1
|
Sanchez-Martin V. Opportunities and challenges with G-quadruplexes as promising targets for drug design. Expert Opin Drug Discov 2024; 19:1339-1353. [PMID: 39291583 DOI: 10.1080/17460441.2024.2404230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION G-quadruplexes (G4s) are secondary structures formed in guanine-rich regions of nucleic acids (both DNA and RNA). G4s are significantly enriched at regulatory genomic regions and are associated with important biological processes ranging from telomere homeostasis and genome instability to transcription and translation. Importantly, G4s are related to health and diseases such as cancer, neurological diseases, as well as infections with viruses and microbial pathogens. Increasing evidence suggests the potential of G4s for designing new diagnostic and therapeutic strategies although in vivo studies are still at early stages. AREAS COVERED This review provides an updated summary of the literature describing the impact of G4s in human diseases and different approaches based on G4 targeting in therapy. EXPERT OPINION Within the G4 field, most of the studies have been performed in vitro and in a descriptive manner. Therefore, detailed mechanistic understanding of G4s in the biological context remains to be deciphered. In clinics, the use of G4s as therapeutic targets has been hindered due to the low selectivity profile and poor drug-like properties of G4 ligands. Future research on G4s may overcome current methodological and interventional limitations and shed light on these unique structural elements in the pathogenesis and treatment of diseases.
Collapse
Affiliation(s)
- Victoria Sanchez-Martin
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), Seville, Spain
- Departament of Genetics, University of Seville, Seville, Spain
| |
Collapse
|
2
|
Obara P, Wolski P, Pańczyk T. Insights into the Molecular Structure, Stability, and Biological Significance of Non-Canonical DNA Forms, with a Focus on G-Quadruplexes and i-Motifs. Molecules 2024; 29:4683. [PMID: 39407611 PMCID: PMC11477922 DOI: 10.3390/molecules29194683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
This article provides a comprehensive examination of non-canonical DNA structures, particularly focusing on G-quadruplexes (G4s) and i-motifs. G-quadruplexes, four-stranded structures formed by guanine-rich sequences, are stabilized by Hoogsteen hydrogen bonds and monovalent cations like potassium. These structures exhibit diverse topologies and are implicated in critical genomic regions such as telomeres and promoter regions of oncogenes, playing significant roles in gene expression regulation, genome stability, and cellular aging. I-motifs, formed by cytosine-rich sequences under acidic conditions and stabilized by hemiprotonated cytosine-cytosine (C:C+) base pairs, also contribute to gene regulation despite being less prevalent than G4s. This review highlights the factors influencing the stability and dynamics of these structures, including sequence composition, ionic conditions, and environmental pH. Molecular dynamics simulations and high-resolution structural techniques have been pivotal in advancing our understanding of their folding and unfolding mechanisms. Additionally, the article discusses the therapeutic potential of small molecules designed to selectively bind and stabilize G4s and i-motifs, with promising implications for cancer treatment. Furthermore, the structural properties of these DNA forms are explored for applications in nanotechnology and molecular devices. Despite significant progress, challenges remain in observing these structures in vivo and fully elucidating their biological functions. The review underscores the importance of continued research to uncover new insights into the genomic roles of G4s and i-motifs and their potential applications in medicine and technology. This ongoing research promises exciting developments in both basic science and applied fields, emphasizing the relevance and future prospects of these intriguing DNA structures.
Collapse
Affiliation(s)
| | | | - Tomasz Pańczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30239 Cracow, Poland; (P.O.); (P.W.)
| |
Collapse
|
3
|
Wondimagegnhu B, Ma W, Paul T, Liao TW, Lee C, Sanford S, Opresko P, Myong S. The molecular mechanism for TERRA recruitment and annealing to telomeres. Nucleic Acids Res 2024; 52:10490-10503. [PMID: 39189448 PMCID: PMC11417404 DOI: 10.1093/nar/gkae732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
Telomeric repeat containing RNA (TERRA) is a noncoding RNA that is transcribed from telomeres. Previous study showed that TERRA trans anneals by invading into the telomeric duplex to form an R-loop in mammalian cells. Here, we elucidate the molecular mechanism underlying TERRA recruitment and invasion into telomeres in the context of shelterin proteins, RAD51 and RNase H using single molecule (sm) assays. We demonstrate that TERRA trans annealing into telomeric DNA exhibits dynamic movement that is stabilized by TRF2. TERRA annealing to the telomeric duplex results in the formation of a stable triplex structure which differs from a conventional R-loop. We identified that the presence of a sub-telomeric DNA and a telomeric overhang in the form of a G-quadruplex significantly enhances TERRA annealing to telomeric duplex. We also demonstrate that RAD51-TERRA complex invades telomere duplex more efficiently than TERRA alone. Additionally, TRF2 increases TERRA affinity to telomeric duplex and protects it from RNase H digestion. In contrast, TRF1 represses TERRA annealing to telomeric duplex and fails to provide protection against RNase H digestion. Our findings provide an in-depth molecular mechanism underpinning TERRA recruitment and annealing to the telomere.
Collapse
Affiliation(s)
- Bersabel Wondimagegnhu
- Program in Cell, Molecular, Developmental Biology and Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wen Ma
- Department of Physics, The University of Vermont, Burlington, VT 05405, USA
| | - Tapas Paul
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ting-Wei Liao
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chun Ying Lee
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Samantha Sanford
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Sua Myong
- Program in Cell, Molecular, Developmental Biology and Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
4
|
Kankia N, Lomidze L, Stevenson S, Musier-Forsyth K, Kankia B. Defined folding pattern of poly(rG) supports inherent ability to encode biological information. Biopolymers 2024:e23615. [PMID: 39004945 DOI: 10.1002/bip.23615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
The RNA World hypothesis posits that RNA can represent a primitive life form by reproducing itself and demonstrating catalytic activity. However, this hypothesis is incapable of addressing several major origin-of-life (OoL) questions. A recently described paradox-free alternative OoL hypothesis, the Quadruplex (G4) World, is based on the ability of poly(dG) to fold into a stable architecture with an unambiguous folding pattern using G-tetrads as building elements. Because of the folding pattern of three G-tetrads and single-G loops, dG15 is programmable and has the capability to encode biological information. Here, we address two open questions of the G4 World hypothesis: (1) Does RNA follow the same folding pattern as DNA? (2) How do stable quadruplexes evolve into the present-day system of information transfer, which is based on Watson-Crick base pair complementarity? To address these questions, we systematically studied the thermodynamic and optical properties of both DNA and RNA G15- and G3T (GGGTGGGTGGGTGGG)-derived sequences. Our study revealed that similar to DNA sequences, RNAs adopt quadruplexes with only three G-tetrads. Thus, both poly(dG) and poly(rG) possess inherent ability to fold into 3D quadruplex architecture with strictly defined folding pattern. The study also revealed that despite high stability of both DNA and RNA quadruplexes, they are vulnerable to single-nucleotide substitutions, which drop the thermal stability by ~40°C and can facilitate introduction of the complementarity principle into the G4 World.
Collapse
Affiliation(s)
- Nickolas Kankia
- Department of Chemistry and Biochemistry, Center for RNA biology, The Ohio State University, Columbus, Ohio, USA
| | - Levan Lomidze
- Institute of Biophysics, Ilia State University, Tbilisi, Georgia
| | - Skylar Stevenson
- Department of Chemistry and Biochemistry, Center for RNA biology, The Ohio State University, Columbus, Ohio, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA biology, The Ohio State University, Columbus, Ohio, USA
| | - Besik Kankia
- Department of Chemistry and Biochemistry, Center for RNA biology, The Ohio State University, Columbus, Ohio, USA
- Institute of Biophysics, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
5
|
Wang Y, Wang J, Yan Z, Hou J, Wan L, Yang Y, Liu Y, Yi J, Guo P, Han D. Structural investigation of pathogenic RFC1 AAGGG pentanucleotide repeats reveals a role of G-quadruplex in dysregulated gene expression in CANVAS. Nucleic Acids Res 2024; 52:2698-2710. [PMID: 38266156 PMCID: PMC10954463 DOI: 10.1093/nar/gkae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
An expansion of AAGGG pentanucleotide repeats in the replication factor C subunit 1 (RFC1) gene is the genetic cause of cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS), and it also links to several other neurodegenerative diseases including the Parkinson's disease. However, the pathogenic mechanism of RFC1 AAGGG repeat expansion remains enigmatic. Here, we report that the pathogenic RFC1 AAGGG repeats form DNA and RNA parallel G-quadruplex (G4) structures that play a role in impairing biological processes. We determine the first high-resolution nuclear magnetic resonance (NMR) structure of a bimolecular parallel G4 formed by d(AAGGG)2AA and reveal how AAGGG repeats fold into a higher-order structure composed of three G-tetrad layers, and further demonstrate the formation of intramolecular G4s in longer DNA and RNA repeats. The pathogenic AAGGG repeats, but not the nonpathogenic AAAAG repeats, form G4 structures to stall DNA replication and reduce gene expression via impairing the translation process in a repeat-length-dependent manner. Our results provide an unprecedented structural basis for understanding the pathogenic mechanism of AAGGG repeat expansion associated with CANVAS. In addition, the high-resolution structures resolved in this study will facilitate rational design of small-molecule ligands and helicases targeting G4s formed by AAGGG repeats for therapeutic interventions.
Collapse
Affiliation(s)
- Yang Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Junyan Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zhenzhen Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jianing Hou
- Institute of Molecular Medicine (IMM) Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liqi Wan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yingquan Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yu Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jie Yi
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Pei Guo
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Da Han
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM) Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
6
|
Figueiredo J, Mergny JL, Cruz C. G-quadruplex ligands in cancer therapy: Progress, challenges, and clinical perspectives. Life Sci 2024; 340:122481. [PMID: 38301873 DOI: 10.1016/j.lfs.2024.122481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Guanine-rich sequences can form G-quadruplexes (G4) in living cells, making these structures promising anti-cancer targets. Compounds able to recognize these structures have been investigated as potential anticancer drugs; however, no G4 binder has yet been approved in the clinic. Here, we describe G4 ligands structure-activity relationships, in vivo effects as well as clinical trials. Addressing G4 ligand characteristics, targeting challenges, and structure-activity relationships, this review provides insights into the development of potent and selective G4-targeting molecules for therapeutic applications.
Collapse
Affiliation(s)
- Joana Figueiredo
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, Institut Polytechnique de Paris, CNRS, INSERM, Université Paris-Saclay, 91128 Palaiseau cedex, France; Institute of Biophysics of the CAS, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal.
| |
Collapse
|
7
|
Orehova M, Plavec J, Kocman V. High-Resolution Structure of RNA G-Quadruplex Containing Unique Structural Motifs Originating from the 5'-UTR of Human Tyrosine Kinase 2 (TYK2). ACS OMEGA 2024; 9:7215-7229. [PMID: 38371751 PMCID: PMC10870306 DOI: 10.1021/acsomega.3c09592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Tyrosine kinase 2 (TYK2) is a member of the JAK family of nonreceptor-associated tyrosine kinases together with highly homologous JAK1, JAK2, and JAK3 paralogues. Overexpression of TYK2 is associated with several inflammatory diseases, including severe complications during the COVID-19 infection. Since the downregulation of JAK paralogues could lead to serious health consequences or even death, it is critical to avoid it when designing drugs to suppress TYK2. To achieve the required specificity only for TYK2, researchers have recently selectively targeted TYK2 mRNA by developing antisense oligonucleotides. In this work, we expand the target space of TYK2 mRNA by showing that the mRNA adopts tetra-helical noncanonical structures called G-quadruplexes. We identified a TYKwt RNA oligonucleotide from the 5'-UTR of TYK2 mRNA, which adopts multiple different parallel G-quadruplexes that exist at equilibrium. Using NMR spectroscopy, we showed that some of the G-quadruplexes adopt unique structural motifs, mainly due to the formation of a stable GA bulge. Using guanine to uridine substitutions, we prepared the oligonucleotide TYK3_U6, which serves as an excellent model for the bulged G-quadruplexes formed by the TYKwt oligonucleotide. NMR structural analysis, including data on the residual coupling constants (RDC) of the loop regions, unveiled that the studied three-quartet parallel G-quadruplex contains many unusual structural features such as a G(U)A bulge, a guanine residue in the syn conformation, A and U residues stacked on the top G-quartet, and a well-defined adenine from a three-residue long propeller loop oriented in the groove, all of which could be valuable targets for future drug design.
Collapse
Affiliation(s)
- Maria Orehova
- Slovenian
NMR centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- EN-FIST
Centre of Excellence, Dunajska 156, 1000 Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian
NMR centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- EN-FIST
Centre of Excellence, Dunajska 156, 1000 Ljubljana, Slovenia
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
pot 113, 1000 Ljubljana, Slovenia
| | - Vojč Kocman
- Slovenian
NMR centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- EN-FIST
Centre of Excellence, Dunajska 156, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Kumar A, Kamuju V, Vivekanandan P. RNA G-quadruplexes inhibit translation of the PE/PPE transcripts in Mycobacterium tuberculosis. J Biol Chem 2024; 300:105567. [PMID: 38103641 PMCID: PMC10801317 DOI: 10.1016/j.jbc.2023.105567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023] Open
Abstract
The role of RNA G-quadruplexes (rG4s) in bacteria remains poorly understood. High G-quadruplex densities have been linked to organismal stress. Here we investigate rG4s in mycobacteria, which survive highly stressful conditions within the host. We show that rG4-enrichment is a unique feature exclusive to slow-growing pathogenic mycobacteria, and Mycobacterium tuberculosis (Mtb) transcripts contain an abundance of folded rG4s. Notably, the PE/PPE family of genes, unique to slow-growing pathogenic mycobacteria, contain over 50% of rG4s within Mtb transcripts. We found that RNA oligonucleotides of putative rG4s in PE/PPE genes form G-quadruplex structures in vitro, which are stabilized by the G-quadruplex ligand BRACO19. Furthermore, BRACO19 inhibits the transcription of PE/PPE genes and selectively suppresses the growth of Mtb but not Mycobacterium smegmatis or other rapidly growing bacteria. Importantly, the stabilization of rG4s inhibits the translation of Mtb PE/PPE genes (PPE56, PPE67, PPE68, PE_PGRS39, and PE_PGRS41) ectopically expressed in M. smegmatis or Escherichia coli. In addition, the rG4-mediated reduction in PE/PPE protein levels attenuates proinflammatory response upon infection of THP-1 cells. Our findings shed new light on the regulation of PE/PPE genes and highlight a pivotal role for rG4s in Mtb transcripts as regulators of post-transcriptional translational control. The rG4s in mycobacterial transcripts may represent potential drug targets for newer therapies.
Collapse
Affiliation(s)
- Ashish Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Vinay Kamuju
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology, New Delhi, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India.
| |
Collapse
|
9
|
Lopina OD, Sidorenko SV, Fedorov DA, Klimanova EA. G-Quadruplexes as Sensors of Intracellular Na+/K + Ratio: Potential Role in Regulation of Transcription and Translation. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S262-S277. [PMID: 38621755 DOI: 10.1134/s0006297924140153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 04/17/2024]
Abstract
Data on the structure of G-quadruplexes, noncanonical nucleic acid forms, supporting an idea of their potential participation in regulation of gene expression in response to the change in intracellular Na+i/K+i ratio are considered in the review. Structural variety of G-quadruplexes, role of monovalent cations in formation of this structure, and thermodynamic stability of G-quadruplexes are described. Data on the methods of their identification in the cells and biological functions of these structures are presented. Analysis of information about specific interactions of G-quadruplexes with some proteins was conducted, and their potential participation in the development of some pathological conditions, in particular, cancer and neurodegenerative diseases, is considered. Special attention is given to the plausible role of G-quadruplexes as sensors of intracellular Na+i/K+i ratio, because alteration of this parameter affects folding of G-quadruplexes changing their stability and, thereby, organization of the regulatory elements of nucleic acids. The data presented in the conclusion section demonstrate significant change in the expression of some early response genes under certain physiological conditions of cells and tissues depending on the intracellular Na+i/K+i ratio.
Collapse
Affiliation(s)
- Olga D Lopina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | | | - Dmitry A Fedorov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | |
Collapse
|
10
|
Kratochvilová L, Vojsovič M, Valková N, Šislerová L, El Rashed Z, Inga A, Monti P, Brázda V. The presence of a G-quadruplex prone sequence upstream of a minimal promoter increases transcriptional activity in the yeast Saccharomyces cerevisiae. Biosci Rep 2023; 43:BSR20231348. [PMID: 38112096 PMCID: PMC10730334 DOI: 10.1042/bsr20231348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023] Open
Abstract
Non-canonical secondary structures in DNA are increasingly being revealed as critical players in DNA metabolism, including modulating the accessibility and activity of promoters. These structures comprise the so-called G-quadruplexes (G4s) that are formed from sequences rich in guanine bases. Using a well-defined transcriptional reporter system, we sought to systematically investigate the impact of the presence of G4 structures on transcription in yeast Saccharomyces cerevisiae. To this aim, different G4 prone sequences were modeled to vary the chance of intramolecular G4 formation, analyzed in vitro by Thioflavin T binding test and circular dichroism and then placed at the yeast ADE2 locus on chromosome XV, downstream and adjacent to a P53 response element (RE) and upstream from a minimal CYC1 promoter and Luciferase 1 (LUC1) reporter gene in isogenic strains. While the minimal CYC1 promoter provides basal reporter activity, the P53 RE enables LUC1 transactivation under the control of P53 family proteins expressed under the inducible GAL1 promoter. Thus, the impact of the different G4 prone sequences on both basal and P53 family protein-dependent expression was measured after shifting cells onto galactose containing medium. The results showed that the presence of G4 prone sequences upstream of a yeast minimal promoter increased its basal activity proportionally to their potential to form intramolecular G4 structures; consequently, this feature, when present near the target binding site of P53 family transcription factors, can be exploited to regulate the transcriptional activity of P53, P63 and P73 proteins.
Collapse
Affiliation(s)
- Libuše Kratochvilová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic
| | - Matúš Vojsovič
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic
| | - Natália Valková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
| | - Lucie Šislerová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic
| | - Zeinab El Rashed
- Gene Expression Regulation SSD, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Paola Monti
- Mutagenesis and Cancer Prevention UO, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic
| |
Collapse
|
11
|
Vannutelli A, Ouangraoua A, Perreault JP. Toward a Better Understanding of G4 Evolution in the 3 Living Kingdoms. Evol Bioinform Online 2023; 19:11769343231212075. [PMID: 38046653 PMCID: PMC10693206 DOI: 10.1177/11769343231212075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/18/2023] [Indexed: 12/05/2023] Open
Abstract
Background G-quadruplexes (G4s) are secondary structures in DNA and RNA that impact various cellular processes, such as transcription, splicing, and translation. Due to their numerous functions, G4s are involved in many diseases, making their study important. Yet, G4s evolution remains largely unknown, due to their low sequence similarity and the poor quality of their sequence alignments across several species. To address this, we designed a strategy that avoids direct G4s alignment to study G4s evolution in the 3 species kingdoms. We also explored the coevolution between RBPs and G4s. Methods We retrieved one-to-one orthologous genes from the Ensembl Compara database and computed groups of one-to-one orthologous genes. For each group, we aligned gene sequences and identified G4 families as groups of overlapping G4s in the alignment. We analyzed these G4 families using Count, a tool to infer feature evolution into a gene or a species tree. Additionally, we utilized these G4 families to predict G4s by homology. To establish a control dataset, we performed mono-, di- and tri-nucleotide shuffling. Results Only a few conserved G4s occur among all living kingdoms. In eukaryotes, G4s exhibit slight conservation among vertebrates, and few are conserved between plants. In archaea and bacteria, at most, only 2 G4s are common. The G4 homology-based prediction increases the number of conserved G4s in common ancestors. The coevolution between RNA-binding proteins and G4s was investigated and revealed a modest impact of RNA-binding proteins evolution on G4 evolution. However, the details of this relationship remain unclear. Conclusion Even if G4 evolution still eludes us, the present study provides key information to compute groups of homologous G4 and to reveal the evolution history of G4 families.
Collapse
Affiliation(s)
- Anaïs Vannutelli
- Département de biochimie et de génomique fonctionnelle, faculté de médecine et des sciences de la santé, pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, QC, Canada
- Département d’informatique, faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Aïda Ouangraoua
- Département d’informatique, faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Pierre Perreault
- Département de biochimie et de génomique fonctionnelle, faculté de médecine et des sciences de la santé, pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
12
|
Lejault P, Prudent L, Terrier MP, Perreault JP. Small molecule chaperones facilitate the folding of RNA G-quadruplexes. Biochimie 2023; 214:83-90. [PMID: 37666291 DOI: 10.1016/j.biochi.2023.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
RNA G-quadruplexes (rG4) have recently emerged as major regulatory elements in both mRNA and non-coding RNA. In order to investigate the biological roles of rG4 structures, chemists have developed a variety of highly specific and potent ligands. All of these ligands bind to the rG4s by stacking on top of them. The binding specificity is demonstrated by comparison to other structures such as duplex or three-way junctions. It remains unclear whether rG4-ligands merely stabilize fully formed rG4 structures, or if they actively participate in the folding of the rG4 structure through their association with an unfolded RNA sequence. In order to elucidate the innate steps of ligand-rG4 associations and mechanisms robust in vitro techniques, including FRET, electrophoretic mobility shift assays and reverse transcriptase stalling assays, were used to examine the capacity of five well-known G4 ligands to induce rG4 structures derived from either long non-coding RNAs or from synthetic RNAs. It was found that both PhenDC3 and PDS induce rG4 formation in single RNA strands. This discovery has important implications for the interpretation of RNA-seq experiments. Overall, in vitro data that can assist biochemists in selecting the optimal G4-ligands for their RNA cellular experiments are presented, and the effects induced by these ligands on the rG4s are also considered.
Collapse
Affiliation(s)
- Pauline Lejault
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada.
| | - Louis Prudent
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Michel-Pierre Terrier
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Jean-Pierre Perreault
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada.
| |
Collapse
|
13
|
Yan MP, Wee CE, Yen KP, Stevens A, Wai LK. G-quadruplex ligands as therapeutic agents against cancer, neurological disorders and viral infections. Future Med Chem 2023; 15:1987-2009. [PMID: 37933551 DOI: 10.4155/fmc-2023-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
G-quadruplexes (G4s) within the human genome have undergone extensive molecular investigation, with a strong focus on telomeres, gene promoters and repetitive regulatory sequences. G4s play central roles in regulating essential biological processes, including telomere maintenance, replication, transcription and translation. Targeting these molecular processes with G4-binding ligands holds substantial therapeutic potential in anticancer treatments and has also shown promise in treating neurological, skeletal and muscular disorders. The presence of G4s in bacterial and viral genomes also suggests that G4-binding ligands could be a critical tool in fighting infections. This review provides an overview of the progress and applications of G4-binding ligands, their proposed mechanisms of action, challenges faced and prospects for their utilization in anticancer treatments, neurological disorders and antiviral activities.
Collapse
Affiliation(s)
- Mock Phooi Yan
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Chua Eng Wee
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Khor Poh Yen
- Faculty Pharmacy & Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine Perak, 3, Jalan Greentown, Ipoh, Perak, 30450, Malaysia
| | - Aaron Stevens
- Department of Pathology & Molecular Medicine, University of Otago, Wellington, 6021, New Zealand
| | - Lam Kok Wai
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| |
Collapse
|
14
|
Vijay Kumar MJ, Morales R, Tsvetkov AS. G-quadruplexes and associated proteins in aging and Alzheimer's disease. FRONTIERS IN AGING 2023; 4:1164057. [PMID: 37323535 PMCID: PMC10267416 DOI: 10.3389/fragi.2023.1164057] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Aging is a prominent risk factor for many neurodegenerative disorders, such as Alzheimer's disease (AD). Alzheimer's disease is characterized by progressive cognitive decline, memory loss, and neuropsychiatric and behavioral symptoms, accounting for most of the reported dementia cases. This disease is now becoming a major challenge and burden on modern society, especially with the aging population. Over the last few decades, a significant understanding of the pathophysiology of AD has been gained by studying amyloid deposition, hyperphosphorylated tau, synaptic dysfunction, oxidative stress, calcium dysregulation, and neuroinflammation. This review focuses on the role of non-canonical secondary structures of DNA/RNA G-quadruplexes (G4s, G4-DNA, and G4-RNA), G4-binding proteins (G4BPs), and helicases, and their roles in aging and AD. Being critically important for cellular function, G4s are involved in the regulation of DNA and RNA processes, such as replication, transcription, translation, RNA localization, and degradation. Recent studies have also highlighted G4-DNA's roles in inducing DNA double-strand breaks that cause genomic instability and G4-RNA's participation in regulating stress granule formation. This review emphasizes the significance of G4s in aging processes and how their homeostatic imbalance may contribute to the pathophysiology of AD.
Collapse
Affiliation(s)
- M. J. Vijay Kumar
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
| | - Rodrigo Morales
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Andrey S. Tsvetkov
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
- UTHealth Consortium on Aging, The University of Texas McGovern Medical School, Houston, TX, United States
| |
Collapse
|
15
|
Real-Hohn A, Groznica M, Kontaxis G, Zhu R, Chaves OA, Vazquez L, Hinterdorfer P, Kowalski H, Blaas D. Stabilization of the Quadruplex-Forming G-Rich Sequences in the Rhinovirus Genome Inhibits Uncoating-Role of Na + and K . Viruses 2023; 15:1003. [PMID: 37112983 PMCID: PMC10141139 DOI: 10.3390/v15041003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Rhinoviruses (RVs) are the major cause of common cold, a respiratory disease that generally takes a mild course. However, occasionally, RV infection can lead to serious complications in patients debilitated by other ailments, e.g., asthma. Colds are a huge socioeconomic burden as neither vaccines nor other treatments are available. The many existing drug candidates either stabilize the capsid or inhibit the viral RNA polymerase, the viral proteinases, or the functions of other non-structural viral proteins; however, none has been approved by the FDA. Focusing on the genomic RNA as a possible target for antivirals, we asked whether stabilizing RNA secondary structures might inhibit the viral replication cycle. These secondary structures include G-quadruplexes (GQs), which are guanine-rich sequence stretches forming planar guanine tetrads via Hoogsteen base pairing with two or more of them stacking on top of each other; a number of small molecular drug candidates increase the energy required for their unfolding. The propensity of G-quadruplex formation can be predicted with bioinformatics tools and is expressed as a GQ score. Synthetic RNA oligonucleotides derived from the RV-A2 genome with sequences corresponding to the highest and lowest GQ scores indeed exhibited characteristics of GQs. In vivo, the GQ-stabilizing compounds, pyridostatin and PhenDC3, interfered with viral uncoating in Na+ but not in K+-containing phosphate buffers. The thermostability studies and ultrastructural imaging of protein-free viral RNA cores suggest that Na+ keeps the encapsulated genome more open, allowing PDS and PhenDC3 to diffuse into the quasi-crystalline RNA and promote the formation and/or stabilization of GQs; the resulting conformational changes impair RNA unraveling and release from the virion. Preliminary reports have been published.
Collapse
Affiliation(s)
- Antonio Real-Hohn
- Center of Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, 1030 Vienna, Austria; (M.G.)
| | - Martin Groznica
- Center of Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, 1030 Vienna, Austria; (M.G.)
- Institut Pasteur, CEDEX 15, 75724 Paris, France
| | - Georg Kontaxis
- Vienna Biocenter, Max Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Campus Vienna BioCenter 5, 1030 Vienna, Austria;
| | - Rong Zhu
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020 Linz, Austria; (R.Z.)
| | - Otávio Augusto Chaves
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC/Fiocruz), Av. Brasil, 4365, Rio de Janeiro 21040-360, Brazil
| | - Leonardo Vazquez
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC/Fiocruz), Av. Brasil, 4365, Rio de Janeiro 21040-360, Brazil
| | - Peter Hinterdorfer
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020 Linz, Austria; (R.Z.)
| | - Heinrich Kowalski
- Center of Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, 1030 Vienna, Austria; (M.G.)
| | - Dieter Blaas
- Center of Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, 1030 Vienna, Austria; (M.G.)
| |
Collapse
|
16
|
Kitamura A, Tornmalm J, Demirbay B, Piguet J, Kinjo M, Widengren J. Trans-cis isomerization kinetics of cyanine dyes reports on the folding states of exogeneous RNA G-quadruplexes in live cells. Nucleic Acids Res 2023; 51:e27. [PMID: 36651281 PMCID: PMC10018373 DOI: 10.1093/nar/gkac1255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
Guanine (G)-rich nucleic acids are prone to assemble into four-stranded structures, so-called G-quadruplexes. Abnormal GGGGCC repeat elongations, and in particular their folding states, are associated with amyotrophic lateral sclerosis and frontotemporal dementia. Due to methodological constraints however, most studies of G quadruplex structures are restricted to in vitro conditions. Evidence of how GGGGCC repeats form into G-quadruplexes in vivo is sparse. We devised a readout strategy, exploiting the sensitivity of trans-cis isomerization of cyanine dyes to local viscosity and sterical constraints. Thereby, folding states of cyanine-labeled RNA, and in particular G-quadruplexes, can be identified in a sensitive manner. The isomerization kinetics, monitored via fluorescence blinking generated upon transitions between a fluorescent trans isomer and a non-fluorescent cis isomer, was first characterized for RNA with GGGGCC repeats in aqueous solution using fluorescence correlation spectroscopy and transient state (TRAST) monitoring. With TRAST, monitoring the isomerization kinetics from how the average fluorescence intensity varies with laser excitation modulation characteristics, we could then detect folding states of fluorescently tagged RNA introduced into live cells.
Collapse
Affiliation(s)
| | | | - Baris Demirbay
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Joachim Piguet
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Masataka Kinjo
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
17
|
Wagh AA, Kumar VA, Ravindranathan S, Fernandes M. Unlike RNA-TBA (rTBA), iso-rTBA, the 2'-5'-linked RNA-thrombin-binding aptamer, is a functional equivalent of TBA. Chem Commun (Camb) 2023; 59:1461-1464. [PMID: 36651344 DOI: 10.1039/d2cc05718b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An antiparallel, functional RNA G-quadruplex of the 2'-5'-linked thrombin-binding aptamer (iso-rTBA) is reported for the first time. It can inhibit clotting and is remarkably stable to nuclease-degradation, besides having high thermal stability. It is thus, a superior candidate to TBA, rTBA or isoTBA, for further development as an anticoagulant.
Collapse
Affiliation(s)
- Atish A Wagh
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vaijayanti A Kumar
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sapna Ravindranathan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Central NMR Facility, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India
| | - Moneesha Fernandes
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
18
|
Holden L, Gkika KS, Burke CS, Long C, Keyes TE. Selective, Disruptive Luminescent Ru(II) Polypyridyl Probes of G-Quadruplex. Inorg Chem 2023; 62:2213-2227. [PMID: 36703307 PMCID: PMC9906756 DOI: 10.1021/acs.inorgchem.2c03903] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sensors capable of transducing G-quadruplex DNA binding are important both in solution and for imaging and interrogation in cellulo. Ru(II)-based light switches incorporating dipyridylphenazine (dppz) ligands are effective probes for recognition and imaging of DNA and its polymorphs including G-quadruplex, although selectivity is a limitation. While the majority of Ru(II)-based light switches reported to date, stabilize the quadruplex, imaging/theranostic probes that can disrupt G4s are of potentially enormous value in study and therapy for a range of disease states. We report here, on a Ru(II) complex (Ru-PDC3) that assembles the light switch capability of a Ru(II) dipyridylphenazine complex with the well-known G4-selective ligand Phen-DC3, into a single structure. The complex shows the anticipated light switch effect and strong affinity for G4 structures. Affinity depended on the G4 topology and sequence, but across all structures bar one, it was roughly an order of magnitude greater than for duplex or single-stranded DNA. Moreover, photophysical and Raman spectral data showed clear discrimination between duplex DNA and G4-bound structures offering the prospect of discrimination in imaging as well as in solution. Crucially, unlike the constituent components of the probe, Ru-PDC3 is a powerful G4 disrupter. From circular dichroism (CD), a reduction of ellipticity of the G4 between 70 and 95% was observed depending on topology and in many cases was accompanied by an induced CD signal for the metal complex. The extent of change in ellipticity is amongst the largest reported for small-molecule ligand G4 binding. While a promising G4 probe, without modification, the complex is fully water-soluble and readily permeable to live cells.
Collapse
|
19
|
Richards J, Belasco JG. Graded impact of obstacle size on scanning by RNase E. Nucleic Acids Res 2023; 51:1364-1374. [PMID: 36620905 PMCID: PMC9943677 DOI: 10.1093/nar/gkac1242] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023] Open
Abstract
In countless bacterial species, the lifetimes of most mRNAs are controlled by the regulatory endonuclease RNase E, which preferentially degrades RNAs bearing a 5' monophosphate and locates cleavage sites within them by scanning linearly from the 5' terminus along single-stranded regions. Consequently, its rate of cleavage at distal sites is governed by any obstacles that it may encounter along the way, such as bound proteins or ribosomes or base pairing that is coaxial with the path traversed by this enzyme. Here, we report that the protection afforded by such obstacles is dependent on the size and persistence of the structural discontinuities they create, whereas the molecular composition of obstacles to scanning is of comparatively little consequence. Over a broad range of sizes, incrementally larger discontinuities are incrementally more protective, with corresponding effects on mRNA stability. The graded impact of such obstacles suggests possible explanations for why their effect on scanning is not an all-or-none phenomenon dependent simply on whether the size of the resulting discontinuity exceeds the step length of RNase E.
Collapse
Affiliation(s)
- Jamie Richards
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA,Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, New York, NY 10016, USA
| | - Joel G Belasco
- To whom correspondence should be addressed. Tel: +1 212 263 5409;
| |
Collapse
|
20
|
Apostolidi M, Stamatopoulou V. Aberrant splicing in human cancer: An RNA structural code point of view. Front Pharmacol 2023; 14:1137154. [PMID: 36909167 PMCID: PMC9995731 DOI: 10.3389/fphar.2023.1137154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Alternative splicing represents an essential process that occurs widely in eukaryotes. In humans, most genes undergo alternative splicing to ensure transcriptome and proteome diversity reflecting their functional complexity. Over the last decade, aberrantly spliced transcripts due to mutations in cis- or trans-acting splicing regulators have been tightly associated with cancer development, largely drawing scientific attention. Although a plethora of single proteins, ribonucleoproteins, complexed RNAs, and short RNA sequences have emerged as nodal contributors to the splicing cascade, the role of RNA secondary structures in warranting splicing fidelity has been underestimated. Recent studies have leveraged the establishment of novel high-throughput methodologies and bioinformatic tools to shed light on an additional layer of splicing regulation in the context of RNA structural elements. This short review focuses on the most recent available data on splicing mechanism regulation on the basis of RNA secondary structure, emphasizing the importance of the complex RNA G-quadruplex structures (rG4s), and other specific RNA motifs identified as splicing silencers or enhancers. Moreover, it intends to provide knowledge on newly established techniques that allow the identification of RNA structural elements and highlight the potential to develop new RNA-oriented therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Maria Apostolidi
- Agilent Laboratories, Agilent Technologies, Santa Clara, CA, United States
| | | |
Collapse
|
21
|
Tong X, Ga L, Eerdun C, Zhao R, Ai J. Simple Monovalent Metal Ion Logical Order to Regulate the Secondary Conformation of G-Quadruplex. ACS OMEGA 2022; 7:39224-39233. [PMID: 36340069 PMCID: PMC9631730 DOI: 10.1021/acsomega.2c05243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/29/2022] [Indexed: 06/06/2023]
Abstract
Based on the reactions of different sequences with single ions K+, Na, NH4 +, double ions high + low, low + high, and triple ions with different addition orders, the best stable ion combinations of 12 quadruplexes with different DNA sequences were reported. From the fluorescence spectrum, except for HT-V15 and PW17 and AS1411 and HT-V18, the structural stability of G-quadrangle formed basically follows a certain rule. In terms of this experiment, according to circular dichroism, the antiparallel quadrupole structure has the largest proportion among quadrupole structures, and 12 optimal DNA addition schemes and sequences have been obtained through exploration. It is worth mentioning that, on the whole, the best addition scheme of AS1411 and HT-V18 is a three-ion scheme, which provides an effective reference for similar experiments in the future.
Collapse
Affiliation(s)
- Xin Tong
- College
of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory
of Environmental Chemistry, Inner Mongolia
Normal University, 81 Zhaowudalu, Hohhot 010022, People’s Republic of China
| | - Lu Ga
- College
of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot 010110, People’s Republic of China
| | - Chaolu Eerdun
- College
of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot 010110, People’s Republic of China
| | - Ruiguo Zhao
- College
of Chemistry and Chemical Engineering, Inner
Mongolia University, Hohhot 010020, People’s Republic
of China
| | - Jun Ai
- College
of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory
of Environmental Chemistry, Inner Mongolia
Normal University, 81 Zhaowudalu, Hohhot 010022, People’s Republic of China
| |
Collapse
|
22
|
Göç YB, Poziemski J, Smolińska W, Suwała D, Wieczorek G, Niedzialek D. Tracking Topological and Electronic Effects on the Folding and Stability of Guanine-Deficient RNA G-Quadruplexes, Engineered with a New Computational Tool for De Novo Quadruplex Folding. Int J Mol Sci 2022; 23:10990. [PMID: 36232294 PMCID: PMC9570295 DOI: 10.3390/ijms231910990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The initial aim of this work was to elucidate the mutual influence of different single-stranded segments (loops and caps) on the thermodynamic stability of RNA G-quadruplexes. To this end, we used a new NAB-GQ-builder software program, to construct dozens of two-tetrad G-quadruplex topologies, based on a designed library of sequences. Then, to probe the sequence-morphology-stability relationships of the designed topologies, we performed molecular dynamics simulations. Their results provide guidance for the design of G-quadruplexes with balanced structures, and in turn programmable physicochemical properties for applications as biomaterials. Moreover, by comparative examinations of the single-stranded segments of three oncogene promoter G-quadruplexes, we assess their druggability potential for future therapeutic strategies. Finally, on the basis of a thorough analysis at the quantum mechanical level of theory on a series of guanine assemblies, we demonstrate how a valence tautomerism, triggered by a coordination of cations, initiates the process of G-quadruplex folding, and we propose a sequential folding mechanism, otherwise dictated by the cancellation of the dipole moments on guanines.
Collapse
Affiliation(s)
- Yavuz Burak Göç
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland or
- Faculty of Chemistry, Biological & Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Jakub Poziemski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland or
| | - Weronika Smolińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland or
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Dominik Suwała
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland or
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Grzegorz Wieczorek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland or
- Molecure SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Dorota Niedzialek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland or
| |
Collapse
|
23
|
Zhai LY, Liu JF, Zhao JJ, Su AM, Xi XG, Hou XM. Targeting the RNA G-Quadruplex and Protein Interactome for Antiviral Therapy. J Med Chem 2022; 65:10161-10182. [PMID: 35862260 DOI: 10.1021/acs.jmedchem.2c00649] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In recent years, G-quadruplexes (G4s), types of noncanonical four-stranded nucleic acid structures, have been identified in many viruses that threaten human health, such as HIV and Epstein-Barr virus. In this context, G4 ligands were designed to target the G4 structures, among which some have shown promising antiviral effects. In this Perspective, we first summarize the diversified roles of RNA G4s in different viruses. Next, we introduce small-molecule ligands developed as G4 modulators and highlight their applications in antiviral studies. In addition to G4s, we comprehensively review the medical intervention of G4-interacting proteins from both the virus (N protein, viral-encoded helicases, severe acute respiratory syndrome-unique domain, and Epstein-Barr nuclear antigen 1) and the host (heterogeneous nuclear ribonucleoproteins, RNA helicases, zinc-finger cellular nucelic acid-binding protein, and nucleolin) by inhibitors as an alternative way to disturb the normal functions of G4s. Finally, we discuss the challenges and opportunities in G4-based antiviral therapy.
Collapse
Affiliation(s)
- Li-Yan Zhai
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China
| | - Jing-Fan Liu
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China
| | - Jian-Jin Zhao
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China
| | - Ai-Min Su
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China.,Laboratory of Biology and Applied Pharmacology, CNRS UMR 8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Xi-Miao Hou
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China
| |
Collapse
|
24
|
Katsuda Y, Sato SI, Inoue M, Tsugawa H, Kamura T, Kida T, Matsumoto R, Asamitsu S, Shioda N, Shiroto S, Oosawatsu Y, Yatsuzuka K, Kitamura Y, Hagihara M, Ihara T, Uesugi M. Small molecule-based detection of non-canonical RNA G-quadruplex structures that modulate protein translation. Nucleic Acids Res 2022; 50:8143-8153. [PMID: 35801908 PMCID: PMC9371906 DOI: 10.1093/nar/gkac580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/24/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Tandem repeats of guanine-rich sequences in RNA often form thermodynamically stable four-stranded RNA structures. Such RNA G-quadruplexes have long been considered to be linked to essential biological processes, yet their physiological significance in cells remains unclear. Here, we report a approach that permits the detection of RNA G-quadruplex structures that modulate protein translation in mammalian cells. The approach combines antibody arrays and RGB-1, a small molecule that selectively stabilizes RNA G-quadruplex structures. Analysis of the protein and mRNA products of 84 cancer-related human genes identified Nectin-4 and CapG as G-quadruplex-controlled genes whose mRNAs harbor non-canonical G-quadruplex structures on their 5′UTR region. Further investigations revealed that the RNA G-quadruplex of CapG exhibits a structural polymorphism, suggesting a possible mechanism that ensures the translation repression in a KCl concentration range of 25–100 mM. The approach described in the present study sets the stage for further discoveries of RNA G-quadruplexes.
Collapse
Affiliation(s)
- Yousuke Katsuda
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Shin-Ichi Sato
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Maimi Inoue
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Hisashi Tsugawa
- Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Takuto Kamura
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Tomoki Kida
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Rio Matsumoto
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Sefan Asamitsu
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.,Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe, Chuo-ku, Kumamoto 862-0973, Japan
| | - Shuhei Shiroto
- Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Yoshiki Oosawatsu
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Kenji Yatsuzuka
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yusuke Kitamura
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masaki Hagihara
- Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Toshihiro Ihara
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Motonari Uesugi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.,School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
25
|
Vo T, Brownmiller T, Hall K, Jones TL, Choudhari S, Grammatikakis I, Ludwig K, Caplen N. HNRNPH1 destabilizes the G-quadruplex structures formed by G-rich RNA sequences that regulate the alternative splicing of an oncogenic fusion transcript. Nucleic Acids Res 2022; 50:6474-6496. [PMID: 35639772 PMCID: PMC9226515 DOI: 10.1093/nar/gkac409] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/07/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
In the presence of physiological monovalent cations, thousands of RNA G-rich sequences can form parallel G-quadruplexes (G4s) unless RNA-binding proteins inhibit, destabilize, or resolve the formation of such secondary RNA structures. Here, we have used a disease-relevant model system to investigate the biophysical properties of the RNA-binding protein HNRNPH1's interaction with G-rich sequences. We demonstrate the importance of two EWSR1-exon 8 G-rich regions in mediating the exclusion of this exon from the oncogenic EWS-FLI1 transcripts expressed in a subset of Ewing sarcomas, using complementary analysis of tumor data, long-read sequencing, and minigene studies. We determined that HNRNPH1 binds the EWSR1-exon 8 G-rich sequences with low nM affinities irrespective of whether in a non-G4 or G4 state but exhibits different kinetics depending on RNA structure. Specifically, HNRNPH1 associates and dissociates from G4-folded RNA faster than the identical sequences in a non-G4 state. Importantly, we demonstrate using gel shift and spectroscopic assays that HNRNPH1, particularly the qRRM1-qRRM2 domains, destabilizes the G4s formed by the EWSR1-exon 8 G-rich sequences in a non-catalytic fashion. Our results indicate that HNRNPH1's binding of G-rich sequences favors the accumulation of RNA in a non-G4 state and that this contributes to its regulation of RNA processing.
Collapse
Affiliation(s)
- Tam Vo
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tayvia Brownmiller
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine Hall
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tamara L Jones
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sulbha Choudhari
- CCR-SF Bioinformatics Group, Biomedical Informatics and Data Science Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Ioannis Grammatikakis
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Katelyn R Ludwig
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natasha J Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Wang L, Xu YP, Bai D, Shan SW, Xie J, Li Y, Wu WQ. Insights into the structural dynamics and helicase-catalyzed unfolding of plant RNA G-quadruplexes. J Biol Chem 2022; 298:102165. [PMID: 35738400 PMCID: PMC9293640 DOI: 10.1016/j.jbc.2022.102165] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
RNA G-quadruplexes (rG4s) are noncanonical RNA secondary structures formed by guanine (G)-rich sequences. These complexes play important regulatory roles in both animals and plants through their structural dynamics and are closely related to human diseases and plant growth, development, and adaption. Thus, studying the structural dynamics of rG4s is fundamentally important; however, their folding pathways and their unfolding by specialized helicases are not well understood. In addition, no plant rG4-specialized helicases have been identified. Here, using single-molecule FRET, we experimentally elucidated for the first time the folding pathway and intermediates, including a G-hairpin and G-triplex. In addition, using proteomics screening and microscale thermophoresis, we identified and validated five rG4-specialized helicases in Arabidopsis thaliana. Furthermore, DExH1, the ortholog of the famous human rG4 helicase RHAU/DHX36, stood out for its robust rG4 unwinding ability. Taken together, these results shed light on the structural dynamics of plant rG4s.
Collapse
Affiliation(s)
- Liu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Ya-Peng Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Di Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Song-Wang Shan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Jie Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Yan Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Wen-Qiang Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng 475001, China.
| |
Collapse
|
27
|
Meier-Stephenson V. G4-quadruplex-binding proteins: review and insights into selectivity. Biophys Rev 2022; 14:635-654. [PMID: 35791380 PMCID: PMC9250568 DOI: 10.1007/s12551-022-00952-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
There are over 700,000 putative G4-quadruplexes (G4Qs) in the human genome, found largely in promoter regions, telomeres, and other regions of high regulation. Growing evidence links their presence to functionality in various cellular processes, where cellular proteins interact with them, either stabilizing and/or anchoring upon them, or unwinding them to allow a process to proceed. Interest in understanding and manipulating the plethora of processes regulated by these G4Qs has spawned a new area of small-molecule binder development, with attempts to mimic and block the associated G4-binding protein (G4BP). Despite the growing interest and focus on these G4Qs, there is limited data (in particular, high-resolution structural information), on the nature of these G4Q-G4BP interactions and what makes a G4BP selective to certain G4Qs, if in fact they are at all. This review summarizes the current literature on G4BPs with regards to their interactions with G4Qs, providing groupings for binding mode, drawing conclusions around commonalities and highlighting information on specific interactions where available.
Collapse
Affiliation(s)
- Vanessa Meier-Stephenson
- Department of Medicine, Division of Infectious Diseases, University of Alberta, Edmonton, AB Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
28
|
Georgakopoulos-Soares I, Parada GE, Wong HY, Medhi R, Furlan G, Munita R, Miska EA, Kwok CK, Hemberg M. Alternative splicing modulation by G-quadruplexes. Nat Commun 2022; 13:2404. [PMID: 35504902 PMCID: PMC9065059 DOI: 10.1038/s41467-022-30071-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/30/2022] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing is central to metazoan gene regulation, but the regulatory mechanisms are incompletely understood. Here, we show that G-quadruplex (G4) motifs are enriched ~3-fold near splice junctions. The importance of G4s in RNA is emphasised by a higher enrichment for the non-template strand. RNA-seq data from mouse and human neurons reveals an enrichment of G4s at exons that were skipped following depolarisation induced by potassium chloride. We validate the formation of stable RNA G4s for three candidate splice sites by circular dichroism spectroscopy, UV-melting and fluorescence measurements. Moreover, we find that sQTLs are enriched at G4s, and a minigene experiment provides further support for their role in promoting exon inclusion. Analysis of >1,800 high-throughput experiments reveals multiple RNA binding proteins associated with G4s. Finally, exploration of G4 motifs across eleven species shows strong enrichment at splice sites in mammals and birds, suggesting an evolutionary conserved splice regulatory mechanism. Here the authors shows that G-quadruplexes, non-canonical DNA/RNA structures, can have a direct impact on alternative splicing and that binding of splicing regulators is affected by their presence.
Collapse
Affiliation(s)
- Ilias Georgakopoulos-Soares
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Guillermo E Parada
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.,Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5A 1A8, Canada
| | - Hei Yuen Wong
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Ragini Medhi
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Giulia Furlan
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Roberto Munita
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Eric A Miska
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.,Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Martin Hemberg
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK. .,Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK. .,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
29
|
Pal R, Deb I, Sarzynska J, Lahiri A. LNA-induced dynamic stability in a therapeutic aptamer: insights from molecular dynamics simulations. J Biomol Struct Dyn 2022; 41:2221-2230. [PMID: 35100936 DOI: 10.1080/07391102.2022.2029567] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Modulation of structural and thermodynamic properties of nucleic acids with synthetic modifications is a promising area of research with possible applications in nanotechnology and nanotherapeutics. Locked nucleic acid (LNA) is one such modification in which the C4' and O2' atoms of the sugar moiety are connected through a methylene bridge. The LNA modified DNA aptamer RNV66, and its unmodified counterpart V7t1, both of which target the vascular endothelial growth factor (VEGF) implicated in oncogenic angiogenesis, have a G-rich tract that can fold into G-quadruplex structures. However, it is not understood why V7t1 has a polymorphic structure while its LNA modified counterpart RNV66 has a unique quadruplex fold with higher nuclease resistance, thermal stability and greater binding affinity for VEGF. In this work, we have performed extensive molecular dynamics simulations of RNV66 and V7t1 to study and compare the structural and dynamic consequences of the insertion of LNAs. It was observed that the increase in dynamic stability was significant in the presence of LNA residues and our protocol for combining different torsional parameters using OL15 for the DNA aptamer and parm99_LNA along with parmbsc0 and βOL15 for the LNAs nicely reproduced the experimentally observed conformational features of RNV66. Our observations would help in further theoretical studies in understanding the lack of frustration in the folding of the LNA modified aptamer and its higher affinity for VEGF.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rupak Pal
- Department of Biophysics, Molecular Biology, and Bioinformatics, University of Calcutta, Kolkata, India
| | - Indrajit Deb
- Department of Biophysics, Molecular Biology, and Bioinformatics, University of Calcutta, Kolkata, India
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology, and Bioinformatics, University of Calcutta, Kolkata, India
| |
Collapse
|
30
|
Zok T, Kraszewska N, Miskiewicz J, Pielacinska P, Zurkowski M, Szachniuk M. ONQUADRO: a database of experimentally determined quadruplex structures. Nucleic Acids Res 2022; 50:D253-D258. [PMID: 34986600 PMCID: PMC8728301 DOI: 10.1093/nar/gkab1118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023] Open
Abstract
ONQUADRO is an advanced database system that supports the study of the structures of canonical and non-canonical quadruplexes. It combines a relational database that collects comprehensive information on tetrads, quadruplexes, and G4-helices; programs to compute structure parameters and visualise the data; scripts for statistical analysis; automatic updates and newsletter modules; and a web application that provides a user interface. The database is a self-updating resource, with new information arriving once a week. The preliminary data are downloaded from the Protein Data Bank, processed, annotated, and completed. As of August 2021, ONQUADRO contains 1,661 tetrads, 518 quadruplexes, and 30 G4-helices found in 467 experimentally determined 3D structures of nucleic acids. Users can view and download their description: sequence, secondary structure (dot-bracket, classical diagram, arc diagram), tertiary structure (ball-and-stick, surface or vdw-ball model, layer diagram), planarity, twist, rise, chi angle (value and type), loop characteristics, strand directionality, metal ions, ONZ, and Webba da Silva classification (the latter by loop topology and tetrad combination), origin structure ID, assembly ID, experimental method, and molecule type. The database is freely available at https://onquadro.cs.put.poznan.pl/. It can be used on both desktop computers and mobile devices.
Collapse
Affiliation(s)
- Tomasz Zok
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Natalia Kraszewska
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Joanna Miskiewicz
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Paulina Pielacinska
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Michal Zurkowski
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Marta Szachniuk
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
31
|
Skeparnias I, Zhang J. Cooperativity and Interdependency between RNA Structure and RNA-RNA Interactions. Noncoding RNA 2021; 7:ncrna7040081. [PMID: 34940761 PMCID: PMC8704770 DOI: 10.3390/ncrna7040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Complex RNA–RNA interactions are increasingly known to play key roles in numerous biological processes from gene expression control to ribonucleoprotein granule formation. By contrast, the nature of these interactions and characteristics of their interfaces, especially those that involve partially or wholly structured RNAs, remain elusive. Herein, we discuss different modalities of RNA–RNA interactions with an emphasis on those that depend on secondary, tertiary, or quaternary structure. We dissect recently structurally elucidated RNA–RNA complexes including RNA triplexes, riboswitches, ribozymes, and reverse transcription complexes. These analyses highlight a reciprocal relationship that intimately links RNA structure formation with RNA–RNA interactions. The interactions not only shape and sculpt RNA structures but also are enabled and modulated by the structures they create. Understanding this two-way relationship between RNA structure and interactions provides mechanistic insights into the expanding repertoire of noncoding RNA functions, and may inform the design of novel therapeutics that target RNA structures or interactions.
Collapse
|
32
|
Liu Y, Zhu X, Wang K, Zhang B, Qiu S. The Cellular Functions and Molecular Mechanisms of G-Quadruplex Unwinding Helicases in Humans. Front Mol Biosci 2021; 8:783889. [PMID: 34912850 PMCID: PMC8667583 DOI: 10.3389/fmolb.2021.783889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/02/2021] [Indexed: 01/19/2023] Open
Abstract
G-quadruplexes (G4s) are stable non-canonical secondary structures formed by G-rich DNA or RNA sequences. They play various regulatory roles in many biological processes. It is commonly agreed that G4 unwinding helicases play key roles in G4 metabolism and function, and these processes are closely related to physiological and pathological processes. In recent years, more and more functional and mechanistic details of G4 helicases have been discovered; therefore, it is necessary to carefully sort out the current research efforts. Here, we provide a systematic summary of G4 unwinding helicases from the perspective of functions and molecular mechanisms. First, we provide a general introduction about helicases and G4s. Next, we comprehensively summarize G4 unfolding helicases in humans and their proposed cellular functions. Then, we review their study methods and molecular mechanisms. Finally, we share our perspective on further prospects. We believe this review will provide opportunities for researchers to reach the frontiers in the functions and molecular mechanisms of human G4 unwinding helicases.
Collapse
Affiliation(s)
- Yang Liu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
- The Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Xinting Zhu
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Kejia Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- The Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Bo Zhang
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Shuyi Qiu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- The Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
33
|
Intermolecular interactions in microhydrated ribonucleoside and deoxyribonucleoside: A computational study. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Targeting of Telomeric Repeat-Containing RNA G-Quadruplexes: From Screening to Biophysical and Biological Characterization of a New Hit Compound. Int J Mol Sci 2021; 22:ijms221910315. [PMID: 34638655 PMCID: PMC8508872 DOI: 10.3390/ijms221910315] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 12/19/2022] Open
Abstract
DNA G-quadruplex (G4) structures, either within gene promoter sequences or at telomeres, have been extensively investigated as potential small-molecule therapeutic targets. However, although G4s forming at the telomeric DNA have been extensively investigated as anticancer targets, few studies focus on the telomeric repeat-containing RNA (TERRA), transcribed from telomeres, as potential pharmacological targets. Here, a virtual screening approach to identify a library of drug-like putative TERRA G4 binders, in tandem with circular dichroism melting assay to study their TERRA G4-stabilizing properties, led to the identification of a new hit compound. The affinity of this compound for TERRA RNA and some DNA G4s was analyzed through several biophysical techniques and its biological activity investigated in terms of antiproliferative effect, DNA damage response (DDR) activation, and TERRA RNA expression in high vs. low TERRA-expressing human cancer cells. The selected hit showed good affinity for TERRA G4 and no binding to double-stranded DNA. In addition, biological assays showed that this compound is endowed with a preferential cytotoxic effect on high TERRA-expressing cells, where it induces a DDR at telomeres, probably by displacing TERRA from telomeres. Our studies demonstrate that the identification of TERRA G4-targeting drugs with potential pharmacological effects is achievable, shedding light on new perspectives aimed at discovering new anticancer agents targeting these G4 structures.
Collapse
|
35
|
Caterino M, Paeschke K. Action and function of helicases on RNA G-quadruplexes. Methods 2021; 204:110-125. [PMID: 34509630 PMCID: PMC9236196 DOI: 10.1016/j.ymeth.2021.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/02/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Methodological progresses and piling evidence prove the rG4 biology in vivo. rG4s step in virtually every aspect of RNA biology. Helicases unwinding of rG4s is a fine regulatory layer to the downstream processes and general cell homeostasis. The current knowledge is however limited to a few cell lines. The regulation of helicases themselves is delineating as a important question. Non-helicase rG4-processing proteins likely play a role.
The nucleic acid structure called G-quadruplex (G4) is currently discussed to function in nucleic acid-based mechanisms that influence several cellular processes. They can modulate the cellular machinery either positively or negatively, both at the DNA and RNA level. The majority of what we know about G4 biology comes from DNA G4 (dG4) research. RNA G4s (rG4), on the other hand, are gaining interest as researchers become more aware of their role in several aspects of cellular homeostasis. In either case, the correct regulation of G4 structures within cells is essential and demands specialized proteins able to resolve them. Small changes in the formation and unfolding of G4 structures can have severe consequences for the cells that could even stimulate genome instability, apoptosis or proliferation. Helicases are the most relevant negative G4 regulators, which prevent and unfold G4 formation within cells during different pathways. Yet, and despite their importance only a handful of rG4 unwinding helicases have been identified and characterized thus far. This review addresses the current knowledge on rG4s-processing helicases with a focus on methodological approaches. An example of a non-helicase rG4s-unwinding protein is also briefly described.
Collapse
Affiliation(s)
- Marco Caterino
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, 53127 Bonn, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
36
|
Datta A, Pollock KJ, Kormuth KA, Brosh RM. G-Quadruplex Assembly by Ribosomal DNA: Emerging Roles in Disease Pathogenesis and Cancer Biology. Cytogenet Genome Res 2021; 161:285-296. [PMID: 34469893 DOI: 10.1159/000516394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/03/2021] [Indexed: 12/15/2022] Open
Abstract
Unique repetitive elements of the eukaryotic genome can be problematic for cellular DNA replication and transcription and pose a source of genomic instability. Human ribosomal DNA (rDNA) exists as repeating units clustered together on several chromosomes. Understanding the molecular mechanisms whereby rDNA interferes with normal genome homeostasis is the subject of this review. We discuss the instability of rDNA as a driver of senescence and the important roles of helicases to suppress its deleterious effects. The propensity of rDNA that is rich in guanine bases to form G-quadruplexes (G4) is discussed and evaluated in disease pathogenesis. Targeting G4 in the ribosomes and other chromosomal loci may represent a useful synthetic lethal approach to combating cancer.
Collapse
Affiliation(s)
- Arindam Datta
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Kevin J Pollock
- Department of Biology, Bethany College, Bethany, West Virginia, USA
| | - Karen A Kormuth
- Department of Biology, Bethany College, Bethany, West Virginia, USA
| | - Robert M Brosh
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| |
Collapse
|
37
|
Liu X, Xiong Y, Zhang C, Lai R, Liu H, Peng R, Fu T, Liu Q, Fang X, Mann S, Tan W. G-Quadruplex-Induced Liquid-Liquid Phase Separation in Biomimetic Protocells. J Am Chem Soc 2021; 143:11036-11043. [PMID: 34270902 DOI: 10.1021/jacs.1c03627] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biomolecular condensates comprised of specific proteins and nucleic acids are now recognized as one of the key organizing mechanisms in eukaryotic cells. However, the specific roles played by the nucleic acid secondary structure and sequence in biomolecular phase separation are still not clear. Here, utilizing giant membrane vesicles (GMVs) as a protocell model, we found that single-stranded DNA (ssDNA) with a parallel G-quadruplex structure could functionally cooperate with a G-quadruplex-binding protein to form speckle-like puncta inside the GMVs. The clustering behavior is dependent on the structural diversity of G-quadruplexes, and the reversible clustering behavior implicated a new pathway in dynamically regulating the formation of biomolecular condensates. This finding represents a potential link between G-quadruplex-binding proteins and the resulting G-quadruplex-mediated biomolecular phase separation, which would gain insight into a wide range of biological processes associated with nucleic acid-modulated phase separation inside living cells.
Collapse
Affiliation(s)
- Xuejiao Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yansong Xiong
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunjuan Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Rongji Lai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Hui Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Ruizi Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ting Fu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Qiaoling Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Xiaohong Fang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom.,Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom.,School of Materials Science and Engineering, Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,School of Materials Science and Engineering, Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
38
|
Lyu K, Chow EYC, Mou X, Chan TF, Kwok CK. RNA G-quadruplexes (rG4s): genomics and biological functions. Nucleic Acids Res 2021; 49:5426-5450. [PMID: 33772593 PMCID: PMC8191793 DOI: 10.1093/nar/gkab187] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/02/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
G-quadruplexes (G4s) are non-classical DNA or RNA secondary structures that have been first observed decades ago. Over the years, these four-stranded structural motifs have been demonstrated to have significant regulatory roles in diverse biological processes, but challenges remain in detecting them globally and reliably. Compared to DNA G4s (dG4s), the study of RNA G4s (rG4s) has received less attention until recently. In this review, we will summarize the innovative high-throughput methods recently developed to detect rG4s on a transcriptome-wide scale, highlight the many novel and important functions of rG4 being discovered in vivo across the tree of life, and discuss the key biological questions to be addressed in the near future.
Collapse
Affiliation(s)
- Kaixin Lyu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Eugene Yui-Ching Chow
- School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xi Mou
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
39
|
Abstract
The RNA world hypothesis relies on the double-helix complementarity principle for both replication and catalytic activity of RNA. However, the de novo appearance of the complementarity rules, without previous evolution steps, is doubtful. Another major problem of the RNA world is its isolated nature, making it almost impossible to accommodate the genetic code and transform it into modern biochemistry. These and many other unanswered questions of the RNA world led to suggestions that some simpler molecules must have preceded RNA. Most of these alternative hypotheses proposed the double-helical polymers with different backbones but used the same complementarity principle. The current paper describes a fundamentally different idea: the de novo appearance of a nucleic acid polymer without any preexisting rules or requirements. This approach, coined as the quadruplex world hypothesis, is based on (i) the ability of guanines to form stable G-tetrads that facilitate polymerization; and (ii) the unique property of polyguanines to fold into a monomolecular tetrahelix with a strictly defined building pattern and tertiary structure. The tetrahelix is capable of high-affinity intermolecular interactions and catalytic activities. The quadruplex world hypothesis has the potential to address almost all the shortcomings of the RNA world.
Collapse
Affiliation(s)
- Besik Kankia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA. .,Institute of Biophysics, Ilia State University, Tbilisi, 0162, Republic of Georgia.
| |
Collapse
|
40
|
Sanchez-Martin V, Soriano M, Garcia-Salcedo JA. Quadruplex Ligands in Cancer Therapy. Cancers (Basel) 2021; 13:3156. [PMID: 34202648 PMCID: PMC8267697 DOI: 10.3390/cancers13133156] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleic acids can adopt alternative secondary conformations including four-stranded structures known as quadruplexes. To date, quadruplexes have been demonstrated to exist both in human chromatin DNA and RNA. In particular, quadruplexes are found in guanine-rich sequences constituting G-quadruplexes, and in cytosine-rich sequences forming i-Motifs as a counterpart. Quadruplexes are associated with key biological processes ranging from transcription and translation of several oncogenes and tumor suppressors to telomeres maintenance and genome instability. In this context, quadruplexes have prompted investigations on their possible role in cancer biology and the evaluation of small-molecule ligands as potential therapeutic agents. This review aims to provide an updated close-up view of the literature on quadruplex ligands in cancer therapy, by grouping together ligands for DNA and RNA G-quadruplexes and DNA i-Motifs.
Collapse
Affiliation(s)
- Victoria Sanchez-Martin
- Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain;
- Microbiology Unit, Biosanitary Research Institute IBS, University Hospital Virgen de las Nieves, 18014 Granada, Spain
- Department of Biochemistry, Molecular Biology III and Immunology, University of Granada, 18016 Granada, Spain
| | - Miguel Soriano
- Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain;
- Centre for Intensive Mediterranean Agrosystems and Agri-Food Biotechnology (CIAMBITAL), University of Almeria, 04001 Almeria, Spain
| | - Jose Antonio Garcia-Salcedo
- Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain;
- Microbiology Unit, Biosanitary Research Institute IBS, University Hospital Virgen de las Nieves, 18014 Granada, Spain
| |
Collapse
|
41
|
Scognamiglio PL, Platella C, Napolitano E, Musumeci D, Roviello GN. From Prebiotic Chemistry to Supramolecular Biomedical Materials: Exploring the Properties of Self-Assembling Nucleobase-Containing Peptides. Molecules 2021; 26:3558. [PMID: 34200901 PMCID: PMC8230524 DOI: 10.3390/molecules26123558] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
Peptides and their synthetic analogs are a class of molecules with enormous relevance as therapeutics for their ability to interact with biomacromolecules like nucleic acids and proteins, potentially interfering with biological pathways often involved in the onset and progression of pathologies of high social impact. Nucleobase-bearing peptides (nucleopeptides) and pseudopeptides (PNAs) offer further interesting possibilities related to their nucleobase-decorated nature for diagnostic and therapeutic applications, thanks to their reported ability to target complementary DNA and RNA strands. In addition, these chimeric compounds are endowed with intriguing self-assembling properties, which are at the heart of their investigation as self-replicating materials in prebiotic chemistry, as well as their application as constituents of innovative drug delivery systems and, more generally, as novel nanomaterials to be employed in biomedicine. Herein we describe the properties of nucleopeptides, PNAs and related supramolecular systems, and summarize some of the most relevant applications of these systems.
Collapse
Affiliation(s)
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (C.P.); (E.N.); (D.M.)
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (C.P.); (E.N.); (D.M.)
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (C.P.); (E.N.); (D.M.)
- Istituto di Biostrutture e Bioimmagini IBB-CNR, via Tommaso De Amicis 95, I-80145 Naples, Italy
| | | |
Collapse
|
42
|
Banco MT, Ferré-D'Amaré AR. The emerging structural complexity of G-quadruplex RNAs. RNA (NEW YORK, N.Y.) 2021; 27:390-402. [PMID: 33483368 PMCID: PMC7962482 DOI: 10.1261/rna.078238.120] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
G-quadruplexes (G4s) are four-stranded nucleic acid structures that arise from the stacking of G-quartets, cyclic arrangements of four guanines engaged in Hoogsteen base-pairing. Until recently, most RNA G4 structures were thought to conform to a sequence pattern in which guanines stacking within the G4 would also be contiguous in sequence (e.g., four successive guanine trinucleotide tracts separated by loop nucleotides). Such a sequence restriction, and the stereochemical constraints inherent to RNA (arising, in particular, from the presence of the 2'-OH), dictate relatively simple RNA G4 structures. Recent crystallographic and solution NMR structure determinations of a number of in vitro selected RNA aptamers have revealed RNA G4 structures of unprecedented complexity. Structures of the Sc1 aptamer that binds an RGG peptide from the Fragile-X mental retardation protein, various fluorescence turn-on aptamers (Corn, Mango, and Spinach), and the spiegelmer that binds the complement protein C5a, in particular, reveal complexity hitherto unsuspected in RNA G4s, including nucleotides in syn conformation, locally inverted strand polarity, and nucleotide quartets that are not all-G. Common to these new structures, the sequences folding into G4s do not conform to the requirement that guanine stacks arise from consecutive (contiguous in sequence) nucleotides. This review highlights how emancipation from this constraint drastically expands the structural possibilities of RNA G-quadruplexes.
Collapse
Affiliation(s)
- Michael T Banco
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| |
Collapse
|
43
|
Lejault P, Mitteaux J, Sperti FR, Monchaud D. How to untie G-quadruplex knots and why? Cell Chem Biol 2021; 28:436-455. [PMID: 33596431 DOI: 10.1016/j.chembiol.2021.01.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
For over two decades, the prime objective of the chemical biology community studying G-quadruplexes (G4s) has been to use chemicals to interact with and stabilize G4s in cells to obtain mechanistic interpretations. This strategy has been undoubtedly successful, as demonstrated by recent advances. However, these insights have also led to a fundamental rethinking of G4-targeting strategies: due to the prevalence of G4s in the human genome, transcriptome, and ncRNAome (collectively referred to as the G4ome), and their involvement in human diseases, should we continue developing G4-stabilizing ligands or should we invest in designing molecular tools to unfold G4s? Here, we first focus on how, when, and where G4s fold in cells; then, we describe the enzymatic systems that have evolved to counteract G4 folding and how they have been used as tools to manipulate G4s in cells; finally, we present strategies currently being implemented to devise new molecular G4 unwinding agents.
Collapse
Affiliation(s)
- Pauline Lejault
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France
| | - Jérémie Mitteaux
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France
| | - Francesco Rota Sperti
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France.
| |
Collapse
|
44
|
Dupas SJ, Gussakovsky D, Wai A, Brown MJF, Hausner G, McKenna SA. Predicting human RNA quadruplex helicases through comparative sequence approaches and helicase mRNA interactome analyses. Biochem Cell Biol 2021; 99:536-553. [PMID: 33587669 DOI: 10.1139/bcb-2020-0590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RNA quadruplexes are non-canonical nucleic acid structures involved in several human disease states and are regulated by a specific subset of RNA helicases. Given the difficulty in identifying RNA quadruplex helicases due to the multifunctionality of these enzymes, we sought to provide a comprehensive in silico analysis of features found in validated RNA quadruplex helicases to predict novel human RNA quadruplex helicases. Using the 64 human RNA helicases, we correlated their amino acid compositions with subsets of RNA quadruplex helicases categorized by varying levels of evidence of RNA quadruplex interaction. Utilizing phylogenetic and synonymous/non-synonymous substitution analyses, we identified an evolutionarily conserved pattern involving predicted intrinsic disorder and a previously identified motif. We analyzed available next-generation sequencing data to determine which RNA helicases directly interacted with predicted RNA quadruplex regions intracellularly and elucidated the relationship with miRNA binding sites adjacent to RNA quadruplexes. Finally, we performed a phylogenetic analysis of all 64 human RNA helicases to establish how RNA quadruplex detection and unwinding activity may be conserved among helicase subfamilies. This work furthers the understanding of commonalities between RNA quadruplex helicases and provides support for the future validation of several human RNA helicases.
Collapse
Affiliation(s)
- Steven J Dupas
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | | | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Mira J F Brown
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
45
|
Miron CE, Staalduinen L, Rangaswamy AM, Chen M, Liang Y, Jia Z, Mergny J, Petitjean A. Going Platinum to the Tune of a Remarkable Guanine Quadruplex Binder: Solution‐ and Solid‐State Investigations. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Caitlin E. Miron
- Department of Chemistry Queen's University 90 Bader Lane Kingston ON K7L 3N6 Canada
| | - Laura Staalduinen
- Department of Biomedical and Molecular Sciences Queen's University Kingston ON K7L 3N6 Canada
| | - Alana M. Rangaswamy
- Department of Chemistry Queen's University 90 Bader Lane Kingston ON K7L 3N6 Canada
| | - Mickey Chen
- Department of Chemistry Queen's University 90 Bader Lane Kingston ON K7L 3N6 Canada
| | - Yushi Liang
- Department of Chemistry Queen's University 90 Bader Lane Kingston ON K7L 3N6 Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences Queen's University Kingston ON K7L 3N6 Canada
| | - Jean‐Louis Mergny
- Inserm U1212/CNRS UMR5320/Université de Bordeaux Institut Européen de Chimie et Biologie 2 rue Escarpit 33607 Pessac France
- Laboratoire d'Optique et Biosciences École Polytechnique CNRS INSERM Institut Polytechnique de Paris 91128 Palaiseau cedex France
| | - Anne Petitjean
- Department of Chemistry Queen's University 90 Bader Lane Kingston ON K7L 3N6 Canada
| |
Collapse
|
46
|
Kharel P, Becker G, Tsvetkov V, Ivanov P. Properties and biological impact of RNA G-quadruplexes: from order to turmoil and back. Nucleic Acids Res 2020; 48:12534-12555. [PMID: 33264409 PMCID: PMC7736831 DOI: 10.1093/nar/gkaa1126] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Guanine-quadruplexes (G4s) are non-canonical four-stranded structures that can be formed in guanine (G) rich nucleic acid sequences. A great number of G-rich sequences capable of forming G4 structures have been described based on in vitro analysis, and evidence supporting their formation in live cells continues to accumulate. While formation of DNA G4s (dG4s) within chromatin in vivo has been supported by different chemical, imaging and genomic approaches, formation of RNA G4s (rG4s) in vivo remains a matter of discussion. Recent data support the dynamic nature of G4 formation in the transcriptome. Such dynamic fluctuation of rG4 folding-unfolding underpins the biological significance of these structures in the regulation of RNA metabolism. Moreover, rG4-mediated functions may ultimately be connected to mechanisms underlying disease pathologies and, potentially, provide novel options for therapeutics. In this framework, we will review the landscape of rG4s within the transcriptome, focus on their potential impact on biological processes, and consider an emerging connection of these functions in human health and disease.
Collapse
Affiliation(s)
- Prakash Kharel
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gertraud Becker
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vladimir Tsvetkov
- Computational Oncology Group, I. M. Sechenov First Moscow State Medical University, Moscow 119146, Russia
- Federal Research and Clinical Center for Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow 119435, Russia
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow 117912, Russia
| | - Pavel Ivanov
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Initiative for RNA Medicine, Boston, MA 02115, USA
| |
Collapse
|
47
|
Miron CE, van Staalduinen L, Rangaswamy AM, Chen M, Liang Y, Jia Z, Mergny JL, Petitjean A. Going Platinum to the Tune of a Remarkable Guanine Quadruplex Binder: Solution- and Solid-State Investigations. Angew Chem Int Ed Engl 2020; 60:2500-2507. [PMID: 33090592 DOI: 10.1002/anie.202012520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Indexed: 12/17/2022]
Abstract
Guanine quadruplex recognition has gained increasing attention, inspired by the growing awareness of the key roles played by these non-canonical nucleic acid architectures in cellular regulatory processes. We report here the solution and solid-state studies of a novel planar platinum(II) complex that is easily assembled from a simple ligand, and exhibits notable binding affinity for guanine quadruplex structures, while maintaining good selectivity for guanine quadruplex over duplex structures. A crystal structure of this ligand complexed with a telomeric quadruplex confirms double end-capping, with dimerization at the 5' interface.
Collapse
Affiliation(s)
- Caitlin E Miron
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON, K7L 3N6, Canada
| | - Laura van Staalduinen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Alana M Rangaswamy
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON, K7L 3N6, Canada
| | - Mickey Chen
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON, K7L 3N6, Canada
| | - Yushi Liang
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON, K7L 3N6, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Jean-Louis Mergny
- Inserm U1212/CNRS UMR5320/Université de Bordeaux, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33607, Pessac, France.,Laboratoire d'Optique et Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau cedex, France
| | - Anne Petitjean
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
48
|
Zhang R, Xiao K, Gu Y, Liu H, Sun X. Whole Genome Identification of Potential G-Quadruplexes and Analysis of the G-Quadruplex Binding Domain for SARS-CoV-2. Front Genet 2020; 11:587829. [PMID: 33329730 PMCID: PMC7728997 DOI: 10.3389/fgene.2020.587829] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/22/2020] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) has become a global public health emergency. G-quadruplex, one of the non-canonical secondary structures, has shown potential antiviral values. However, little is known about the G-quadruplexes of the emerging SARS-CoV-2. Herein, we characterized the potential G-quadruplexes in both positive and negative-sense viral strands. The identified potential G-quadruplexes exhibited similar features to the G-quadruplexes detected in the human transcriptome. Within some bat- and pangolin-related betacoronaviruses, the G-tracts rather than the loops were under heightened selective constraints. We also found that the amino acid sequence similar to SUD (SARS-unique domain) was retained in SARS-CoV-2 but depleted in some other coronaviruses that can infect humans. Further analysis revealed that the amino acid residues related to the binding affinity of G-quadruplexes were conserved among 16,466 SARS-CoV-2 samples. Moreover, the dimer of the SUD-homology structure in SARS-CoV-2 displayed similar electrostatic potential patterns to the SUD dimer from SARS. Considering the potential value of G-quadruplexes to serve as targets in antiviral strategy, our fundamental research could provide new insights for the SARS-CoV-2 drug discovery.
Collapse
Affiliation(s)
| | | | | | | | - Xiao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
49
|
Sanchez-Martin V, Lopez-Pujante C, Soriano-Rodriguez M, Garcia-Salcedo JA. An Updated Focus on Quadruplex Structures as Potential Therapeutic Targets in Cancer. Int J Mol Sci 2020; 21:ijms21238900. [PMID: 33255335 PMCID: PMC7734589 DOI: 10.3390/ijms21238900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Non-canonical, four-stranded nucleic acids secondary structures are present within regulatory regions in the human genome and transcriptome. To date, these quadruplex structures include both DNA and RNA G-quadruplexes, formed in guanine-rich sequences, and i-Motifs, found in cytosine-rich sequences, as their counterparts. Quadruplexes have been extensively associated with cancer, playing an important role in telomere maintenance and control of genetic expression of several oncogenes and tumor suppressors. Therefore, quadruplex structures are considered attractive molecular targets for cancer therapeutics with novel mechanisms of action. In this review, we provide a general overview about recent research on the implications of quadruplex structures in cancer, firstly gathering together DNA G-quadruplexes, RNA G-quadruplexes as well as DNA i-Motifs.
Collapse
Affiliation(s)
- Victoria Sanchez-Martin
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (V.S.-M.); (C.L.-P.)
- Microbiology Unit, University Hospital Virgen de las Nieves, Biosanitary Research Institute IBS, Granada, 18014 Granada, Spain
- Department of Biochemistry, Molecular Biology III and Immunology, University of Granada, 18016 Granada, Spain
| | - Carmen Lopez-Pujante
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (V.S.-M.); (C.L.-P.)
| | - Miguel Soriano-Rodriguez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (V.S.-M.); (C.L.-P.)
- Centre for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAMBITAL), University of Almeria, 04001 Almeria, Spain
- Correspondence: (M.S.-R.); (J.A.G.-S.); Tel.: +34-958715500 (M.S.-R.); +34-958715500 (J.A.G.-S.)
| | - Jose A. Garcia-Salcedo
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (V.S.-M.); (C.L.-P.)
- Microbiology Unit, University Hospital Virgen de las Nieves, Biosanitary Research Institute IBS, Granada, 18014 Granada, Spain
- Correspondence: (M.S.-R.); (J.A.G.-S.); Tel.: +34-958715500 (M.S.-R.); +34-958715500 (J.A.G.-S.)
| |
Collapse
|
50
|
Berlyoung AS, Armitage BA. Assembly and Characterization of RNA/DNA Hetero-G-Quadruplexes. Biochemistry 2020; 59:4072-4080. [PMID: 33048532 DOI: 10.1021/acs.biochem.0c00657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transient association of guanine-rich RNA and DNA in the form of hetero-G-quadruplexes (RDQs) has emerged as an important mechanism for regulating genome transcription and replication but relatively little is known about the structure and biophysical properties of RDQs compared with DNA and RNA homo-G-quadruplexes. Herein, we report the assembly and characterization of three RDQs based on sequence motifs found in human telomeres and mitochondrial nucleic acids. Stable RDQs were assembled using a duplex scaffold, which prevented segregation of the DNA and RNA strands into separate homo-GQs. Each of the RDQs exhibited UV melting temperatures above 50 °C in 100 mM KCl and predominantly parallel morphologies, evidently driven by the RNA component. The fluorogenic dye thioflavin T binds to each RDQ with low micromolar KD values, similar to its binding to RNA and DNA homo-GQs. These results establish a method for assembling RDQs that should be amenable to screening compounds and libraries to identify selective RDQ-binding small molecules, oligonucleotides, and proteins.
Collapse
Affiliation(s)
- April S Berlyoung
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Bruce A Armitage
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|