1
|
Lindstaedt A, Doroszuk J, Machnikowska A, Dziadosz A, Barski P, Raffa V, Witt D. Effects Induced by the Temperature and Chemical Environment on the Fluorescence of Water-Soluble Gold Nanoparticles Functionalized with a Perylene-Derivative Dye. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1097. [PMID: 38473569 DOI: 10.3390/ma17051097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
We developed a fluorescent molecular probe based on gold nanoparticles functionalized with N,N'-bis(2-(1-piperazino)ethyl)-3,4,9,10-perylenetetracarboxylic acid diimide dihydrochloride, and these probes exhibit potential for applications in microscopic thermometry. The intensity of fluorescence was affected by changes in temperature. Chemical environments, such as different buffers with the same pH, also resulted in different fluorescence intensities. Due to the fluorescence intensity changes exhibited by modified gold nanoparticles, these materials are promising candidates for future technologies involving microscopic temperature measurements.
Collapse
Affiliation(s)
| | | | | | - Alicja Dziadosz
- ProChimia Surfaces Sp. z o.o., Zacisze 2, 81-850 Sopot, Poland
| | - Piotr Barski
- ProChimia Surfaces Sp. z o.o., Zacisze 2, 81-850 Sopot, Poland
| | - Vittoria Raffa
- Dipartimento di Biologia, Università di Pisa, S.S. 12 Abetone e Brennero, 4 56127 Pisa, Italy
| | - Dariusz Witt
- Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
2
|
Moura NMM, Cavaleiro JAS, Neves MGPMS, Ramos CIV. opp-Dibenzoporphyrin Pyridinium Derivatives as Potential G-Quadruplex DNA Ligands. Molecules 2023; 28:6318. [PMID: 37687146 PMCID: PMC10489911 DOI: 10.3390/molecules28176318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 09/10/2023] Open
Abstract
Since the occurrence of tumours is closely associated with the telomerase function and oncogene expression, the structure of such enzymes and genes are being recognized as targets for new anticancer drugs. The efficacy of several ligands in telomerase inhibition and in the regulation of genes expression, by an effective stabilisation of G-quadruplexes (G4) DNA structures, is being considered as a promising strategy in cancer therapies. When evaluating the potential of a ligand for telomerase inhibition, the selectivity towards quadruplex versus duplex DNA is a fundamental attribute due to the large amount of double-stranded DNA in the cellular nucleus. This study reports the evaluated efficacy of three tetracationic opp-dibenzoporphyrins, a free base, and the corresponding zinc(II) and nickel(II) complexes, to stabilise G4 structures, namely the telomeric DNA sequence (AG3(T2AG3)3). In order to evaluate the selectivity of these ligands towards G4 structures, their interaction towards DNA calf thymus, as a double-strand DNA sequence, were also studied. The data obtained by using different spectroscopic techniques, such as ultraviolet-visible, fluorescence, and circular dichroism, suggested good affinity of the free-base porphyrin and of its zinc(II) complex for the considered DNA structures, both showing a pattern of selectivity for the telomeric G4 structure. A pattern of aggregation in aqueous solution was detected for both Zn(II) and Ni(II) metallo dibenzoporphyrins and the ability of DNA sequences to induce ligand disaggregation was observed.
Collapse
Affiliation(s)
- Nuno M. M. Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.A.S.C.); (M.G.P.M.S.N.)
| | | | | | - Catarina I. V. Ramos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.A.S.C.); (M.G.P.M.S.N.)
| |
Collapse
|
3
|
Antifungal Activity of Amphiphilic Perylene Bisimides. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206890. [PMID: 36296485 PMCID: PMC9609932 DOI: 10.3390/molecules27206890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
Perylene-based compounds, either naturally occurring or synthetic, have shown interesting biological activities. In this study, we report on the broad-spectrum antifungal properties of two lead amphiphilic perylene bisimides, compounds 4 and 5, which were synthesized from perylene-3,4,9,10-tetracarboxylic dianhydride by condensation with spermine and an ammonium salt formation. The antifungal activity was evaluated using a collection of fungal strains and clinical isolates from patients with onychomycosis or sporotrichosis. Both molecules displayed an interesting antifungal profile with MIC values in the range of 2–25 μM, being as active as several reference drugs, even more potent in some particular strains. The ammonium trifluoroacetate salt 5 showed the highest activity with a MIC value of 2.1 μM for all tested Candida spp., two Cryptococcus spp., two Fusarium spp., and one Neoscytalidium spp. strain. Therefore, these amphiphilic molecules with the perylene moiety and cationic ammonium side chains represent important structural features for the development of novel antifungals.
Collapse
|
4
|
Thaichana P, Summart R, Dejkriengkraikul P, Meepowpan P, Lee TR, Tuntiwechapikul W. Hydrosoluble Perylene Monoimide-Based Telomerase Inhibitors with Diminished Cytotoxicity. ACS OMEGA 2022; 7:16746-16756. [PMID: 35601338 PMCID: PMC9118414 DOI: 10.1021/acsomega.2c01343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Telomerase is essential for the immortality characteristics of most cancers. Telomerase-specific inhibitors should render cancer cells to replicative senescence without acute cytotoxicity. Perylene-based G-quadruplex (G4) ligands are widely studied as telomerase inhibitors. Most reported perylene-based G4 ligands are perylene diimides (PDIs), which often suffer from self-aggregation in aqueous solutions. Previously, we found that PM2, a perylene monoimide (PMI), exhibited better solubility, G4 binding affinity, and telomerase inhibition than PIPER, the prototypic PDI. However, the acute cytotoxicity of PM2 was about 20-30 times more than PIPER in cancer cells. In this report, we replaced the piperazine side chain of PM2 with ethylenediamine to yield PM3 and replaced the N,N-diethylethylenediamine side chain of PM2 with the 1-(2-aminoethyl) piperidine to yield PM5. We found that asymmetric PMIs with two basic side chains (PM2, PM3, and PM5) performed better than PIPER (the prototypic PDI), in terms of hydrosolubility, G4 binding, in vitro telomerase inhibition, and suppression of human telomerase reverse transcriptase (hTERT) expression and telomerase activity in A549 cells. However, PM5 was 7-10 times less toxic than PM2 and PM3 in three cancer cell lines. We conclude that replacing the N,N-diethylethylenediamine side chain with the 2-aminoethylpiperidine on PMIs reduces the cytotoxicity in cancer cells without impacting G4 binding and telomerase inhibition. This study paves the way for synthesizing new PMIs with drug-like properties for selective telomerase inhibition.
Collapse
Affiliation(s)
- Pak Thaichana
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang
Mai 50200, Thailand
| | - Ratasark Summart
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang
Mai 50200, Thailand
| | - Pornngarm Dejkriengkraikul
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang
Mai 50200, Thailand
- Center
for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Puttinan Meepowpan
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang Mai 50200, Thailand
| | - T. Randall Lee
- Department
of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5003, United States
| | - Wirote Tuntiwechapikul
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang
Mai 50200, Thailand
- Center
for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Singh P, Hirsch A. Extended EDTA Bola‐Amphiphile: Putrescine‐Based 2G Dendron Functionalized with Perylene Diimide. ChemistrySelect 2021. [DOI: 10.1002/slct.202102933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Prabhpreet Singh
- Department of Chemistry UGC Centre for Advanced Studies-II Guru Nanak Dev University Amritsar 143001 pb.) India
| | - Andreas Hirsch
- Department of Chemistry and Pharmacy and Institute of Advanced Materials and Processes (ZMP) Friedrich-Alexander University Erlangen – Nürnberg Henkestrasse 42 91054 Erlangen Germany
| |
Collapse
|
6
|
Macii F, Cupellini L, Stifano M, Santolaya J, Pérez-Arnaiz C, Pucci A, Barone G, García B, Busto N, Biver T. Combined spectroscopic and theoretical analysis of the binding of a water-soluble perylene diimide to DNA/RNA polynucleotides and G-quadruplexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119914. [PMID: 34015745 DOI: 10.1016/j.saa.2021.119914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/23/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
We present here a combined spectroscopic and theoretical analysis of the binding of N,N'-bis(2-(1-piperazino)ethyl)-3,4,9,10-perylenetetracarboxylic acid diimide dichloride (PZPERY) to different biosubstrates. Absorbance titrations and circular dichroism experiments, melting studies and isothermal calorimetry (ITC) titrations reveal a picture where the binding to natural double-stranded DNA is very different from that to double and triple-stranded RNAs (poly(A)∙poly(U) and poly(U)∙poly(A)⁎poly(U)). As confirmed also by the structural and energetic details clarified by density functional theory (DFT) calculations, intercalation occurs for DNA, with a process driven by the combination of aggregates disruption and monomers intercalation. Oppositely, for RNAs, no intercalation but groove binding with the formation of supramolecular aggregates is observed. Among all the tested biosubstrates, the affinity of PZPERY towards DNA G-quadruplexes (G4) is the greatest one with a preference for human telomeric G4s. Focusing on hybrid G4 forms, either sitting-atop ("tetrad-parallel") or lateral ("groove-parallel") binding modes were considered in the discussion of the experimental results and molecular dynamics (MD) simulations. Both turned out to be possible concurrently, in agreement also with the experimental binding stoichiometries higher than 2:1.
Collapse
Affiliation(s)
- Francesca Macii
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Cupellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Mariassunta Stifano
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Javier Santolaya
- Department of Chemistry, University of Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Cristina Pérez-Arnaiz
- Department of Chemistry, University of Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Andrea Pucci
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Begoña García
- Department of Chemistry, University of Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Natalia Busto
- Department of Chemistry, University of Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy.
| |
Collapse
|
7
|
Nishio M, Tsukakoshi K, Ikebukuro K. G-quadruplex: Flexible conformational changes by cations, pH, crowding and its applications to biosensing. Biosens Bioelectron 2021; 178:113030. [PMID: 33524709 DOI: 10.1016/j.bios.2021.113030] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
G-quadruplex (G4) is a non-canonical structure that is formed in G-rich sequences of nucleic acids. G4s play important roles in vivo, such as telomere maintenance, transcription, and DNA replication. There are three typical topologies of G4: parallel, anti-parallel, and hybrid. In general, metal cations, such as potassium and sodium, stabilize G4s through coordination in the G-quartet. While G4s have some functions in vivo, there are many reports of developed applications that use G4s. As various conformations of G4s could form from one sequence depending on varying conditions, many researchers have developed G4-based sensors. Furthermore, G4 is a great scaffold of aptamers since many aptamers folded into G4s have also been reported. However, there are some challenges about its practical use due to the difference between practical sample conditions and experimental ones. G4 conformations are dramatically altered by the surrounding conditions, such as metal cations, pH, and crowding. Many studies have been conducted to characterize G4 conformations under various conditions, not only to use G4s in practical applications but also to reveal its function in vivo. In this review, we summarize recent studies that have investigated the effects of surrounding conditions (e.g., metal cations, pH, and crowding) on G4 conformations and the application of G4s mainly in biosensor fields, and in others.
Collapse
Affiliation(s)
- Maui Nishio
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
8
|
Summart R, Thaichana P, Supan J, Meepowpan P, Lee TR, Tuntiwechapikul W. Superiority of an Asymmetric Perylene Diimide in Terms of Hydrosolubility, G-Quadruplex Binding, Cellular Uptake, and Telomerase Inhibition in Prostate Cancer Cells. ACS OMEGA 2020; 5:29733-29745. [PMID: 33251409 PMCID: PMC7689663 DOI: 10.1021/acsomega.0c03505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/05/2020] [Indexed: 05/11/2023]
Abstract
Perylene diimide (PDI) derivatives have been studied as G-quadruplex ligands that suppress telomerase activity by facilitating G-quadruplex formation of telomeric DNA and the hTERT promoter. PIPER, the prototypical PDI, reduces telomerase activity in lung and prostate cancer cells, leading to telomere shortening and cellular senescence of these cells. However, PIPER suffers from poor hydrosolubility and the propensity to aggregate at neutral pH. In this report, we synthesized a new asymmetric PDI, aPDI-PHis, which maintains one N-ethyl piperidine side chain of PIPER and has histidine as another side chain. The results show that aPDI-PHis is superior to its symmetric counterparts, PIPER and PDI-His, in terms of hydrosolubility, G-quadruplex binding, cellular uptake, and telomerase inhibition in prostate cancer cells. These results suggest that one N-ethyl piperidine side chain of PDI is sufficient for G-quadruplex binding, while another side chain can be tuned to elicit desirable properties. These findings might lead to better PDIs for use as anticancer drugs.
Collapse
Affiliation(s)
- Ratasark Summart
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, 110 Intavaroros Road, Chiang Mai 50200, Thailand
| | - Pak Thaichana
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, 110 Intavaroros Road, Chiang Mai 50200, Thailand
| | - Jutharat Supan
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, 110 Intavaroros Road, Chiang Mai 50200, Thailand
| | - Puttinan Meepowpan
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai 50200, Thailand
| | - T. Randall Lee
- Department
of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5003, United States
| | - Wirote Tuntiwechapikul
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, 110 Intavaroros Road, Chiang Mai 50200, Thailand
- . Tel: +66-53-945323.
Fax: +66-53-894031
| |
Collapse
|
9
|
Ramos CIV, Almeida SP, Lourenço LMO, Pereira PMR, Fernandes R, Faustino MAF, Tomé JPC, Carvalho J, Cruz C, Neves MGPMS. Multicharged Phthalocyanines as Selective Ligands for G-Quadruplex DNA Structures. Molecules 2019; 24:E733. [PMID: 30781675 PMCID: PMC6412362 DOI: 10.3390/molecules24040733] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 01/21/2023] Open
Abstract
The stabilization of G-Quadruplex DNA structures by ligands is a promising strategy for telomerase inhibition in cancer therapy since this enzyme is responsible for the unlimited proliferation of cancer cells. To assess the potential of a compound as a telomerase inhibitor, selectivity for quadruplex over duplex DNA is a fundamental attribute, as the drug must be able to recognize quadruplex DNA in the presence of a large amount of duplex DNA, in the cellular nucleus. By using different spectroscopic techniques, such as ultraviolet-visible, fluorescence and circular dichroism, this work evaluates the potential of a series of multicharged phthalocyanines, bearing four or eight positive charges, as G-Quadruplex stabilizing ligands. This work led us to conclude that the existence of a balance between the number and position of the positive charges in the phthalocyanine structure is a fundamental attribute for its selectivity for G-Quadruplex structures over duplex DNA structures. Two of the studied phthalocyanines, one with four peripheral positive charges (ZnPc1) and the other with less exposed eight positive charges (ZnPc4) showed high selectivity and affinity for G-Quadruplex over duplex DNA structures and were able to accumulate in the nucleus of UM-UC-3 bladder cancer cells.
Collapse
Affiliation(s)
- Catarina I V Ramos
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Susana P Almeida
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Leandro M O Lourenço
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Patrícia M R Pereira
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- CNC.IBILI Consortium, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- CNC.IBILI Consortium, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - M Amparo F Faustino
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João P C Tomé
- CQE & Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, n1, 1049-001 Lisboa, Portugal.
| | - Josué Carvalho
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Carla Cruz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - M Graça P M S Neves
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
10
|
Liu W, Sun T, Zhang P, Li L, Lv J, Li B. [Application of atomic force microscopy-based single molecule force spectroscopy in G-quadruplex studies]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1107-1114. [PMID: 30377115 DOI: 10.12122/j.issn.1673-4254.2018.09.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Telomere plays a crucial role in the physiological and pathological processes of cells. At the end of the telomere, the single-stranded DNA repeat sequence rich in guanine (G) folds in the presence of monovalent metal ions such as Na+ or K+ to form a G-quadruplex structure. This structure can not be extended by telomerase and inhibits the activity of telomerase, thus becoming a potential anticancer target. Stabilizing the formation of DNA G-quadruplex structures by small molecule ligands has become a new strategy for designing many anticancer drugs, and studying the interaction strength of these small molecule ligands with G-quadruplex is thus of particular importance for screening highly effective anticancer drugs. Single molecule force spectroscopy enables direct measurement of the interaction between small molecule ligands and G-quadruplexes. This review highlights the advances of single-molecule force spectroscopy based on atomic force microscopy in the study of the G quadruplex structure and its interaction with small molecule ligands, and summarizes the application and development trend of single molecule force spectrum technology in G quadruplex.
Collapse
Affiliation(s)
- Wenjing Liu
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Sun
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Zhang
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Li
- School of Science, Ningbo University, Ningbo 315211, China
| | - Junhong Lv
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Bin Li
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
11
|
El Sayed MT. Synthetic Routes to Electroactive Organic Discotic Aromatic Triazatruxenes. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.3007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mardia Telep El Sayed
- Applied Organic Chemistry Department, Chemical Industries Division; National Research Centre; Dokki 12311 Egypt
| |
Collapse
|
12
|
Acosta-Andrade C, Artetxe I, Lete MG, Monasterio BG, Ruiz-Mirazo K, Goñi FM, Sánchez-Jiménez F. Polyamine-RNA-membrane interactions: From the past to the future in biology. Colloids Surf B Biointerfaces 2017; 155:173-181. [PMID: 28456048 DOI: 10.1016/j.colsurfb.2017.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 03/12/2017] [Accepted: 04/04/2017] [Indexed: 01/06/2023]
Abstract
Biogenic polyamines (PAs), spermine, spermidine and putrescine are widely spread amino acid derivatives, present in living cells throughout the whole evolutionary scale. Their amino groups confer them a marked basic character at the cellular pH. We have tested the interaction of PAs with negatively-charged phospholipids in the absence and presence of nucleic acids (tRNA was mainly used for practical reasons). PAs induced aggregation of lipid vesicles containing acidic phospholipids. Aggregation was detected using both spectroscopic and fluorescence microscopy methods (the latter with giant unilamellar vesicles). PA-liposome complexes were partially disaggregated when nucleic acids were added to the mixture, indicating a competition between lipids and nucleic acids for PAs in a multiple equilibrium phenomenon. Equivalent observations could be made when vesicles composed of oleic acid and 1-decanol (1:1mol ratio) were used instead of phospholipid liposomes. The data could evoke putative primitive processes of proto-biotic evolution. At the other end of the time scale, this system may be at the basis of an interesting tool in the development of nanoscale drug delivery.
Collapse
Affiliation(s)
- Carlos Acosta-Andrade
- Department of Molecular Biology and Biochemistry, University of Malaga, and Unit 741 of CIBER de Enfermedades Raras, Málaga, Spain
| | - Ibai Artetxe
- Biofisika Institute (CSIC, UPV/EHU), and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain
| | - Marta G Lete
- Biofisika Institute (CSIC, UPV/EHU), and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain
| | - Bingen G Monasterio
- Biofisika Institute (CSIC, UPV/EHU), and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain
| | - Kepa Ruiz-Mirazo
- Biofisika Institute (CSIC, UPV/EHU), and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain; Department of Logic and Philosophy of Science, University of the Basque Country, Donostia, Spain
| | - Félix M Goñi
- Biofisika Institute (CSIC, UPV/EHU), and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain
| | - Francisca Sánchez-Jiménez
- Department of Molecular Biology and Biochemistry, University of Malaga, and Unit 741 of CIBER de Enfermedades Raras, Málaga, Spain.
| |
Collapse
|
13
|
Jiang Y, Chen AC, Kuang GT, Wang SK, Ou TM, Tan JH, Li D, Huang ZS. Design, synthesis and biological evaluation of 4-anilinoquinazoline derivatives as new c-myc G-quadruplex ligands. Eur J Med Chem 2016; 122:264-279. [PMID: 27372288 DOI: 10.1016/j.ejmech.2016.06.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 11/18/2022]
Abstract
A series of 4-anilinoquinazoline derivatives were designed and synthesized as novel c-myc promoter G-quadruplex binding ligands. Subsequent biophysical and biochemical evaluation demonstrated that the introduction of aniline group at 4-position of quinazoline ring and two side chains with terminal amino group improved their binding affinity and stabilizing ability to G-quadruplex DNA. RT-PCR assay and Western blot showed that compound 7a could down-regulate transcription and expression of c-myc gene in Hela cells, which was consistent with the behavior of an effective G-quadruplex ligand targeting c-myc oncogene. More importantly, RTCA and colony formation assays indicated that 7a obviously inhibited Hela cells proliferation, without influence on normal primary cultured mouse mesangial cells. Flow cytometric assays suggested that 7a induced Hela cells to arrest in G0/G1 phase both in a time-dependent and dose-dependent manner.
Collapse
Affiliation(s)
- Yin Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Ai-Chun Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Guo-Tao Kuang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Shi-Ke Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
14
|
Xu Z, Guo K, Yu J, Sun H, Tang J, Shen J, Müllen K, Yang W, Yin M. A unique perylene-based DNA intercalator: localization in cell nuclei and inhibition of cancer cells and tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4087-4092. [PMID: 24976526 DOI: 10.1002/smll.201401262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 05/22/2014] [Indexed: 06/03/2023]
Abstract
To date, perylene derivatives have not been explored as DNA intercalator to inhibit cancer cells by intercalating into the base pairs of DNA. Herein, a water-soluble perylene bisimide (PBDI) that efficiently intercalates into the base pairs of DNA is synthesized. Excitingly, PBDI is superior to the commercial DNA intercalator, amonafide, for specific nuclear accumulation and effective suppression of cancer cells and tumors.
Collapse
Affiliation(s)
- Zejun Xu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education Beijing, University of Chemical Technology, 100029, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Altieri A, Alvino A, Ohnmacht S, Ortaggi G, Neidle S, Nocioni D, Franceschin M, Bianco A. Xanthene and xanthone derivatives as G-quadruplex stabilizing ligands. Molecules 2013; 18:13446-70. [PMID: 24177701 PMCID: PMC6269716 DOI: 10.3390/molecules181113446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/21/2013] [Accepted: 10/23/2013] [Indexed: 12/14/2022] Open
Abstract
Following previous studies on anthraquinone and acridine-based G-quadruplex ligands, here we present a study of similar aromatic cores, with the specific aim of increasing G-quadruplex binding and selectivity with respect to duplex DNA. Synthesized compounds include two and three-side chain xanthone and xanthene derivatives, as well as a dimeric “bridged” form. ESI and FRET measurements suggest that all the studied molecules are good G-quadruplex ligands, both at telomeres and on G-quadruplex forming sequences of oncogene promoters. The dimeric compound and the three-side chain xanthone derivative have been shown to represent the best compounds emerging from the different series of ligands presented here, having also high selectivity for G-quadruplex structures with respect to duplex DNA. Molecular modeling simulations are in broad agreement with the experimental data.
Collapse
Affiliation(s)
- Alessandro Altieri
- Dipartimento di Chimica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, Roma 00185, Italy; E-Mails: (A.A.); (G.O.); (D.N.); (M.F.)
- Authors to whom correspondence should be addressed; E-Mails: (A.A.); (A.B.); Tel.: +39-064-991-3229/3622 (A.A. & A.B.) Fax: +39-064-991-3841 (A.A. & A.B.)
| | - Antonello Alvino
- Dipartimento di Chimica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, Roma 00185, Italy; E-Mails: (A.A.); (G.O.); (D.N.); (M.F.)
| | - Stephan Ohnmacht
- The UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; E-Mails: (S.O.); (S.N.)
| | - Giancarlo Ortaggi
- Dipartimento di Chimica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, Roma 00185, Italy; E-Mails: (A.A.); (G.O.); (D.N.); (M.F.)
| | - Stephen Neidle
- The UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; E-Mails: (S.O.); (S.N.)
| | - Daniele Nocioni
- Dipartimento di Chimica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, Roma 00185, Italy; E-Mails: (A.A.); (G.O.); (D.N.); (M.F.)
| | - Marco Franceschin
- Dipartimento di Chimica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, Roma 00185, Italy; E-Mails: (A.A.); (G.O.); (D.N.); (M.F.)
| | - Armandodoriano Bianco
- Dipartimento di Chimica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, Roma 00185, Italy; E-Mails: (A.A.); (G.O.); (D.N.); (M.F.)
- Authors to whom correspondence should be addressed; E-Mails: (A.A.); (A.B.); Tel.: +39-064-991-3229/3622 (A.A. & A.B.) Fax: +39-064-991-3841 (A.A. & A.B.)
| |
Collapse
|
16
|
Schoonover M, Kerwin SM. G-quadruplex DNA cleavage preference and identification of a perylene diimide G-quadruplex photocleavage agent using a rapid fluorescent assay. Bioorg Med Chem 2012; 20:6904-18. [PMID: 23159040 DOI: 10.1016/j.bmc.2012.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/10/2012] [Accepted: 10/18/2012] [Indexed: 12/17/2022]
Abstract
A rapid fluorescence assay for G-quadruplex DNA cleavage was used to investigate the preference of TMPyP4 photochemical and Mn·TMPyP4 oxidative cleavage. Both agents most efficiently cleave the c-Myc promoter G-quadruplex. Direct PAGE analysis of selected assay samples showed that for a given cleavage agent, different cleavage products are formed from different G-quadruplex structures. Cleavage assays carried out in the presence of excess competitor nucleic acid structures revealed the binding selectivity of cleavage agents, while comparisons with duplex cleavage efficiency employing a dual-labeled hairpin oligonucleotide revealed neither agent prefers G-quadruplex over duplex substrates. Finally, this assay was used to identify the perylene diimide Tel11 as a photocleavage agent for the c-Myc G-quadruplex.
Collapse
Affiliation(s)
- Michelle Schoonover
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
17
|
Rao L, Dworkin JD, Nell WE, Bierbach U. Interactions of a platinum-modified perylene derivative with the human telomeric G-quadruplex. J Phys Chem B 2011; 115:13701-12. [PMID: 21999566 PMCID: PMC3324090 DOI: 10.1021/jp207265s] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The interactions of a newly synthesized platinum-modified perylene derivative, compound 7 ([{Pt(dien)}(2)(μ-4-S,S')](NO(3))(4) (dien = diethylenetriamine, 4 = N,N'-bis(1-(2-aminoethyl)-1,3-dimethylthiourea)-3,4,9,10-perylenetetracarboxylic acid diimide), with the human telomeric repeat were studied using various model oligo(deoxy)ribonucleotides to mimic the polymorphic nature of the telomeric G-quadruplex. UV/visible spectroscopy, CD spectropolarimetry, electrospray mass spectrometry (ES-MS), and isothermal titration calorimetry (ITC) were used to demonstrate that compound 7 selectively recognizes the antiparallel form of the unimolecular telomeric G-quadruplex formed by the sequence d(TTAGGG)(4) (dG-24), to which it binds with a 2:1 stoichiometry and nanomolar affinity. Compared with telomeric DNA, the first binding event of compound 7 in titrations with the RNA quadruplex formed by r(UUAGGG)(4) (rG-24) is 1 order of magnitude weaker. Compound 7 does not induce the antiparallel G-quadruplex RNA, which invariably exists in a parallel form and dimerizes in solution. On the basis of the cumulative experimental data, two distinct mechanisms are proposed for the recognition of G-quadruplex DNA and RNA by compound 7. Potential biomedical and biochemical applications of the platinum-perylene technology are discussed.
Collapse
Affiliation(s)
- Lu Rao
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109
| | - Joshua D. Dworkin
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109
| | - William E. Nell
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109
| | - Ulrich Bierbach
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109
| |
Collapse
|
18
|
Sun H, Xiang J, Liu Y, Li L, Li Q, Xu G, Tang Y. A stabilizing and denaturing dual-effect for natural polyamines interacting with G-quadruplexes depending on concentration. Biochimie 2011; 93:1351-6. [DOI: 10.1016/j.biochi.2011.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 06/07/2011] [Indexed: 01/31/2023]
|
19
|
Casagrande V, Salvati E, Alvino A, Bianco A, Ciammaichella A, D’Angelo C, Ginnari-Satriani L, Serrilli AM, Iachettini S, Leonetti C, Neidle S, Ortaggi G, Porru M, Rizzo A, Franceschin M, Biroccio A. N-Cyclic Bay-Substituted Perylene G-Quadruplex Ligands Have Selective Antiproliferative Effects on Cancer Cells and Induce Telomere Damage. J Med Chem 2011; 54:1140-56. [DOI: 10.1021/jm1013665] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Valentina Casagrande
- Dipartimento di Chimica, Università degli Studi “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| | - Erica Salvati
- Experimental Chemotherapy Laboratory, Regina Elena Cancer Institute, Via delle Messi d’Oro 156, 00158 Rome, Italy
| | - Antonello Alvino
- Dipartimento di Chimica, Università degli Studi “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| | - Armandodoriano Bianco
- Dipartimento di Chimica, Università degli Studi “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| | - Alina Ciammaichella
- Dipartimento di Chimica, Università degli Studi “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| | - Carmen D’Angelo
- Experimental Chemotherapy Laboratory, Regina Elena Cancer Institute, Via delle Messi d’Oro 156, 00158 Rome, Italy
| | - Luca Ginnari-Satriani
- Dipartimento di Chimica, Università degli Studi “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| | - Anna Maria Serrilli
- Dipartimento di Chimica, Università degli Studi “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| | - Sara Iachettini
- Experimental Chemotherapy Laboratory, Regina Elena Cancer Institute, Via delle Messi d’Oro 156, 00158 Rome, Italy
| | - Carlo Leonetti
- Experimental Chemotherapy Laboratory, Regina Elena Cancer Institute, Via delle Messi d’Oro 156, 00158 Rome, Italy
| | - Stephen Neidle
- Cancer Research UK Biomolecular Structure Group, The School of Pharmacy, University of London, London, U.K
| | - Giancarlo Ortaggi
- Dipartimento di Chimica, Università degli Studi “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| | - Manuela Porru
- Experimental Chemotherapy Laboratory, Regina Elena Cancer Institute, Via delle Messi d’Oro 156, 00158 Rome, Italy
| | - Angela Rizzo
- Experimental Chemotherapy Laboratory, Regina Elena Cancer Institute, Via delle Messi d’Oro 156, 00158 Rome, Italy
| | - Marco Franceschin
- Dipartimento di Chimica, Università degli Studi “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| | - Annamaria Biroccio
- Experimental Chemotherapy Laboratory, Regina Elena Cancer Institute, Via delle Messi d’Oro 156, 00158 Rome, Italy
| |
Collapse
|
20
|
Micheli E, Martufi M, Cacchione S, De Santis P, Savino M. Self-organization of G-quadruplex structures in the hTERT core promoter stabilized by polyaminic side chain perylene derivatives. Biophys Chem 2010; 153:43-53. [PMID: 21036459 DOI: 10.1016/j.bpc.2010.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 01/05/2023]
Abstract
hTERT core promoter regulates telomerase transcription in human cells, thus its structural features are of large interest. We have found that the G-rich hTERT core promoter region, corresponding to the major DNase I hypersensitive site in chromatin organization, contains nine putative G-quadruplex forming sequences (PQS) and is unfavorable for nucleosome formation. Here we show that four PQS are effectively able to form stable parallel intramolecular G-quadruplexes, using PAGE and CD spectroscopy analysis. The PQS-region, as a whole, appears to be organized in three self-interacting G-quadruplexes, probably giving rise to a helicoidal superstructure, as shown by CD and polymerase stop assay. POL-HPDI drugs, that we previously found useful in selectively stabilizing telomeric G-quadruplex, are able to stabilize both the single intramolecular G-quadruplex and the PQS-region superstructure. The features of their induced CD spectra suggest that POL-HPDIs bind to single G-quadruplexes and to whole PQS-region superstructure, mainly by end-stacking interactions.
Collapse
Affiliation(s)
- Emanuela Micheli
- Dipartimento di Biologia e Biotecnologie, "Sapienza" Università di Roma, Italy
| | | | | | | | | |
Collapse
|
21
|
Identification of small molecule inhibitors of telomerase activity through transcriptional regulation of hTERT and calcium induction pathway in human lung adenocarcinoma A549 cells. Bioorg Med Chem 2010; 18:6987-94. [PMID: 20813535 DOI: 10.1016/j.bmc.2010.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 12/27/2022]
Abstract
High telomerase activity (TA) is detected in most cancer cells; and thus, TA inhibition by drug or dietary food components is a new strategy for cancer prevention. In this report, we examined the effects of fourteen natural or synthetic compounds on TA in human lung adenocarcinoma A549 cells. The results demonstrated that some of the tested compounds inhibited TA, being 2'-hydroxy-2,3,4',6'-tetramethoxychalcone (HTMC) was the most potent among tested. In A549 cells, HTMC also inhibited the cell proliferation, decreased the expression of human telomerase reverse transcriptase (hTERT) and sequentially reduced the hTERT promoter. In soft agar assay HTMC treatment reduced the colony formation of A549 cells. Cellular fractionation and immunofluorescence assay demonstrated that there was no translocation of hTERT from nuclei to cytoplasm. Further studies revealed that the release of Ca(2+) was the underlying mechanism of suppressed TA and hTERT transcription in A549 cells exposed to HTMC. These in vitro data support the development of HTMC as a therapeutic agent for cancer complications.
Collapse
|
22
|
Xie S, Wang J, Zhang Y, Wang C. Antitumor conjugates with polyamine vectors and their molecular mechanisms. Expert Opin Drug Deliv 2010; 7:1049-61. [DOI: 10.1517/17425247.2010.504205] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Rehm S, Stepanenko V, Zhang X, Rehm T, Würthner F. Spermine-Functionalized Perylene Bisimide Dyes-Highly Fluorescent Bola-Amphiphiles in Water. Chemistry 2010; 16:3372-82. [DOI: 10.1002/chem.200902839] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Franceschin M, Ginnari-Satriani L, Alvino A, Ortaggi G, Bianco A. Study of a Convenient Method for the Preparation of Hydrosoluble Fluorescent Triazatruxene Derivatives. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900869] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Micheli E, Lombardo CM, D’Ambrosio D, Franceschin M, Neidle S, Savino M. Selective G-quadruplex ligands: The significant role of side chain charge density in a series of perylene derivatives. Bioorg Med Chem Lett 2009; 19:3903-8. [DOI: 10.1016/j.bmcl.2009.03.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/20/2009] [Accepted: 03/23/2009] [Indexed: 10/21/2022]
|
26
|
Franceschin M. G‐Quadruplex DNA Structures and Organic Chemistry: More Than One Connection. European J Org Chem 2009. [DOI: 10.1002/ejoc.200801196] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Marco Franceschin
- Dipartimento di Chimica, Sapienza – Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy, Fax: +39‐06‐4991‐3841
| |
Collapse
|
27
|
Ginnari-Satriani L, Casagrande V, Bianco A, Ortaggi G, Franceschin M. A hydrophilic three side-chained triazatruxene as a new strong and selective G-quadruplex ligand. Org Biomol Chem 2009; 7:2513-6. [DOI: 10.1039/b904723a] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Donati F, Pucci A, Ruggeri G. Temperature and chemical environment effects on the aggregation extent of water soluble perylene dye into vinyl alcohol-containing polymers. Phys Chem Chem Phys 2009; 11:6276-82. [DOI: 10.1039/b903120k] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Perylene side chains modulate G-quadruplex conformation in biologically relevant DNA sequences. Bioorg Med Chem 2008; 16:9331-9. [PMID: 18819816 DOI: 10.1016/j.bmc.2008.08.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 08/21/2008] [Accepted: 08/28/2008] [Indexed: 11/24/2022]
Abstract
The stabilisation of different G-quadruplex intra- and intermolecular structures by a number of perylene derivatives characterised by side chains ending with linear or cyclic amines was investigated by electrophoretic (EMSA) and spectroscopic (CD) techniques. The G-rich sequences included the biologically relevant human telomeric TTAGGG runs and the NHE region of the c-myc oncogene. The test compounds could be subdivided into two families: derivatives carrying a cyclic amine in the side chains, which show a reduced binding to the G-quadruplex form, and linear amine congeners, exhibiting enhanced affinity. The latter efficiently induce pairing of multiple DNA chains, while the former are not able to overcome the original folding of the nucleic acid sequence which is preserved in the complex. Remarkably, addition of the perylenes to G-rich sequences paired in a double helical form results in G-quadruplex induction by weak binders only. This is likely related to the ability of strong G-quadruplex binders, but not of weak G-quadruplex binders, to efficiently intercalate into the double-stranded arrangement, which becomes stabilised and is not prone to undergo denaturation and subsequent G-quadruplex folding essentially for kinetic reasons. Hence, two apparently conflicting requirements emerge from this work. In fact, linear alkylamino terminals in the perylene side chains are capable of strong and selective G-quadruplex recognition, but only cyclic amine end groups favour duplex-quadruplex transitions that are likely crucial to produce biological and pharmacological effects in living systems.
Collapse
|