1
|
Jame-Chenarboo Z, Gray TE, Macauley MS. Advances in understanding and exploiting Siglec-glycan interactions. Curr Opin Chem Biol 2024; 80:102454. [PMID: 38631213 DOI: 10.1016/j.cbpa.2024.102454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
Sialic-acid-binding immunoglobulin-type lectins (Siglecs) are a family of cell-surface immunomodulatory receptors that recognize sialic-acid-containing glycans. The majority of Siglecs have an inhibitory motif in their intercellular domain and can regulate the cellular activation of immune cells. Importantly, the immunomodulatory role of Siglecs is regulated by engagement with distinct sialoglycan ligands. However, there are still many unanswered questions about the precise ligand(s) recognized by individual Siglec family members. New tools and approaches to study Siglec-ligand interactions are rapidly filling this knowledge gap. This review provides an overview of recent advances in discovering Siglec ligands as well as the development of approaches to modulate the function of Siglecs. In both aspects, chemical biology approaches are emphasized with a discussion on how these are complementing biochemical and genetic strategies.
Collapse
Affiliation(s)
| | - Taylor E Gray
- Department of Chemistry, University of Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Canada.
| |
Collapse
|
2
|
Conti G, Bärenwaldt A, Rabbani S, Mühlethaler T, Sarcevic M, Jiang X, Schwardt O, Ricklin D, Pieters RJ, Läubli H, Ernst B. Tetra- and Hexavalent Siglec-8 Ligands Modulate Immune Cell Activation. Angew Chem Int Ed Engl 2023; 62:e202314280. [PMID: 37947772 DOI: 10.1002/anie.202314280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Carbohydrate-binding proteins are generally characterized by poor affinities for their natural glycan ligands, predominantly due to the shallow and solvent-exposed binding sites. To overcome this drawback, nature has exploited multivalency to strengthen the binding by establishing multiple interactions simultaneously. The development of oligovalent structures frequently proved to be successful, not only for proteins with multiple binding sites, but also for proteins that possess a single recognition domain. Herein we present the syntheses of a number of oligovalent ligands for Siglec-8, a monomeric I-type lectin found on eosinophils and mast cells, alongside the thermodynamic characterization of their binding. While the enthalpic contribution of each binding epitope was within a narrow range to that of the monomeric ligand, the entropy penalty increased steadily with growing valency. Additionally, we observed a successful agonistic binding of the tetra- and hexavalent and, to an even larger extent, multivalent ligands to Siglec-8 on immune cells and modulation of immune cell activation. Thus, triggering a biological effect is not restricted to multivalent ligands but could be induced by low oligovalent ligands as well, whereas a monovalent ligand, despite binding with similar affinity, showed an antagonistic effect.
Collapse
Affiliation(s)
- Gabriele Conti
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
- Chemical Biology and Drug Discovery Group, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Anne Bärenwaldt
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University of Basel, Hebelstrasse 20, 4051, Basel, Switzerland
- Division of Medical Oncology, University Hospital Basel, Petersgraben 4, 4051, Basel, Switzerland
| | - Said Rabbani
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Tobias Mühlethaler
- Biophysics Facility, Department Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Mirza Sarcevic
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University of Basel, Hebelstrasse 20, 4051, Basel, Switzerland
- Division of Medical Oncology, University Hospital Basel, Petersgraben 4, 4051, Basel, Switzerland
| | - Xiaohua Jiang
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Oliver Schwardt
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Daniel Ricklin
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Roland J Pieters
- Chemical Biology and Drug Discovery Group, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University of Basel, Hebelstrasse 20, 4051, Basel, Switzerland
- Division of Medical Oncology, University Hospital Basel, Petersgraben 4, 4051, Basel, Switzerland
| | - Beat Ernst
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| |
Collapse
|
3
|
Zheng X, Li Y, Cui T, Yang J, Meng X, Wang H, Chen L, He J, Chen N, Meng L, Ding L, Xie R. Traceless Protein-Selective Glycan Labeling and Chemical Modification. J Am Chem Soc 2023; 145:23670-23680. [PMID: 37857274 DOI: 10.1021/jacs.3c07889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Executing glycan editing at a molecular level not only is pivotal for the elucidation of complicated mechanisms involved in glycan-relevant biological processes but also provides a promising solution to potentiate disease therapy. However, the precision control of glycan modification or glyco-editing on a selected glycoprotein is by far a grand challenge. Of note is to preserve the intact cellular glycan landscape, which is preserved after editing events are completed. We report herein a versatile, traceless glycan modification methodology for customizing the glycoforms of targeted proteins (subtypes), by orchestrating chemical- and photoregulation in a protein-selective glycoenzymatic system. This method relies on a three-module, ligand-photocleavable linker-glycoenzyme (L-P-G) conjugate. We demonstrated that RGD- or synthetic carbohydrate ligand-containing conjugates (RPG and SPG) would not activate until after the ligand-receptor interaction is accomplished (chemical regulation). RPG and SPG can both release the glycoenzyme upon photoillumination (photoregulation). The adjustable glycoenzyme activity, combined with ligand recognition selectivity, minimizes unnecessary glycan editing perturbation, and photolytic cleavage enables precise temporal control of editing events. An altered target protein turnover and dimerization were observed in our system, emphasizing the significance of preserving the native physiological niche of a particular protein when precise modification on the carbohydrate epitope occurs.
Collapse
Affiliation(s)
- Xiaocui Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yiran Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tongxiao Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiangfeng Meng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haiqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Liusheng Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Nan Chen
- ChinaChomiX Biotech (Nanjing) Co., Ltd., Nanjing 210061, China
| | - Liying Meng
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Ran Xie
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Suganuma Y, Imamura A, Ando H, Kiso M, Takematsu H, Tsubata T, Ishida H. Improved synthesis of CD22-binding sialosides and its application for further development of potent CD22 inhibitors. Glycoconj J 2023; 40:225-246. [PMID: 36708410 DOI: 10.1007/s10719-023-10098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 11/28/2022] [Accepted: 01/02/2023] [Indexed: 01/29/2023]
Abstract
CD22, one of the sialic acid-binding immunoglobulin-like lectins (Siglecs), regulates B lymphocyte signaling via its interaction with glycan ligands bearing the sequence Neu5Ac/Gcα(2→6)Gal. We have developed the synthetic sialoside GSC-718 as a ligand mimic for CD22 and identified it as a potent CD22 inhibitor. Although the synthesis of CD22-binding sialosides including GSC-718 has been reported by our group, the synthetic route was unfortunately not suitable for large-scale synthesis. In this study, we developed an improved scalable synthetic procedure for sialosides which utilized 1,5-lactam formation as a key step. The improved procedure yielded sialosides incorporating a series of aglycones at the C2 position. Several derivatives with substituted benzyl residues as aglycones were found to bind to mouse CD22 with affinity comparable to that of GSC-718. The new procedure developed in this study affords sialosides in sufficient quantities for cell-based assays, and will facilitate the search for promising CD22 inhibitors that have therapeutic potential.
Collapse
Affiliation(s)
- Yuki Suganuma
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Akihiro Imamura
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Hiromune Ando
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Makoto Kiso
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hiromu Takematsu
- Faculty of Medical Technology, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8510, Tokyo, Japan
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|
5
|
Yao S, Chen W, Chen T, Zuo H, Bi Z, Zhang X, Pang L, Jing Y, Yin X, Cheng H. A comprehensive computational analysis to explore the importance of SIGLECs in HCC biology. BMC Gastroenterol 2023; 23:42. [PMID: 36803349 PMCID: PMC9938566 DOI: 10.1186/s12876-023-02672-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/09/2023] [Indexed: 02/20/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is an aggressive, malignant cancer with a complex pathogenesis. However, effective therapeutic targets and prognostic biomarkers are limited. Sorafenib provides delaying cancer progression and survival improvement in advanced HCC. But despite 10 years of research on the clinical application of sorafenib, predictive markers for its therapeutic effect are lacking. METHODS The clinical significance and molecular functions of SIGLEC family members were assessed by a comprehensive bioinformatic analysis. The datasets included in this study (ICGC-LIRI-JP, GSE22058 and GSE14520) are mainly based on patients with HBV infections or HBV-related liver cirrhosis. The TCGA, GEO, and HCCDB databases were used to explore the expression of SIGLEC family genes in HCC. The Kaplan-Meier Plotter database was used to evaluate relationships between the expression levels of SIGLEC family genes and prognosis. Associations between differentially expressed genes in the SIGLEC family and tumour-associated immune cells were evaluated using TIMER. RESULTS The mRNA levels of most SIGLEC family genes were significantly lower in HCC than in normal tissues. Low protein and mRNA expression levels of SIGLECs were strongly correlated with tumour grade and clinical cancer stage in patients with HCC. Tumour-related SIGLEC family genes were associated with tumour immune infiltrating cells. High SIGLEC expression was significantly related to a better prognosis in patients with advanced HCC treated with sorafenib. CONCLUSIONS SIGLEC family genes have potential prognostic value in HCC and may contribute to the regulation of cancer progression and immune cell infiltration. More importantly, our results revealed that SIGLEC family gene expression may be used as a prognostic marker for HCC patients treated with sorafenib.
Collapse
Affiliation(s)
- Senbang Yao
- grid.452696.a0000 0004 7533 3408Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601 Anhui China ,grid.186775.a0000 0000 9490 772XDepartment of Oncology, Anhui Medical University, Hefei, Anhui China
| | - Wenjun Chen
- grid.186775.a0000 0000 9490 772XDepartment of Oncology, Anhui Medical University, Hefei, Anhui China ,Department of Oncology, Anhui Chest Hospital, Hefei, Anhui China
| | - Tingting Chen
- grid.452696.a0000 0004 7533 3408Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601 Anhui China
| | - He Zuo
- grid.452696.a0000 0004 7533 3408Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601 Anhui China ,grid.186775.a0000 0000 9490 772XDepartment of Oncology, Anhui Medical University, Hefei, Anhui China
| | - Ziran Bi
- grid.452696.a0000 0004 7533 3408Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601 Anhui China ,grid.186775.a0000 0000 9490 772XDepartment of Oncology, Anhui Medical University, Hefei, Anhui China
| | - Xiuqing Zhang
- grid.452696.a0000 0004 7533 3408Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601 Anhui China ,grid.186775.a0000 0000 9490 772XDepartment of Oncology, Anhui Medical University, Hefei, Anhui China
| | - Lulian Pang
- grid.452696.a0000 0004 7533 3408Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601 Anhui China ,grid.186775.a0000 0000 9490 772XDepartment of Oncology, Anhui Medical University, Hefei, Anhui China
| | - Yanyan Jing
- grid.452696.a0000 0004 7533 3408Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601 Anhui China ,grid.186775.a0000 0000 9490 772XDepartment of Oncology, Anhui Medical University, Hefei, Anhui China
| | - Xiangxiang Yin
- grid.452696.a0000 0004 7533 3408Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601 Anhui China ,grid.186775.a0000 0000 9490 772XDepartment of Oncology, Anhui Medical University, Hefei, Anhui China
| | - Huaidong Cheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China. .,The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China. .,Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
6
|
Liu G, Hao M, Zeng B, Liu M, Wang J, Sun S, Liu C, Huilian C. Sialic acid and food allergies: The link between nutrition and immunology. Crit Rev Food Sci Nutr 2022; 64:3880-3906. [PMID: 36369942 DOI: 10.1080/10408398.2022.2136620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Food allergies (FA), a major public health problem recognized by the World Health Organization, affect an estimated 3%-10% of adults and 8% of children worldwide. However, effective treatments for FA are still lacking. Recent advances in glycoimmunology have demonstrated the great potential of sialic acids (SAs) in the treatment of FA. SAs are a group of nine-carbon α-ketoacids usually linked to glycoproteins and glycolipids as terminal glycans. They play an essential role in modulating immune responses and may be an effective target for FA intervention. As exogenous food components, sialylated polysaccharides have anti-FA effects. In contrast, as endogenous components, SAs on immunoglobulin E and immune cell surfaces contribute to the pathogenesis of FA. Given the lack of comprehensive information on the effects of SAs on FA, we reviewed the roles of endogenous and exogenous SAs in the pathogenesis and treatment of FA. In addition, we considered the structure-function relationship of SAs to provide a theoretical basis for the development of SA-based FA treatments.
Collapse
Affiliation(s)
- Guirong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mengzhen Hao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Binghui Zeng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Manman Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Junjuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shanfeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, College of Health and Human Services, San Diego State University, California, United States of America
| | - Che Huilian
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Prescher H, Schweizer A, Frank M, Kuhfeldt E, Ring J, Nitschke L. Targeting Human CD22/Siglec-2 with Dimeric Sialosides as Novel Oligosaccharide Mimetics. J Med Chem 2022; 65:10588-10610. [PMID: 35881556 DOI: 10.1021/acs.jmedchem.2c00765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Significant interest in the development of high-affinity ligands for Siglecs exists due to the various therapeutically relevant functions of these proteins. Here, we report a new strategy to develop and design Siglec ligands as disialyl-oligosaccharide mimetics exemplified on Siglec-2 (CD22). We report insights into development of dimeric ligands with high affinity and avidity to cell surface-expressed CD22, assay development, tool compounds, structure activity relationships, and biological data on calcium flux regulation in B-cells. The binding modes of selected ligands have been modeled based on state-of-the-art molecular dynamics simulations on the microsecond timescale, providing detailed views on ligand binding and opening a new perspective on drug design efforts for Siglecs. High-avidity dimeric ligands containing a linker opening the way towards bispecifics are presented as well.
Collapse
Affiliation(s)
| | - Astrid Schweizer
- Chair of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Martin Frank
- Biognos AB, Generatorsgatan 1, 40274 Göteborg, Sweden
| | | | - Julia Ring
- Chair of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Lars Nitschke
- Chair of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| |
Collapse
|
8
|
Current Status on Therapeutic Molecules Targeting Siglec Receptors. Cells 2020; 9:cells9122691. [PMID: 33333862 PMCID: PMC7765293 DOI: 10.3390/cells9122691] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 12/15/2022] Open
Abstract
The sialic acid-binding immunoglobulin-type of lectins (Siglecs) are receptors that recognize sialic acid-containing glycans. In the majority of the cases, Siglecs are expressed on immune cells and play a critical role in regulating immune cell signaling. Over the years, it has been shown that the sialic acid-Siglec axis participates in immunological homeostasis, and that any imbalance can trigger different pathologies, such as autoimmune diseases or cancer. For all this, different therapeutics have been developed that bind to Siglecs, either based on antibodies or being smaller molecules. In this review, we briefly introduce the Siglec family and we compile a description of glycan-based molecules and antibody-based therapies (including CAR-T and bispecific antibodies) that have been designed to therapeutically targeting Siglecs.
Collapse
|
9
|
Abdu-Allah HHM, Wu SC, Lin CH, Tseng YY. Design, synthesis and molecular docking study of α-triazolylsialosides as non-hydrolyzable and potent CD22 ligands. Eur J Med Chem 2020; 208:112707. [PMID: 32942185 DOI: 10.1016/j.ejmech.2020.112707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022]
Abstract
Ligand 1 was the first reported example of monomeric high-affinity synthetic CD22 ligand that regulated B cell activation in vitro, augmented antibody production and regulated immune responses in mice. Replacing O-glycoside linkage of 1 by nitrogen of triazole by click reaction afforded compounds which are as potent as the parent compound. The synthesis of the new compounds is straightforward with fewer synthetic steps and higher yield. Such a strategy provided stable ligand that can bind avidly and can be conjugated to drugs for B-cell targeting or multimeric formation. The new compounds were screened for their affinity to CD22, using surface plasmon resonance (SPR). Compound 12 was obtained as a bioisosteric analogue and an anomerically stable imitation of 1. It was, also, screened for MAG to test for selectivity and analyzed by molecular docking and dynamic simulation to explore the potential binding modes and source of selectivity within CD22. Our results could enable the development of small molecule drug capable of modulating the activity of CD22 in autoimmune diseases and malignancies derived from B-cells.
Collapse
Affiliation(s)
- Hajjaj H M Abdu-Allah
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan.
| | - Shang-Chuen Wu
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan; Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yu-Yao Tseng
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan.
| |
Collapse
|
10
|
Kroezen BS, Conti G, Girardi B, Cramer J, Jiang X, Rabbani S, Müller J, Kokot M, Luisoni E, Ricklin D, Schwardt O, Ernst B. A Potent Mimetic of the Siglec-8 Ligand 6'-Sulfo-Sialyl Lewis x. ChemMedChem 2020; 15:1706-1719. [PMID: 32744401 DOI: 10.1002/cmdc.202000417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 12/15/2022]
Abstract
Siglecs are members of the immunoglobulin gene family containing sialic acid binding N-terminal domains. Among them, Siglec-8 is expressed on various cell types of the immune system such as eosinophils, mast cells and weakly on basophils. Cross-linking of Siglec-8 with monoclonal antibodies triggers apoptosis in eosinophils and inhibits degranulation of mast cells, making Siglec-8 a promising target for the treatment of eosinophil- and mast cell-associated diseases such as asthma. The tetrasaccharide 6'-sulfo-sialyl Lewisx has been identified as a specific Siglec-8 ligand in glycan array screening. Here, we describe an extended study enlightening the pharmacophores of 6'-sulfo-sialyl Lewisx and the successful development of a high-affinity mimetic. Retaining the neuraminic acid core, the introduction of a carbocyclic mimetic of the Gal moiety and a sulfonamide substituent in the 9-position gave a 20-fold improved binding affinity. Finally, the residence time, which usually is the Achilles tendon of carbohydrate/lectin interactions, could be improved.
Collapse
Affiliation(s)
- Blijke S Kroezen
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Gabriele Conti
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Benedetta Girardi
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Jonathan Cramer
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Xiaohua Jiang
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Said Rabbani
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Jennifer Müller
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Maja Kokot
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Enrico Luisoni
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Daniel Ricklin
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Oliver Schwardt
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Beat Ernst
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| |
Collapse
|
11
|
Abstract
Siglecs are known to be bound and regulated by membrane molecules that display specific sialic acid-containing ligands and are present on the same cell (cis-ligands). Because of the low-affinity binding of Siglecs to the glycan ligands, conventional methods such as immunoprecipitation are not suitable for identification of Siglec cis-ligands. Here we describe efficient and specific labeling of cis-ligands of CD22 (also known as Siglec-2) on B lymphocytes by proximity labeling using tyramide. This method may also be applicable to labeling of cis-ligands of other Siglecs.
Collapse
|
12
|
Nycholat CM, Duan S, Knuplez E, Worth C, Elich M, Yao A, O'Sullivan J, McBride R, Wei Y, Fernandes SM, Zhu Z, Schnaar RL, Bochner BS, Paulson JC. A Sulfonamide Sialoside Analogue for Targeting Siglec-8 and -F on Immune Cells. J Am Chem Soc 2019; 141:14032-14037. [PMID: 31460762 DOI: 10.1021/jacs.9b05769] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Siglec family of cell surface receptors have emerged as attractive targets for cell-directed therapies due to their restricted expression on immune cells, endocytic properties, and ability to modulate receptor signaling. Human Siglec-8, for instance, has been identified as a therapeutic target for the treatment of eosinophil and mast cell disorders. A promising strategy to target Siglecs involves the use of liposomal nanoparticles with a multivalent display of Siglec ligands. A key challenge for this approach is the identification of a high affinity ligand for the target Siglec. Here, we report the development of a ligand of Siglec-8 and its closest murine functional orthologue Siglec-F that is capable of targeting liposomes to cells expressing Siglec-8 or -F. A glycan microarray library of synthetic 9-N-sulfonyl sialoside analogues was screened to identify potential lead compounds. The best ligand, 9-N-(2-naphthyl-sulfonyl)-Neu5Acα2-3-[6-O-sulfo]-Galβ1-4GlcNAc (6'-O-sulfo NSANeu5Ac) combined the lead 2-naphthyl sulfonyl C-9 substituent with the preferred sulfated scaffold. The ligand 6'-O-sulfo NSANeu5Ac was conjugated to lipids for display on liposomes to evaluate targeted delivery to cells. Targeted liposomes showed strong in vitro binding/uptake and selectivity to cells expressing Siglec-8 or -F and, when administered to mice, exhibit in vivo targeting to Siglec-F+ eosinophils.
Collapse
Affiliation(s)
- Corwin M Nycholat
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Shiteng Duan
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Eva Knuplez
- Department of Medicine, Division of Allergy and Immunology , Northwestern University Feinberg School of Medicine , Chicago , Illinois 60611 , United States
| | - Charli Worth
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Mila Elich
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Anzhi Yao
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Jeremy O'Sullivan
- Department of Medicine, Division of Allergy and Immunology , Northwestern University Feinberg School of Medicine , Chicago , Illinois 60611 , United States
| | - Ryan McBride
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Yadong Wei
- Section of Allergy and Clinical Immunology , Yale University School of Medicine , New Haven , Connecticut 06511 , United States
| | - Steve M Fernandes
- Department of Pharmacology and Molecular Sciences , Johns Hopkins University School of Medicine , Baltimore , Maryland 21205 , United States
| | - Zhou Zhu
- Section of Allergy and Clinical Immunology , Yale University School of Medicine , New Haven , Connecticut 06511 , United States
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences , Johns Hopkins University School of Medicine , Baltimore , Maryland 21205 , United States
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy and Immunology , Northwestern University Feinberg School of Medicine , Chicago , Illinois 60611 , United States
| | - James C Paulson
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| |
Collapse
|
13
|
Kooner AS, Yu H, Chen X. Synthesis of N-Glycolylneuraminic Acid (Neu5Gc) and Its Glycosides. Front Immunol 2019; 10:2004. [PMID: 31555264 PMCID: PMC6724515 DOI: 10.3389/fimmu.2019.02004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
Sialic acids constitute a family of negatively charged structurally diverse monosaccharides that are commonly presented on the termini of glycans in higher animals and some microorganisms. In addition to N-acetylneuraminic acid (Neu5Ac), N-glycolyl neuraminic acid (Neu5Gc) is among the most common sialic acid forms in nature. Nevertheless, unlike most animals, human cells loss the ability to synthesize Neu5Gc although Neu5Gc-containing glycoconjugates have been found on human cancer cells and in various human tissues due to dietary incorporation of Neu5Gc. Some pathogenic bacteria also produce Neu5Ac and the corresponding glycoconjugates but Neu5Gc-producing bacteria have yet to be found. In addition to Neu5Gc, more than 20 Neu5Gc derivatives have been found in non-human vertebrates. To explore the biological roles of Neu5Gc and its naturally occurring derivatives as well as the corresponding glycans and glycoconjugates, various chemical and enzymatic synthetic methods have been developed to obtain a vast array of glycosides containing Neu5Gc and/or its derivatives. Here we provide an overview on various synthetic methods that have been developed. Among these, the application of highly efficient one-pot multienzyme (OPME) sialylation systems in synthesizing compounds containing Neu5Gc and derivatives has been proven as a powerful strategy.
Collapse
Affiliation(s)
| | - Hai Yu
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| | - Xi Chen
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| |
Collapse
|
14
|
Lübbers J, Rodríguez E, van Kooyk Y. Modulation of Immune Tolerance via Siglec-Sialic Acid Interactions. Front Immunol 2018; 9:2807. [PMID: 30581432 PMCID: PMC6293876 DOI: 10.3389/fimmu.2018.02807] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022] Open
Abstract
One of the key features of the immune system is its extraordinary capacity to discriminate between self and non-self and to respond accordingly. Several molecular interactions allow the induction of acquired immune responses when a foreign antigen is recognized, while others regulate the resolution of inflammation, or the induction of tolerance to self-antigens. Post-translational signatures, such as glycans that are part of proteins (glycoproteins) and lipids (glycolipids) of host cells or pathogens, are increasingly appreciated as key molecules in regulating immunity vs. tolerance. Glycans are sensed by glycan binding receptors expressed on immune cells, such as C-type lectin receptors (CLRs) and Sialic acid binding immunoglobulin type lectins (Siglecs), that respond to specific glycan signatures by triggering tolerogenic or immunogenic signaling pathways. Glycan signatures present on healthy tissue, inflamed and malignant tissue or pathogens provide signals for “self” or “non-self” recognition. In this review we will focus on sialic acids that serve as “self” molecular pattern ligands for Siglecs. We will emphasize on the function of Siglec-expressing mononuclear phagocytes as sensors for sialic acids in tissue homeostasis and describe how the sialic acid-Siglec axis is exploited by tumors and pathogens for the induction of immune tolerance. Furthermore, we highlight how the sialic acid-Siglec axis can be utilized for clinical applications to induce or inhibit immune tolerance.
Collapse
Affiliation(s)
- Joyce Lübbers
- Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Ernesto Rodríguez
- Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| |
Collapse
|
15
|
Matsubara N, Imamura A, Yonemizu T, Akatsu C, Yang H, Ueki A, Watanabe N, Abdu-Allah H, Numoto N, Takematsu H, Kitazume S, Tedder TF, Marth JD, Ito N, Ando H, Ishida H, Kiso M, Tsubata T. CD22-Binding Synthetic Sialosides Regulate B Lymphocyte Proliferation Through CD22 Ligand-Dependent and Independent Pathways, and Enhance Antibody Production in Mice. Front Immunol 2018; 9:820. [PMID: 29725338 PMCID: PMC5917077 DOI: 10.3389/fimmu.2018.00820] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 04/04/2018] [Indexed: 01/06/2023] Open
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are expressed in various immune cells and most of them carry signaling functions. High-affinity synthetic sialoside ligands have been developed for various Siglecs. Therapeutic potentials of the nanoparticles and compounds that contain multiple numbers of these sialosides and other reagents such as toxins and antigens have been demonstrated. However, whether immune responses can be regulated by monomeric sialoside ligands has not yet been known. CD22 (also known as Siglec-2) is an inhibitory molecule preferentially expressed in B lymphocytes (B cells) and is constitutively bound and functionally regulated by α2,6 sialic acids expressed on the same cell (cis-ligands). Here, we developed synthetic sialosides GSC718 and GSC839 that bind to CD22 with high affinity (IC50 ~100 nM), and inhibit ligand binding of CD22. When B cells are activated by B cell antigen receptor (BCR) ligation, both GSC718 and GSC839 downregulate proliferation of B cells, and this regulation requires both CD22 and α2,6 sialic acids. This result suggests that these sialosides regulate BCR ligation-induced B cell activation by reversing endogenous ligand-mediated regulation of CD22. By contrast, GSC718 and GSC839 augment B cell proliferation induced by TLR ligands or CD40 ligation, and this augmentation requires CD22 but not α2,6 sialic acids. Thus, these sialosides appear to enhance B cell activation by directly suppressing the inhibitory function of CD22 independently of endogenous ligand-mediated regulation. Moreover, GSC839 augments B cell proliferation that depends on both BCR ligation and CD40 ligation as is the case for in vivo B cell responses to antigens, and enhanced antibody production to the extent comparable to CpG oligonuleotides or a small amount of alum. Although these known adjuvants induce production of the inflammatory cytokines or accumulation of inflammatory cells, CD22-binding sialosides do not. Thus, synthetic sialosides that bind to CD22 with high-affinity modulate B cell activation through endogenous ligand-dependent and independent pathways, and carry an adjuvant activity without inducing inflammation.
Collapse
Affiliation(s)
- Naoko Matsubara
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akihiro Imamura
- Department of Applied Bio-Organic Chemistry, Gifu University, Gifu, Japan
| | - Tatsuya Yonemizu
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chizuru Akatsu
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hongrui Yang
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akiharu Ueki
- Department of Applied Bio-Organic Chemistry, Gifu University, Gifu, Japan
| | - Natsuki Watanabe
- Department of Applied Bio-Organic Chemistry, Gifu University, Gifu, Japan
| | - Hajjaj Abdu-Allah
- Department of Applied Bio-Organic Chemistry, Gifu University, Gifu, Japan
| | - Nobutaka Numoto
- Department of Structural Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromu Takematsu
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Thomas F Tedder
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Jamey D Marth
- Center for Nanomedicine, University of California, Santa Barbara, CA, United States
| | - Nobutoshi Ito
- Department of Structural Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Hideharu Ishida
- Department of Applied Bio-Organic Chemistry, Gifu University, Gifu, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Makoto Kiso
- Department of Applied Bio-Organic Chemistry, Gifu University, Gifu, Japan
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
16
|
Prescher H, Schweizer A, Kuhfeldt E, Nitschke L, Brossmer R. New Human CD22/Siglec-2 Ligands with a Triazole Glycoside. Chembiochem 2017; 18:1216-1225. [PMID: 28374962 DOI: 10.1002/cbic.201600707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Indexed: 12/15/2022]
Abstract
CD22 is a member of the Siglec family. Considerable attention has been drawn to the design and synthesis of new Siglec ligands to explore target biology and innovative therapies. In particular, CD22-ligand-targeted nanoparticles with therapeutic functions have proved successful in preclinical settings for blood cancers, autoimmune diseases, and tolerance induction. Here we report the design, synthesis and affinity evaluation of a new class of Siglec ligands: namely sialic acid derivatives with a triazole moiety replacing the natural glycoside oxygen atom. In addition, we describe important and surprising differences in binding to CD22 expressed at the cell surface for compounds with distinct valences. The new class of compounds might serve as a template for the design of ligands for other members of the Siglec family and next-generation CD22-ligand-based targeted therapies.
Collapse
Affiliation(s)
| | - Astrid Schweizer
- Division of Genetics, Department of Biology, University of Erlangen, 91058, Erlangen, Germany
| | | | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, 91058, Erlangen, Germany
| | - Reinhard Brossmer
- Biochemistry Center, University of Heidelberg, 69120, Heidelberg, Germany.,G3-BioTec, 69207, Sandhausen, Germany
| |
Collapse
|
17
|
Büll C, Heise T, van Hilten N, Pijnenborg JFA, Bloemendal VRLJ, Gerrits L, Kers-Rebel ED, Ritschel T, den Brok MH, Adema GJ, Boltje TJ. Steering Siglec-Sialic Acid Interactions on Living Cells using Bioorthogonal Chemistry. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Christian Büll
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory; Radboud University Medical Center; Geert Grooteplein Zuid 32 6525 GA Nijmegen The Netherlands
| | - Torben Heise
- Institute for Molecules and Materials; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Niek van Hilten
- Computational Discovery and Design Group; Centre for Molecular and Biomolecular Informatics; Radboud University Medical Center; Geert Grooteplein 26-28 6525 GA Nijmegen The Netherlands
| | - Johan F. A. Pijnenborg
- Institute for Molecules and Materials; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | | | - Lotte Gerrits
- Institute for Molecules and Materials; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Esther D. Kers-Rebel
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory; Radboud University Medical Center; Geert Grooteplein Zuid 32 6525 GA Nijmegen The Netherlands
| | - Tina Ritschel
- Computational Discovery and Design Group; Centre for Molecular and Biomolecular Informatics; Radboud University Medical Center; Geert Grooteplein 26-28 6525 GA Nijmegen The Netherlands
| | - Martijn H. den Brok
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory; Radboud University Medical Center; Geert Grooteplein Zuid 32 6525 GA Nijmegen The Netherlands
- Department of Anesthesiology; Pain and Palliative Medicine; Radboud University Medical Center; Geert Grooteplein 10 6525 GA Nijmegen The Netherlands
| | - Gosse J. Adema
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory; Radboud University Medical Center; Geert Grooteplein Zuid 32 6525 GA Nijmegen The Netherlands
| | - Thomas J. Boltje
- Institute for Molecules and Materials; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
18
|
Büll C, Heise T, van Hilten N, Pijnenborg JFA, Bloemendal VRLJ, Gerrits L, Kers-Rebel ED, Ritschel T, den Brok MH, Adema GJ, Boltje TJ. Steering Siglec-Sialic Acid Interactions on Living Cells using Bioorthogonal Chemistry. Angew Chem Int Ed Engl 2017; 56:3309-3313. [PMID: 28194834 DOI: 10.1002/anie.201612193] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Indexed: 12/24/2022]
Abstract
Sialic acid sugars that terminate cell-surface glycans form the ligands for the sialic acid binding immunoglobulin-like lectin (Siglec) family, which are immunomodulatory receptors expressed by immune cells. Interactions between sialic acid and Siglecs regulate the immune system, and aberrations contribute to pathologies like autoimmunity and cancer. Sialic acid/Siglec interactions between living cells are difficult to study owing to a lack of specific tools. Here, we report a glycoengineering approach to remodel the sialic acids of living cells and their binding to Siglecs. Using bioorthogonal chemistry, a library of cells with more than sixty different sialic acid modifications was generated that showed dramatically increased binding toward the different Siglec family members. Rational design reduced cross-reactivity and led to the discovery of three selective Siglec-5/14 ligands. Furthermore, glycoengineered cells carrying sialic acid ligands for Siglec-3 dampened the activation of Siglec-3+ monocytic cells through the NF-κB and IRF pathways.
Collapse
Affiliation(s)
- Christian Büll
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Torben Heise
- Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Niek van Hilten
- Computational Discovery and Design Group, Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Johan F A Pijnenborg
- Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Victor R L J Bloemendal
- Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Lotte Gerrits
- Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Esther D Kers-Rebel
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Tina Ritschel
- Computational Discovery and Design Group, Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Martijn H den Brok
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands.,Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Gosse J Adema
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Thomas J Boltje
- Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Madge PD, Maggioni A, Pascolutti M, Amin M, Waespy M, Bellette B, Thomson RJ, Kelm S, von Itzstein M, Haselhorst T. Structural characterisation of high affinity Siglec-2 (CD22) ligands in complex with whole Burkitt's lymphoma (BL) Daudi cells by NMR spectroscopy. Sci Rep 2016; 6:36012. [PMID: 27808110 PMCID: PMC5093622 DOI: 10.1038/srep36012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 10/10/2016] [Indexed: 12/13/2022] Open
Abstract
Siglec-2 undergoes constitutive endocytosis and is a drug target for autoimmune diseases and B cell-derived malignancies, including hairy cell leukaemia, marginal zone lymphoma, chronic lymphocytic leukaemia and non-Hodgkin's lymphoma (NHL). An alternative to current antibody-based therapies is the use of liposomal nanoparticles loaded with cytotoxic drugs and decorated with Siglec-2 ligands. We have recently designed the first Siglec-2 ligands (9-biphenylcarboxamido-4-meta-nitrophenyl-carboxamido-Neu5Acα2Me, 9-BPC-4-mNPC-Neu5Acα2Me) with simultaneous modifications at C-4 and C-9 position. In the current study we have used Saturation Transfer Difference (STD) NMR spectroscopy to monitor the binding of 9-BPC-4-mNPC-Neu5Acα2Me to Siglec-2 present on intact Burkitt's lymphoma Daudi cells. Pre-treatment of cells with periodate resulted in significantly higher STD NMR signal intensities for 9-BPC-4-mNPC-Neu5Acα2Me as the cells were more susceptible to ligand binding because cis-binding on the cell surface was removed. Quantification of STD NMR effects led to a cell-derived binding epitope of 9-BPC-4-mNPC-Neu5Acα2Me that facilitated the design and synthesis of C-2, C-3, C-4 and C-9 tetra-substituted Siglec-2 ligands showing an 88-fold higher affinity compared to 9-BPC-Neu5Acα2Me. This is the first time a NMR-based binding study of high affinity Siglec-2 (CD22) ligands in complex with whole Burkitt's lymphoma Daudi cells has been described that might open new avenues in developing tailored therapeutics and personalised medicine.
Collapse
Affiliation(s)
- Paul D Madge
- Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Andrea Maggioni
- Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Mauro Pascolutti
- Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Moein Amin
- Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Mario Waespy
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, 28334 Bremen, Germany
| | - Bernadette Bellette
- Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Robin J Thomson
- Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Sørge Kelm
- Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland, 4222, Australia.,Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, 28334 Bremen, Germany
| | - Mark von Itzstein
- Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| |
Collapse
|
20
|
Sialic Acid Mimetics to Target the Sialic Acid-Siglec Axis. Trends Biochem Sci 2016; 41:519-531. [PMID: 27085506 DOI: 10.1016/j.tibs.2016.03.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/16/2016] [Accepted: 03/28/2016] [Indexed: 01/31/2023]
Abstract
Sialic acid sugars are vital regulators of the immune system through binding to immunosuppressive sialic acid-binding immunoglobulin-like lectin (Siglec) receptors on immune cells. Aberrant sialic acid-Siglec interactions are associated with an increasing number of pathologies including infection, autoimmunity, and cancer. Therefore, the sialic acid-Siglec axis is an emerging target to prevent or affect the course of several diseases. Chemical modifications of the natural sialic acid ligands have led to sialic acid mimetics (SAMs) with improved binding affinity and selectivity towards Siglecs. Recent progress in glycobiotechnology allows the presentation of these SAMs on nanoparticles, polymers, and living cells via bioorthogonal synthesis. These developments now enable the detailed study of the sialic acid-Siglec axis including its therapeutic potential as an immune modulator.
Collapse
|
21
|
Angata T, Nycholat CM, Macauley MS. Therapeutic Targeting of Siglecs using Antibody- and Glycan-Based Approaches. Trends Pharmacol Sci 2015; 36:645-660. [PMID: 26435210 PMCID: PMC4593978 DOI: 10.1016/j.tips.2015.06.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 01/01/2023]
Abstract
The sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of immunomodulatory receptors whose functions are regulated by their glycan ligands. Siglecs are attractive therapeutic targets because of their cell type-specific expression pattern, endocytic properties, high expression on certain lymphomas/leukemias, and ability to modulate receptor signaling. Siglec-targeting approaches with therapeutic potential encompass antibody- and glycan-based strategies. Several antibody-based therapies are in clinical trials and continue to be developed for the treatment of lymphoma/leukemia and autoimmune disease, while the therapeutic potential of glycan-based strategies for cargo delivery and immunomodulation is a promising new approach. Here we review these strategies with special emphasis on emerging approaches and disease areas that may benefit from targeting the Siglec family.
Collapse
Affiliation(s)
- Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Corwin M Nycholat
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Matthew S Macauley
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
22
|
Chang CH, Wang Y, Gupta P, Goldenberg DM. Extensive crosslinking of CD22 by epratuzumab triggers BCR signaling and caspase-dependent apoptosis in human lymphoma cells. MAbs 2015; 7:199-211. [PMID: 25484043 PMCID: PMC4622945 DOI: 10.4161/19420862.2014.979081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epratuzumab has demonstrated therapeutic activity in patients with non-Hodgkin lymphoma, acute lymphoblastic leukemia, systemic lupus erythematosus, and Sjögren's syndrome, but its mechanism of affecting normal and malignant B cells remains incompletely understood. We reported previously that epratuzumab displayed in vitro cytotoxicity to CD22-expressing Burkitt lymphoma cell lines (Daudi and Ramos) only when immobilized on plates or combined with a crosslinking antibody plus a suboptimal amount of anti-IgM (1 μg/mL). Herein, we show that, in the absence of additional anti-IgM ligation, extensive crosslinking of CD22 by plate-immobilized epratuzumab induced intracellular changes in Daudi cells similar to ligating B-cell antigen receptor with a sufficiently high amount of anti-IgM (10 μg/mL). Specifically, either treatment led to phosphorylation of CD22, CD79a and CD79b, along with their translocation to lipid rafts, both of which were essential for effecting caspase-dependent apoptosis. Moreover, such immobilization induced stabilization of F-actin, phosphorylation of Lyn, ERKs and JNKs, generation of reactive oxygen species (ROS), decrease in mitochondria membrane potential (Δψm), upregulation of pro-apoptotic Bax, and downregulation of anti-apoptotic Bcl-xl and Mcl-1. The physiological relevance of immobilized epratuzumab was implicated by noting that several of its in vitro effects, including apoptosis, drop in Δψm, and generation of ROS, could be observed with soluble epratuzumab in Daudi cells co-cultivated with human umbilical vein endothelial cells. These results suggest that the in vivo mechanism of non-ligand-blocking epratuzumab may, in part, involve the unmasking of CD22 to facilitate the trans-interaction of B cells with vascular endothelium.
Collapse
Key Words
- 488-annexin V, Alexa Fluor 488-conjugated annexin V
- 7-AAD, 7-aminoactinomycin D, Syk, spleen tyrosine kinase
- Anti-IgM, F(ab’)2 fragment of affinity-purified goat anti-human IgM, Fc5μ fragment
- BCR
- BCR, B-cell antigen receptor
- BSA, bovine serum albumin
- CD22
- CM-H2DCF-DA, 2′,7′-dichlorodihydrofluorescein diacetate
- DNP, 2,4-dinitrophenyl
- EC, endothelial cells
- ERKs, extracellular signal-regulated kinases
- FBS, fetal bovine serum
- FITC-DNase I, fluorescein isothiocyanate-conjugated DNase I
- GAH, F(ab′)2 fragment of affinity-purified goat anti-human IgG Fcγ fragment-specific
- HUV-EC
- HUV-EC, human umbilical vein endothelial cells
- ITIM, immunoreceptor tyrosine-based inhibition motif
- JNKs, c-Jun N-terminal kinases
- JP, jasplakinolide
- LatB, latrunculin B
- Lyn, Lck/Yes novel tyrosine kinase
- MAP kinases, mitogen-activated protein kinases
- MTS, (3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium
- PARP, poly(ADP-ribose) polymerase
- PBS, phosphate-buffered saline
- PLCγ2, phospholipase C, isotype gamma 2
- ROS, reactive oxygen species
- Rhodamine-anti-IgG, rhodamine-conjugated F(ab′)2 fragment of affinity-purified goat anti-human IgG, F(ab′)2 fragment-specific
- TMRE/tetramethylrhodamine/ethyl ester
- epratuzumab
- human B-cell lymphoma
- immobilized
- mIgM, membrane IgM
- Δψm, mitochondria membrane potential
Collapse
|
23
|
Nitschke L. CD22 and Siglec-G regulate inhibition of B-cell signaling by sialic acid ligand binding and control B-cell tolerance. Glycobiology 2014; 24:807-17. [PMID: 25002414 DOI: 10.1093/glycob/cwu066] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CD22 and Siglec-G are two B-cell expressed members of the Siglec (sialic acid-binding immunoglobulin (Ig)-like lectin) family and are potent inhibitors of B-cell signaling. Genetic approaches have provided evidence that this inhibition of B-cell antigen receptor (BCR) signaling by Siglecs is dependent on ligand binding to sialic acids in specific linkages. The cis-ligand-binding activity of CD22 leads to homo-oligomer formation, which are to a large extent found in membrane domains that are distinct from those containing the BCR. In contrast, Siglec-G is recruited via sialic acid binding to the BCR. This interaction of Siglec-G with mIgM leads to an inhibitory function that seems to be specific for B-1 cells. Both CD22 and Siglec-G control B-cell tolerance and loss of these proteins, its ligands or its inhibitory pathways can increase the susceptibility for autoimmune diseases. CD22 is a target protein both in B-cell leukemias and lymphomas, as well as in B-cell mediated autoimmune diseases. Both antibodies and synthetic chemically modified sialic acids are currently tested to target Siglecs on B cells.
Collapse
Affiliation(s)
- Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| |
Collapse
|
24
|
Rillahan CD, Macauley MS, Schwartz E, He Y, McBride R, Arlian BM, Rangarajan J, Fokin VV, Paulson JC. Disubstituted Sialic Acid Ligands Targeting Siglecs CD33 and CD22 Associated with Myeloid Leukaemias and B Cell Lymphomas. Chem Sci 2014; 5:2398-2406. [PMID: 24921038 DOI: 10.1039/c4sc00451e] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The siglec family of sialic acid-binding proteins are endocytic immune cell receptors that are recognized as potential targets for cell directed therapies. CD33 and CD22 are prototypical members and are validated candidates for targeting acute myeloid leukaemia and non-Hodgkin's lymphomas due to their restricted expression on myeloid cells and B-cells, respectively. While nanoparticles decorated with high affinity siglec ligands represent an attractive platform for delivery of therapeutic agents to these cells, a lack of ligands with suitable affinity and/or selectivity has hampered progress. Herein we describe selective ligands for both of these siglecs, which when displayed on liposomal nanoparticles, can efficiently target the cells expressing them in peripheral human blood. Key to their identification was the development of a facile method for chemo-enzymatic synthesis of disubstituted sialic acid analogues, combined with iterative rounds of synthesis and rapid functional analysis using glycan microarrays.
Collapse
Affiliation(s)
- Cory D Rillahan
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA) ; Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Matthew S Macauley
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA) ; Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Erik Schwartz
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Yuan He
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA) ; Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Ryan McBride
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA) ; Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Britni M Arlian
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA) ; Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Janani Rangarajan
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA) ; Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Valery V Fokin
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - James C Paulson
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA) ; Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| |
Collapse
|
25
|
Kelm S, Madge P, Islam T, Bennett R, Koliwer-Brandl H, Waespy M, von Itzstein M, Haselhorst T. C-4 modified sialosides enhance binding to Siglec-2 (CD22): towards potent Siglec inhibitors for immunoglycotherapy. Angew Chem Int Ed Engl 2013; 52:3616-20. [PMID: 23440868 DOI: 10.1002/anie.201207267] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 11/26/2012] [Indexed: 12/12/2022]
Affiliation(s)
- Sørge Kelm
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, 28334 Bremen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kelm S, Madge P, Islam T, Bennett R, Koliwer-Brandl H, Waespy M, von Itzstein M, Haselhorst T. C-4-Modifikation von Sialosiden verstärkt die Bindung an Siglec-2 (CD22) - auf dem Weg zu potenten Siglec-Inhibitoren für eine Immunglykotherapie. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201207267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Mesch S, Lemme K, Wittwer M, Koliwer-Brandl H, Schwardt O, Kelm S, Ernst B. From a Library of MAG Antagonists to Nanomolar CD22 Ligands. ChemMedChem 2011; 7:134-43. [DOI: 10.1002/cmdc.201100407] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Indexed: 12/14/2022]
|
28
|
Zeng Y, Rademacher C, Nycholat CM, Futakawa S, Lemme K, Ernst B, Paulson JC. High affinity sialoside ligands of myelin associated glycoprotein. Bioorg Med Chem Lett 2011; 21:5045-9. [PMID: 21561770 DOI: 10.1016/j.bmcl.2011.04.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 01/19/2023]
Abstract
Myelin associated glycoprotein (Siglec-4) is a myelin adhesion receptor, that is, well established for its role as an inhibitor of axonal outgrowth in nerve injury, mediated by binding to sialic acid containing ligands on the axonal membrane. Because disruption of myelin-ligand interactions promotes axon outgrowth, we have sought to develop potent ligand based inhibitors using natural ligands as scaffolds. Although natural ligands of MAG are glycolipids terminating in the sequence NeuAcα2-3Galβ1-3(±NeuAcα2-6)GalNAcβ-R, we previously established that synthetic O-linked glycoprotein glycans with the same sequence α-linked to Thr exhibited ∼1000-fold increased affinity (∼1μM). Attempts to increase potency by introducing a benzoylamide substituent at C-9 of the α2-3 sialic acid afforded only a two-fold increase, instead of increases of >100-fold observed for other sialoside ligands of MAG. Surprisingly, however, introduction of a 9-N-fluoro-benzoyl substituent on the α2-6 sialic acid increased affinity 80-fold, resulting in a potent inhibitor with a K(d) of 15nM. Docking this ligand to a model of MAG based on known crystal structures of other siglecs suggests that the Thr positions the glycan such that aryl substitution of the α2-3 sialic acid produces a steric clash with the GalNAc, while attaching an aryl substituent to the other sialic acid positions the substituent near a hydrophobic pocket that accounts to the increase in affinity.
Collapse
Affiliation(s)
- Ying Zeng
- Department of Physiological Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, United States
| | | | | | | | | | | | | |
Collapse
|