1
|
Paraskevaidis I, Kourek C, Farmakis D, Tsougos E. Heart Failure: A Deficiency of Energy-A Path Yet to Discover and Walk. Biomedicines 2024; 12:2589. [PMID: 39595155 PMCID: PMC11592498 DOI: 10.3390/biomedicines12112589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Heart failure is a complex syndrome and our understanding and therapeutic approach relies mostly on its phenotypic presentation. Notably, the heart is characterized as the most energy-consuming organ, being both a producer and consumer, in order to satisfy multiple cardiac functions: ion exchange, electromechanical coordination, excitation-contraction coupling, etc. By obtaining further knowledge of the cardiac energy field, we can probably better characterize the basic pathophysiological events occurring in heart disease patients and understand the metabolic substance changes, the relationship between the alteration of energy production/consumption, and hence energetic deficiency not only in the heart as a whole but in every single cardiac territory, which will hopefully provide us with the opportunity to uncover the beginning of the heart failure process. In this respect, using (a) newer imaging techniques, (b) biomedicine, (c) nanotechnology, and (d) artificial intelligence, we can gain a deeper understanding of this complex syndrome. This, in turn, can lead to earlier and more effective therapeutic approaches, ultimately improving human health. To date, the scientific community has not given sufficient attention to the energetic starvation model. In our view, this review aims to encourage scientists and the medical community to conduct studies for a better understanding and treatment of this syndrome.
Collapse
Affiliation(s)
- Ioannis Paraskevaidis
- 6th Department of Cardiology, Hygeia Hospital, 151 23 Athens, Greece; (I.P.); (E.T.)
| | - Christos Kourek
- Department of Cardiology, 417 Army Share Fund Hospital of Athens (NIMTS), 115 21 Athens, Greece;
| | - Dimitrios Farmakis
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital, Medical School, National and Kapodistiran University of Athens, 124 62 Athens, Greece
| | - Elias Tsougos
- 6th Department of Cardiology, Hygeia Hospital, 151 23 Athens, Greece; (I.P.); (E.T.)
| |
Collapse
|
2
|
Lauko K, Nesterowicz M, Trocka D, Dańkowska K, Żendzian-Piotrowska M, Zalewska A, Maciejczyk M. Novel Properties of Old Propranolol-Assessment of Antiglycation Activity through In Vitro and In Silico Approaches. ACS OMEGA 2024; 9:27559-27577. [PMID: 38947802 PMCID: PMC11209686 DOI: 10.1021/acsomega.4c03025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
Hypertension has earned the "silent killer" nickname since it may lead to a number of comorbidities, including diabetes and cardiovascular diseases. Oxidative stress and protein glycation play vital roles in the pathogenesis of hypertension. Several studies have shown that they profoundly account for vascular dysfunction, endothelial damage, and disruption of blood pressure regulatory mechanisms. Of particular note are advanced glycation end products (AGEs). AGEs alter vascular tissues' functional and mechanical properties by binding to receptors for advanced glycation end products (RAGE), stimulating inflammation and free radical-mediated pathways. Propranolol, a nonselective beta-adrenergic receptor antagonist, is one of the most commonly used drugs to treat hypertension and cardiovascular diseases. Our study is the first to analyze propranolol's effects on protein glycoxidation through in vitro and in silico approaches. Bovine serum albumin (BSA) was utilized to evaluate glycoxidation inhibition by propranolol. Propranolol (1 mM) and BSA (0.09 mM) were incubated with different glycating (0.5 M glucose, fructose, and galactose for 6 days and 2.5 mM glyoxal and methylglyoxal for 12 h) or oxidizing agents (chloramine T for 1 h). Biomarkers of protein glycation (Amadori products (APs), β-amyloid (βA), and advanced glycation end products (AGEs)), protein glycoxidation (dityrosine (DT), kynurenine (KYN), and N-formylkynurenine (NFK)), protein oxidation (protein carbonyls (PCs), and advanced oxidation protein products (AOPPs)) were measured by means of colorimetric and fluorimetric methods. The scavenging of reactive oxygen species (hydrogen peroxide, hydroxyl radical, and nitric oxide) and the antioxidant capacity (2,2-diphenyl-1-picrylhydrazyl radical and ferrous ion chelating (FIC) assays)) of propranolol were also evaluated. Additionally, in silico docking was performed to showcase propranolol's interaction with BSA, glycosides, and AGE/RAGE pathway proteins. The products of protein glycation (↓APs, ↓βA, ↓AGEs), glycoxidation (↓DT, ↓KYN, ↓NFK), and oxidation (↓PCs, ↓AOPPs) prominently decreased in the BSA samples with both glycating/oxidizing factors and propranolol. The antiglycoxidant properties of propranolol were similar to those of aminoguanidine, a known protein oxidation inhibitor, and captopril, which is an established antioxidant. Propranolol showed a potent antioxidant activity in the FIC and H2O2 scavenging assays, comparable to aminoguanidine and captopril. In silico analysis indicated propranolol's antiglycative properties during its interaction with BSA, glycosidases, and AGE/RAGE pathway proteins. Our results confirm that propranolol may decrease protein oxidation and glycoxidation in vitro. Additional studies on human and animal models are vital for in vivo verification of propranolol's antiglycation activity, as this discovery might hold the key to the prevention of diabetic complications among cardiology-burdened patients.
Collapse
Affiliation(s)
- Kamil
Klaudiusz Lauko
- ‘Biochemistry
of Civilisation Diseases’ Students’ Scientific Club
at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Miłosz Nesterowicz
- ‘Biochemistry
of Civilisation Diseases’ Students’ Scientific Club
at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Daria Trocka
- ‘Biochemistry
of Civilisation Diseases’ Students’ Scientific Club
at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Karolina Dańkowska
- ‘Biochemistry
of Civilisation Diseases’ Students’ Scientific Club
at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Małgorzata Żendzian-Piotrowska
- Department of Hygiene, Epidemiology and
Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Anna Zalewska
- Independent Laboratory of Experimental
Dentistry, Medical University of Bialystok, 24a M. Sklodowskiej-Curie Street , Bialystok 15-274, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and
Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| |
Collapse
|
3
|
Pagonas N, Mueller R, Weiland L, Jaensch M, Dammermann W, Seibert FS, Hillmeister P, Buschmann I, Christ M, Ritter O, Westhoff TH, Sasko B, Kelesidis T. Oxidized high-density lipoprotein associates with atrial fibrillation. Heart Rhythm 2024; 21:362-369. [PMID: 38040404 PMCID: PMC11073573 DOI: 10.1016/j.hrthm.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/07/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common heart arrhythmia and considered to be a progressive chronic disease associated with increased morbidity and mortality. Recent data suggest a link between inflammation, oxidative stress, and AF, although the underlying mechanisms are not fully understood. Because oxidized lipoproteins cause structural damage and electrophysiologic changes in cardiomyocytes, it is feasible that the transformation of atheroprotective high-density lipoprotein (HDL) into dysfunctional HDL contributes to the development of AF. OBJECTIVE The purpose of this study was to determine whether a reduced antioxidant function of HDL is associated with the presence of AF. METHODS In this multicenter cross-sectional cohort study, we assessed HDL function in sera of 1206 participants. Patients were divided into groups according to the presence of AF (n = 233) or no AF (n = 973). A validated cell-free biochemical assay was used to determine reduced HDL antioxidant function as assessed by increased normalized HDL lipid peroxide content (nHDLox). RESULTS Participants with AF had a 9% higher mean relative nHDLox compared to persons without AF (P = .025). nHDLox was strongly associated with AF in all models of logistic regression, including the analysis adjusted for age, sex, and risk factors for AF (all P ≤.01). CONCLUSION Reduced antioxidant HDL function is associated with the presence of AF, which supports growing evidence that impaired lipoprotein function is linked to electrophysiological changes in cardiomyocytes. nHDLox is one of several contributors to the initiation and perpetuation of AF.
Collapse
Affiliation(s)
- Nikolaos Pagonas
- Department of Cardiology, University Hospital Ruppin-Brandenburg, Medical School Theodor Fontane, Neuruppin, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The (MHB) Theodor Fontane and the University of Potsdam, Potsdam, Germany.
| | - Rhea Mueller
- Department of Cardiology, University Medical Center Brandenburg an der Havel, Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Linda Weiland
- Department of Cardiology, University Hospital Ruppin-Brandenburg, Medical School Theodor Fontane, Neuruppin, Germany
| | - Monique Jaensch
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The (MHB) Theodor Fontane and the University of Potsdam, Potsdam, Germany; Department of Cardiology, University Medical Center Brandenburg an der Havel, Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Werner Dammermann
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The (MHB) Theodor Fontane and the University of Potsdam, Potsdam, Germany; Center for Internal Medicine II, University Medical Center Brandenburg an der Havel, Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Felix S Seibert
- Medical Department I, Marien Hospital Herne, Ruhr-University of Bochum, Herne, Germany
| | - Philipp Hillmeister
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The (MHB) Theodor Fontane and the University of Potsdam, Potsdam, Germany; Department of Angiology, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Ivo Buschmann
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The (MHB) Theodor Fontane and the University of Potsdam, Potsdam, Germany; Department of Angiology, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Martin Christ
- Department of Cardiology, Knappschaftskrankenhaus Bottrop, Academic Teaching Hospital, University Duisburg-Essen, Bottrop, Germany
| | - Oliver Ritter
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The (MHB) Theodor Fontane and the University of Potsdam, Potsdam, Germany; Department of Cardiology, University Medical Center Brandenburg an der Havel, Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Timm H Westhoff
- Medical Department I, Marien Hospital Herne, Ruhr-University of Bochum, Herne, Germany
| | - Benjamin Sasko
- Department of Cardiology, University Medical Center Brandenburg an der Havel, Medical School Theodor Fontane, Brandenburg an der Havel, Germany; Medical Department II, Marien Hospital Herne, Ruhr-University of Bochum, Herne, Germany
| | - Theodoros Kelesidis
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
4
|
Bețiu AM, Noveanu L, Hâncu IM, Lascu A, Petrescu L, Maack C, Elmér E, Muntean DM. Mitochondrial Effects of Common Cardiovascular Medications: The Good, the Bad and the Mixed. Int J Mol Sci 2022; 23:13653. [PMID: 36362438 PMCID: PMC9656474 DOI: 10.3390/ijms232113653] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 07/25/2023] Open
Abstract
Mitochondria are central organelles in the homeostasis of the cardiovascular system via the integration of several physiological processes, such as ATP generation via oxidative phosphorylation, synthesis/exchange of metabolites, calcium sequestration, reactive oxygen species (ROS) production/buffering and control of cellular survival/death. Mitochondrial impairment has been widely recognized as a central pathomechanism of almost all cardiovascular diseases, rendering these organelles important therapeutic targets. Mitochondrial dysfunction has been reported to occur in the setting of drug-induced toxicity in several tissues and organs, including the heart. Members of the drug classes currently used in the therapeutics of cardiovascular pathologies have been reported to both support and undermine mitochondrial function. For the latter case, mitochondrial toxicity is the consequence of drug interference (direct or off-target effects) with mitochondrial respiration/energy conversion, DNA replication, ROS production and detoxification, cell death signaling and mitochondrial dynamics. The present narrative review aims to summarize the beneficial and deleterious mitochondrial effects of common cardiovascular medications as described in various experimental models and identify those for which evidence for both types of effects is available in the literature.
Collapse
Affiliation(s)
- Alina M. Bețiu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Lavinia Noveanu
- Department of Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Iasmina M. Hâncu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Ana Lascu
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Department of Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Lucian Petrescu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
- Department of Internal Medicine 1, University Clinic Würzburg, 97078 Würzburg, Germany
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, BMC A13, 221 84 Lund, Sweden
- Abliva AB, Medicon Village, 223 81 Lund, Sweden
| | - Danina M. Muntean
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Department of Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| |
Collapse
|
5
|
Ambrosino P, Bachetti T, D’Anna SE, Galloway B, Bianco A, D’Agnano V, Papa A, Motta A, Perrotta F, Maniscalco M. Mechanisms and Clinical Implications of Endothelial Dysfunction in Arterial Hypertension. J Cardiovasc Dev Dis 2022; 9:136. [PMID: 35621847 PMCID: PMC9146906 DOI: 10.3390/jcdd9050136] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
The endothelium is composed of a monolayer of endothelial cells, lining the interior surface of blood and lymphatic vessels. Endothelial cells display important homeostatic functions, since they are able to respond to humoral and hemodynamic stimuli. Thus, endothelial dysfunction has been proposed as a key and early pathogenic mechanism in many clinical conditions. Given the relevant repercussions on cardiovascular risk, the complex interplay between endothelial dysfunction and systemic arterial hypertension has been a matter of study in recent years. Numerous articles have been published on this issue, all of which contribute to providing an interesting insight into the molecular mechanisms of endothelial dysfunction in arterial hypertension and its role as a biomarker of inflammation, oxidative stress, and vascular disease. The prognostic and therapeutic implications of endothelial dysfunction have also been analyzed in this clinical setting, with interesting new findings and potential applications in clinical practice and future research. The aim of this review is to summarize the pathophysiology of the relationship between endothelial dysfunction and systemic arterial hypertension, with a focus on the personalized pharmacological and rehabilitation strategies targeting endothelial dysfunction while treating hypertension and cardiovascular comorbidities.
Collapse
Affiliation(s)
- Pasquale Ambrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy;
| | - Tiziana Bachetti
- Istituti Clinici Scientifici Maugeri IRCCS, Scientific Direction, 27100 Pavia, Italy;
| | - Silvestro Ennio D’Anna
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy;
| | - Brurya Galloway
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (B.G.); (A.B.); (V.D.); (F.P.)
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (B.G.); (A.B.); (V.D.); (F.P.)
| | - Vito D’Agnano
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (B.G.); (A.B.); (V.D.); (F.P.)
| | - Antimo Papa
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy;
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, Italy;
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (B.G.); (A.B.); (V.D.); (F.P.)
| | - Mauro Maniscalco
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy;
- Department of Clinical Medicine and Surgery, “Federico II” University, 80131 Naples, Italy
| |
Collapse
|
6
|
Flacourtia indica fruit extract modulated antioxidant gene expression, prevented oxidative stress and ameliorated kidney dysfunction in isoprenaline administered rats. Biochem Biophys Rep 2021; 26:101012. [PMID: 34041370 PMCID: PMC8142055 DOI: 10.1016/j.bbrep.2021.101012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/13/2021] [Accepted: 04/30/2021] [Indexed: 11/22/2022] Open
Abstract
This study evaluated the effect of Flacourtia indica fruit extract against isoprenaline (ISO) induced renal damage in rats. This investigation showed that ISO administration in rats increased the level oxidative stress biomarkers such as malondialdehyde (MDA), nitric oxide (NO), advanced protein oxidation product (APOP) in kidneys followed by a decrease in antioxidant enzymes functions. Flacourtia indica fruit extract, which is rich in strong antioxidants, also reduced the MDA, NO and APOP level in kidney of ISO administered rats. Inflammation and necrosis was also visible in kidney section of ISO administered rats which was significantly prevented by atenolol and Flacourtia indica fruit extract. Moreover, atenolol and Flacourtia indica fruit extract also modulated the genes expressions related to inflammation and oxidative stress in kidneys. The beneficial effects could be attributed to the presence of a number of phenolic antioxidants. This study suggests that Flacourtia indica fruit extract may prevent kidney dysfunction in ISO administered rats, probably by preventing oxidative stress and inflammation.
Collapse
|
7
|
Kakaraparthi A, Godwin Potnuri A, Allakonda L. Beta 1 adrenoceptor blockade promotes angiogenesis in hypertrophied myocardium of transverse aortic constricted mice. Clin Exp Pharmacol Physiol 2021; 48:121-128. [PMID: 32750731 DOI: 10.1111/1440-1681.13389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 01/22/2023]
Abstract
Left ventricular hypertrophy (LVH) is an adaptive structural remodelling consequent to uncontrolled blood pressure. Impaired angiogenesis plays a vital role in transiting LVH into cardiac failure. Catecholamines modulate myocardial function through beta adrenoceptors, and their blockers (β-AR) reduce cardiovascular morbidity and mortality by decelerating the LVH progression. Nonetheless, the effect of β-AR blockers on myocardial vascular bed remains largely obscure. Hence, this study is focussed on analysing the possible outcomes of β-AR blockers on myocardial vascular remodelling using a surgically induced LVH mice model. Transverse aortic constricted mice and sham-operated mice were administered with metoprolol at a dose of 30 mg/kg/d for 60 days and myocardial vascular endothelial growth factor (VEGF) alpha levels, GSH/GSSG ratio, myocardial protein carbonyl content, hypertrophy index and global myocardial function, trans-aortic fluid dynamics and expression pattern of angiopoietin-1 and VEGF alpha were assessed. These findings were further confirmed by histochemical analysis for myocardial capillary density, perivascular fibrosis ratio and intimal thickening. Sub- chronic β-AR blockade reduced the oxidative stress, hypertrophic index, intimal thickening and perivascular fibrosis ratio. A marked increase in myocardial VEGF, angiopoietin 1, global myocardial function and myocardial capillary density was also observed. There was a reduction in the LVH and upregulation of myocardial angiogenesis concluding that β-AR blockers prevent adverse vascular remodelling which might underlie its concealed mechanism of action.
Collapse
Affiliation(s)
- Ajith Kakaraparthi
- Department of Pharmacology, Malla Reddy College of Pharmacy, Dhoolapally, Hyderabad, Telangana, India
| | - Ajay Godwin Potnuri
- Department of Animal Physiology and Pharmacology, ICMR-National Animal Resource Facility for Biomedical Research, Genome Valley, Shamirpet, Hyderabad, Telangana, India
| | - Lingesh Allakonda
- Department of Pharmacology, G. Pulla Reddy College of Pharmacy, Mehadipatnam, Hyderabad, Telangana, India
| |
Collapse
|
8
|
Esmaeeli A, Keshavarz Z, Dehdar F, Assadi M, Seyedabadi M. The effects of carvedilol, metoprolol and propranolol on cisplatin-induced kidney injury. Drug Chem Toxicol 2020; 45:1558-1564. [PMID: 33198524 DOI: 10.1080/01480545.2020.1846551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The β-adrenoceptor blockers may have anti-oxidant properties or induce β-arrestin recruitment beyond classical desensitization of receptor/G protein coupling, offering potential therapeutic benefits. Here, we investigated the effects of carvedilol, metoprolol and propranolol in an animal model of cisplatin-induced nephrotoxicity. Rats received the β-blockers (3 or 12 mg/kg/day) with or without cisplatin, and kidney function was investigated using renal scintigraphy, histopathology, and serum variables. Metoprolol and propranolol as well as low-dose carvedilol did not alter kidney function, per se. Meanwhile, high-dose carvedilol reduced renal accumulation of Technetium-99m (99mTc)-labeled dimercaptosuccinic acid (99mTc-DMSA) without significant effect on other variables. Furthermore, low-dose carvedilol prevented cisplatin-induced reduction of tracer uptake, but high-dose of this drug aggravated the situation. In this regard, both low and high -doses of carvedilol significantly inhibited cisplatin effects on kidney histology, BUN and creatinine levels. Also, high-dose propranolol inhibited cisplatin adverse effects on radiotracer uptake, histological manifestations, BUN and creatinine levels, while metoprolol failed to cause a notable effect. Taken together, carvedilol and high-dose propranolol may offer potential benefits in cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Abdolhamid Esmaeeli
- Department of Pathology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zahra Keshavarz
- Department of Pathology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Firoozeh Dehdar
- Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, The Persian Gulf Nuclear Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Majid Assadi
- Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, The Persian Gulf Nuclear Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Seyedabadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
9
|
Yan L, Dong YF, Qing TL, Deng YP, Han X, Shi WJ, Li JF, Gao FY, Zhang XF, Tian YJ, Dai XY, Zhu JB, Chen JK. Metoprolol rescues endothelial progenitor cell dysfunction in diabetes. PeerJ 2020; 8:e9306. [PMID: 32704438 PMCID: PMC7350924 DOI: 10.7717/peerj.9306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/16/2020] [Indexed: 01/07/2023] Open
Abstract
Added risk portended by diabetes in addition to hypertension has been related to an amplification of endothelial dysfunction. β-blockers are widely used for cardiovascular diseases and improve the endothelial function compared with a placebo. However, the effect of β-blockers on the endothelial progenitor cells (EPCs) function in diabetes is still unknown. Five β-blockers (metoprolol, atenolol, propranolol, bisoprolol, and nebivolol) were tested in EPC functional screening. Metoprolol improved EPC function significantly among the five β-blockers and was chosen for the in vivo tests in STZ induced diabetic mice. Reactive hyperemia peripheral arterial tonometry (RH-PAT) measurements were performed using the Endo-PAT2000 device in diabetic patients. Metoprolol, but not other β-blockers, improved EPC function in both tube formation and migration assay. EPC function was significantly decreased in diabetic mice, and metoprolol treatment restored damaged EPC migration capabilities and circulation EPC number. Metoprolol treatment promoted wound healing and stimulated angiogenesis in diabetic mice. Furthermore, metoprolol significantly enhanced eNOS phosphorylation and decreased O2− levels in EPCs of diabetic mice. In clinical trials, the RH-PAT index was significantly higher in metoprolol-treated versus bisoprolol-treated diabetics. Metoprolol could accelerate wound healing in diabetic mice and improve endothelial function in diabetic subjects, which may be mediated in part by improving impaired EPC function.
Collapse
Affiliation(s)
- Lang Yan
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yi-Fan Dong
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Tao-Lin Qing
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Ya-Ping Deng
- Department of Pharmacy, Zhejiang Xiaoshan Hospital, Hangzhou, China
| | - Xue Han
- Laboratory Animal Center, Hangzhou Medical College, Hangzhou, China
| | - Wen-Jing Shi
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Jin-Feng Li
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Fang-Yuan Gao
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Xiao-Fang Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yi-Jun Tian
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Xiao-Yu Dai
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Jiang-Bo Zhu
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Ji-Kuai Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
10
|
Al-Kuraishy HM, Al-Gareeb AI, Al-Maiahy TJ. Concept and connotation of oxidative stress in preeclampsia. J Lab Physicians 2020; 10:276-282. [PMID: 30078962 PMCID: PMC6052821 DOI: 10.4103/jlp.jlp_26_18] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND: Preeclampsia (PE) is a systemic pregnancy-related disorder characterized by hypertension, proteinuria, and edema. Free radicals seem to play an important role in the induction of endothelial dysfunction in PE. AIM: The aim of the present study was to investigate serum levels of nitric oxide (NO), peroxynitrite (ONOO−), paraoxonase (PON-1), malondialdehyde (MDA), and lipid profile in preeclamptic patients compared to the women with normal pregnancy. MATERIALS AND METHODS: A total of 68 pregnant women were recruited. They were divided into two groups - Group A, 40 women were a newly diagnosed with PE and Group B, 28 women with normal pregnancy. Anthropometric measurements including body mass index and blood pressure in accordance with biochemical measurements including NO, ONOO−, PON-1, MDA, and lipid profile were done for preeclamptic pregnant women compared to the controls. RESULTS: Pregnant women with pre-eclampsia illustrated insignificant differences in the age (31.22±2.87) compared to the age of control P > 0.05. There were significant changes in the body mass index (BMI), type of delivery and smoking status of pregnant women with pre-eclampsia compared to the control P < 0.05. Both systolic and diastolic blood pressures were high in pregnant women with pre-eclampsia compared to the control P < 0.01. PON-1 and NO serum levels were significantly decreased (P < 0.01) while ONOO− and MDA serum levels were significantly increased in PE compared to the women with normal pregnancy. CONCLUSIONS: This study concluded that PE is associated with the augmentation of oxidative stress and reduction of endogenous antioxidant capacity regarding PON-1.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine Al Mustansiriya University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine Al Mustansiriya University, Baghdad, Iraq
| | - Thabat J Al-Maiahy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine Al Mustansiriya University, Baghdad, Iraq
| |
Collapse
|
11
|
Hinrichsen R, Hawsawi O. A possible role for reactive oxygen species in the regulation of an ultradian rhythm in Paramecium. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2018.1512293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Robert Hinrichsen
- Department of Biology, Indiana University of Pennsylvania, Indiana, PA, USA
| | - Ohuod Hawsawi
- Department of Biology, Indiana University of Pennsylvania, Indiana, PA, USA
| |
Collapse
|
12
|
Cuevas S, Villar VAM, Jose PA. Genetic polymorphisms associated with reactive oxygen species and blood pressure regulation. THE PHARMACOGENOMICS JOURNAL 2019; 19:315-336. [PMID: 30723314 PMCID: PMC6650341 DOI: 10.1038/s41397-019-0082-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 10/19/2018] [Accepted: 12/21/2018] [Indexed: 02/08/2023]
Abstract
Hypertension is the most prevalent cause of cardiovascular disease and kidney failure, but only about 50% of patients achieve adequate blood pressure control, in part, due to inter-individual genetic variations in the response to antihypertensive medication. Significant strides have been made toward the understanding of the role of reactive oxygen species (ROS) in the regulation of the cardiovascular system. However, the role of ROS in human hypertension is still unclear. Polymorphisms of some genes involved in the regulation of ROS production are associated with hypertension, suggesting their potential influence on blood pressure control and response to antihypertensive medication. This review provides an update on the genes associated with the regulation of ROS production in hypertension and discusses the controversies on the use of antioxidants in the treatment of hypertension, including the antioxidant effects of antihypertensive drugs.
Collapse
Affiliation(s)
- Santiago Cuevas
- Center for Translational Science, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC, 20010, USA.
| | - Van Anthony M Villar
- Department of Medicine, Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, Walter G. Ross Hall, Suite 738, 2300 I Street, NW, Washington, DC, 20052, USA
| | - Pedro A Jose
- Department of Medicine, Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, Walter G. Ross Hall, Suite 738, 2300 I Street, NW, Washington, DC, 20052, USA
| |
Collapse
|
13
|
Ulusu NN, Gok M, Erman B, Turan B. Effects of Timolol Treatment on Pancreatic Antioxidant Enzymes in Streptozotocin-induced Diabetic Rats: An Experimental and Computational Study. J Med Biochem 2019; 38:306-316. [PMID: 31156341 PMCID: PMC6534949 DOI: 10.2478/jomb-2018-0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/18/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The study aimed to investigate whether timolol-treatment has a beneficial effect on pentose phosphate pathway enzyme activities such as glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGDH) enzyme activities and cAMP level in streptozotocin-induced diabetic rats in pancreatic tissues. METHODS Diabetes was induced by streptozotocin (STZ) in 3-month old male Wistar rats. The diabetic rats were treated with timolol (5 mg/kg body weight, for 12 weeks) while the control group received saline. Enzyme activities were determined in pancreas tissue. To support our results, we performed in silico calculations, using Protein Data Bank structures. RESULTS Timolol treatment of STZ-induced diabetic rats had no noteworthy effect on high blood-glucose levels. However, this treatment induced activities of G6PD and 6PGDH in diabetic rats. Timolol treatment significantly increased cAMP level in diabetic pancreatic tissue. We found that timolol cannot bind strongly to either G6PD or 6PGD, but there is a relatively higher binding affinity to adenylyl cyclase, responsible for cAMP production, serving as a regulatory signal via specific cAMP-binding proteins. CONCLUSIONS Our data point out that timolol treatment has beneficial effects on the antioxidant defence mechanism enzymes in the pancreas of STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Nuriye Nuray Ulusu
- Koc University, School of Medicine, Department of Medical Biochemistry, IstanbulTurkey
| | - Muslum Gok
- Hacettepe University, Faculty of Medicine, Department of Medical Biochemistry, AnkaraTurkey
| | - Burak Erman
- Koc University, School of Engineering, Department of Chemical and Biological Engineering, IstanbulTurkey
| | - Belma Turan
- Ankara University, Faculty of Medicine, Department of Biophysics, AnkaraTurkey
| |
Collapse
|
14
|
Al-Jawad FH, Al-Attar Z, Abbood MS. The Protective Effect of Nitroglycerin, N-Acetyl Cysteine and Metoprolol in CCL4 Induced Animal Model of Acute Liver Injury. Open Access Maced J Med Sci 2019; 7:1739-1743. [PMID: 31316651 PMCID: PMC6614250 DOI: 10.3889/oamjms.2019.469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE: The current study was designed to determine the hepatoprotective effect of well-known drugs. Nitroglycerin, N-acetyl cysteine and Metoprolol in acute liver injury induced by CCL4. The antioxidant effects of b-blockers, especially carvedilol, have been described by several investigators. However, for metoprolol, the effect is a bit query as there is only one in-vitro study showing a little hepatoprotective effect. Thus, it is worthy to re-study the hepatoprotective effect of metoprolol. AIM: To explore the possible hepatoprotective effect of Nitroglycerin, N-acetyl cysteine and Metoprolol Tartrate MATERIAL AND METHODS: The normal serum values of ALP, AST, ALT, TSB and TSP were determined in 35 healthy rabbits allocated to 5 groups before CCL4 induction and at three occasions 24, 72, 120 hrs after induction by CCL4 and treatment with the tested drugs: Nitroglycerin, N-acetyl cysteine and Metoprolol for five successive days. RESULTS: Showed significant decrease in serum levels of ALP, AST, ALT and TSB with a significant increase in TSP level of all the tested drugs measured at 120 hrs compared with the control and their levels measured at 24, 72 hrs. CONCLUSION: All the tested drugs proved in having a hepatoprotective effect when they are given orally to animals. The histopathological sections of the liver tissue supported the real effect of these drugs in the management of ALI.
Collapse
Affiliation(s)
- Faruk H Al-Jawad
- Department of Pharmacology & Therapeutics, Al-Nahrain College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - Zaid Al-Attar
- Department of Pharmacology, Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq
| | - Muayyad S Abbood
- The High Institute for Infertility Diagnosis and Assisted Reproductive Technologies, Al-Nahrain University, Baghdad, Iraq
| |
Collapse
|
15
|
Ferroni P, Barbanti P, Della-Morte D, Palmirotta R, Jirillo E, Guadagni F. Redox Mechanisms in Migraine: Novel Therapeutics and Dietary Interventions. Antioxid Redox Signal 2018; 28:1144-1183. [PMID: 28990418 DOI: 10.1089/ars.2017.7260] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Migraine represents the third most prevalent and the seventh most disabling human disorder. Approximately 30% of migraine patients experience transient, fully reversible, focal neurological symptoms (aura) preceding the attack. Recent Advances: Awareness of the hypothesis that migraine actually embodies a spectrum of illnesses-ranging from episodic to chronic forms-is progressively increasing and poses novel challenges for clarifying the underlying pathophysiological mechanisms of migraine as well as for the development of novel therapeutic interventions. Several theories have evolved to the current concept that a combination of genetic, epigenetic, and environmental factors may play a role in migraine pathogenesis, although their relative importance is still being debated. CRITICAL ISSUES One critical issue that deserves a particular attention is the role of oxidative stress in migraine. Indeed, potentially harmful oxidative events occur during the migraine attack and long-lasting or frequent migraine episodes may increase brain exposure to oxidative events that can lead to chronic transformation. Moreover, a wide variety of dietary, environmental, physiological, behavioral, and pharmacological migraine triggers may act through oxidative stress, with clear implications for migraine treatment and prophylaxis. Interestingly, almost all current prophylactic migraine agents exert antioxidant effects. FUTURE DIRECTIONS Increasing awareness of the role of oxidative stress and/or decreased antioxidant defenses in migraine pathogenesis and progression to a chronic condition lays the foundations for the design of novel prophylactic approaches, which, by reducing brain oxidative phenomena, could favorably modify the clinical course of migraine. Antioxid. Redox Signal. 28, 1144-1183.
Collapse
Affiliation(s)
- Patrizia Ferroni
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy .,2 IRCCS San Raffaele Pisana , Rome, Italy
| | - Piero Barbanti
- 3 Headache and Pain Unit, Department of Neurological, Motor and Sensorial Sciences, IRCCS San Raffaele Pisana , Rome, Italy
| | - David Della-Morte
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy .,2 IRCCS San Raffaele Pisana , Rome, Italy .,4 Department of Systems Medicine, University of Rome "Tor Vergata ," Rome, Italy
| | - Raffaele Palmirotta
- 5 Department of Biomedical Sciences and Human Oncology, "A. Moro" University , Bari, Italy
| | - Emilio Jirillo
- 6 Department of Basic Medical Sciences, Neuroscience and Sensory Organs, "A. Moro" University , Bari, Italy
| | - Fiorella Guadagni
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy .,2 IRCCS San Raffaele Pisana , Rome, Italy
| |
Collapse
|
16
|
Hu Y, Kim H, Shinde VV, Jeong D, Choi Y, Cho E, Jung S. Carboxymethyl cyclosophoraoses as a flexible pH-responsive solubilizer for pindolol. Carbohydr Polym 2017; 175:493-501. [DOI: 10.1016/j.carbpol.2017.08.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 11/26/2022]
|
17
|
Bulboacă AE, Bolboacă SD, Stănescu IC, Sfrângeu CA, Bulboacă AC. Preemptive Analgesic and Antioxidative Effect of Curcumin for Experimental Migraine. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4754701. [PMID: 29204441 PMCID: PMC5674483 DOI: 10.1155/2017/4754701] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/11/2017] [Accepted: 09/24/2017] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Our study aimed to investigate the analgesic and antioxidative stress effects of Curcumin (CC) in experimental migraine induced by Nitroglycerin (NTG) on rats, compared with Indomethacin (ID) and Propranolol (PP) treatments. MATERIAL AND METHODS Five groups of 10 rats treated i.p. were investigated: control group (healthy rats) injected with saline solution (0.9%), NTG-control group injected with NTG (1 mg/100 gbw, bw = body weight), and three groups with pretreatment applied 30 min previous to the formalin test (NTG + CC group: Curcumin (10 mg/100 gbw), NTG + PP group: Propranolol (100 μg/100 gbw), and NTG + ID group: Indomethacin (0.5 mg/100 gbw)). Formalin test was performed and number of flinches and shakes were counted. Several oxidative stress parameters were also assessed. RESULTS The smallest values of malondialdehyde (MDA), nitric oxide (NOx), and total oxidative status (TOS) were observed on NTG + CC with significant differences as compared with the control group (p < 0.0001). The group pretreated with Curcumin proved significantly smaller number of flinches and shakes compared with both NTG + PP and NTG + ID. CONCLUSION Our study demonstrates a superior activity of Curcumin not only versus control, but also versus Propranolol and Indomethacin.
Collapse
Affiliation(s)
- Adriana E. Bulboacă
- Department of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Str., No. 4-6, 400012 Cluj-Napoca, Romania
| | - Sorana D. Bolboacă
- Department of Medical Informatics and Biostatistics, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Str., No. 6, 400349 Cluj-Napoca, Romania
| | - Ioana C. Stănescu
- Department of Neurology and Pediatric Neurology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Str., No. 43, 400012 Cluj-Napoca, Romania
| | - Carmen A. Sfrângeu
- Department of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Str., No. 4-6, 400012 Cluj-Napoca, Romania
| | - Angelo C. Bulboacă
- Department of Neurology and Pediatric Neurology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Str., No. 43, 400012 Cluj-Napoca, Romania
| |
Collapse
|
18
|
Xiao X, Xiao F, Zhao M, Tong M, Wise MR, Stone PR, Chamley LW, Chen Q. Treating normal early gestation placentae with preeclamptic sera produces extracellular micro and nano vesicles that activate endothelial cells. J Reprod Immunol 2017; 120:34-41. [PMID: 28441551 DOI: 10.1016/j.jri.2017.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/09/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Preeclampsia is characterised by systemic endothelial cell dysfunction thought to be triggered by toxic/dangerous factors from the placenta, including placental extracellular vesicles (EVs). Why placental EVs become toxic is unknown. We previously reported that preeclamptic sera produced toxic/dangerous placental macrovesicles but whether small EVs are also toxic/dangerous in preeclampsia is unknown. STUDY DESIGN First trimester placental explants were treated with 10% preeclamptic or control sera (n=10) for 24h. Micro- and nano-vesicles were harvested by sequential centrifugation. Micro- or nano-vesicles were also exposed to monolayers of endothelial cells in the presence or absence of nifedipine (50μg/ml) or labetalol (0.5μg/ml) which are well-known anti-hypertensives in clinical practices. MAIN OUTCOMES MEASURES The number and size of micro- and nano-vesicles were counted. Endothelial cell-surface intercellular adhesion molecule 1 (ICAM-1) and high mobility group box 1 (HMGB1) levels in micro- or nano-vesicles were measured by immunoassays. RESULTS Neither the amount nor size of both micro- and nano-vesicles was different after treating placental explants with preeclamptic or control sera. The levels of HMGB1 were significantly increased in both micro- and nano-vesicles from preeclamptic sera treated placental explants (p<0.03). Exposing endothelial cells to micro- or nano-vesicles from preeclamptic sera-treated placental explants induced endothelial activation, but it was reversed by co-incubation with nifedipine (p=0.004) or labetalol (p=0.002). CONCLUSION Our data demonstrate that preeclamptic sera produce toxic/dangerous micro- and nano-placental EVs which activated endothelial cells. This effect was reversed by antihypertensives. The increased levels of HMGB1 in EVs may contribute to endothelial cell activation.
Collapse
Affiliation(s)
- Xirong Xiao
- The Hospital of Obstetrics & Gynaecology, Fudan University, China; Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Fengyi Xiao
- The Hospital of Obstetrics & Gynaecology, Fudan University, China; Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Mingzhi Zhao
- The Hospital of Obstetrics & Gynaecology, Fudan University, China; Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Mancy Tong
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Michelle R Wise
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Peter R Stone
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Qi Chen
- The Hospital of Obstetrics & Gynaecology, Fudan University, China; Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand.
| |
Collapse
|
19
|
Ramos II, Gregório BJ, Barreiros L, Magalhães LM, Tóth IV, Reis S, Lima JL, Segundo MA. Programmable flow system for automation of oxygen radical absorbance capacity assay using pyrogallol red for estimation of antioxidant reactivity. Talanta 2016; 150:599-606. [DOI: 10.1016/j.talanta.2015.12.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/20/2015] [Accepted: 12/23/2015] [Indexed: 12/18/2022]
|
20
|
Myoglobin microplate assay to evaluate prevention of protein peroxidation. J Pharm Biomed Anal 2015; 114:305-11. [DOI: 10.1016/j.jpba.2015.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/02/2015] [Accepted: 06/05/2015] [Indexed: 11/21/2022]
|
21
|
Bednarski M, Otto M, Dudek M, Siwek A, Zygmunt M, Knutelska J, Nowiński L, Groszek G, Sapa J. Antiarrhythmic activity in occlusion-reperfusion model of 1-(1H-indol-4-yloxy)-3-{[2-(2-methoxyphenoxy)ethyl]amino} propan-2-ol and its enantiomers. Clin Exp Pharmacol Physiol 2015; 43:81-7. [PMID: 26384857 DOI: 10.1111/1440-1681.12491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 08/29/2015] [Accepted: 09/14/2015] [Indexed: 11/29/2022]
Abstract
Acute myocardial infarction (AMI) is a leading cause of mortality and morbidity worldwide, especially in developed countries. The most serious problem after myocardial infarction is reperfusion injury that manifests as functional impairment, arrhythmia, and accelerated progression of cell death in certain critically injured myocytes. Subsequently the infarcted myocardium develops features of necrosis and reactive inflammation. To reduce lethal reperfusion injury in patient with AMI antioxidants, anti-inflammatory agents, adenosine, opioids, metabolic modulators (glucose, insulin, and potassium, nicorandil and agents which reduce intracellular Ca(2+) overload and inhibit Na(+)-H(+) exchange) are used. In this study a novel compound (compound 9) 1-(1 h-indol-4-yloxy)-3-{[2-(2-methoxyphenoxy) ethyl]amino}propan-2-ol and its enantiomers are examined in arrhythmia associated with coronary artery occlusion and reperfusion in a rat model. Antioxidant properties are also determined for test compounds using the malondialdehyde (MDA) lipid peroxidation and ferric reducing antioxidant power (FRAP) tests. In summary, the tested compounds, especially the S enantiomer has a strong antiarrhythmic activity in a model of occlusion and reperfusion of the left coronary artery which is probably related to their adrenolytic action. In contrast to carvedilol, none of the test compound reduced the lipid peroxidation but increased ferric reducing antioxidant power. In the antioxidant effect, there was no difference between the optical forms of compound 9.
Collapse
Affiliation(s)
- Marek Bednarski
- Department of Pharmacological Screening, Jagiellonian University Medical College, Kraków, Poland
| | - Monika Otto
- Department of Pharmacological Screening, Jagiellonian University Medical College, Kraków, Poland
| | - Magdalena Dudek
- Department of Pharmacodynamics, Jagiellonian University Medical College, Kraków, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Małgorzata Zygmunt
- Department of Pharmacological Screening, Jagiellonian University Medical College, Kraków, Poland
| | - Joanna Knutelska
- Department of Pharmacological Screening, Jagiellonian University Medical College, Kraków, Poland
| | - Leszek Nowiński
- Department of Pharmacodynamics, Jagiellonian University Medical College, Kraków, Poland
| | - Grażyna Groszek
- Faculty of Chemistry, Rzeszów University of Technology, Rzeszów, Poland
| | - Jacek Sapa
- Department of Pharmacological Screening, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
22
|
Apostolova N, Victor VM. Molecular strategies for targeting antioxidants to mitochondria: therapeutic implications. Antioxid Redox Signal 2015; 22:686-729. [PMID: 25546574 PMCID: PMC4350006 DOI: 10.1089/ars.2014.5952] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondrial function and specifically its implication in cellular redox/oxidative balance is fundamental in controlling the life and death of cells, and has been implicated in a wide range of human pathologies. In this context, mitochondrial therapeutics, particularly those involving mitochondria-targeted antioxidants, have attracted increasing interest as potentially effective therapies for several human diseases. For the past 10 years, great progress has been made in the development and functional testing of molecules that specifically target mitochondria, and there has been special focus on compounds with antioxidant properties. In this review, we will discuss several such strategies, including molecules conjugated with lipophilic cations (e.g., triphenylphosphonium) or rhodamine, conjugates of plant alkaloids, amino-acid- and peptide-based compounds, and liposomes. This area has several major challenges that need to be confronted. Apart from antioxidants and other redox active molecules, current research aims at developing compounds that are capable of modulating other mitochondria-controlled processes, such as apoptosis and autophagy. Multiple chemically different molecular strategies have been developed as delivery tools that offer broad opportunities for mitochondrial manipulation. Additional studies, and particularly in vivo approaches under physiologically relevant conditions, are necessary to confirm the clinical usefulness of these molecules.
Collapse
Affiliation(s)
- Nadezda Apostolova
- 1 Faculty of Health Sciences, University Jaume I , Castellón de la Plana, Spain
| | | |
Collapse
|
23
|
Suwalsky M, Zambrano P, Villena F, Manrique-Moreno M, Gallardo MJ, Jemiola-Rzeminska M, Strzalka K, Edwards AM, Mennickent S, Dukes N. Morphological Effects Induced In Vitro by Propranolol on Human Erythrocytes. J Membr Biol 2015; 248:683-93. [DOI: 10.1007/s00232-015-9780-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/29/2015] [Indexed: 11/28/2022]
|
24
|
Lemmo W. Potential interactions of prescription and over‐the‐counter medications having antioxidant capabilities with radiation and chemotherapy. Int J Cancer 2014; 137:2525-33. [DOI: 10.1002/ijc.29208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/01/2014] [Accepted: 08/12/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Walter Lemmo
- LEMMO Integrated Cancer Care Inc.Vancouver Canada
| |
Collapse
|
25
|
Beta-blocker timolol alleviates hyperglycemia-induced cardiac damage via inhibition of endoplasmic reticulum stress. J Bioenerg Biomembr 2014; 46:377-87. [PMID: 25064604 DOI: 10.1007/s10863-014-9568-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/11/2014] [Indexed: 01/08/2023]
Abstract
Current data support that pharmacological modulators of endoplasmic reticulum stress (ERS) have therapeutic potential for diabetic individuals. Therefore, we aimed to examine whether timolol, having free radical-scavenger action, besides being a β-blocker, exerts a cardioprotective effect via inhibition of ERS response in diabetic rats in a comparison with an antioxidant N-acetylcysteine (NAC). Histopathological data showed that either timolol- or NAC-treatment of diabetic rats prevented the changes in mitochondria and nucleus of the cardiac tissue while they enhanced the cellular redox-state in heart as well. The levels of ER-targeted cytoprotective chaperones GRP78 and calnexin, unfolded protein response signaling protein CHO/Gadd153 besides the levels of calpain, BCL-2, phospho-Akt, PUMA, and PML in the hearts from diabetic rats, treated with either timolol or NAC, are found to be similar among these groups, although all these parameters were markedly preserved in the untreated diabetics compared to those of the controls. Taken into consideration how important a balanced-ratio between anti-apoptotic and pro-apoptotic proteins for the maintenance mitochondria/ER function, our results suggest that ERS in diabetic rat heart is mediated by increased oxidative damage, which in turn triggers cardiac dysfunction. Moreover, we also demonstrated that timolol treatment of diabetic rats, similar to NAC treatment, induced a well-controlled redox-state and apoptosis in cardiac myocardium. We, thus for the first time, report that cardioprotective effect of timolol seems to be associated with normalization of ER function due to its antioxidant action in cardiomyocytes even under hyperglycemia.
Collapse
|
26
|
Rodrigues NP, Toledo Benassi M, Bragagnolo N. Scavenging capacity of coffee brews against oxygen and nitrogen reactive species and the correlation with bioactive compounds by multivariate analysis. Food Res Int 2014. [DOI: 10.1016/j.foodres.2013.09.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
27
|
Gokturk H, Ulusu NN, Gok M, Tuncay E, Can B, Turan B. Long-term treatment with a beta-blocker timolol attenuates renal-damage in diabetic rats via enhancing kidney antioxidant-defense system. Mol Cell Biochem 2014; 395:177-86. [DOI: 10.1007/s11010-014-2123-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/02/2014] [Indexed: 12/22/2022]
|
28
|
Assis de Brito TL, Monte-Alto-Costa A, Romana-Souza B. Propranolol impairs the closure of pressure ulcers in mice. Life Sci 2014; 100:138-146. [PMID: 24560961 DOI: 10.1016/j.lfs.2014.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 01/17/2014] [Accepted: 02/05/2014] [Indexed: 11/17/2022]
Abstract
AIMS β-Adrenoceptors modulate acute wound healing; however, few studies have shown the effects of β-adrenoceptor blockade on chronic wounds. Therefore, this study investigated the effect of β1-/β2-adrenoceptor blockade in wound healing of pressure ulcers. MAIN METHODS Male mice were daily treated with propranolol (β1-/β2-adrenoceptor antagonist) until euthanasia. One day after the beginning of treatment, two cycles of ischemia-reperfusion by external application of two magnetic plates were performed in skin to induce pressure ulcer formation. KEY FINDINGS Propranolol administration reduced keratinocyte migration, transforming growth factor-β protein expression, re-epithelialization, and necrotic tissue loss. Neutrophil number and neutrophil elastase protein expression were increased in propranolol-treated group when compared with control group. Propranolol administration delayed macrophage mobilization and metalloproteinase-12 protein expression and reduced monocyte chemoattractant protein-1 protein expression. Myofibroblastic differentiation, angiogenesis, and wound closure were delayed in the propranolol-treated animals. Propranolol administration increased neo-epidermis thickness, reduced collagen deposition, and enhanced tenascin-C expression resulting in the formation of an immature and disorganized collagenous scar. SIGNIFICANCE β1-/β2-Adrenoceptor blockade delays wound healing of ischemia-reperfusion skin injury through the impairment of the re-epithelialization and necrotic tissue loss which compromise wound inflammation, dermal reconstruction, and scar formation.
Collapse
Affiliation(s)
| | - Andréa Monte-Alto-Costa
- Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Romana-Souza
- Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
29
|
Hošek J, Toniolo A, Neuwirth O, Bolego C. Prenylated and geranylated flavonoids increase production of reactive oxygen species in mouse macrophages but inhibit the inflammatory response. JOURNAL OF NATURAL PRODUCTS 2013; 76:1586-91. [PMID: 23947936 DOI: 10.1021/np400242e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this study, four prenylated and geranylated flavonoids, cudraflavone B (1), pomiferin (2), osajin (3), and diplacone (4), were tested for their antioxidant and anti-inflammatory effects and to identify any potential relationships between chemical structure and antioxidant or anti-inflammatory properties. The selected flavonoids were examined in cell-free models to prove their ability to scavenge superoxide radicals, hydrogen peroxide, and hypochlorous acid. Further, the ability of the flavonoids to influence the formation of reactive oxygen species in the murine macrophage cell line J774.A1 was tested in the presence and absence of lipopolysaccharide (LPS). The ability of flavonoids to inhibit LPS-induced IκB-α degradation and COX-2 expression was used as a model for the inflammatory response. The present results indicated that the antioxidant activity was dependent on the chemical structure, where the catechol moiety is especially crucial for this effect. The most potent antioxidant activities in cell-free models were observed for diplacone (4), whereas cudraflavone B (1) and osajin (3) showed a pro-oxidant effect in J774.A1 cells. All flavonoids tested were able to inhibit IκB-α degradation, but only diplacone (4) also down-regulated COX-2 expression.
Collapse
Affiliation(s)
- Jan Hošek
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno , Palackého tř. 1/3, CZ 612 42, Brno, Czech Republic
| | | | | | | |
Collapse
|
30
|
Tuncay E, Okatan EN, Vassort G, Turan B. ß-blocker timolol prevents arrhythmogenic Ca²⁺ release and normalizes Ca²⁺ and Zn²⁺ dyshomeostasis in hyperglycemic rat heart. PLoS One 2013; 8:e71014. [PMID: 23923043 PMCID: PMC3726605 DOI: 10.1371/journal.pone.0071014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/25/2013] [Indexed: 01/08/2023] Open
Abstract
Defective cardiac mechanical activity in diabetes results from alterations in intracellular Ca(2+) handling, in part, due to increased oxidative stress. Beta-blockers demonstrate marked beneficial effects in heart dysfunction with scavenging free radicals and/or acting as an antioxidant. The aim of this study was to address how β-blocker timolol-treatment of diabetic rats exerts cardioprotection. Timolol-treatment (12-week), one-week following diabetes induction, prevented diabetes-induced depressed left ventricular basal contractile activity, prolonged cellular electrical activity, and attenuated the increase in isolated-cardiomyocyte size without hyperglycemic effect. Both in vivo and in vitro timolol-treatment of diabetic cardiomyocytes prevented the altered kinetic parameters of Ca(2+) transients and reduced Ca(2+) loading of sarcoplasmic reticulum (SR), basal intracellular free Ca(2+) and Zn(2+) ([Ca(2+)]i and [Zn(2+)]i), and spatio-temporal properties of the Ca(2+) sparks, significantly. Timolol also antagonized hyperphosphorylation of cardiac ryanodine receptor (RyR2), and significantly restored depleted protein levels of both RyR2 and calstabin2. Western blot analysis demonstrated that timolol-treatment also significantly normalized depressed levels of some [Ca(2+)]i-handling regulators, such as Na(+)/Ca(2+) exchanger (NCX) and phospho-phospholamban (pPLN) to PLN ratio. Incubation of diabetic cardiomyocytes with 4-mM glutathione exerted similar beneficial effects on RyR2-macromolecular complex and basal levels of both [Ca(2+)]i and [Zn(2+)]i, increased intracellular Zn(2+) hyperphosphorylated RyR2 in a concentration-dependent manner. Timolol also led to a balanced oxidant/antioxidant level in both heart and circulation and prevented altered cellular redox state of the heart. We thus report, for the first time, that the preventing effect of timolol, directly targeting heart, seems to be associated with a normalization of macromolecular complex of RyR2 and some Ca(2+) handling regulators, and prevention of Ca(2+) leak, and thereby normalization of both [Ca(2+)]i and [Zn(2+)]i homeostasis in diabetic rat heart, at least in part by controlling the cellular redox status of hyperglycemic cardiomyocytes.
Collapse
Affiliation(s)
- Erkan Tuncay
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Esma N. Okatan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Guy Vassort
- INSERM U-1046, CHU Arnaud de Villeneuve, Montpellier, France
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
- * E-mail:
| |
Collapse
|
31
|
Novel hybrids of natural isochroman-4-one bearing N-substituted isopropanolamine as potential antihypertensive candidates. Bioorg Med Chem 2013; 21:2495-502. [DOI: 10.1016/j.bmc.2013.02.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/21/2013] [Accepted: 02/28/2013] [Indexed: 11/23/2022]
|
32
|
Pereira-Leite C, Carneiro C, Soares JX, Afonso C, Nunes C, Lúcio M, Reis S. Biophysical characterization of the drug–membrane interactions: The case of propranolol and acebutolol. Eur J Pharm Biopharm 2013; 84:183-91. [DOI: 10.1016/j.ejpb.2012.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/11/2012] [Indexed: 11/16/2022]
|
33
|
Panda S, Kar A, Banerjee T, Sharma N. Combined effects of quercetin and atenolol in reducing isoproterenol-induced cardiotoxicity in rats: possible mediation through scavenging free radicals. Cardiovasc Toxicol 2013; 12:235-42. [PMID: 22391854 DOI: 10.1007/s12012-012-9161-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In this investigation, combined effects of quercetin and atenolol in the regulation of isoproterenol (ISO)-induced cardiotoxicity have been evaluated in rats. While ISO administration increased the levels of serum creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH) and glutamate pyruvate transaminase (SGPT) as well as cardiac malondialdehyde (MDA); it reduced the activities of superoxide dismutase, catalase, glutathione peroxidase and the level of reduced glutathione. ISO-induced rats also exhibited ST-segment elevation and tachycardia. Oral administration of atenolol (6 mg/kg) and quercetin (5 mg/kg), along with ISO (5 mg/kg, subcutaneously) every day for 10 days markedly reduced the serum CK-MB, LDH and SGPT levels. Concomitantly the test drugs improved the status of antioxidative enzymes, decreased the cardiac MDA and nearly normalized the electrocardiogram. Electron paramagnetic resonance study also revealed a decrease in 5,5'-dimethyl-1-pyroline-N-oxide-hydroxyl radicals signal intensity when atenolol and quercetin were administered together to ISO-treated rats. In conclusion, the combined treatment of atenolol and quercetin appears to produce a better cardioprotective effect in ISO-induced animals as compared to their individual treatments, and possibly the beneficial actions are associated with the free radical scavenging action of quercetin.
Collapse
Affiliation(s)
- Sunanda Panda
- School of Life Sciences, Devi Ahilya University, Takshashila Campus, Khandwa Road, Indore 452001, MP, India.
| | | | | | | |
Collapse
|
34
|
Kim JH, Kim H, Kim YH, Chung WS, Suh JK, Kim SJ. Antioxidant effect of captopril and enalapril on reactive oxygen species-induced endothelial dysfunction in the rabbit abdominal aorta. THE KOREAN JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2013; 46:14-21. [PMID: 23422724 PMCID: PMC3573160 DOI: 10.5090/kjtcs.2013.46.1.14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 09/06/2012] [Accepted: 09/20/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Reactive oxygen species (ROS) are known to be related to cardiovascular diseases. Many studies have demonstrated that angiotensin-converting enzyme inhibitors have beneficial effects against ROS. We investigated the antioxidant effect of captopril and enalapril in nitric oxide mediated vascular endothelium-dependent relaxations. MATERIALS AND METHODS Isolated rabbit abdominal aorta ring segments were exposed to ROS by electrolysis of the organ bath medium (Krebs-Henseleit solution) after pretreatment with various concentrations (range, 10(-5) to 3×10(-4) M) of captopril and enalapril. Before and after electrolysis, the endothelial function was measured by preconstricting the vessels with norepinephrine (10(-6) M) followed by the cumulative addition of acetylcholine (range, 3×10(-8) to 10(-6) M). The relevance of the superoxide anion and hydrogen peroxide scavenging effect of captopril and enalapril was investigated using additional pretreatments of diethyldithiocarbamate (DETCA, 0.5 mM), an inhibitor of Cu/Zn superoxide dismutase, and 3-amino-1,2,4-triazole (3AT, 50 mM), an inhibitor of catalase. RESULTS Both captopril and enalapril preserved vascular endothelium-dependent relaxation after exposure to ROS in a dose-dependent manner (p<0.0001). Pretreatment with DETCA attenuated the antioxidant effect of captopril and enalapril (p<0.0001), but pretreatment with 3AT did not have an effect. CONCLUSION Both captopril and enalapril protect endothelium against ROS in a dose-dependent fashion in isolated rabbit abdominal aortas. This protective effect is related to superoxide anion scavenging.
Collapse
Affiliation(s)
- Ji Hoon Kim
- Department of Medicine, Sicho Subcenter, Seocheon County Public Health Center, Korea
| | | | | | | | | | | |
Collapse
|
35
|
Ribeiro RF, Potratz FF, Pavan BMM, Forechi L, Lima FLM, Fiorim J, Fernandes AA, Vassallo DV, Stefanon I. Carvedilol prevents ovariectomy-induced myocardial contractile dysfunction in female rat. PLoS One 2013; 8:e53226. [PMID: 23308166 PMCID: PMC3538779 DOI: 10.1371/journal.pone.0053226] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 11/26/2012] [Indexed: 11/18/2022] Open
Abstract
Carvedilol has beneficial effects on cardiac function in patients with heart failure but its effect on ovariectomy-induced myocardial contractile dysfunction remains unclear. Estrogen deficiency induces myocardial contractile dysfunction and increases cardiovascular disease risk in postmenopausal women. Our aim was to investigate whether carvedilol, a beta receptor blocker, would prevent ovariectomy-induced myocardial contractile dysfunction. Female rats (8 weeks old) that underwent bilateral ovariectomy were randomly assigned to receive daily treatment with carvedilol (OVX+CAR, 20 mg/kg), placebo (OVX) and SHAM for 58 days. Left ventricle papillary muscle was mounted for isometric tension recordings. The inotropic response to Ca2+ (0.62 to 3.75 mM) and isoproterenol (Iso 10−8 to 10−2 M) were assessed. Expression of calcium handling proteins was measured by western blot analysis. Carvedilol treatment in the OVX animals: prevented weight gain and slight hypertrophy, restored the reduced positive inotropic responses to Ca2+ and isoproterenol, prevented the reduction in SERCA2a expression, abolished the increase in superoxide anion production, normalized the increase in p22phox expression, and decreased serum angiotensin converting enzyme (ACE) activity. This study demonstrated that myocardial contractile dysfunction and SERCA2a down regulation were prevented by carvedilol treatment. Superoxide anion production and NADPH oxidase seem to be involved in this response.
Collapse
|
36
|
Oliveira-Paula GH, Lacchini R, Coeli-Lacchini FB, Junior HM, Tanus-Santos JE. Inducible nitric oxide synthase haplotype associated with hypertension and responsiveness to antihypertensive drug therapy. Gene 2012; 515:391-5. [PMID: 23266817 DOI: 10.1016/j.gene.2012.12.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/02/2012] [Indexed: 12/24/2022]
Abstract
Hypertension is a multifactorial disorder associated with increased inducible nitric oxide synthase (iNOS) expression and activity. While genetic polymorphisms affect iNOS expression, it is not known whether iNOS gene polymorphisms affect the susceptibility to hypertension and the responses to antihypertensive therapy. This study aimed at assessing whether iNOS polymorphisms ((CCTTT)(n), g.-1026C>A, and g.2087G>A) and haplotypes are associated with hypertension and with responsiveness to drug therapy. We studied 115 well controlled hypertensive patients (HTN), 82 hypertensive patients resistant to optimized antihypertensive therapy (RHTN), and 113 normotensive healthy subjects (NT). Genotypings were carried out using real-time polymerase chain reaction (PCR) and PCR amplification followed by capillary electrophoresis. The software PHASE 2.1 was used to estimate the haplotype frequencies in each group. Variant genotypes (GA+AA) for the g.2087G>A polymorphism were more commonly found in hypertensive patients (HTN+RHTN) than in normotensives (P=0.016; OR=2.05). We found no associations between genotypes and responsiveness to therapy (P>0.05). The S-C-A haplotype was more commonly found in hypertensive patients (HTN+RHTN) than in normotensives (P=0.014; OR=6.07). Interestingly, this haplotype was more commonly found in the HTN group than in the RHTN group (P=0.012; OR=0.14). Our findings indicate that the g.2087G>A polymorphism in the iNOS gene affects the susceptibility to hypertension. Moreover, while the S-C-A haplotype is associated with hypertension, it is also associated with responsiveness to antihypertensive therapy.
Collapse
Affiliation(s)
- Gustavo H Oliveira-Paula
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
37
|
Chen-Scarabelli C, Saravolatz L, Murad Y, Shieh WS, Qureshi W, Di Rezze J, Abrencillo R, Gardin T, Gidwani UK, Saravolatz L, Faggian G, Scarabelli TM. A Critical Review of the Use of Carvedilol in Ischemic Heart Disease. Am J Cardiovasc Drugs 2012. [DOI: 10.2165/11636090-000000000-00000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
38
|
Chisté RC, Freitas M, Mercadante AZ, Fernandes E. The potential of extracts of Caryocar villosum pulp to scavenge reactive oxygen and nitrogen species. Food Chem 2012; 135:1740-9. [DOI: 10.1016/j.foodchem.2012.06.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 06/04/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
|
39
|
Chen-Scarabelli C, Saravolatz L, Murad Y, Shieh WS, Qureshi W, Di Rezze J, Abrencillo R, Gardin T, Gidwani UK, Saravolatz L, Faggian G, Scarabelli TM. A critical review of the use of carvedilol in ischemic heart disease. Am J Cardiovasc Drugs 2012; 12:391-401. [PMID: 23061698 DOI: 10.1007/bf03262473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
β-Adrenergic receptor antagonists (β-blockers) have been recognized for their cardioprotective properties, prompting use of these pharmacologic agents to become more mainstream in acute myocardial infarction (AMI) and congestive heart failure (CHF). Despite their popularity as a class, the ability to protect the myocardium varies significantly between different agents. Carvedilol is a non-selective β-blocker with α₁-adrenergic receptor antagonism properties. It is unique among β-blockers because in addition to improving exercise tolerance and its anti-ischemic properties secondary to a reduction in heart rate and myocardial contractility, carvedilol exerts other beneficial effects including: antioxidant effects; reduction in neutrophil infiltration; apoptosis inhibition; reduction of vascular smooth muscle migration; and improvement of myocardial remodeling post-AMI. These properties, documented in animal models and subsequent clinical trials, are consistent with established evidence demonstrating decreased morbidity and mortality in patients with CHF and post-AMI. This article reviews the role of carvedilol compared with other β-blockers in the treatment of CHF and post-AMI management.
Collapse
Affiliation(s)
- Carol Chen-Scarabelli
- Center for Heart and Vessel Preclinical Studies, St John Hospital and Medical Center, Wayne State University School of Medicine, Detroit, MI 48236, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ptinopoulou AG, Pikilidou MI, Lasaridis AN. The effect of antihypertensive drugs on chronic kidney disease: a comprehensive review. Hypertens Res 2012; 36:91-101. [PMID: 23051659 DOI: 10.1038/hr.2012.157] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Data from randomized clinical trials and epidemiological evidence identify systemic hypertension as the second most common modifiable risk factor for chronic kidney disease (CKD) progression after diabetes mellitus. CKD may progress silently over the years and early diagnosis and control of hypertension is of major importance in delaying renal function decline. Recent guidelines for the treatment of hypertension suggest the use of a variety of antihypertensive drugs in order to achieve the desired blood pressure levels. Renin-angiotensin system inhibitors have been undoubtedly studied the most and are suggested by guidelines and experts as first choice in patients with hypertension and renal injury, particularly in those with diabetes, as they have repeatedly shown to significantly reduce proteinuria. Other classes of antihypertensive drugs have been studied to a lesser extent and they have their own unique properties and effects. However, it is now common knowledge that adequate blood pressure control is the most important factor for the preservation of renal function, so every drug that effectively lowers hypertension is believed to be renoprotective. The present article will review the latest data on the role and properties of each class of antihypertensive drugs on CKD.
Collapse
Affiliation(s)
- Anastasia G Ptinopoulou
- Division of Nephrology and Hypertension, First Department of Internal Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | |
Collapse
|
41
|
Touyz RM, Savoia C, He Y, Endemann D, Pu Q, Ko EA, Deciuceis C, Montezano A, Schiffrin EL. Increased inflammatory biomarkers in hypertensive type 2 diabetic patients: improvement after angiotensin II type 1 receptor blockade. ACTA ACUST UNITED AC 2012; 1:189-99. [PMID: 20409851 DOI: 10.1016/j.jash.2007.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 01/25/2007] [Accepted: 01/29/2007] [Indexed: 01/04/2023]
Abstract
Diabetes and hypertension increasingly are recognized as pro-inflammatory conditions. We tested the hypothesis that in patients with hypertension and type 2 diabetes, blood pressure (BP) reduction with an angiotensin receptor blocker (ARB), valsartan, or with a beta blocker, atenolol, is associated with a decreased inflammatory response. Normotensive subjects and hypertensive patients with type 2 diabetes (40 to 70 years of age) participated in the study. Patients (n = 28) were randomized to double-blind treatment for 1 year with valsartan (80-160 mg) or atenolol (50-100 mg) daily, added to previous therapy. Age-matched controls (n = 12) were also studied. Serum levels of cytokines (IL-6, IL-18), chemokines (MCP-1), and adhesion molecules (sICAM, sE-selectin) were measured by enzyme-linked immunosorbent assay (ELISA) as indices of systemic and vascular inflammation, before and 1 year after treatment. BP was similarly reduced by valsartan and atenolol. Glycemic control and lipid profiles were comparable in the two groups and did not change significantly with antihypertensive therapy. Serum levels of all inflammatory markers were increased in patients before treatment (by two- to four-fold vs. controls, P < .05). IL-6, IL-18, sICAM, and MCP-1 levels were reduced by valsartan (three-fold, P < .05). Only IL-18 was reduced by atenolol compared with pretreatment levels (P < .05). These data indicate that proinflammatory mediators are significantly increased in hypertensive type 2 diabetic patients and that despite similar BP lowering by valsartan and atenolol and similar glucose levels in both treated groups, global inflammatory status was improved only in the valsartan group. Our findings suggest that antihypertensive treatment, particularly with an ARB, ameliorates inflammatory processes in diabetic hypertensive patients. Such effects, which are independent of BP and glycemic control, may contribute to cardiovascular protection.
Collapse
Affiliation(s)
- Rhian M Touyz
- The Kidney Research Centre, OHRI/University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Abstract
Collapse
|
43
|
Eom TK, Senevirathne M, Kim SK. Synthesis of phenolic acid conjugated chitooligosaccharides and evaluation of their antioxidant activity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:519-527. [PMID: 22809749 DOI: 10.1016/j.etap.2012.05.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 05/16/2012] [Accepted: 05/19/2012] [Indexed: 06/01/2023]
Abstract
In this study, eight kinds of phenolic acid conjugated chitooligosaccharides (PA-c-COSs) with different substitution groups, including p-hydroxyl {hydroxybenzoic acid-c-COS (HBA-c-COS), p-coumaric acid-c-COS (PCA-c-COS)}, 3,4-dihydroxyl {protocatechuic acid-c-COS (PTA-c-COS), caffeic acid-c-COS (CFA-c-COS)}, 3-methoxyl-4-hydroxyl {vanillic acid-c-COS (VNA-c-COS), ferulic acid-c-COS (FRA-c-COS)} and 3,5-dimethoxyl-4-hydroxy {syringic acid-c-COS (SRA-c-COS), sinapinic acid-c-COS (SNA-c-COS)}, were prepared by amide coupling reaction. Their antioxidant properties were evaluated using several in vitro models such as 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl (OH) and nitric oxide (NO) radicals scavenging and reducing power assays. The structures of the synthesized compounds were confirmed by UV, FT-IR and (1)H NMR data. CFA-c-COS showed 81.6% and 89.8% scavenging against DPPH and NO radical formation, respectively. CFA-c-COS also showed higher reducing power and hydroxyl radical scavenging activity compared to those of other compounds. Hence, CFA-c-COS can be a potential antioxidant compound.
Collapse
Affiliation(s)
- Tae-Kil Eom
- Marine Bioprocess Research Center, Pukyong National University, Busan 608-737, Republic of Korea
| | - Mahinda Senevirathne
- Marine Bioprocess Research Center, Pukyong National University, Busan 608-737, Republic of Korea
| | - Se-Kwon Kim
- Marine Bioprocess Research Center, Pukyong National University, Busan 608-737, Republic of Korea; Department of Chemistry, Pukyong National University, Busan 608-737, Republic of Korea.
| |
Collapse
|
44
|
Rodrigues E, Mariutti LRB, Faria AF, Mercadante AZ. Microcapsules containing antioxidant molecules as scavengers of reactive oxygen and nitrogen species. Food Chem 2012; 134:704-11. [PMID: 23107681 DOI: 10.1016/j.foodchem.2012.02.163] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/18/2012] [Accepted: 02/21/2012] [Indexed: 11/16/2022]
Abstract
The antioxidant capacities of gum arabic and maltodextrin microcapsules containing antioxidant molecules (trolox, α-tocopherol, β-carotene, apo-8'-carotenal and apo-12'-carotenal) against reactive oxygen and nitrogen species were evaluated. The scavenging capacities were influenced by the wall material, the reactive species, namely ROO(), H(2)O(2), HO(), HOCl and ONOO(-), and the antioxidant molecule. In general, a more pronounced enhancement of the antioxidant capacity due to incorporation of antioxidant molecules was observed in gum arabic microcapsules. The empty microcapsules showed capacity to scavenge all the studied ROS and RNS, being gum arabic a more potent antioxidant than maltodextrin. Apo-8'-carotenal incorporation promoted the highest increase in the scavenging capacities among the evaluated antioxidants, varying from 50% to 132% and from 39% to 85% for gum arabic and maltodextrin microcapsules, respectively, suggesting that this carotenoid presented the best balance between the molecule localization inside the microcapsules and the reactivity against the specific reactive species.
Collapse
Affiliation(s)
- Eliseu Rodrigues
- Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862 Campinas, Brazil
| | | | | | | |
Collapse
|
45
|
The effect of antihypertensive drugs on endothelial function as assessed by flow-mediated vasodilation in hypertensive patients. Int J Vasc Med 2012; 2012:453264. [PMID: 22489272 PMCID: PMC3303797 DOI: 10.1155/2012/453264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 11/22/2011] [Accepted: 12/23/2011] [Indexed: 02/07/2023] Open
Abstract
Endothelial dysfunction is found in hypertensive patients and may serve as a prognostic marker of future cardiovascular events. Endothelial function can be assessed noninvasively by flow-mediated vasodilation (FMD). The goal of this paper is to summarize comprehensively the clinical trials that investigated the effects of antihypertensive drugs on endothelial function assessed by FMD in hypertensive patients. A PubMed-based search found 38 clinical trial papers published from January 1999 to June 2011. Significant improvement of FMD after antihypertensive treatment was shown in 43 of 71 interventions (among 38 clinical trial papers). Angiotensin II receptor blockers and angiotensin converting enzyme inhibitors appeared to improve FMD more than other drug types. Antihypertensive treatment can improve endothelial dysfunction when assessed by FMD, although there are conflicting data that require further research.
Collapse
|
46
|
Increased poly(ADP-ribosyl)ation in skeletal muscle tissue of pediatric patients with severe burn injury: prevention by propranolol treatment. Shock 2011; 36:18-23. [PMID: 21368715 DOI: 10.1097/shk.0b013e3182168d8f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) has been shown to promote cellular energetic collapse and cellular necrosis in various forms of critical illness. Most of the evidence implicating the PARP pathway in disease processes is derived from preclinical studies. With respect to PARP and burns, studies in rodent and large animal models of burn injury have demonstrated the activation of PARP in various tissues and the beneficial effect of its pharmacological inhibition. The aims of the current study were to measure the activation of PARP in human skeletal muscle biopsies at various stages of severe pediatric burn injury and to identify the cell types where this activation may occur. Another aim of the study was to test the effect of propranolol (an effective treatment of patients with burns) on the activation of PARP in skeletal muscle biopsies. Poly(ADP-ribose) polymerase activation was measured by Western blotting for its product, poly(ADP-ribose) (PAR). The localization of PARP activation was determined by PAR immunohistochemistry. The results showed that PARP becomes activated in the skeletal muscle tissue after burns, with the peak of the activation occurring in the middle stage of the disease (13-18 days after burns). Even at the late stage of the disease (69-369 days after burn), an elevated degree of PARP activation persisted in some of the patients. Immunohistochemical studies localized the staining of PAR primarily to vascular endothelial cells and occasionally to resident mononuclear cells. There was a marked suppression of PARP activation in the skeletal muscle biopsies of patients who received propranolol treatment. We conclude that human burn injury is associated with the activation of PARP. We hypothesize that this response may contribute to the inflammatory responses and cell dysfunction in burns. Some of the clinical benefit of propranolol in burns may be related to its inhibitory effect on PARP activation.
Collapse
|
47
|
Redox proteomics and drug development. J Proteomics 2011; 74:2575-95. [DOI: 10.1016/j.jprot.2011.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/22/2010] [Accepted: 01/09/2011] [Indexed: 01/06/2023]
|
48
|
Dhein S, Rothe S, Busch A, Rojas Gomez DM, Boldt A, Reutemann A, Seidel T, Salameh A, Pfannmüller B, Rastan A, Kostelka M, Mohr FW. Effects of metoprolol therapy on cardiac gap junction remodelling and conduction in human chronic atrial fibrillation. Br J Pharmacol 2011; 164:607-16. [PMID: 21542828 PMCID: PMC3188900 DOI: 10.1111/j.1476-5381.2011.01460.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/16/2011] [Accepted: 04/06/2011] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE We investigated the influence of metoprolol on gap junction proteins connexin43 (Cx43) and connexin40 (Cx40) in atrial tissue from patients with/without atrial fibrillation (AF). EXPERIMENTAL APPROACH Left atrial tissue samples from 160 patients with AF or sinus rhythm (SR) with or without metoprolol (mean daily dose: 65.2 ± 9.1 mg·day⁻¹) were analysed for Cx43 and Cx40 by Western blot and immunohistology. Transverse and longitudinal conduction velocities were determined by 64 multi-electrode mapping. KEY RESULTS Both Cx43 and Cx40 expression were significantly increased in patients with AF versus SR. Cx43-expression in AF was significantly higher in patients receiving metoprolol, while Cx40 expression was unaffected by metoprolol treatment. In AF, the ratio of lateral/polar expression of Cx43 and Cx40 was enhanced due to increased expression at the sides of the cells (lateral) and a loss at the cell poles. This AF-induced increase in lateral/polar expression of Cx43, but not of Cx40, was significantly antagonized by metoprolol treatment. Functionally, in AF patients, transverse conduction velocity in atrial samples was significantly enhanced and this change was also significantly antagonized by metoprolol. CONCLUSIONS AND IMPLICATIONS AF induced enhanced lateral expression of Cx43 and Cx40 together with enhanced transverse conduction velocity in left atrial tissue. Alterations in localization of Cx43 and conduction changes were both antagonized by metoprolol, showing that pharmacological modulation of gap junction remodelling seems, in principle, possible. This finding may open new approaches to the development of anti-arrythmic drugs.
Collapse
Affiliation(s)
- S Dhein
- Clinic for Cardiac Surgery, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
In vitro scavenging capacity of annatto seed extracts against reactive oxygen and nitrogen species. Food Chem 2011; 127:419-26. [DOI: 10.1016/j.foodchem.2010.12.139] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 10/21/2010] [Accepted: 12/31/2010] [Indexed: 11/24/2022]
|
50
|
Heffernan KS, Suryadevara R, Patvardhan EA, Mooney P, Karas RH, Kuvin JT. Effect of atenolol vs metoprolol succinate on vascular function in patients with hypertension. Clin Cardiol 2011; 34:39-44. [PMID: 21259277 DOI: 10.1002/clc.20841] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We evaluated the effect of atenolol vs metoprolol succinate on vascular function in patients with essential hypertension. HYPOTHESIS Given intrinsic differences between these agents, we hypothesized that atenolol and metoprolol succinate would have disparate effects on vascular function. METHODS This study included 24 patients with hypertension (age 56 ± 2 years, 8 female, body mass index 28 ± 1) and featured a randomized, double-blind, crossover design. Each β-blocker (atenolol or metoprolol succinate) was taken by patients once daily for a 4-week period. Measures of vascular function included peripheral augmentation index (AIx) and pulse wave amplitude reactive hyperemia index from peripheral arterial tonometry, and brachial artery flow-mediated dilation from ultrasound. RESULTS There were similar reductions in mean arterial pressure following treatment with atenolol and metoprolol succinate. Compared with metoprolol succinate, there was a significant increase in peripheral AIx following atenolol therapy (P < 0.05). There were no changes in brachial artery flow-mediated dilation or pulse wave amplitude reactive hyperemia index following either drug treatment. CONCLUSIONS Although atenolol and metoprolol succinate have similar effects on blood-pressure reduction, they have different effects on vascular function. Compared with metoprolol succinate, atenolol increases peripheral AIx. Neither drug has an effect on vascular endothelial function. These findings may have clinical implications, depending on the indication for treatment in an individual patient.
Collapse
Affiliation(s)
- Kevin S Heffernan
- Vascular Function Study Group, Department of Medicine, Division of Cardiology, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|