1
|
Wang CY, Hu JQ, Wang DG, Li YZ, Wu C. Recent advances in discovery and biosynthesis of natural products from myxobacteria: an overview from 2017 to 2023. Nat Prod Rep 2024; 41:905-934. [PMID: 38390645 DOI: 10.1039/d3np00062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Covering: 2017.01 to 2023.11Natural products biosynthesized by myxobacteria are appealing due to their sophisticated chemical skeletons, remarkable biological activities, and intriguing biosynthetic enzymology. This review aims to systematically summarize the advances in the discovery methods, new structures, and bioactivities of myxobacterial NPs reported in the period of 2017-2023. In addition, the peculiar biosynthetic pathways of several structural families are also highlighted.
Collapse
Affiliation(s)
- Chao-Yi Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Jia-Qi Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - De-Gao Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| |
Collapse
|
2
|
Rosenqvist T, Chan S, Ahlinder J, Salomonsson EN, Suarez C, Persson KM, Rådström P, Paul CJ. Inoculation with adapted bacterial communities promotes development of full scale slow sand filters for drinking water production. WATER RESEARCH 2024; 253:121203. [PMID: 38402751 DOI: 10.1016/j.watres.2024.121203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/27/2024]
Abstract
Gravity-driven filtration through slow sand filters (SSFs) is one of the oldest methods for producing drinking water. As water passes through a sand bed, undesired microorganisms and chemicals are removed by interactions with SSF biofilm and its resident microbes. Despite their importance, the processes through which these microbial communities form are largely unknown, as are the factors affecting these processes. In this study, two SSFs constructed using different sand sources were compared to an established filter and observed throughout their maturation process. One SSF was inoculated through addition of sand scraped from established filters, while the other was not inoculated. The operational and developing microbial communities of SSFs, as well as their influents and effluents, were studied by sequencing of 16S ribosomal rRNA genes. A functional microbial community resembling that of the established SSF was achieved in the inoculated SSF, but not in the non-inoculated SSF. Notably, the non-inoculated SSF had significantly (p < 0.01) higher abundances of classes Armatimonadia, Elusimicrobia, Fimbriimonadia, OM190 (phylum Planctomycetota), Parcubacteria, Vampirivibrionia and Verrucomicrobiae. Conversely, it had lower abundances of classes Anaerolineae, Bacilli, bacteriap25 (phylum Myxococcota), Blastocatellia, Entotheonellia, Gemmatimonadetes, lineage 11b (phylum Elusimicrobiota), Nitrospiria, Phycisphaerae, subgroup 22 (phylum Acidobacteriota) and subgroup 11 (phylum Acidobacteriota). Poor performance of neutral models showed that the assembly and dispersal of SSF microbial communities was mainly driven by selection. The temporal turnover of microbial species, as estimated through the scaling exponent of the species-time relationship, was twice as high in the non-inoculated filter (0.946 ± 0.164) compared to the inoculated filter (0.422 ± 0.0431). This study shows that the addition of an inoculum changed the assembly processes within SSFs. Specifically, the rate at which new microorganisms were observed in the biofilm was reduced. The reduced temporal turnover may be driven by inoculating taxa inhibiting growth, potentially via secondary metabolite production. This in turn would allow the inoculation community to persist and contribute to SSF function.
Collapse
Affiliation(s)
- Tage Rosenqvist
- Division of Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; Sweden Water Research AB, Ideon Science Park, Scheelevägen 15, SE-223 70 Lund, Sweden
| | - Sandy Chan
- Division of Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; Sweden Water Research AB, Ideon Science Park, Scheelevägen 15, SE-223 70 Lund, Sweden; Sydvatten AB, Hyllie Stationstorg 21, SE-215 32 Malmö, Sweden
| | - Jon Ahlinder
- FOI, Swedish Defense Research Agency, Cementvägen 20, SE-906 21 Umeå, Sweden
| | | | - Carolina Suarez
- Water Resources Engineering, Department of Building and Environmental Technology, Lund University, SE-221 00 Lund, Sweden
| | - Kenneth M Persson
- Sydvatten AB, Hyllie Stationstorg 21, SE-215 32 Malmö, Sweden; Water Resources Engineering, Department of Building and Environmental Technology, Lund University, SE-221 00 Lund, Sweden
| | - Peter Rådström
- Division of Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Catherine J Paul
- Division of Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; Water Resources Engineering, Department of Building and Environmental Technology, Lund University, SE-221 00 Lund, Sweden.
| |
Collapse
|
3
|
Redouane EM, Núñez A, Achouak W, Barakat M, Alex A, Martins JC, Tazart Z, Mugani R, Zerrifi SEA, Haida M, García AM, Campos A, Lahrouni M, Oufdou K, Vasconcelos V, Oudra B. Microcystin influence on soil-plant microbiota: Unraveling microbiota modulations and assembly processes in the rhizosphere of Vicia faba. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170634. [PMID: 38325456 DOI: 10.1016/j.scitotenv.2024.170634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Microcystins (MCs) are frequently detected in cyanobacterial bloom-impacted waterbodies and introduced into agroecosystems via irrigation water. They are widely known as phytotoxic cyanotoxins, which impair the growth and physiological functions of crop plants. However, their impact on the plant-associated microbiota is scarcely tackled and poorly understood. Therefore, we aimed to investigate the effect of MCs on microbiota-inhabiting bulk soil (BS), root adhering soil (RAS), and root tissue (RT) of Vicia faba when exposed to 100 μg L-1 MCs in a greenhouse pot experiment. Under MC exposure, the structure, co-occurrence network, and assembly processes of the bacterial microbiota were modulated with the greatest impact on RT-inhabiting bacteria, followed by BS and, to a lesser extent, RAS. The analyses revealed a significant decrease in the abundances of several Actinobacteriota-related taxa within the RT microbiota, including the most abundant and known genus of Streptomyces. Furthermore, MCs significantly increased the abundance of methylotrophic bacteria (Methylobacillus, Methylotenera) and other Proteobacteria-affiliated genera (e.g., Paucibacter), which are supposed to degrade MCs. The co-occurrence network of the bacterial community in the presence of MCs was less complex than the control network. In MC-exposed RT, the turnover in community composition was more strongly driven by deterministic processes, as proven by the beta-nearest taxon index. Whereas in MC-treated BS and RAS, both deterministic and stochastic processes can influence community assembly to some extent, with a relative dominance of deterministic processes. Altogether, these results suggest that MCs may reshape the structure of the microbiota in the soil-plant system by reducing bacterial taxa with potential phytobeneficial traits and increasing other taxa with the potential capacity to degrade MCs.
Collapse
Affiliation(s)
- El Mahdi Redouane
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Matosinhos 4450-208, Portugal
| | - Andrés Núñez
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Madrid 28006, Spain; Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, Murcia 30100, Spain
| | - Wafa Achouak
- Aix Marseille University, CEA, CNRS, BIAM, Lab of Microbial Ecology of the Rhizosphere, (LEMiRE), Saint Paul Lez Durance 13115, France.
| | - Mohamed Barakat
- Aix Marseille University, CEA, CNRS, BIAM, Lab of Microbial Ecology of the Rhizosphere, (LEMiRE), Saint Paul Lez Durance 13115, France
| | - Anoop Alex
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Matosinhos 4450-208, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - José Carlos Martins
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Matosinhos 4450-208, Portugal
| | - Zakaria Tazart
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; AgroBioSciences, Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University, Benguerir 43150, Morocco
| | - Richard Mugani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
| | - Soukaina El Amrani Zerrifi
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; Higher Institute of Nurses Professions and Health Techniques of Guelmim, Guelmim 81000, Morocco
| | - Mohammed Haida
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
| | - Ana M García
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Madrid 28006, Spain
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Matosinhos 4450-208, Portugal
| | - Majida Lahrouni
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment (BioMAgE), Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Matosinhos 4450-208, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Brahim Oudra
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
| |
Collapse
|
4
|
Buntine J, Dasgupta S, Dorney K, Rubinstein O, Salimimarand M, White JM, Rizzacasa MA. Total Synthesis of Icumazole A Using a Modified Cadiot-Chodkiewicz Coupling. Org Lett 2024; 26:1062-1066. [PMID: 38285532 DOI: 10.1021/acs.orglett.3c04268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The first total synthesis of myxobacteria metabolite icumazole A (1) is reported. Key steps in the route include an organocatalyzed asymmetric self-aldol reaction followed by an acetate aldol reaction to form the stereotriad present in the oxazole moiety, an intramolecular Diels-Alder reaction to form the isochromanone, and an acetylide addition and selective methylation. The final steps involved a high-yielding modified Cadiot-Chodkiewicz coupling and stereoselective reduction to secure the Z,Z-diene and afford 1.
Collapse
Affiliation(s)
- Jack Buntine
- School of Chemistry, The Bio21 Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Samrat Dasgupta
- School of Chemistry, The Bio21 Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Keely Dorney
- School of Chemistry, The Bio21 Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Oscar Rubinstein
- School of Chemistry, The Bio21 Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Mina Salimimarand
- School of Chemistry, The Bio21 Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jonathan M White
- School of Chemistry, The Bio21 Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Mark A Rizzacasa
- School of Chemistry, The Bio21 Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
5
|
Saadatpour F, Nikzad MH, Salimi F, Mohammadipanah F. Mining the soil myxobacteria and finding sources of anti-diabetic metabolites. Folia Microbiol (Praha) 2024; 69:109-119. [PMID: 37477787 DOI: 10.1007/s12223-023-01074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023]
Abstract
Secondary metabolites produced by myxobacterial genera are often characterized as diverse molecules with unique structural properties which drove us to search for myxobacterial source of anti-diabetic drug discovery. In the present study, from 80 soil samples, out of sixty-five observed isolates, 30 and 16 were purified as Myxococcus and non-Myxococcus, respectively. Isolated strains taxonomically belonged to the genera Myxococcus, Corallococcus and Cystobacter, Archangium, Nanocystis, and Sorangium, and some could not be attributed. Secondary metabolites of selected non-Myxococcus isolates extracted by the liquid-liquid method showed that the myxobacterium UTMC 4530 demonstrated the highest inhibition on the formation of carbonyl group and fructosamine, respectively. In addition, it showed 23% and 15.8% inhibitory activity on α-glucosides and α-amylase compared to acarbose (23%, 18%), respectively. The extract of strain UTMC 4530 showed 35% induction effect on glucose adsorption while showing no radical scavenging activity and no toxic effect on HRBC lysis and HepG2 in cytotoxicity assays. The strain UTMC 4530 (ON808962), with the multiple antidiabetic activity, showed 87.3% similarity to Corallococcus llansteffanensis which indicates its affiliation to a new genus. The results of this study revealed that secondary metabolites produced by strain UTMC 4530 can be considered a promising source to find new therapeutic and pharmaceutical applications perhaps a multi-mechanism anti-diabetic compound.
Collapse
Affiliation(s)
- Fatemeh Saadatpour
- Pharmaceutial Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Hossain Nikzad
- Pharmaceutial Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Salimi
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutial Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
6
|
Wang Z, Xu M, Li F, Bai Y, Hou J, Li X, Cao R, Deng Y, Jiang Y, Wang H, Yang W. Changes in soil bacterial communities and functional groups beneath coarse woody debris across a subalpine forest successional series. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
7
|
Mordhorst S, Ruijne F, Vagstad AL, Kuipers OP, Piel J. Emulating nonribosomal peptides with ribosomal biosynthetic strategies. RSC Chem Biol 2023; 4:7-36. [PMID: 36685251 PMCID: PMC9811515 DOI: 10.1039/d2cb00169a] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Peptide natural products are important lead structures for human drugs and many nonribosomal peptides possess antibiotic activity. This makes them interesting targets for engineering approaches to generate peptide analogues with, for example, increased bioactivities. Nonribosomal peptides are produced by huge mega-enzyme complexes in an assembly-line like manner, and hence, these biosynthetic pathways are challenging to engineer. In the past decade, more and more structural features thought to be unique to nonribosomal peptides were found in ribosomally synthesised and posttranslationally modified peptides as well. These streamlined ribosomal pathways with modifying enzymes that are often promiscuous and with gene-encoded precursor proteins that can be modified easily, offer several advantages to produce designer peptides. This review aims to provide an overview of recent progress in this emerging research area by comparing structural features common to both nonribosomal and ribosomally synthesised and posttranslationally modified peptides in the first part and highlighting synthetic biology strategies for emulating nonribosomal peptides by ribosomal pathway engineering in the second part.
Collapse
Affiliation(s)
- Silja Mordhorst
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Fleur Ruijne
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Nijenborgh 7, 9747 AG Groningen The Netherlands
| | - Anna L Vagstad
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Nijenborgh 7, 9747 AG Groningen The Netherlands
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| |
Collapse
|
8
|
Montuori E, Capalbo A, Lauritano C. Marine Compounds for Melanoma Treatment and Prevention. Int J Mol Sci 2022; 23:10284. [PMID: 36142196 PMCID: PMC9499452 DOI: 10.3390/ijms231810284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/11/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is considered a multifactorial disease etiologically divided into melanomas related to sun exposure and those that are not, but also based on their mutational signatures, anatomic site, and epidemiology. The incidence of melanoma skin cancer has been increasing over the past decades with 132,000 cases occurring globally each year. Marine organisms have been shown to be an excellent source of natural compounds with possible bioactivities for human health applications. In this review, we report marine compounds from micro- and macro-organisms with activities in vitro and in vivo against melanoma, including the compound Marizomib, isolated from a marine bacterium, currently in phase III clinical trials for melanoma. When available, we also report active concentrations, cellular targets and mechanisms of action of the mentioned molecules. In addition, compounds used for UV protection and melanoma prevention from marine sources are discussed. This paper gives an overview of promising marine molecules which can be studied more deeply before clinical trials in the near future.
Collapse
Affiliation(s)
- Eleonora Montuori
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| | - Anita Capalbo
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| | - Chiara Lauritano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| |
Collapse
|
9
|
Santos-Aberturas J, Vior NM. Beyond Soil-Dwelling Actinobacteria: Fantastic Antibiotics and Where to Find Them. Antibiotics (Basel) 2022; 11:195. [PMID: 35203798 PMCID: PMC8868522 DOI: 10.3390/antibiotics11020195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022] Open
Abstract
Bacterial secondary metabolites represent an invaluable source of bioactive molecules for the pharmaceutical and agrochemical industries. Although screening campaigns for the discovery of new compounds have traditionally been strongly biased towards the study of soil-dwelling Actinobacteria, the current antibiotic resistance and discovery crisis has brought a considerable amount of attention to the study of previously neglected bacterial sources of secondary metabolites. The development and application of new screening, sequencing, genetic manipulation, cultivation and bioinformatic techniques have revealed several other groups of bacteria as producers of striking chemical novelty. Biosynthetic machineries evolved from independent taxonomic origins and under completely different ecological requirements and selective pressures are responsible for these structural innovations. In this review, we summarize the most important discoveries related to secondary metabolites from alternative bacterial sources, trying to provide the reader with a broad perspective on how technical novelties have facilitated the access to the bacterial metabolic dark matter.
Collapse
Affiliation(s)
| | - Natalia M. Vior
- Department of Molecular Microbiology, John Innes Centre, Norwich NR7 4UH, UK
| |
Collapse
|
10
|
Heravi MM, Amiri Z, Kafshdarzadeh K, Zadsirjan V. Synthesis of indole derivatives as prevalent moieties present in selected alkaloids. RSC Adv 2021; 11:33540-33612. [PMID: 35497516 PMCID: PMC9042329 DOI: 10.1039/d1ra05972f] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 02/02/2023] Open
Abstract
Indoles are a significant heterocyclic system in natural products and drugs. They are important types of molecules and natural products and play a main role in cell biology. The application of indole derivatives as biologically active compounds for the treatment of cancer cells, microbes, and different types of disorders in the human body has attracted increasing attention in recent years. Indoles, both natural and synthetic, show various biologically vital properties. Owing to the importance of this significant ring system, the investigation of novel methods of synthesis have attracted the attention of the chemical community. In this review, we aim to highlight the construction of indoles as a moiety in selected alkaloids.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Zahra Amiri
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Kosar Kafshdarzadeh
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| |
Collapse
|
11
|
Rouhizohrab N, Mohammadipanah F. Thermostable Alkaline Serine Protease Production by the Soil Myxobacterium of Archangium sp. UTMC 4504. Ind Biotechnol (New Rochelle N Y) 2021. [DOI: 10.1089/ind.2020.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nasim Rouhizohrab
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
12
|
Bhat MA, Mishra AK, Bhat MA, Banday MI, Bashir O, Rather IA, Rahman S, Shah AA, Jan AT. Myxobacteria as a Source of New Bioactive Compounds: A Perspective Study. Pharmaceutics 2021; 13:1265. [PMID: 34452226 PMCID: PMC8401837 DOI: 10.3390/pharmaceutics13081265] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Myxobacteria are unicellular, Gram-negative, soil-dwelling, gliding bacteria that belong to class δ-proteobacteria and order Myxococcales. They grow and proliferate by transverse fission under normal conditions, but form fruiting bodies which contain myxospores during unfavorable conditions. In view of the escalating problem of antibiotic resistance among disease-causing pathogens, it becomes mandatory to search for new antibiotics effective against such pathogens from natural sources. Among the different approaches, Myxobacteria, having a rich armor of secondary metabolites, preferably derivatives of polyketide synthases (PKSs) along with non-ribosomal peptide synthases (NRPSs) and their hybrids, are currently being explored as producers of new antibiotics. The Myxobacterial species are functionally characterized to assess their ability to produce antibacterial, antifungal, anticancer, antimalarial, immunosuppressive, cytotoxic and antioxidative bioactive compounds. In our study, we have found their compounds to be effective against a wide range of pathogens associated with the concurrence of different infectious diseases.
Collapse
Affiliation(s)
- Mudasir Ahmad Bhat
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | | | - Mujtaba Aamir Bhat
- Department of Botany, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Mohammad Iqbal Banday
- Department of Microbiology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Ommer Bashir
- Department of School Education, Jammu 181205, Jammu and Kashmir, India;
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia;
| | - Safikur Rahman
- Department of Botany, MS College, BR Ambedkar Bihar University, Muzaffarpur 845401, Bihar, India;
| | - Ali Asghar Shah
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Arif Tasleem Jan
- Department of Botany, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| |
Collapse
|
13
|
Frank NA, Széles M, Akone SH, Rasheed S, Hüttel S, Frewert S, Hamed MM, Herrmann J, Schuler SMM, Hirsch AKH, Müller R. Expanding the Myxochelin Natural Product Family by Nicotinic Acid Containing Congeners. Molecules 2021; 26:4929. [PMID: 34443518 PMCID: PMC8400222 DOI: 10.3390/molecules26164929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Myxobacteria represent a viable source of chemically diverse and biologically active secondary metabolites. The myxochelins are a well-studied family of catecholate-type siderophores produced by various myxobacterial strains. Here, we report the discovery, isolation, and structure elucidation of three new myxochelins N1-N3 from the terrestrial myxobacterium Corallococcus sp. MCy9049, featuring an unusual nicotinic acid moiety. Precursor-directed biosynthesis (PDB) experiments and total synthesis were performed in order to confirm structures, improve access to pure compounds for bioactivity testing, and to devise a biosynthesis proposal. The combined evaluation of metabolome and genome data covering myxobacteria supports the notion that the new myxochelin congeners reported here are in fact frequent side products of the known myxochelin A biosynthetic pathway in myxobacteria.
Collapse
Affiliation(s)
- Nicolas A. Frank
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (N.A.F.); (M.S.); (S.H.A.); (S.R.); (S.H.); (S.F.); (M.M.H.); (J.H.); (A.K.H.H.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Márió Széles
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (N.A.F.); (M.S.); (S.H.A.); (S.R.); (S.H.); (S.F.); (M.M.H.); (J.H.); (A.K.H.H.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Sergi H. Akone
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (N.A.F.); (M.S.); (S.H.A.); (S.R.); (S.H.); (S.F.); (M.M.H.); (J.H.); (A.K.H.H.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Department of Chemistry, Faculty of Science, University of Douala, Douala P.O. Box 24157, Cameroon
| | - Sari Rasheed
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (N.A.F.); (M.S.); (S.H.A.); (S.R.); (S.H.); (S.F.); (M.M.H.); (J.H.); (A.K.H.H.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Stephan Hüttel
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (N.A.F.); (M.S.); (S.H.A.); (S.R.); (S.H.); (S.F.); (M.M.H.); (J.H.); (A.K.H.H.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Simon Frewert
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (N.A.F.); (M.S.); (S.H.A.); (S.R.); (S.H.); (S.F.); (M.M.H.); (J.H.); (A.K.H.H.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Mostafa M. Hamed
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (N.A.F.); (M.S.); (S.H.A.); (S.R.); (S.H.); (S.F.); (M.M.H.); (J.H.); (A.K.H.H.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Jennifer Herrmann
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (N.A.F.); (M.S.); (S.H.A.); (S.R.); (S.H.); (S.F.); (M.M.H.); (J.H.); (A.K.H.H.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | | | - Anna K. H. Hirsch
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (N.A.F.); (M.S.); (S.H.A.); (S.R.); (S.H.); (S.F.); (M.M.H.); (J.H.); (A.K.H.H.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Rolf Müller
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (N.A.F.); (M.S.); (S.H.A.); (S.R.); (S.H.); (S.F.); (M.M.H.); (J.H.); (A.K.H.H.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| |
Collapse
|
14
|
Wu Z, Cui H, Sun Z, Liu H. Biocontrol mechanism of Myxococcus xanthus B25-I-1 against Phytophthora infestans. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104832. [PMID: 33993957 DOI: 10.1016/j.pestbp.2021.104832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Phytophthora infestans is the pathogen causing potato late blight, one of the most serious diseases of potato. Myxobacteria have become a valuable biological control resource due to their preponderant abilities to produce various secondary metabolites with novel structure and remarkable biological activity. In this study, Myxococcus xanthus strain B25-I-1, which exhibited strong antagonistic activity against P. infestans, was isolated from soil sample and identified by 16S rRNA sequence analysis. The strain exhibited antagonistic activity against several species of fungus and bacteria. Analysis of the biocontrol mechanism showed that the active extract produced by strain B25-I-1 had strong inhibitory effects on mycelium and the asexual and sexual reproductive structures of P. infestans. Furthermore, these active extract decreased the content of soluble proteins and activity of the protective enzymes (PPO, POD, PAL, and SOD), increased the oxidative damage and the permeability of the cell membrane in P. infestans. All of these mechanisms might be the biocontrol mechanism of B25-I-1 against P. infestans. The active extract of strain B25-I-1 was separated by TLC and HPLC, and the components with antibiotic activity were detected by HPLC-MS. It was found that the antagonistic components of B25-I-1 contained methyl (2R)-2-azido-3-hydroxyl-2-methylpropanoate and N-(3-Amino-2-hydroxypropyl)-N-methylsulfuric diamide. The active extract significantly inhibited the infection on detached potato leaves by P. infestans, and these substances did not cause damage to the potato leaves. In conclusion, M. xanthus B25-I-1 produced active extract against P. infestans and might potentially be a candidate to develop into biological pesticides for the control of potato late blight. This study adds to the literature on the isolation and identification of active extracts from myxobacteria, and B25-I-1 in particular, for cures or treatments to potato late blight.
Collapse
Affiliation(s)
- Zhihua Wu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Baotou Teachers' College, Baotou, Inner Mongolia 014030, China; The Second Affiliated Hospital of Baotou Medical College, lnner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014040, China
| | - Haichen Cui
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Zhining Sun
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Huirong Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China.
| |
Collapse
|
15
|
Park J, Yoo HJ, Yu AR, Kim HO, Park SC, Jang YP, Lee C, Choe W, Kim SS, Kang I, Yoon KS. Non-Polar Myxococcus fulvus KYC4048 Metabolites Exert Anti-Proliferative Effects via Inhibition of Wnt/β-Catenin Signaling in MCF-7 Breast Cancer Cells. J Microbiol Biotechnol 2021; 31:540-549. [PMID: 33746192 PMCID: PMC9705865 DOI: 10.4014/jmb.2012.12015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022]
Abstract
The Wnt/β-catenin signaling pathway is involved in breast cancer and Myxococcus fulvus KYC4048 is a myxobacterial strain that can produce a variety of bioactive secondary metabolites. Although a previous study revealed that KYC4048 metabolites exhibit anti-proliferative effects on breast cancer, the biochemical mechanism involved in their effects remains unclear. In the present study, KYC4048 metabolites were separated into polar and non-polar (ethyl acetate and n-hexane) fractions via liquid-liquid extraction. The effects of these polar and non-polar KYC4048 metabolites on the viability of breast cancer cells were then determined by MTT assay. Expression levels of Wnt/β-catenin pathway proteins were determined by Western blot analysis. Cell cycle and apoptosis were measured via fluorescence-activated cell sorting (FACS). The results revealed that non-polar KYC4048 metabolites induced cell death of breast cancer cells and decreased expression levels of WNT2B, β-catenin, and Wnt target genes (c-Myc and cyclin D1). Moreover, the n-hexane fraction of non-polar KYC4048 metabolites was found most effective in inducing apoptosis, necrosis, and cell cycle arrest, leading us to conclude that it can induce apoptosis of breast cancer cells through the Wnt/β-catenin pathway. These findings provide evidence that the n-hexane fraction of non-polar KYC4048 metabolites can be developed as a potential therapeutic agent for breast cancer via inhibition of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Juha Park
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee-Jin Yoo
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ah-Ran Yu
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hye Ok Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sang Cheol Park
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Young Pyo Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea,Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chayul Lee
- Lifetogether Co., Ltd., Chuncheon 24232, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea,Corresponding author Phone: +82-2-961-0388 Fax: +82-2-965-6349 E-mail:
| |
Collapse
|
16
|
Ricca M, Rizzacasa MA. Chemistry and biology of spiroacetals from myxobacteria. Org Biomol Chem 2021; 19:2871-2890. [PMID: 33683270 DOI: 10.1039/d1ob00026h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review details the isolation, biosynthesis, biological activity and synthesis of spiroacetals from the myxobacterium Sorangium cellulosum. The strategies utilised to access the challenging structures and stereochemistry of these natural products are highlighted.
Collapse
Affiliation(s)
- Michael Ricca
- School of Chemistry, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.
| | | |
Collapse
|
17
|
Wu ZH, Ma Q, Sun ZN, Cui HC, Liu HR. Biocontrol mechanism of Myxococcus fulvus B25-I-3 against Phytophthora infestans and its control efficiency on potato late blight. Folia Microbiol (Praha) 2021; 66:555-567. [PMID: 33788146 DOI: 10.1007/s12223-021-00865-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/23/2021] [Indexed: 12/16/2022]
Abstract
Phytophthora infestans is the pathogen of potato late blight, which is one of the most serious diseases of the potato. Myxobacteria, especially Myxococcus, become a valuable biological control resource due to their preponderant abilities to produce various secondary metabolites with novel structure and remarkable biological activity. In a previous study, Myxococcus fulvus B25-I-3 with antagonistic activity against P. infestans was isolated from an environmental sample by rabbit fecal induction method. The biocontrol mechanism of M. fulvus B25-I-3 against P. infestans and its control efficiency on potato late blight were studied. The results showed that the active substances produced by strain B25-I-3 had strong inhibitory effect on the asexual reproduction and sexual reproduction of P. infestans. In addition, the active substances could reduce the content of soluble proteins and the activity of the protective enzymes (polyphenol oxidase, peroxidase, phenylalanine ammonia lyase, superoxide dismutase) in P. infestans and increase the oxidative damage and permeability of cell membrane. And the active substances could inhibit the infection of the detached potato leaves by P. infestans significantly. In conclusion, M. fulvus B25-I-3 can produce active substances against P. infestans and has potential value to develop into biological pesticides for the control of potato late blight. The completion of this work may provide basic data for the isolation and identification of active substances and the development of pesticides against potato late blight.
Collapse
Affiliation(s)
- Zhi Hua Wu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010010, China
- Baotou Teachers' College, Baotou, 014030, China
- The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014040, China
| | - Qiang Ma
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010010, China
| | - Zhi Ning Sun
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010010, China
| | - Hai Chen Cui
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010010, China
| | - Hui Rong Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010010, China.
| |
Collapse
|
18
|
Special Issue: "Actinobacteria and Myxobacteria-Important Resources for Novel Antibiotics". Microorganisms 2020; 8:microorganisms8101464. [PMID: 32987634 PMCID: PMC7598684 DOI: 10.3390/microorganisms8101464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/26/2022] Open
|
19
|
Li Y, Jian X, Li Y, Zeng X, Xu L, Khan MU, Lin W. OsPAL2-1 Mediates Allelopathic Interactions Between Rice and Specific Microorganisms in the Rhizosphere Ecosystem. Front Microbiol 2020; 11:1411. [PMID: 32793125 PMCID: PMC7391800 DOI: 10.3389/fmicb.2020.01411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 05/29/2020] [Indexed: 11/13/2022] Open
Abstract
The use of plant allelopathy to control weeds in the field has been generally recognized as a win-win strategy because it is an environmentally friendly and resource-saving method. The mechanism of this natural weed-control method relies on allelochemicals, the rhizosphere microbiome, and their bio-interaction, and exploring the link between allelochemicals and specific microbes helps accelerate the application of allelopathic characteristics in farming. In this study, we used allelopathic rice PI312777 (PI), its genetically modified OsPAL2-1 repression (PR) or overexpression (PO) lines, and non-allelopathic rice Lemont (Le) as donor plants to reveal the bio-interaction between rice allelochemicals and rhizosphere specific microorganisms. The results showed a higher content of phenolic acid exudation from the roots of PI than those of Le, which resulted in a significantly increased population of Myxococcus in the rhizosphere soil. Transgenic PO lines exhibited increasing exudation of phenolic acid, which led to the population of Myxococcus xanthus in the rhizosphere soil of PO to be significantly increased, while PR showed the opposite result in comparison with wild type PI. Exogenous application of phenolic acid induced the growth of M. xanthus, and the expressions of chemotaxis-related genes were up-regulated in M. xanthus. In addition, quercetin was identified in the culture medium; according to the bioassay determination, a quercetin concentration of 0.53 mM inhibited the root length by 60.59%. Our study indicates that OsPAL2-1 is among the efficient genes that regulate rice allelopathy by controlling the synthesis of phenolic acid allelochemicals, and phenolic acid (ferulic acid, FA) induces the chemotactic aggregation of M. xanthus, which promoted the proliferation and aggregation of this microbe. The potential allelochemical, quercetin was generated from the FA-induced M. xanthus cultured medium.
Collapse
Affiliation(s)
- Yingzhe Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Xin Jian
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Yue Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Xiaomei Zeng
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Lining Xu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Muhammad Umar Khan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China.,Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
20
|
Bioprospecting of indigenous myxobacteria from Iran and potential of Cystobacter as a source of anti-MDR compounds. Folia Microbiol (Praha) 2020; 65:639-648. [PMID: 31907732 DOI: 10.1007/s12223-019-00768-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022]
Abstract
Drug resistance is a critical issue in future clinical treatment. Methicillin-resistant Staphylococcus aureus (MRSA) is among the pathogens that need indispensable drug-discovery efforts. The myxobacteria are a unique group of bacteria that have recently been regarded for their potency to produce new drugs with high chemical diversity and unusual mode of actions. The present study was conducted to isolate and screen myxobacteria for the first time from Iran habitats and evaluate their antibacterial activity against the multidrug-resistant strain of S. aureus. Out of 62 soil and rotten plant samples, 51 myxobacteria were isolated. The isolates belonged to Myxococcus, Corallococcus, Pyxidicoccus, and Cystobacter genera based on morphology and 16S rRNA gene sequencing. Secondary metabolites of the selected strains were screened for activity on MDR strain with resistance to multiple antibiotic classes. The semi-purified fraction from Cystobacter sp. UTMC 4086 showed potent activity against MDR S. aureus with minimum inhibitory effect at 5 ≥ μg per mL compared with vancomycin (5 μg per mL) as well as no toxicity against Artemia salina. Hence, the strain Cystobacter sp. UTMC 4086 can be a valuable candidate for antibiotic discovery against MRSA and its metabolites can be subjected to further purification and analysis aimed at the identification of the effective chemical entity.
Collapse
|
21
|
Suleiman AKA, Harkes P, van den Elsen S, Holterman M, Korthals GW, Helder J, Kuramae EE. Organic amendment strengthens interkingdom associations in the soil and rhizosphere of barley (Hordeum vulgare). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133885. [PMID: 31756853 DOI: 10.1016/j.scitotenv.2019.133885] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/25/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
Anthropogenic modification of soil systems has diverse impacts on food web interactions and ecosystem functioning. To understand the positive, neutral or adverse effects of agricultural practices on the associations of community members of soil microbes and microfaunal biomes, we characterized the effects of different fertilization types (organic, inorganic and a combination of organic and inorganic) on the food web active communities in the bulk soil and rhizosphere compartments in field conditions. We examined the influence of fertilization on (i) individual groups (bacteria, protozoa and fungi as microbe representatives and metazoans as microfauna representatives) and (ii) inter-kingdom interactions (focusing on the interactions between bacteria and eukaryotic groups) both neglecting and considering environmental factors in our analysis in combination with the microbial compositional data. Our results revealed different patterns of biota communities under organic versus inorganic fertilization, which shaped food web associations in both the bulk and rhizosphere compartments. Overall, organic fertilization increased the complexity of microbial-microfaunal ecological associations with inter- and intra- connections among categories of primary decomposers (bacteria and fungi) and predators (protozoa and microfauna) and differences in potential function in the soil food web in both the bulk and rhizosphere compartments. Furthermore, the inter-connections between primary decomposers and predators in bulk soil were more pronounced when environmental factors were considered. We suggest that organic fertilization selects bacterial orders with different potential ecological functions and interactions as survival, predation and cooperation due to more complex environment than those of inorganic or combined fertilization. Our findings support the importance of a comprehensive understanding of trophic food web patterns for soil management systems.
Collapse
Affiliation(s)
- Afnan K A Suleiman
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Wageningen, the Netherlands.
| | - Paula Harkes
- Wageningen University and Research Centre (WUR), Laboratory of Nematology, Wageningen, the Netherlands.
| | - Sven van den Elsen
- Wageningen University and Research Centre (WUR), Laboratory of Nematology, Wageningen, the Netherlands.
| | - Martijn Holterman
- Wageningen University and Research Centre (WUR), Laboratory of Nematology, Wageningen, the Netherlands.
| | - Gerard W Korthals
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Wageningen, the Netherlands; Wageningen University and Research Centre (WUR), Laboratory of Nematology, Wageningen, the Netherlands.
| | - Johannes Helder
- Wageningen University and Research Centre (WUR), Laboratory of Nematology, Wageningen, the Netherlands
| | - Eiko E Kuramae
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Wageningen, the Netherlands.
| |
Collapse
|
22
|
Automated identification of Myxobacterial genera using Convolutional Neural Network. Sci Rep 2019; 9:18238. [PMID: 31796781 PMCID: PMC6890705 DOI: 10.1038/s41598-019-54341-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 11/12/2019] [Indexed: 11/08/2022] Open
Abstract
The Myxococcales order consist of eleven families comprising30 genera, and are featured by the formation of the highest level of differential structure aggregations called fruiting bodies. These multicellular structures are essential for their resistance in ecosystems and is used in the primitive identification of these bacteria while their accurate taxonomic position is confirmed by the nucleotide sequence of 16SrRNA gene. Phenotypic classification of these structures is currently performed based on the stereomicroscopic observations that demand personal experience. The detailed phenotypic features of the genera with similar fruiting bodies are not readily distinctive by not particularly experienced researchers. The human examination of the fruiting bodies requires high skill and is error-prone. An image pattern analysis of schematic images of these structures conducted us to the construction of a database, which led to an extractable recognition of the unknown fruiting bodies. In this paper, Convolutional Neural Network (CNN) was considered as a baseline for recognition of fruiting bodies. In addition, to enhance the result the classifier, part of CNN is replaced with other classifiers. By employing the introduced model, all 30 genera of this order could be recognized based on stereomicroscopic images of the fruiting bodies at the genus level that not only does not urge us to amplify and sequence gene but also can be attained without preparation of microscopic slides of the vegetative cells or myxospores. The accuracy of 77.24% in recognition of genera and accuracy of 88.92% in recognition of suborders illustrate the applicability property of the proposed machine learning model.
Collapse
|
23
|
Hu W, Strom NB, Haarith D, Chen S, Bushley KE. Seasonal Variation and Crop Sequences Shape the Structure of Bacterial Communities in Cysts of Soybean Cyst Nematode. Front Microbiol 2019; 10:2671. [PMID: 31824456 PMCID: PMC6882411 DOI: 10.3389/fmicb.2019.02671] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/04/2019] [Indexed: 12/03/2022] Open
Abstract
Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is the number 1 pathogen of the important economic crop soybean. Bacteria represent potential biocontrol agents of the SCN, but few studies have characterized the dynamics of bacterial communities associated with cysts under different crop rotation sequences. The bacterial communities in SCN cysts in a long-term soybean–corn crop rotation experiment were investigated over 2 years. The crop sequences included long-term soybean monoculture (Ss), years 1–5 of soybean following 5 years corn (S1–S5), years 1 and 2 of corn following 5 years soybean (C1 and C2), and soybean–corn annual rotation (Sa and Ca). The bacterial 16S rRNA V4 region was amplified from DNA isolated from SCN cysts collected in spring at planting, midseason (2 months later), and fall at harvest and sequenced on the Illumina MiSeq platform. The SCN cyst microbiome was dominated by Proteobacteria followed by Actinobacteria, Bacteroidetes, and Verrucomicrobia. The bacterial community composition was influenced by both crop sequence and season. Although differences by crop sequence were not significant in the spring of each year, bacterial communities in cysts from annual rotation (Sa and Ca) or crop sequences of early years of monoculture following a 5-year rotation of the alternate crop (S1 and C1) became rapidly differentiated by crop over a single growing season. In the fall, genera of cyst bacteria associated with soybean crop sequences included Rhizobacter, Leptothrix, Cytophaga, Chitinophaga, Niastella, Streptomyces, and Halangium. The discovery of diverse bacterial taxa in SCN cysts and their dynamics across crop rotation sequences provides invaluable information for future development of biological control of the SCN.
Collapse
Affiliation(s)
- Weiming Hu
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, United States.,Department of Entomology and Nematology, University of Florida, Gainesville, FL, United States
| | - Noah Bernard Strom
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, United States
| | - Deepak Haarith
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| | - Senyu Chen
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States.,Southern Research and Outreach Center, University of Minnesota, Waseca, MN, United States
| | - Kathryn E Bushley
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
24
|
Dehhaghi M, Tan V, Heng B, Mohammadipanah F, Guillemin GJ. Protective Effects of Myxobacterial Extracts on Hydrogen Peroxide-induced Toxicity on Human Primary Astrocytes. Neuroscience 2018; 399:1-11. [PMID: 30496822 DOI: 10.1016/j.neuroscience.2018.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/18/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022]
Abstract
Astrocytes, the main non-neuronal cells in the brain, have significant roles in the maintenance and survival of neurons. Oxidative stress has been implicated in various neurodegenerative disorders such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). Myxobacteria produce a wide range of bioactive metabolites with notable structures and modes of action, which introduce them as potent natural product producers. In the present study, we evaluated the effects of myxobacterial extracts on hydrogen peroxide (H2O2)-mediated toxicity on primary human astrocytes. We showed that myxobacterial extracts could decrease the formation of reactive oxygen species (ROS), nitric oxide (NO) production, and cell death assessed by the release of lactate dehydrogenase (LDH). Myxobacterial extracts were also able to reduce the nitric oxide synthase (NOS) activity. The extracts reduced the oxidative effect of H2O2 on over-activation of poly (ADP-ribose) polymerase (PARP1), therefore preventing the cell death by restoring the NAD+ levels. In addition, myxobacterial extracts ameliorated the oxidative stress by increasing the glutathione level in cells. The overall results showed myxobacterial extracts, especially from the strains Archangium sp. UTMC 4070 and Cystobacter sp. UTMC 4073, were able to protect human primary astrocytes from oxidative stress.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Departmentof Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran; NeuroinflammationGroup, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Vanessa Tan
- NeuroinflammationGroup, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Benjamin Heng
- NeuroinflammationGroup, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Fatemeh Mohammadipanah
- Departmentof Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.
| | - Gilles J Guillemin
- NeuroinflammationGroup, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia.
| |
Collapse
|
25
|
In silico characterization of a novel putative aerotaxis chemosensory system in the myxobacterium, Corallococcus coralloides. BMC Genomics 2018; 19:757. [PMID: 30340510 PMCID: PMC6194562 DOI: 10.1186/s12864-018-5151-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 11/23/2022] Open
Abstract
Background An efficient signal transduction system allows a bacterium to sense environmental cues and then to respond positively or negatively to those signals; this process is referred to as taxis. In addition to external cues, the internal metabolic state of any bacterium plays a major role in determining its ability to reside and thrive in its current environment. Similar to external signaling molecules, cytoplasmic signals are also sensed by methyl-accepting chemotaxis proteins (MCPs) via diverse ligand binding domains. Myxobacteria are complex soil-dwelling social microbes that can perform a variety of physiologic and metabolic activities ranging from gliding motility, sporulation, biofilm formation, carotenoid and secondary metabolite biosynthesis, predation, and slime secretion. To live such complex lifestyles, they have evolved efficient signal transduction systems with numerous one- and two-component regulatory system along with a large array of chemosensory systems to perceive and integrate both external and internal cues. Results Here we report the in silico characterization of a putative energy taxis cluster, Cc-5, which is present in only one amongst 34 known and sequenced myxobacterial genomes, Corallococcus coralloides. In addition, we propose that this energy taxis cluster is involved in oxygen sensing, suggesting that C. coralloides can sense (either directly or indirectly) and then respond to changing concentrations of molecular oxygen. Conclusions This hypothesis is based on the presence of a unique MCP encoded in this gene cluster that contains two different oxygen-binding sensor domains, PAS and globin. In addition, the two monooxygenases encoded in this cluster may contribute to aerobic respiration via ubiquinone biosynthesis, which is part of the cytochrome bc1 complex. Finally, we suggest that this cluster was acquired from Actinobacteria, Gammaproteobacteria or Cyanobacteria. Overall, this in silico study has identified a potentially innovative and evolved mechanism of energy taxis in only one of the myxobacteria, C. coralloides. Electronic supplementary material The online version of this article (10.1186/s12864-018-5151-6) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Dehhaghi M, Tan V, Heng B, Braidy N, Mohammadipanah F, Guillemin GJ. Neuroprotective Effect of Myxobacterial Extracts on Quinolinic Acid-Induced Toxicity in Primary Human Neurons. Neurotox Res 2018; 35:281-290. [PMID: 30267267 DOI: 10.1007/s12640-018-9945-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/30/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022]
Abstract
Quinolinic acid (QUIN) is a neurotoxin, gliotoxin, and proinflammatory molecule involved in the pathogenesis of several neurological diseases. Myxobacteria have been known as a rich source of secondary metabolites with diverse structures and mode of actions. In this study, we examined the potential neuroprotective effects of myxobacterial extracts on QUIN-induced excitotoxicity in primary human neurons. For this purpose, primary cultures of human neurons were pre-incubated with myxobacterial extracts and subsequently treated with QUIN at a pathophysiological concentration of 550 nM. The results showed that some myxobacterial extracts can significantly attenuate formation of reactive oxygen species (ROS), nitric oxide (NO) production, and extracellular lactate dehydrogenase (LDH) activity of human neurons. Moreover, myxobacterial extracts were also able to reduce neuronal nitric oxide synthase (nNOS) activity. Some extracts prevented cell death by reducing the activation of poly (ADP-ribose) polymerase (PARP1) by QUIN, therefore by maintaining NAD+ levels. In addition, myxobacterial extracts ameliorated oxidative stress by increasing the intracellular levels of glutathione after treatment with QUIN. The results showed that extracts of Stigmatella sp. UTMC 4072 and Archangium sp. UTMC 4070 and were the most effective in reducing QUIN-induced excitotoxicity in primary human neurons. Due to their antioxidative activity, myxobacterial extracts represent an underexplored source of potential new drugs for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.,Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vanessa Tan
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Benjamin Heng
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Fatemeh Mohammadipanah
- Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
27
|
Dehhaghi M, Mohammadipanah F, Guillemin GJ. Myxobacterial natural products: An under-valued source of products for drug discovery for neurological disorders. Neurotoxicology 2018; 66:195-203. [PMID: 29499217 DOI: 10.1016/j.neuro.2018.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/18/2022]
Abstract
Age-related disorders impose noticeable financial and emotional burdens on society. This impact is becoming more prevalent with the increasing incidence of neurodegenerative diseases and is causing critical concerns for treatment of patients worldwide. Parkinson's disease, Alzheimer's disease, multiple sclerosis and motor neuron disease are the most prevalent and the most expensive to treat neurodegenerative diseases globally. Therefore, exploring effective therapies to overcome these disorders is a necessity. Natural products and their derivatives have increasingly attracted attention in drug discovery programs that have identified microorganisms which produce a large range of metabolites with bioactive properties. Myxobacteria, a group of Gram-negative bacteria with large genome size, produce a wide range of secondary metabolites with significant chemical structures and a variety of biological effects. They are potent natural product producers. In this review paper, we attempt to overview some secondary metabolites synthesized by myxobacteria with neuroprotective activity through known mechanisms including production of polyunsaturated fatty acids, reduction of apoptosis, immunomodulation, stress reduction of endoplasmic reticulum, stabilization of microtubules, enzyme inhibition and serotonin receptor modulation.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran; Neuropharmacology Group, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Fatemeh Mohammadipanah
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.
| | - Gilles J Guillemin
- Neuropharmacology Group, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia.
| |
Collapse
|
28
|
Livingstone PG, Morphew RM, Whitworth DE. Myxobacteria Are Able to Prey Broadly upon Clinically-Relevant Pathogens, Exhibiting a Prey Range Which Cannot Be Explained by Phylogeny. Front Microbiol 2017; 8:1593. [PMID: 28878752 PMCID: PMC5572228 DOI: 10.3389/fmicb.2017.01593] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/04/2017] [Indexed: 11/28/2022] Open
Abstract
Myxobacteria are natural predators of microorganisms and the subjects of concerted efforts to identify novel antimicrobial compounds. Myxobacterial predatory activity seems to require more than just the possession of specific antimicrobial metabolites. Thus a holistic approach to studying predation promises novel insights into antimicrobial action. Here, we report the isolation of 113 myxobacteria from samples of soil taken from a range of habitats in mid Wales. Predatory activity of each isolate was quantified against a panel of clinically important prey organisms, including Klebsiella pneumoniae, Proteus mirabilis, Candida albicans, Enterococcus faecalis, and three species of Staphylococcus. Myxobacterial isolates exhibited a wide range of predation activity profiles against the panel of prey. Efficient predation of all prey by isolates within the collection was observed, with K. pneumoniae and C. albicans proving particularly susceptible to myxobacterial predation. Notably efficient predators tended to be proficient at predating multiple prey organisms, suggesting they possess gene(s) encoding a broad range killing activity. However, predatory activity was not congruent with phylogeny, suggesting prey range is subject to relatively rapid specialization, potentially involving lateral gene transfer. The broad but patchy prey ranges observed for natural myxobacterial isolates also implies multiple (potentially overlapping) genetic determinants are responsible for dictating predatory activity.
Collapse
Affiliation(s)
- Paul G Livingstone
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Russell M Morphew
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - David E Whitworth
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| |
Collapse
|
29
|
Tomura T, Nagashima S, Yamazaki S, Iizuka T, Fudou R, Ojika M. An Unusual Diterpene-Enhygromic Acid and Deoxyenhygrolides from a Marine Myxobacterium, Enhygromyxa sp. Mar Drugs 2017; 15:E109. [PMID: 28383484 PMCID: PMC5408255 DOI: 10.3390/md15040109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 01/29/2023] Open
Abstract
Three new compounds, enhygromic acid (1) and deoxyenhygrolides A (2) and B (3), were isolated from a marine myxobacterium, Enhygromyxa sp. Compound 1 was found to be an acrylic acid derivative with a rare polycyclic carbon skeleton, decahydroacenaphthylene, by spectroscopic analyses. Compounds 2 and 3 were deoxy analogs of the known γ-alkylidenebutenolides, enhygrolides. Compound 1 exhibited cytotoxicity against B16 melanoma cells and anti-bacterial activity against Bacillus subtilis, and enhanced the NGF-induced neurite outgrowth of PC12 cells.
Collapse
Affiliation(s)
- Tomohiko Tomura
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Shiori Nagashima
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Satoshi Yamazaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Takashi Iizuka
- Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan.
| | - Ryosuke Fudou
- R & D Planning Department, Ajinomoto Co., Inc., Chuo-ku, Tokyo 104-8315, Japan.
| | - Makoto Ojika
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
30
|
|
31
|
Thiede S, Wosniok PR, Herkommer D, Debnar T, Tian M, Wang T, Schrempp M, Menche D. Total Synthesis of Leupyrrins A1and B1, Highly Potent Antifungal Agents from the MyxobacteriumSorangium cellulosum. Chemistry 2016; 23:3300-3320. [DOI: 10.1002/chem.201604445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Sebastian Thiede
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Paul R. Wosniok
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Daniel Herkommer
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Str. 1 53121 Bonn Germany
- Current address: GlaxoSmithKline, Medicines Research Centre; Gunnels Wood Road Stevenage SG1 2NY UK
| | - Thomas Debnar
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Str. 1 53121 Bonn Germany
- Current address: Dottikon Exclusive Synthesis AG; Dottikon Switzerland
| | - Maoqun Tian
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Str. 1 53121 Bonn Germany
- Current address: Scripps Research Institute; La Jolla USA
| | - Tongtong Wang
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Str. 1 53121 Bonn Germany
- Current address: Institute of Quality Standard and Testing Technology for Agro-products; Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-food Safety and Quality; Ministry of Agriculture; Beijing China
| | - Michael Schrempp
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Dirk Menche
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Str. 1 53121 Bonn Germany
| |
Collapse
|
32
|
Wang W, Wang H, Feng Y, Wang L, Xiao X, Xi Y, Luo X, Sun R, Ye X, Huang Y, Zhang Z, Cui Z. Consistent responses of the microbial community structure to organic farming along the middle and lower reaches of the Yangtze River. Sci Rep 2016; 6:35046. [PMID: 27725750 PMCID: PMC5057158 DOI: 10.1038/srep35046] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/15/2016] [Indexed: 12/17/2022] Open
Abstract
Soil microorganisms play a crucial role in the biogeochemical cycling of nutrient elements and maintaining soil health. We aimed to investigate the response of bacteria communities to organic farming over different crops (rice, tea and vegetable) along the middle and lower reaches of the Yangtze River of China. Compared with conventional farming, organic farming significantly increased soil nutrients, soil enzyme activities, and bacterial richness and diversity. A Venn diagram and principal component analysis revealed that the soils with 3 different crops under organic farming have more number and percent of shared OTUs (operational taxonomic units), and shared a highly similar microbial community structure. Under organic farming, several predominant guilds and major bacterial lineages (Rhizobiales, Thiotrichaceae, Micromonosporaceae, Desulfurellaceae and Myxococcales) contributing to nutrient (C, N, S and P) cycling were enriched, whereas the relative abundances of acid and alkali resistant microorganisms (Acidobacteriaceae and Sporolactobacillaceae) were increased under conventional farming practices. Our results indicated that, for all three crops, organic farming have a more stable microflora and the uniformity of the bacterial community structure. Organic agriculture significantly increased the abundance of some nutrition-related bacteria, while reducing some of the abundance of acid and alkali resistant bacteria.
Collapse
Affiliation(s)
- Wenhui Wang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hui Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Youzhi Feng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lei Wang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
| | - Xingji Xiao
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
| | - Yunguan Xi
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
| | - Xue Luo
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruibo Sun
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
33
|
Kim YJ, Kim HJ, Kim GW, Cho K, Takahashi S, Koshino H, Kim WG. Isolation of Coralmycins A and B, Potent Anti-Gram Negative Compounds from the Myxobacteria Corallococcus coralloides M23. JOURNAL OF NATURAL PRODUCTS 2016; 79:2223-2228. [PMID: 27598688 DOI: 10.1021/acs.jnatprod.6b00294] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Two new potent anti-Gram negative compounds, coralmycins A (1) and B (2), were isolated from cultures of the myxobacteria Corallococcus coralloides M23, together with another derivative (3) that was identified as the very recently reported cystobactamid 919-2. Their structures including the relative stereochemistry were elucidated by interpretation of spectroscopic, optical rotation, and CD data. The relative stereochemistry of 3 was revised to "S*R*" by NMR analysis. The antibacterial activity of 1 was most potent against Gram-negative pathogens, including Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumanii, and Klebsiella pneumoniae, with MICs of 0.1-4 μg/mL; these MICs were 4-10 and 40-100 times stronger than the antibacterial activities of 3 and 2, respectively. Thus, these data indicated that the β-methoxyasparagine unit and the hydroxy group of the benzoic acid unit were critical for antibacterial activity.
Collapse
Affiliation(s)
- Yu Jin Kim
- Superbacteria Research Center, Korea Research Institute of Bioscience and Biotechnology , Yusong, Daejeon 305-806, Korea
| | - Hyun-Ju Kim
- Superbacteria Research Center, Korea Research Institute of Bioscience and Biotechnology , Yusong, Daejeon 305-806, Korea
| | - Geon-Woo Kim
- Superbacteria Research Center, Korea Research Institute of Bioscience and Biotechnology , Yusong, Daejeon 305-806, Korea
| | - Kyungyun Cho
- Department of Biotechnology, Hoseo University , Asan 336-795, Korea
| | - Shunya Takahashi
- RIKEN Center for Sustainable Resource Science , Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Koshino
- RIKEN Center for Sustainable Resource Science , Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - Won-Gon Kim
- Superbacteria Research Center, Korea Research Institute of Bioscience and Biotechnology , Yusong, Daejeon 305-806, Korea
| |
Collapse
|
34
|
Thiede S, Wosniok PR, Herkommer D, Schulz-Fincke AC, Gütschow M, Menche D. Total Synthesis of Leupyrrin B1: A Potent Inhibitor of Human Leukocyte Elastase. Org Lett 2016; 18:3964-7. [DOI: 10.1021/acs.orglett.6b01724] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Thiede
- Kekulé-Institut für
Organische Chemie und Biochemie and ‡Pharmazeutisches
Institut, Universität Bonn, D-53121 Bonn, Germany
| | - Paul R. Wosniok
- Kekulé-Institut für
Organische Chemie und Biochemie and ‡Pharmazeutisches
Institut, Universität Bonn, D-53121 Bonn, Germany
| | - Daniel Herkommer
- Kekulé-Institut für
Organische Chemie und Biochemie and ‡Pharmazeutisches
Institut, Universität Bonn, D-53121 Bonn, Germany
| | - Anna-Christina Schulz-Fincke
- Kekulé-Institut für
Organische Chemie und Biochemie and ‡Pharmazeutisches
Institut, Universität Bonn, D-53121 Bonn, Germany
| | - Michael Gütschow
- Kekulé-Institut für
Organische Chemie und Biochemie and ‡Pharmazeutisches
Institut, Universität Bonn, D-53121 Bonn, Germany
| | - Dirk Menche
- Kekulé-Institut für
Organische Chemie und Biochemie and ‡Pharmazeutisches
Institut, Universität Bonn, D-53121 Bonn, Germany
| |
Collapse
|
35
|
Bolger G, Roy S, Zapol'skii VA, Kaufmann DE, Schnürch M, Mihovilovic MD, Nandy RK, Tegge W. Targeting aphA : a new high-throughput screening assay identifies compounds that reduce prime virulence factors of Vibrio cholerae. J Med Microbiol 2016; 65:678-687. [DOI: 10.1099/jmm.0.000276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Galina Bolger
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Sambit Roy
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases (NICED), Kolkata, India
| | - Viktor A. Zapol'skii
- Institute of Organic Chemistry, Technical University of Clausthal, Clausthal-Zellerfeld, Germany
| | - Dieter E. Kaufmann
- Institute of Organic Chemistry, Technical University of Clausthal, Clausthal-Zellerfeld, Germany
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
| | - Marko D. Mihovilovic
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
| | - Ranjan K. Nandy
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases (NICED), Kolkata, India
| | - Werner Tegge
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| |
Collapse
|
36
|
Johnston CW, Plumb J, Li X, Grinstein S, Magarvey NA. Informatic analysis reveals Legionella as a source of novel natural products. Synth Syst Biotechnol 2016; 1:130-136. [PMID: 29062936 PMCID: PMC5640695 DOI: 10.1016/j.synbio.2015.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/07/2015] [Accepted: 12/14/2015] [Indexed: 01/08/2023] Open
Abstract
Microbial natural products are a crucial source of bioactive molecules and unique chemical scaffolds. Despite their importance, rediscovery of known natural products from established productive microbes has led to declining interest, even while emergent genomic data suggest that the majority of microbial natural products remain to be discovered. Now, new sources of microbial natural products must be defined in order to provide chemical scaffolds for the next generation of small molecules for therapeutic, agricultural, and industrial purposes. In this work, we use specialized bioinformatic programs, genetic knockouts, and comparative metabolomics to define the genus Legionella as a new source of novel natural products. We show that Legionella spp. hold a diverse collection of biosynthetic gene clusters for the production of polyketide and nonribosomal peptide natural products. To confirm this bioinformatic survey, we create targeted mutants of L. pneumophila and use comparative metabolomics to identify a novel polyketide surfactant. Using spectroscopic techniques, we show that this polyketide possesses a new chemical scaffold, and firmly demonstrate that this unexplored genus is a source for novel natural products.
Collapse
Affiliation(s)
- Chad W. Johnston
- The Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada L8N 3Z5
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada L8N 3Z5
| | - Jonathan Plumb
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Xiang Li
- The Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada L8N 3Z5
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada L8N 3Z5
| | - Sergio Grinstein
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Nathan A. Magarvey
- The Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada L8N 3Z5
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada L8N 3Z5
| |
Collapse
|
37
|
Tautz T, Hoffmann J, Hoffmann T, Steinmetz H, Washausen P, Kunze B, Huch V, Kitsche A, Reichenbach H, Höfle G, Müller R, Kalesse M. Isolation, Structure Elucidation, Biosynthesis, and Synthesis of Antalid, a Secondary Metabolite from Polyangium species. Org Lett 2016; 18:2560-3. [DOI: 10.1021/acs.orglett.6b00810] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas Tautz
- Institute
for Organic Chemistry, Leibniz Universität Hannover, Schneiderberg
1B, D-30167 Hannover, Germany
| | - Judith Hoffmann
- Helmholtz
Institute for Pharmaceutical Research Saarland, Helmholtz Centre for
Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Building E8.1, D-66123 Saarbrücken, Germany
| | - Thomas Hoffmann
- Helmholtz
Institute for Pharmaceutical Research Saarland, Helmholtz Centre for
Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Building E8.1, D-66123 Saarbrücken, Germany
| | - Heinrich Steinmetz
- Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | - Peter Washausen
- Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | - Brigitte Kunze
- Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | - Volker Huch
- Institute
for Inorganic Chemistry, Saarland University, Building B2.2, D-66123 Saarbrücken, Germany
| | - Andreas Kitsche
- Institute
for Biostatistics, Leibniz Universität Hannover, Herrenhäuser
Straße 2, D-30419 Hannover, Germany
| | - Hans Reichenbach
- Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | - Gerhard Höfle
- Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | - Rolf Müller
- Helmholtz
Institute for Pharmaceutical Research Saarland, Helmholtz Centre for
Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Building E8.1, D-66123 Saarbrücken, Germany
| | - Markus Kalesse
- Institute
for Organic Chemistry, Leibniz Universität Hannover, Schneiderberg
1B, D-30167 Hannover, Germany
- Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, D-38124 Braunschweig, Germany
| |
Collapse
|
38
|
Dávila-Céspedes A, Hufendiek P, Crüsemann M, Schäberle TF, König GM. Marine-derived myxobacteria of the suborder Nannocystineae: An underexplored source of structurally intriguing and biologically active metabolites. Beilstein J Org Chem 2016; 12:969-984. [PMID: 27340488 PMCID: PMC4902002 DOI: 10.3762/bjoc.12.96] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/25/2016] [Indexed: 12/28/2022] Open
Abstract
Myxobacteria are famous for their ability to produce most intriguing secondary metabolites. Till recently, only terrestrial myxobacteria were in the focus of research. In this review, however, we discuss marine-derived myxobacteria, which are particularly interesting due to their relatively recent discovery and due to the fact that their very existence was called into question. The to-date-explored members of these halophilic or halotolerant myxobacteria are all grouped into the suborder Nannocystineae. Few of them were chemically investigated revealing around 11 structural types belonging to the polyketide, non-ribosomal peptide, hybrids thereof or terpenoid class of secondary metabolites. A most unusual structural type is represented by salimabromide from Enhygromyxa salina. In silico analyses were carried out on the available genome sequences of four bacterial members of the Nannocystineae, revealing the biosynthetic potential of these bacteria.
Collapse
Affiliation(s)
| | - Peter Hufendiek
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Till F Schäberle
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| |
Collapse
|
39
|
Abstract
Outer membrane vesicles (OMVs) are produced from the outer membrane (OM) of myxobacterial cells and are found in large quantities within myxobacterial biofilms. It has been proposed that OMVs are involved in several of the social behaviors exhibited by the myxobacteria, including motility and predation. Proteomic data suggest that specific proteins are either selectively incorporated into or excluded from myxobacterial OMVs, as observed for OMVs of other organisms. Hydrolases are found in large numbers in OMVs, which then transport them to target bacteria. Fusion of OMVs with the OM of Gram-negative cells, or lysis of OMVs next to Gram-positive bacteria, is thought to deliver hydrolases to target cells, causing their lysis. The model myxobacterium Myxococcus xanthus is a predator of other bacteria, and OMVs are likely employed as predatory agents by this organism. The transfer of motility proteins between cells of M. xanthus has been documented, and OMV-mediated transfer provides a convenient mechanism to explain this phenomenon. This review describes the general principles of OMV biology, provides an overview of myxobacterial behavior, summarizes what is currently known about myxobacterial OMVs, and discusses the potential involvement of OMVs in many features of the myxobacterial life-cycle.
Collapse
Affiliation(s)
- David E Whitworth
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom.
| |
Collapse
|
40
|
Sun Y, Feng Z, Tomura T, Suzuki A, Miyano S, Tsuge T, Mori H, Suh JW, Iizuka T, Fudou R, Ojika M. Heterologous Production of the Marine Myxobacterial Antibiotic Haliangicin and Its Unnatural Analogues Generated by Engineering of the Biochemical Pathway. Sci Rep 2016; 6:22091. [PMID: 26915413 PMCID: PMC4768178 DOI: 10.1038/srep22091] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/05/2016] [Indexed: 11/10/2022] Open
Abstract
Despite their fastidious nature, marine myxobacteria have considerable genetic potential to produce novel secondary metabolites. The marine myxobacterium Haliangium ochraceum SMP-2 produces the antifungal polyketide haliangicin (1), but its productivity is unsatisfactory. The biosynthetic gene cluster hli (47.8 kbp) associated with 1 was identified and heterologously expressed in Myxococcus xanthus to permit the production of 1 with high efficiency (tenfold greater amount and threefold faster in growth speed compared with the original producer), as well as the generation of bioactive unnatural analogues of 1 through gene manipulation. A unique acyl-CoA dehydrogenase was found to catalyse an unusual γ,δ-dehydrogenation of the diketide starter unit, leading to the formation of the terminal alkene moiety of 1. Biological evaluation of the analogues obtained through this study revealed that their bioactivities (anti-oomycete and cytotoxic activities) can be modified by manipulating the vinyl epoxide at the terminus opposite the β-methoxyacrylate pharmacophore.
Collapse
Affiliation(s)
- Yuwei Sun
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Zhiyang Feng
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tomohiko Tomura
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Akira Suzuki
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Seishi Miyano
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takashi Tsuge
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hitoshi Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Joo-Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, Department of Bioscience and Bioinformatics, Myongji University, Yongin, Gyeonggido 449-728, Korea
| | - Takashi Iizuka
- Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan
| | - Ryosuke Fudou
- R&D Planning Department, Ajinomoto Co., Inc., Chuo-ku, Tokyo 104-8315, Japan
| | - Makoto Ojika
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
41
|
Karwehl S, Jansen R, Huch V, Stadler M. Sorazolons, Carbazole Alkaloids from Sorangium cellulosum Strain Soce375. JOURNAL OF NATURAL PRODUCTS 2016; 79:369-375. [PMID: 26866461 DOI: 10.1021/acs.jnatprod.5b00997] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Sorazolons A (1) to E2 (9) were isolated from Sorangium cellulosum strain Soce375. Their molecular structures were elucidated using extensive HRESIMS and NMR analysis. The absolute configuration of sorazolon A (1) was determined by comparison of the experimental CD spectrum with quantum chemical calculated spectra for both enantiomers. Sorazolons D2 (7), E (8), and E2 (9) exhibit a moderate cytotoxic activity against mouse fibroblast cell line L929 with IC50 values between 5.0 μM and 0.09 mM.
Collapse
Affiliation(s)
- Sabrina Karwehl
- Department of Microbial Drugs, Helmholtz Centre for Infection Research , Inhoffenstraße 7, 38124 Braunschweig, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig , Braunschweig, Germany
| | - Rolf Jansen
- Department of Microbial Drugs, Helmholtz Centre for Infection Research , Inhoffenstraße 7, 38124 Braunschweig, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig , Braunschweig, Germany
| | - Volker Huch
- Department of Inorganic Chemistry, Saarland University , Building C 4.1, 66123 Saarbrücken, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research , Inhoffenstraße 7, 38124 Braunschweig, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig , Braunschweig, Germany
| |
Collapse
|
42
|
Isolation and Biosynthetic Analysis of Haliamide, a New PKS-NRPS Hybrid Metabolite from the Marine Myxobacterium Haliangium ochraceum. Molecules 2016; 21:59. [PMID: 26751435 PMCID: PMC6274090 DOI: 10.3390/molecules21010059] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/29/2015] [Accepted: 12/31/2015] [Indexed: 02/02/2023] Open
Abstract
Myxobacteria of marine origin are rare and hard-to-culture microorganisms, but they genetically harbor high potential to produce novel antibiotics. An extensive investigation on the secondary metabolome of the unique marine myxobacterium Haliangium ochraceum SMP-2 led to the isolation of a new polyketide-nonribosomal peptide hybrid product, haliamide (1). Its structure was elucidated by spectroscopic analyses including NMR and HR-MS. Haliamide (1) showed cytotoxicity against HeLa-S3 cells with IC50 of 12 μM. Feeding experiments were performed to identify the biosynthetic building blocks of 1, revealing one benzoate, one alanine, two propionates, one acetate and one acetate-derived terminal methylene. The biosynthetic gene cluster of haliamide (hla, 21.7 kbp) was characterized through the genome mining of the producer, allowing us to establish a model for the haliamide biosynthesis. The sulfotransferase (ST)-thioesterase (TE) domains encoded in hlaB appears to be responsible for the terminal alkene formation via decarboxylation.
Collapse
|
43
|
Actinobacteria and Myxobacteria—Two of the Most Important Bacterial Resources for Novel Antibiotics. Curr Top Microbiol Immunol 2016; 398:273-302. [DOI: 10.1007/82_2016_503] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Castro C, Freitag J, Berod L, Lochner M, Sparwasser T. Microbe-associated immunomodulatory metabolites: Influence on T cell fate and function. Mol Immunol 2015; 68:575-84. [DOI: 10.1016/j.molimm.2015.07.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/29/2015] [Accepted: 07/21/2015] [Indexed: 01/30/2023]
|
45
|
Sucipto H, Sahner JH, Prusov E, Wenzel SC, Hartmann RW, Koehnke J, Müller R. In vitro reconstitution of α-pyrone ring formation in myxopyronin biosynthesis. Chem Sci 2015; 6:5076-5085. [PMID: 29308173 PMCID: PMC5724707 DOI: 10.1039/c5sc01013f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/14/2015] [Indexed: 12/22/2022] Open
Abstract
Myxopyronins are α-pyrone antibiotics produced by the terrestrial bacterium Myxococcus fulvus Mx f50 and possess antibacterial activity against Gram-positive and Gram-negative pathogens. They target the bacterial RNA polymerase (RNAP) "switch region" as non-competitive inhibitors and display no cross-resistance to the established RNAP inhibitor rifampicin. Recent analysis of the myxopyronin biosynthetic pathway led to the hypothesis that this secondary metabolite is produced from two separate polyketide parts, which are condensed by the stand-alone ketosynthase MxnB. Using in vitro assays we show that MxnB catalyzes a unique condensation reaction forming the α-pyrone ring of myxopyronins from two activated acyl chains in form of their β-keto intermediates. MxnB is able to accept thioester substrates coupled to either N-acetylcysteamine (NAC) or a specific carrier protein (CP). The turnover rate of MxnB for substrates bound to CP was 12-fold higher than for NAC substrates, demonstrating the importance of protein-protein interactions in polyketide synthase (PKS) systems. The crystal structure of MxnB reveals the enzyme to be an unusual member of the ketosynthase group capable of binding and condensing two long alkyl chains bound to carrier proteins. The geometry of the two binding tunnels supports the biochemical data and allows us to propose an order of reaction, which is supported by the identification of novel myxopyronin congeners in the extract of the producer strain. Insights into the mechanism of this unique condensation reaction do not only expand our knowledge regarding the thiolase enzyme family but also opens up opportunities for PKS bioengineering to achieve directed structural modifications.
Collapse
Affiliation(s)
- H Sucipto
- Department of Microbial Natural Products , Helmholtz Institute for Pharmaceutical Research Saarland , Building C2 3 , 66123 Saarbrücken , Germany .
| | - J H Sahner
- Department of Drug Design and Optimization , Helmholtz Institute for Pharmaceutical Research Saarland , Pharmaceutical and Medicinal Chemistry , Saarland University , Building C2 3 , 66123 Saarbrücken , Germany
| | - E Prusov
- Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - S C Wenzel
- Department of Microbial Natural Products , Helmholtz Institute for Pharmaceutical Research Saarland , Building C2 3 , 66123 Saarbrücken , Germany .
| | - R W Hartmann
- Department of Drug Design and Optimization , Helmholtz Institute for Pharmaceutical Research Saarland , Pharmaceutical and Medicinal Chemistry , Saarland University , Building C2 3 , 66123 Saarbrücken , Germany
| | - J Koehnke
- Workgroup Structural Biology of Biosynthetic Enzymes , Helmholtz Institute for Pharmaceutical Research Saarland , Building C2 2 , 66123 Saarbrücken , Germany .
| | - R Müller
- Department of Microbial Natural Products , Helmholtz Institute for Pharmaceutical Research Saarland , Building C2 3 , 66123 Saarbrücken , Germany .
| |
Collapse
|
46
|
Kumar CMS, Mande SC, Mahajan G. Multiple chaperonins in bacteria--novel functions and non-canonical behaviors. Cell Stress Chaperones 2015; 20:555-74. [PMID: 25986150 PMCID: PMC4463927 DOI: 10.1007/s12192-015-0598-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 01/05/2023] Open
Abstract
Chaperonins are a class of molecular chaperones that assemble into a large double ring architecture with each ring constituting seven to nine subunits and enclosing a cavity for substrate encapsulation. The well-studied Escherichia coli chaperonin GroEL binds non-native substrates and encapsulates them in the cavity thereby sequestering the substrates from unfavorable conditions and allowing the substrates to fold. Using this mechanism, GroEL assists folding of about 10-15 % of cellular proteins. Surprisingly, about 30 % of the bacteria express multiple chaperonin genes. The presence of multiple chaperonins raises questions on whether they increase general chaperoning ability in the cell or have developed specific novel cellular roles. Although the latter view is widely supported, evidence for the former is beginning to appear. Some of these chaperonins can functionally replace GroEL in E. coli and are generally indispensable, while others are ineffective and likewise are dispensable. Additionally, moonlighting functions for several chaperonins have been demonstrated, indicating a functional diversity among the chaperonins. Furthermore, proteomic studies have identified diverse substrate pools for multiple chaperonins. We review the current perception on multiple chaperonins and their physiological and functional specificities.
Collapse
Affiliation(s)
- C M Santosh Kumar
- Laboratory of Structural Biology, National Centre for Cell Science, Pune, 411007, India,
| | | | | |
Collapse
|
47
|
|
48
|
Hoffmann H, Kogler H, Heyse W, Matter H, Caspers M, Schummer D, Klemke-Jahn C, Bauer A, Penarier G, Debussche L, Brönstrup M. Discovery, Structure Elucidation, and Biological Characterization of Nannocystin A, a Macrocyclic Myxobacterial Metabolite with Potent Antiproliferative Properties. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
49
|
Hoffmann H, Kogler H, Heyse W, Matter H, Caspers M, Schummer D, Klemke-Jahn C, Bauer A, Penarier G, Debussche L, Brönstrup M. Discovery, Structure Elucidation, and Biological Characterization of Nannocystin A, a Macrocyclic Myxobacterial Metabolite with Potent Antiproliferative Properties. Angew Chem Int Ed Engl 2015; 54:10145-8. [DOI: 10.1002/anie.201411377] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/20/2015] [Indexed: 11/10/2022]
|
50
|
Jansen R, Sood S, Mohr KI, Kunze B, Irschik H, Stadler M, Müller R. Nannozinones and sorazinones, unprecedented pyrazinones from myxobacteria. JOURNAL OF NATURAL PRODUCTS 2014; 77:2545-2552. [PMID: 25397992 DOI: 10.1021/np500632c] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nannozinones A (1) and B (2) were discovered as metabolites of the recently isolated Nannocystis pusilla strain MNa10913 belonging to the poorly studied myxobacterial family Nannocystaceae. In contrast, the structurally related sorazinones A (5) and B (6) were isolated from Sorangium cellulosum strain Soce895, which was known as the producer of the antibiotic thuggacin A. The extract also contained methyl indole-3-carboxylate (4). HRESIMS and (1)H, (13)C, and (15)N NMR spectroscopy revealed the structures of nannozinones A (1) and B (2) as unusual dihydropyrrolo- and pyrrolopyrazinone derivatives, while sorazinone A (5) was characterized as an aromatic diketopiperazine and sorazinone B (6) as a dibenzyl 2(1H)-pyrazinone derivative. While the dihydropyrrolo derivative nannozinone A (1) showed weak antibacterial and antifungal activity, nannozinone B (2) inhibited the growth of cell cultures with IC50 values between 2.44 and 16.9 μM. The nannochelin A iron complex (3), which was isolated besides 1 and 2, was even more active, with IC50 values between 0.05 and 1.95 μM. On the other hand, the indole 4 and sorazinones 5 and 6 did not show any significant cytotoxicity and only weak activity against the Gram-positive Nocardia sp.
Collapse
Affiliation(s)
- Rolf Jansen
- Department of Microbial Drugs, §Research Group Microbial Communication, Helmholtz Centre for Infection Research , Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|