2019; 14:e0211897. [PMID: 30753230 PMCID: PMC6372189 DOI: 10.1371/journal.pone.0211897] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023] Open
Abstract
This study reports on a putative eicosanoid biosynthesis pathway in Drosophila melanogaster and challenges the currently held view that mechanistic routes to synthesize eicosanoid or eicosanoid-like biolipids do not exist in insects, since to date, putative fly homologs of most mammalian enzymes have not been identified. Here we use systematic and comprehensive bioinformatics approaches to identify most of the mammalian eicosanoid synthesis enzymes. Sensitive sequence analysis techniques identified candidate Drosophila enzymes that share low global sequence identities with their human counterparts. Twenty Drosophila candidates were selected based upon (a) sequence identity with human enzymes of the cyclooxygenase and lipoxygenase branches, (b) similar domain architecture and structural conservation of the catalytic domain, and (c) presence of potentially equivalent functional residues. Evaluation of full-length structural models for these 20 top-scoring Drosophila candidates revealed a surprising degree of conservation in their overall folds and potential analogs for functional residues in all 20 enzymes. Although we were unable to identify any suitable candidate for lipoxygenase enzymes, we report structural homology models of three fly cyclooxygenases. Our findings predict that the D. melanogaster genome likely codes for one or more pathways for eicosanoid or eicosanoid-like biolipid synthesis. Our study suggests that classical and/or novel eicosanoids mediators must regulate biological functions in insects–predictions that can be tested with the power of Drosophila genetics. Such experimental analysis of eicosanoid biology in a simple model organism will have high relevance to human development and health.
Collapse
Affiliation(s)
- Michael Scarpati
- Brooklyn College of the City University of New York, Brooklyn, New York, United States of America
- PhD program in Biology, Graduate Center of the City University of New York, New York, New York, United States of America
| | - Yan Qi
- Brooklyn College of the City University of New York, Brooklyn, New York, United States of America
- PhD program in Biology, Graduate Center of the City University of New York, New York, New York, United States of America
| | - Shubha Govind
- PhD program in Biology, Graduate Center of the City University of New York, New York, New York, United States of America
- PhD program in Biochemistry, Graduate Center of the City University of New York, New York, New York, United States of America
- The City College of the City University of New York, New York, New York, United States of America
| | - Shaneen Singh
- Brooklyn College of the City University of New York, Brooklyn, New York, United States of America
- PhD program in Biology, Graduate Center of the City University of New York, New York, New York, United States of America
- PhD program in Biochemistry, Graduate Center of the City University of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
6
|
Ding K, Zhou Z, Zhou S, Yuan Y, Kim K, Zhang T, Zheng X, Zheng F, Zhan CG. Design, synthesis, and discovery of 5-((1,3-diphenyl-1H-pyrazol-4-yl)methylene)pyrimidine-2,4,6(1H,3H,5H)-triones and related derivatives as novel inhibitors of mPGES-1. Bioorg Med Chem Lett 2018; 28:858-862. [PMID: 29456107 DOI: 10.1016/j.bmcl.2018.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 01/23/2023]
Abstract
Human mPGES-1 has emerged as a promising target in exploring a next generation of anti-inflammatory drugs, as selective mPGES-1 inhibitors are expected to discriminatively suppress the production of induced PGE2 without blocking the normal biosynthesis of other prostanoids including homeostatic PGE2. Therefore, this therapeutic approach is believed to reduce the adverse effects associated with the application of traditional non-steroidal anti-inflammatory drugs (tNSAIDs) and selective COX-2 inhibitors (coxibs). Identified from structure-based virtue screening, the compound with (Z)-5-benzylidene-2-iminothiazolidin-4-one scaffold was used as lead in rational design of novel inhibitors. Besides, we further designed, synthesized, and evaluated 5-((1,3-diphenyl-1H-pyrazol-4-yl)methylene)pyrimidine-2,4,6(1H,3H,5H)-triones and structurally related derivatives for their in vitro inhibitory activities. According to in vitro activity assays, a number of these compounds were capable of inhibiting human mPGES-1, with the desirable selectivity for mPGES-1 over COX isozymes.
Collapse
Affiliation(s)
- Kai Ding
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Lime-stone Street, Lexington, KY 40536, United States; Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506, United States
| | - Ziyuan Zhou
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Lime-stone Street, Lexington, KY 40536, United States
| | - Shuo Zhou
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Lime-stone Street, Lexington, KY 40536, United States
| | - Yaxia Yuan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Lime-stone Street, Lexington, KY 40536, United States; Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States
| | - Kyungbo Kim
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Lime-stone Street, Lexington, KY 40536, United States
| | - Ting Zhang
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Lime-stone Street, Lexington, KY 40536, United States
| | - Xirong Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Lime-stone Street, Lexington, KY 40536, United States
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Lime-stone Street, Lexington, KY 40536, United States
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Lime-stone Street, Lexington, KY 40536, United States; Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States.
| |
Collapse
|
7
|
Zhou Z, Yuan Y, Zhou S, Ding K, Zheng F, Zhan CG. Selective inhibitors of human mPGES-1 from structure-based computational screening. Bioorg Med Chem Lett 2017; 27:3739-3743. [PMID: 28689972 DOI: 10.1016/j.bmcl.2017.06.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 06/28/2017] [Indexed: 12/13/2022]
Abstract
Human mPGES-1 is recognized as a promising target for next generation of anti-inflammatory drugs. Although various mPGES-1 inhibitors have been reported in literature, few have entered clinical trials and none has been proven clinically useful so far. It is highly desired for developing the next generation of therapeutics for inflammation-related diseases to design and discover novel inhibitors of mPGES-1 with new scaffolds. Here, we report the identification of a series of new, potent and selective inhibitors of human mPGES-1 with diverse scaffolds through combined computational and experimental studies. The computationally modeled binding structures of these new inhibitors of mPGES-1 provide some interesting clues for rational design of modified structures of the inhibitors to more favorably bind with mPGES-1.
Collapse
Affiliation(s)
- Ziyuan Zhou
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States
| | - Yaxia Yuan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States
| | - Shuo Zhou
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States
| | - Kai Ding
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506, United States
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States
| |
Collapse
|
8
|
Raouf J, Rafique N, Goodman MC, Idborg H, Bergqvist F, Armstrong RN, Jakobsson PJ, Morgenstern R, Spahiu L. Arg126 and Asp49 Are Essential for the Catalytic Function of Microsomal Prostaglandin E2 Synthase 1 and Ser127 Is Not. PLoS One 2016; 11:e0163600. [PMID: 27684486 PMCID: PMC5042469 DOI: 10.1371/journal.pone.0163600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/12/2016] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Prostaglandins are signaling molecules that regulate different physiological processes, involving allergic and inflammatory responses and cardiovascular control. They are involved in several pathophysiological processes, including inflammation and cancer. The inducible terminal enzyme, microsomal prostaglandin E synthase 1 (MPGES1), catalyses prostaglandin E2 production during inflammation. MPGES1 has therefore been intensively studied as a pharmaceutical target and many competitive inhibitors targeting its active site have been developed. However, little is known about its catalytic mechanism. AIM The objective of this study was to investigate which amino acids play a key role in the catalytic mechanism of MPGES1. MATERIALS AND METHODS Based on results and predictions from previous structural studies, the amino acid residues Asp49, Arg73, Arg126, and Ser127 were chosen and altered by site-directed mutagenesis. The mutated enzyme variants were cloned and expressed in both the E. coli and the Baculovirus expression systems. Their catalytic significance was evaluated by activity measurements with prostanoid profiling. RESULTS AND CONCLUSIONS Our study shows that Arg126 and Asp49 are absolutely required for the catalytic activity of MPGES1, as when exchanged, the enzyme variants loose activity. Ser127 and Arg73 on the other hand, don't seem to be central to the catalytic mechanism because when exchanged, their variants retain considerable activity. Our finding that the Ser127Ala variant retains activity was surprising since high-resolution structural data supported a role in glutathione activation. The close proximity of Ser127 to the active site is, however, supported since the Ser127Cys variant displays 80% lowered activity.
Collapse
Affiliation(s)
- Joan Raouf
- Unit of Rheumatology, Department of Medicine Solna, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Unit of Rheumatology, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Nazmi Rafique
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, Stockholm, Sweden
| | | | - Helena Idborg
- Unit of Rheumatology, Department of Medicine Solna, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Unit of Rheumatology, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Filip Bergqvist
- Unit of Rheumatology, Department of Medicine Solna, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Unit of Rheumatology, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Richard N. Armstrong
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, United States of America
| | - Per-Johan Jakobsson
- Unit of Rheumatology, Department of Medicine Solna, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Unit of Rheumatology, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Ralf Morgenstern
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, Stockholm, Sweden
| | - Linda Spahiu
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Abstract
The PGE2 pathway is important in inflammation-driven diseases and specific targeting of the inducible mPGES-1 is warranted due to the cardiovascular problems associated with the long-term use of COX-2 inhibitors. This review focuses on patents issued on methods of measuring mPGES-1 activity, on drugs targeting mPGES-1 and on other modulators of free extracellular PGE2 concentration. Perspectives and conclusions regarding the status of these drugs are also presented. Importantly, no selective inhibitors targeting mPGES-1 have been identified and, despite the high number of published patents, none of these drugs have yet made it to clinical trials.
Collapse
|
10
|
Singh Bahia M, Kumar Katare Y, Silakari O, Vyas B, Silakari P. Inhibitors of Microsomal Prostaglandin E2
Synthase-1 Enzyme as Emerging Anti-Inflammatory Candidates. Med Res Rev 2014; 34:825-55. [DOI: 10.1002/med.21306] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Malkeet Singh Bahia
- Molecular Modelling Lab (MML); Department of Pharmaceutical Sciences and Drug Research; Punjabi University; Patiala Punjab 147002 India
| | - Yogesh Kumar Katare
- Radharaman Institute of Pharmaceutical Sciences; Bhopal Madhya Pradesh 462046 India
| | - Om Silakari
- Molecular Modelling Lab (MML); Department of Pharmaceutical Sciences and Drug Research; Punjabi University; Patiala Punjab 147002 India
| | - Bhawna Vyas
- Department of Chemistry; Punjabi University; Patiala Punjab 147002 India
| | - Pragati Silakari
- Adina institute of Pharmaceutical Sciences; Sagar Madhya Pradesh (M.P.) 470001 India
| |
Collapse
|
11
|
Wimuttisuk W, Tobwor P, Deenarn P, Danwisetkanjana K, Pinkaew D, Kirtikara K, Vichai V. Insights into the prostanoid pathway in the ovary development of the penaeid shrimp Penaeus monodon. PLoS One 2013; 8:e76934. [PMID: 24116186 PMCID: PMC3792876 DOI: 10.1371/journal.pone.0076934] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 09/05/2013] [Indexed: 02/07/2023] Open
Abstract
The prostanoid pathway converts polyunsaturated fatty acids (PUFAs) into bioactive lipid mediators, including prostaglandins, thromboxanes and prostacyclins, all of which play vital roles in the immune and reproductive systems in most animal phyla. In crustaceans, PUFAs and prostaglandins have been detected and often associated with female reproductive maturation. However, the presence of prostanoid biosynthesis genes remained in question in these species. In this study, we outlined the prostanoid pathway in the black tiger shrimp Penaeus monodon based on the amplification of nine prostanoid biosynthesis genes: cytosolic phospholipase A2, hematopoietic prostaglandin D synthase, glutathione-dependent prostaglandin D synthase, prostaglandin E synthase 1, prostaglandin E synthase 2, prostaglandin E synthase 3, prostaglandin F synthase, thromboxane A synthase and cyclooxygenase. TBLASTX analysis confirmed the identities of these genes with 51-99% sequence identities to their closest homologs. In addition, prostaglandin F2α (PGF2α), which is a product of the prostaglandin F synthase enzyme, was detected for the first time in P. monodon ovaries along with the previously identified PUFAs and prostaglandin E2 (PGE2) using RP-HPLC and mass-spectrometry. The prostaglandin synthase activity was also observed in shrimp ovary homogenates using in vitro activity assay. When prostaglandin biosynthesis was examined in different stages of shrimp ovaries, we found that the amounts of prostaglandin F synthase gene transcripts and PGF2α decreased as the ovaries matured. These findings not only indicate the presence of a functional prostanoid pathway in penaeid shrimp, but also suggest a possible role of the PGF2α biosynthesis in shrimp ovarian development.
Collapse
Affiliation(s)
- Wananit Wimuttisuk
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
- ** E-mail:
| | - Punsa Tobwor
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Pacharawan Deenarn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Kannawat Danwisetkanjana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Decha Pinkaew
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Kanyawim Kirtikara
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Vanicha Vichai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| |
Collapse
|
12
|
Corso G, Coletta I, Ombrato R. Murine mPGES-1 3D Structure Elucidation and Inhibitors Binding Mode Predictions by Homology Modeling and Site-Directed Mutagenesis. J Chem Inf Model 2013; 53:1804-17. [DOI: 10.1021/ci400180f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Gaia Corso
- R&D, †Computational Chemistry Lab, ‡In vitro Pharmacology Dev., Angelini Research Center, ACRAF S.p.A. P.le della Stazione, snc, I-00040 Santa Palomba, Pomezia (RM), Italy
| | - Isabella Coletta
- R&D, †Computational Chemistry Lab, ‡In vitro Pharmacology Dev., Angelini Research Center, ACRAF S.p.A. P.le della Stazione, snc, I-00040 Santa Palomba, Pomezia (RM), Italy
| | - Rosella Ombrato
- R&D, †Computational Chemistry Lab, ‡In vitro Pharmacology Dev., Angelini Research Center, ACRAF S.p.A. P.le della Stazione, snc, I-00040 Santa Palomba, Pomezia (RM), Italy
| |
Collapse
|
13
|
KOEBERLE ANDREAS, WERZ OLIVER. Microsomal Prostaglandin E2 Synthase-1. ANTI-INFLAMMATORY DRUG DISCOVERY 2012. [DOI: 10.1039/9781849735346-00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The prostanoids and leukotrienes (LTs) formed from arachidonic acid (AA) via the cyclooxygenase (COX)-1/2 and 5-lipoxygenase (5-LO) pathway, respectively, mediate inflammatory responses, chronic tissue remodelling, cancer, asthma and autoimmune disorders, but also possess homeostatic functions in the gastrointestinal tract, uterus, brain, kidney, vasculature and host defence. Based on the manifold functions of these eicosanoids, the clinical use of non-steroidal anti-inflammatory drugs (NSAIDs), a class of drugs that block formation of all prostanoids, is hampered by severe side-effects including gastrointestinal injury, renal irritations and cardiovascular risks. Therefore, anti-inflammatory agents interfering with eicosanoid biosynthesis require a well-balanced pharmacological profile to minimize these on-target side-effects. Current anti-inflammatory research aims at identifying compounds that can suppress the massive formation of pro-inflammatory prostaglandin (PG)E2 without affecting homeostatic PGE2 and PGI2 synthesis. The inducible microsomal prostaglandin E2 synthase-1 (mPGES-1) is one promising target enzyme. We will give an overview about the structure, regulation and function of mPGES-1 and then present novel inhibitors of mPGES-1 that may possess a promising pharmacological profile.
Collapse
Affiliation(s)
- ANDREAS KOEBERLE
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy University Jena Philosophenweg 14, D-07743 Jena Germany
| | - OLIVER WERZ
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy University Jena Philosophenweg 14, D-07743 Jena Germany
| |
Collapse
|
14
|
Abstract
mPGES-1 (microsomal prostaglandin E synthase-1) is a newly recognized target for the treatment of inflammatory diseases. As the terminal enzyme of the prostaglandin production pathway, mPGES-1 inhibition may have a low risk of side effects. Inhibitors of mPGES-1 have attracted considerable attention as next-generation anti-inflammatory drugs. However, as mPGES-1 is a membrane protein, its enzymatic mechanism remains to be disclosed fully. We used MD (molecular dynamics) simulations, mutation analysis, hybrid experiments and co-IP (co-immunoprecipitation) to investigate the conformation transitions of mPGES-1 during catalysis. mPGES-1 forms a homotrimer with three substrate-binding sites (pockets). In the MD simulation, only one substrate molecule could bind to one of the pockets and form the active complex, suggesting that the mPGES-1 trimer has only one pocket active at any given time. This one-third-of-the-sites reactivity enzyme mechanism was verified further by hybridization experiments and MD simulations. The results of the present study revealed for the first time a novel one-third-of-the-sites reactivity enzyme mechanism for mPGES-1, and the unique substrate-binding pocket in our model constituted an active conformation that was suitable for further enzymatic mechanism study and structural-based drug design against mPGES-1.
Collapse
|
15
|
Hamza A, Zhao X, Tong M, Tai HH, Zhan CG. Novel human mPGES-1 inhibitors identified through structure-based virtual screening. Bioorg Med Chem 2011; 19:6077-86. [PMID: 21920764 PMCID: PMC3183289 DOI: 10.1016/j.bmc.2011.08.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/15/2011] [Accepted: 08/18/2011] [Indexed: 11/26/2022]
Abstract
Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible prostaglandin E synthase after exposure to pro-inflammatory stimuli and, therefore, represents a novel target for therapeutic treatment of acute and chronic inflammatory disorders. It is essential to identify mPGES-1 inhibitors with novel scaffolds as new leads or hits for the purpose of drug design and discovery that aim to develop the next-generation anti-inflammatory drugs. Herein we report novel mPGES-1 inhibitors identified through a combination of large-scale structure-based virtual screening, flexible docking, molecular dynamics simulations, binding free energy calculations, and in vitro assays on the actual inhibitory activity of the computationally selected compounds. The computational studies are based on our recently developed three-dimensional (3D) structural model of mPGES-1 in its open state. The combined computational and experimental studies have led to identification of new mPGES-1 inhibitors with new scaffolds. In particular, (Z)-5-benzylidene-2-iminothiazolidin-4-one is a promising novel scaffold for the further rational design and discovery of new mPGES-1 inhibitors. To our best knowledge, this is the first time a 3D structural model of the open state mPGES-1 is used in structure-based virtual screening of a large library of available compounds for the mPGES-1 inhibitor identification. The positive experimental results suggest that our recently modeled trimeric structure of mPGES-1 in its open state is ready for the structure-based drug design and discovery.
Collapse
Affiliation(s)
| | | | - Min Tong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Hsin-Hsiung Tai
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| |
Collapse
|
16
|
Spahiu L, Stenberg P, Larsson C, Wannberg J, Alterman M, Kull B, Nekhotiaeva N, Morgenstern R. A Facilitated Approach to Evaluate the Inhibitor Mode and Potency of Compounds Targeting Microsomal Prostaglandin E Synthase-1. Assay Drug Dev Technol 2011; 9:487-95. [DOI: 10.1089/adt.2010.0350] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | - Ralf Morgenstern
- Actar AB, Solna, Sweden
- NovaSAID AB, Solna, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Li CL, Chang TT, Sun MF, Chen HY, Tsai FJ, Fisher M, Chen CYC, Lee CL, Fang WC, Wong YH. Structure-based and ligand-based drug design for microsomal prostaglandin E synthase-1 inhibitors. MOLECULAR SIMULATION 2011. [DOI: 10.1080/08927022.2010.538054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Hamza A, Tong M, AbdulHameed MDM, Liu J, Goren AC, Tai HH, Zhan CG. Understanding microscopic binding of human microsomal prostaglandin E synthase-1 (mPGES-1) trimer with substrate PGH2 and cofactor GSH: insights from computational alanine scanning and site-directed mutagenesis. J Phys Chem B 2010; 114:5605-16. [PMID: 20369883 PMCID: PMC2879598 DOI: 10.1021/jp100668y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microsomal prostaglandin E synthase-1 (mPGES-1) is an essential enzyme involved in a variety of diseases and is the most promising target for the design of next-generation anti-inflammatory drugs. In order to establish a solid structural base, we recently developed a model of mPGES-1 trimer structure by using available crystal structures of both microsomal glutathione transferase-1 (MGST1) and ba3-cytochrome c oxidase as templates. The mPGES-1 trimer model has been used in the present study to examine the detailed binding of mPGES-1 trimer with substrate PGH(2) and cofactor GSH. Results obtained from the computational alanine scanning reveal the contribution of each residue at the protein-ligand interaction interface to the binding affinity, and the computational predictions are supported by the data obtained from the corresponding wet experimental tests. We have also compared our mPGES-1 trimer model with other available 3D models, including an alternative homology model and a low-resolution crystal structure, and found that our mPGES-1 trimer model based on the crystal structures of both MGST1 and ba3-cytochrome c oxidase is more reasonable than the other homology model of mPGES-1 trimer constructed by simply using a low-resolution crystal structure of MGST1 trimer alone as a template. The available low-resolution crystal structure of mPGES-1 trimer represents a closed conformation of the enzyme and thus is not suitable for studying mPGES-1 binding with ligands. Our mPGES-1 trimer model represents a reasonable open conformation of the enzyme and is therefore promising for studying mPGES-1 binding with ligands in future structure-based drug design targeting mPGES-1.
Collapse
Affiliation(s)
- Adel Hamza
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536
| | - Min Tong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536
| | - Mohamed Diwan M. AbdulHameed
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536
| | - Junjun Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536
| | - Alan C. Goren
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536
- Division of Natural Sciences & Mathematics, Transylvania University, Lexington, KY 40508
| | - Hsin-Hsiung Tai
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536
| |
Collapse
|
19
|
Abstract
BACKGROUND Prostaglandin H2 (PGH2) is a common precursor for the synthesis of five different Prostanoids via specific Prostanoid Synthases. The binding of this substrate with these Synthases is not properly understood. Moreover, currently no crystal structure of complexes bound with PGH2 has been reported. Hence, understanding the interactions of PGH2 and characterizing its binding sites in these synthases is crucial for developing novel therapeutics based on these proteins as targets. RESULTS Shape and physico-chemical properties of the PGH2 binding sites of the four prostanoid synthases were analyzed and compared in order to understand the molecular basis of the specificity. This study provides models with predicted pockets for the binding of PGH2 with PGD, PGE, PGF and PGI Synthases. The results closely match with available experimental data. The comparison showed seven physico-chemical features that are common to the four PGH2 binding sites. However this common pattern is not statistically unique and is not specific enough to distinguish between proteins that can or cannot bind PGH2. A large scale search in ASTRAL data bank, a non redundant Protein Data Bank, for a similar pattern showed the uniqueness of each of the PGH2 binding site in these Synthases. CONCLUSION The binding pockets in PGDS, PGES, PGFS and PGIS are unique and do not share significant commonality which can be characterized as a PGH2 binding site. Local comparison of these protein structures highlights a case of convergent evolution in analogous functional sites.
Collapse
|
20
|
Koeberle A, Haberl EM, Rossi A, Pergola C, Dehm F, Northoff H, Troschuetz R, Sautebin L, Werz O. Discovery of benzo[g]indol-3-carboxylates as potent inhibitors of microsomal prostaglandin E2 synthase-1. Bioorg Med Chem 2009; 17:7924-32. [DOI: 10.1016/j.bmc.2009.10.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/09/2009] [Accepted: 10/13/2009] [Indexed: 12/13/2022]
|
21
|
Buczynski MW, Dumlao DS, Dennis EA. Thematic Review Series: Proteomics. An integrated omics analysis of eicosanoid biology. J Lipid Res 2009; 50:1015-38. [PMID: 19244215 PMCID: PMC2681385 DOI: 10.1194/jlr.r900004-jlr200] [Citation(s) in RCA: 400] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 02/23/2009] [Indexed: 11/20/2022] Open
Abstract
Eicosanoids have been implicated in a vast number of devastating inflammatory conditions, including arthritis, atherosclerosis, pain, and cancer. Currently, over a hundred different eicosanoids have been identified, with many having potent bioactive signaling capacity. These lipid metabolites are synthesized de novo by at least 50 unique enzymes, many of which have been cloned and characterized. Due to the extensive characterization of eicosanoid biosynthetic pathways, this field provides a unique framework for integrating genomics, proteomics, and metabolomics toward the investigation of disease pathology. To facilitate a concerted systems biology approach, this review outlines the proteins implicated in eicosanoid biosynthesis and signaling in human, mouse, and rat. Applications of the extensive genomic and lipidomic research to date illustrate the questions in eicosanoid signaling that could be uniquely addressed by a thorough analysis of the entire eicosanoid proteome.
Collapse
Affiliation(s)
| | | | - Edward A. Dennis
- Department of Chemistry and Biochemistry, Department of Pharmacology, and School of Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
22
|
Chen CYC. Chemoinformatics and pharmacoinformatics approach for exploring the GABA-A agonist from Chinese herb suanzaoren. J Taiwan Inst Chem Eng 2009. [DOI: 10.1016/j.jtice.2008.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Kim WI, Choi KA, Do HS, Yu YG. Expression and purification of human mPGES-1 in E. coli and identification of inhibitory compounds from a drug-library. BMB Rep 2008; 41:808-13. [DOI: 10.5483/bmbrep.2008.41.11.808] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Huang X, Zheng F, Stokes C, Papke RL, Zhan CG. Modeling binding modes of alpha7 nicotinic acetylcholine receptor with ligands: the roles of Gln117 and other residues of the receptor in agonist binding. J Med Chem 2008; 51:6293-302. [PMID: 18826295 DOI: 10.1021/jm800607u] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extensive molecular docking, molecular dynamics simulations, and binding free energy calculations have been performed to understand how alpha7-specific agonists of nicotinic acetylcholine receptor (nAChR), including AR-R17779 (1), GTS-21 (4), and 4-OH-GTS-21 (5), interact with the alpha7 receptor, leading to important new insights into the receptor-agonist binding. In particular, the cationic head of 4 and 5 has favorable hydrogen bonding and cation-pi interactions with residue Trp149. The computational results have also led us to better understand the roles of Gln117 and other residues in the receptor binding with agonists. The computational predictions are supported by data obtained from wet experimental tests. The new insights into the binding and structure-activity relationship obtained from this study should be valuable for future rational design of more potent and selective agonists of the alpha7 receptor.
Collapse
Affiliation(s)
- Xiaoqin Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
25
|
Homo-timeric structural model of human microsomal prostaglandin E synthase-1 and characterization of its substrate/inhibitor binding interactions. J Comput Aided Mol Des 2008; 23:13-24. [DOI: 10.1007/s10822-008-9233-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
|
26
|
Structural basis for induced formation of the inflammatory mediator prostaglandin E2. Proc Natl Acad Sci U S A 2008; 105:11110-5. [PMID: 18682561 DOI: 10.1073/pnas.0802894105] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prostaglandins (PG) are bioactive lipids produced from arachidonic acid via the action of cyclooxygenases and terminal PG synthases. Microsomal prostaglandin E synthase 1 (MPGES1) constitutes an inducible glutathione-dependent integral membrane protein that catalyzes the oxidoreduction of cyclooxygenase derived PGH(2) into PGE(2). MPGES1 has been implicated in a number of human diseases or pathological conditions, such as rheumatoid arthritis, fever, and pain, and is therefore regarded as a primary target for development of novel antiinflammatory drugs. To provide a structural basis for insight in the catalytic mechanism, we determined the structure of MPGES1 in complex with glutathione by electron crystallography from 2D crystals induced in the presence of phospholipids. Together with results from site-directed mutagenesis and activity measurements, we can thereby demonstrate the role of specific amino acid residues. Glutathione is found to bind in a U-shaped conformation at the interface between subunits in the protein trimer. It is exposed to a site facing the lipid bilayer, which forms the specific environment for the oxidoreduction of PGH(2) to PGE(2) after displacement of the cytoplasmic half of the N-terminal transmembrane helix. Hence, insight into the dynamic behavior of MPGES1 and homologous membrane proteins in inflammation and detoxification is provided.
Collapse
|
27
|
Hamza A, AbdulHameed MDM, Zhan CG. Understanding Microscopic Binding of Human Microsomal Prostaglandin E Synthase-1 with Substrates and Inhibitors by Molecular Modeling and Dynamics Simulation. J Phys Chem B 2008; 112:7320-9. [DOI: 10.1021/jp8007688] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Adel Hamza
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, Kentucky 40536
| | - Mohamed Diwan M. AbdulHameed
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, Kentucky 40536
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, Kentucky 40536
| |
Collapse
|
28
|
Friesen RW, Mancini JA. Microsomal Prostaglandin E2 Synthase-1 (mPGES-1): A Novel Anti-Inflammatory Therapeutic Target. J Med Chem 2008; 51:4059-67. [DOI: 10.1021/jm800197b] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Richard W. Friesen
- Departments of Medicinal Chemistry and Biochemistry, Merck Frosst Centre for Therapeutic Research, 16711 Trans Canada Highway, Kirkland, Quebec H9H 3L1, Canada
| | - Joseph A. Mancini
- Departments of Medicinal Chemistry and Biochemistry, Merck Frosst Centre for Therapeutic Research, 16711 Trans Canada Highway, Kirkland, Quebec H9H 3L1, Canada
| |
Collapse
|
29
|
Samuelsson B, Morgenstern R, Jakobsson PJ. Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacol Rev 2007; 59:207-24. [PMID: 17878511 DOI: 10.1124/pr.59.3.1] [Citation(s) in RCA: 402] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prostaglandin E(2) (PGE(2)) is the most abundant prostaglandin in the human body. It has a large number of biological actions that it exerts via four types of receptors, EP1-4. PGE(2) is formed from arachidonic acid by cyclooxygenase (COX-1 and COX-2)-catalyzed formation of prostaglandin H(2) (PGH(2)) and further transformation by PGE synthases. The isomerization of the endoperoxide PGH(2) to PGE(2) is catalyzed by three different PGE synthases, viz. cytosolic PGE synthase (cPGES) and two membrane-bound PGE synthases, mPGES-1 and mPGES-2. Of these isomerases, cPGES and mPGES-2 are constitutive enzymes, whereas mPGES-1 is mainly an induced isomerase. cPGES uses PGH(2) produced by COX-1 whereas mPGES-1 uses COX-2-derived endoperoxide. mPGES-2 can use both sources of PGH(2). mPGES-1 is a member of the membrane associated proteins involved in eicosanoid and glutathione metabolism (MAPEG) superfamily. It requires glutathione as an essential cofactor for its activity. mPGES-1 is up-regulated in response to various proinflammatory stimuli with a concomitant increased expression of COX-2. The coordinate increased expression of COX-2 and mPGES-1 is reversed by glucocorticoids. Differences in the kinetics of the expression of the two enzymes suggest distinct regulatory mechanisms for their expression. Studies, mainly from disruption of the mPGES-1 gene in mice, indicate key roles of mPGES-1-generated PGE(2) in female reproduction and in pathological conditions such as inflammation, pain, fever, anorexia, atherosclerosis, stroke, and tumorigenesis. These findings indicate that mPGES-1 is a potential target for the development of therapeutic agents for treatment of several diseases.
Collapse
Affiliation(s)
- Bengt Samuelsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | | | | |
Collapse
|
30
|
Huang X, Zhan CG. How dopamine transporter interacts with dopamine: insights from molecular modeling and simulation. Biophys J 2007; 93:3627-39. [PMID: 17704152 PMCID: PMC2072054 DOI: 10.1529/biophysj.107.110924] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
By performing homology modeling, molecular docking, and molecular dynamics simulations, we have developed three-dimensional (3D) structural models of both dopamine transporter and dopamine transporter-dopamine complex in the environment of lipid bilayer and solvent water. According to the simulated structure of dopamine transporter-dopamine complex, dopamine was orientated in a hydrophobic pocket at the midpoint of the membrane. The modeled 3D structures provide some detailed structural and mechanistic insights concerning how dopamine transporter (DAT) interacts with dopamine at atomic level, extending our mechanistic understanding of the dopamine reuptake with the help of Na(+) ions. The general features of the modeled 3D structures are consistent with available experimental data. Based on the modeled structures, our calculated binding free energy (DeltaG(bind) = -6.4 kcal/mol) for dopamine binding with DAT is also reasonably close to the experimentally derived DeltaG(bind) value of -7.4 kcal/mol. Finally, a possible dopamine-entry pathway, which involves formation and breaking of the salt bridge between side chains of Arg(85) and Asp(476), is proposed based on the results obtained from the modeling and molecular dynamics simulation. The new structural and mechanistic insights obtained from this computational study are expected to stimulate future, further biochemical and pharmacological studies on the detailed structures and mechanisms of DAT and other homologous transporters.
Collapse
Affiliation(s)
- Xiaoqin Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | | |
Collapse
|