1
|
Swann R, Hernández-Valdés D, Silva LR, Marfatia YM, El-Zaria ME, Genady AR, Kwiecien JM, Valliant JF, Sadeghi S. Photoacoustic imaging of a cyanine dye targeting bacterial infection. Sci Rep 2024; 14:18322. [PMID: 39112643 PMCID: PMC11306741 DOI: 10.1038/s41598-024-69148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
The development of a non-invasive infection-specific diagnostic probe holds the potential to vastly improve early-stage detection of infection, enabling precise therapeutic intervention and potentially reducing the incidence of antibiotic resistance. Towards this goal, a commercially available bacteria-targeting Zinc(II)-dipicolylamine (ZnDPA)-derived fluorophore, PSVue794, was assessed as a photoacoustic (PA) imaging probe (PIP). A radiolabeled version of the dye, [99mTc]Tc-PSVue794, was developed to facilitate quantitative biodistribution studies beyond optical imaging methods, which showed a target-to-non-target ratio of 10.1 ± 1.1, 12 h post-injection. The ability of the PIP to differentiate between bacterial infection, sterile inflammation, and healthy tissue in a mouse model, was then evaluated via PA imaging. The PA signal in sites of sterile inflammation (0.062 ± 0.012 a.u.) was not statistically different from that of the background (0.058 ± 0.006 a.u.). In contrast, high PA signal was detected at sites of bacterial infection (0.176 ± 0.011 a.u.) as compared to background (0.081 ± 0.04 a.u., where P ≤ 0.03). This work demonstrates the potential of utilizing established fluorophores towards PAI and utilizing PAI as a modality in the distinction of bacterial infection from sites of sterile inflammation.
Collapse
Affiliation(s)
- Rowan Swann
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Daniel Hernández-Valdés
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Luis Rafael Silva
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Yusra Mahmood Marfatia
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Mohamed E El-Zaria
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Afaf R Genady
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Jacek M Kwiecien
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - John F Valliant
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Saman Sadeghi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
2
|
Ho Shon I, Hogg PJ. Imaging of cell death in malignancy: Targeting pathways or phenotypes? Nucl Med Biol 2023; 124-125:108380. [PMID: 37598518 DOI: 10.1016/j.nucmedbio.2023.108380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Cell death is fundamental in health and disease and resisting cell death is a hallmark of cancer. Treatment of malignancy aims to cause cancer cell death, however current clinical imaging of treatment response does not specifically image cancer cell death but assesses this indirectly either by changes in tumor size (using x-ray computed tomography) or metabolic activity (using 2-[18F]fluoro-2-deoxy-glucose positron emission tomography). The ability to directly image tumor cell death soon after commencement of therapy would enable personalised response adapted approaches to cancer treatment that is presently not possible with current imaging, which is in many circumstances neither sufficiently accurate nor timely. Several cell death pathways have now been identified and characterised that present multiple potential targets for imaging cell death including externalisation of phosphatidylserine and phosphatidylethanolamine, caspase activation and La autoantigen redistribution. However, targeting one specific cell death pathway carries the risk of not detecting cell death by other pathways and it is now understood that cancer treatment induces cell death by different and sometimes multiple pathways. An alternative approach is targeting the cell death phenotype that is "agnostic" of the death pathway. Cell death phenotypes that have been targeted for cell death imaging include loss of plasma membrane integrity and dissipation of the mitochondrial membrane potential. Targeting the cell death phenotype may have the advantage of being a more sensitive and generalisable approach to cancer cell death imaging. This review describes and summarises the approaches and radiopharmaceuticals investigated for imaging cell death by targeting cell death pathways or cell death phenotype.
Collapse
Affiliation(s)
- Ivan Ho Shon
- Department of Nuclear Medicine and PET, Prince of Wales Hospital, Sydney, Australia; School of Clinical Medicine, UNSW Medicine & Health, Randwick Clinical Campus, UNSW Sydney, Australia.
| | - Philip J Hogg
- The Centenary Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
3
|
Sidorenko GV, Miroslavov AE, Tyupina MY. Technetium(I) carbonyl complexes for nuclear medicine: Coordination-chemical aspect. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Abstract
One major characteristic of programmed cell death (apoptosis) results in the increased expression of phosphatidylserine (PS) on the outer membrane of dying cells. Consequently, PS represents an excellent target for non-invasive imaging of apoptosis by single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Annexin V is a 36 kDa protein which binds with high affinity to PS in the presence of Ca2+ ions. This makes radiolabeled annexins valuable apoptosis imaging agents for clinical and biomedical research applications for monitoring apoptosis in vivo. However, the use of radiolabeled annexin V for in vivo imaging of cell death has been met with a variety of challenges which have prevented its translation into the clinic. These difficulties include: complicated and time-consuming radiolabeling procedures, sub-optimal biodistribution, inadequate pharmacokinetics leading to poor tumour-to-blood contrast ratios, reliance upon Ca2+ concentrations in vivo, low tumor tissue penetration, and an incomplete understanding of what constitutes the best imaging protocol following induction of apoptosis. Therefore, new concepts and improved strategies for the development of PS-binding radiotracers are needed. Radiolabeled PS-binding peptides and various Zn(II) complexes as phosphate chemosensors offer an innovative strategy for radionuclide-based molecular imaging of apoptosis with PET and SPECT. Radiolabeled peptides and Zn(II) complexes provide several advantages over annexin V including better pharmacokinetics due to their smaller size, better availability, simpler synthesis and radiolabeling strategies as well as facilitated tissue penetration due to their smaller size and faster blood clearance profile allowing for optimized image contrast. In addition, peptides can be structurally modified to improve metabolic stability along with other pharmacokinetic and pharmacodynamic properties. The present review will summarize the current status of radiolabeled annexins, peptides and Zn(II) complexes developed as radiotracers for imaging apoptosis through targeting PS utilizing PET and SPECT imaging.
Collapse
|
5
|
Zhang D, Jin Q, Jiang C, Gao M, Ni Y, Zhang J. Imaging Cell Death: Focus on Early Evaluation of Tumor Response to Therapy. Bioconjug Chem 2020; 31:1025-1051. [PMID: 32150392 DOI: 10.1021/acs.bioconjchem.0c00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell death plays a prominent role in the treatment of cancer, because most anticancer therapies act by the induction of cell death including apoptosis, necrosis, and other pathways of cell death. Imaging cell death helps to identify treatment responders from nonresponders and thus enables patient-tailored therapy, which will increase the likelihood of treatment response and ultimately lead to improved patient survival. By taking advantage of molecular probes that specifically target the biomarkers/biochemical processes of cell death, cell death imaging can be successfully achieved. In recent years, with the increased understanding of the molecular mechanism of cell death, a variety of well-defined biomarkers/biochemical processes of cell death have been identified. By targeting these established cell death biomarkers/biochemical processes, a set of molecular imaging probes have been developed and evaluated for early monitoring treatment response in tumors. In this review, we mainly present the recent advances in identifying useful biomarkers/biochemical processes for both apoptosis and necrosis imaging and in developing molecular imaging probes targeting these biomarkers/biochemical processes, with a focus on their application in early evaluation of tumor response to therapy.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Yicheng Ni
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| |
Collapse
|
6
|
Aoki M, Odani A, Ogawa K. Development of radiolabeled bis(zinc(II)-dipicolylamine) complexes for cell death imaging. Ann Nucl Med 2019; 33:317-325. [DOI: 10.1007/s12149-019-01339-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 01/16/2019] [Indexed: 12/12/2022]
|
7
|
Zhao H, Zhou P, Huang K, Deng G, Zhou Z, Wang J, Wang M, Zhang Y, Yang H, Yang S. Amplifying Apoptosis Homing Nanoplatform for Tumor Theranostics. Adv Healthc Mater 2018; 7:e1800296. [PMID: 29745029 DOI: 10.1002/adhm.201800296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/10/2018] [Indexed: 02/05/2023]
Abstract
Nanomedicine has significantly impacted cancer theranostics. However, its efficiency is restricted by the limited enhanced permeability and retention effect of nanomaterials and insufficient density/specificity of receptors of tumor cells. Herein, an apoptosis-homing nanoplatform based on zinc(II) dipicolylamine (ZnDPA) conjugated Fe/Fe3 O4 nanoparticles (MNPs/ZnDPA), which demonstrates amplified magnetic resonance signal and photothermal therapy, is developed. In an apoptotic xenograft model constructed by doxorubicin, due to the high affinity between ZnDPA and the upregulated level of phosphatidylserine on the outer surface of apoptotic cancer cells, the accumulation value of MNPs/ZnDPA is enhanced two-fold and the tumor/muscle ratio of T2 values is decreased to 50% compared to that in the normal xenograft model. In the apoptotic xenograft model, the amplifying photothermal therapy is confirmed by the changes of the relative tumor volume and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling staining. This nanoplatform provides a promising strategy to improve the targeting efficiency of nanoparticles and the enhancement of tumor-targeting theranostics.
Collapse
Affiliation(s)
- Heng Zhao
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Ping Zhou
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Kai Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province; Shenzhen University; Shenzhen 518060 China
| | - Guang Deng
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Zhiguo Zhou
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Jing Wang
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Mingwei Wang
- Department of Nuclear Medicine; Fudan University Shanghai Cancer Center; Shanghai 200032 China
- Department of Oncology; Shanghai Medical College; Fudan University; Shanghai 200032 China
- Shanghai Engineering Research; Center for Molecular Imaging Probes; Shanghai 200032 China
| | - Yingjian Zhang
- Department of Nuclear Medicine; Fudan University Shanghai Cancer Center; Shanghai 200032 China
- Department of Oncology; Shanghai Medical College; Fudan University; Shanghai 200032 China
- Shanghai Engineering Research; Center for Molecular Imaging Probes; Shanghai 200032 China
| | - Hong Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| |
Collapse
|
8
|
Gao F, Sihver W, Bergmann R, Belter B, Bolzati C, Salvarese N, Steinbach J, Pietzsch J, Pietzsch HJ. Synthesis, Characterization, and Initial Biological Evaluation of [ 99m Tc]Tc-Tricarbonyl-labeled DPA-α-MSH Peptide Derivatives for Potential Melanoma Imaging. ChemMedChem 2018; 13:1146-1158. [PMID: 29659163 DOI: 10.1002/cmdc.201800110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/29/2018] [Indexed: 12/17/2022]
Abstract
α-Melanocyte stimulating hormone (α-MSH) derivatives target the melanocortin-1 receptor (MC1R) specifically and selectively. In this study, the α-MSH-derived peptide NAP-NS1 (Nle-Asp-His-d-Phe-Arg-Trp-Gly-NH2 ) with and without linkers was conjugated with 5-(bis(pyridin-2-ylmethyl)amino)pentanoic acid (DPA-COOH) and labeled with [99m Tc]Tc-tricarbonyl by two methods. With the one-pot method the labeling was faster than with the two-pot method, while obtaining similarly high yields. Negligible trans-chelation and high stability in physiological solutions was determined for the [99m Tc]Tc-tricarbonyl-peptide conjugates. Coupling an ethylene glycol (EG)-based linker increased the hydrophilicity. The peptide derivatives displayed high binding affinity in murine B16F10 melanoma cells as well as in human MeWo and TXM13 melanoma cell homogenates. Preliminary in vivo studies with one of the [99m Tc]Tc-tricarbonyl-peptide conjugates showed good stability in blood and both renal and hepatobiliary excretion. Biodistribution was performed on healthy rats to gain initial insight into the potential relevance of the 99m Tc-labeled peptides for in vivo imaging.
Collapse
Affiliation(s)
- Feng Gao
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Wiebke Sihver
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Ralf Bergmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Birgit Belter
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Cristina Bolzati
- Institute of Condensed Matter Chemistry and Technologies for Energy-ICMATE-CNR, 35127, Padova, Italy
| | - Nicola Salvarese
- Institute of Condensed Matter Chemistry and Technologies for Energy-ICMATE-CNR, 35127, Padova, Italy
| | - Jörg Steinbach
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.,Department of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01062, Dresden, Germany
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.,Department of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01062, Dresden, Germany
| | - Hans-Jürgen Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.,Department of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
9
|
Rybczynska AA, Boersma HH, de Jong S, Gietema JA, Noordzij W, Dierckx RAJO, Elsinga PH, van Waarde A. Avenues to molecular imaging of dying cells: Focus on cancer. Med Res Rev 2018. [PMID: 29528513 PMCID: PMC6220832 DOI: 10.1002/med.21495] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Successful treatment of cancer patients requires balancing of the dose, timing, and type of therapeutic regimen. Detection of increased cell death may serve as a predictor of the eventual therapeutic success. Imaging of cell death may thus lead to early identification of treatment responders and nonresponders, and to “patient‐tailored therapy.” Cell death in organs and tissues of the human body can be visualized, using positron emission tomography or single‐photon emission computed tomography, although unsolved problems remain concerning target selection, tracer pharmacokinetics, target‐to‐nontarget ratio, and spatial and temporal resolution of the scans. Phosphatidylserine exposure by dying cells has been the most extensively studied imaging target. However, visualization of this process with radiolabeled Annexin A5 has not become routine in the clinical setting. Classification of death modes is no longer based only on cell morphology but also on biochemistry, and apoptosis is no longer found to be the preponderant mechanism of cell death after antitumor therapy, as was earlier believed. These conceptual changes have affected radiochemical efforts. Novel probes targeting changes in membrane permeability, cytoplasmic pH, mitochondrial membrane potential, or caspase activation have recently been explored. In this review, we discuss molecular changes in tumors which can be targeted to visualize cell death and we propose promising biomarkers for future exploration.
Collapse
Affiliation(s)
- Anna A Rybczynska
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Genetics, University of Groningen, Groningen, the Netherlands
| | - Hendrikus H Boersma
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy & Pharmacology, University of Groningen, Groningen, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Jourik A Gietema
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Walter Noordzij
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Philip H Elsinga
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aren van Waarde
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
10
|
Wang H, Wu Z, Li S, Hu K, Tang G. Synthesis and evaluation of a radiolabeled bis-zinc(II)-cyclen complex as a potential probe for in vivo imaging of cell death. Apoptosis 2018; 22:585-595. [PMID: 28084570 DOI: 10.1007/s10495-017-1344-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The exposition of phosphatidylserine (PS) from the cell membrane is associated with most cell death programs (apoptosis, necrosis, autophagy, mitotic catastrophe, etc.), which makes PS an attractive target for overall cell death imaging. To this end, zinc(II) macrocycle coordination complexes with cyclic polyamine units as low-molecular-weight annexin mimics have a selective affinity for biomembrane surfaces enriched with PS, and are therefore useful for detection of cell death. In the present study, a 11C-labeled zinc(II)-bis(cyclen) complex (11C-CyclenZn2) was prepared and evaluated as a new positron emission tomography (PET) probe for cell death imaging. 11C-CyclenZn2 was synthesized by methylation of its precursor, 4-methoxy-2,5-di-[10-methyl-1,4,7,10-tetraazacyclododecane-1,4,7-tricarboxylic acid tri-tert-butyl ester] phenol (Boc-Cyclen2) with 11C-methyl triflate as a prosthetic group in acetone, deprotection by hydrolysis in aqueous HCl solution, and chelation with zinc nitrate. The cell death imaging capability of 11C-CyclenZn2 was evaluated using in vitro cell uptake assays with camptothecin-treated PC-3 cells, biodistribution studies, and in vivo PET imaging in Kunming mice bearing S-180 fibrosarcoma. Starting from 11C-methyl triflate, the total preparation time for 11C-CyclenZn2 was ~40 min, with an uncorrected radiochemical yield of 12 ± 3% (based on 11C-CH3OTf, n = 10), a radiochemical purity of greater than 95%, and the specific activity of 0.75-1.01 GBq/μmol. The cell death binding specificity of 11C-CyclenZn2 was demonstrated by significantly different uptake rates in camptothecin-treated and control PC-3 cells in vitro. Inhibition experiments for 18F-radiofluorinated Annexin V binding to apoptotic/necrotic cells illustrated the necessity of zinc ions for zinc(II)-bis(cyclen) complexation in binding cell death, and zinc(II)-bis(cyclen) complexe and Annexin V had not identical binding pattern with apoptosis/necrosis cells. Biodistribution studies of 11C-CyclenZn2 revealed a fast clearance from blood, low uptake rates in brain and muscle tissue, and high uptake rates in liver and kidney, which provide the main metabolic route. PET imaging using 11C-CyclenZn2 revealed that cyclophosphamide-treated mice (CP-treated group) exhibited a significant increase of uptake rate in the tumor at 60 min postinjection, compared with control mice (Control group). The results indicate that the ability of 11C-CyclenZn2 to detect cell death is comparable to Annexin V, and it has potential as a PET tracer for noninvasive evaluation and monitoring of anti-tumor chemotherapy.
Collapse
Affiliation(s)
- Hongliang Wang
- Department of Nuclear Medicine, The First Hospital, Shanxi Medical University, Taiyuan, 030001, China.
- Department of Nuclear Medicine, PET-CT Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Zhifang Wu
- Department of Nuclear Medicine, The First Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Sijin Li
- Department of Nuclear Medicine, The First Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Kongzhen Hu
- Department of Nuclear Medicine, PET-CT Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ganghua Tang
- Department of Nuclear Medicine, PET-CT Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
11
|
Ordonez AA, Jain SK. Pathogen-Specific Bacterial Imaging in Nuclear Medicine. Semin Nucl Med 2018. [DOI: 10.1053/j.semnuclmed.2017.11.003
expr 890398765 + 809902709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
12
|
Abstract
When serious infections are suspected, patients are often treated empirically with broad-spectrum antibiotics while awaiting results that provide information on the bacterial class and species causing the infection, as well as drug susceptibilities. For deep-seated infections, these traditional diagnostic techniques often rely on tissue biopsies to obtain clinical samples which can be expensive, dangerous, and has the potential of sampling bias. Moreover, these procedures and results can take several days and may not always provide reliable information. This combination of time and effort required for proper antibiotic selection has become a barrier leading to indiscriminate broad-spectrum antibiotic use. Exposure to nosocomial infections and indiscriminate use of broad-spectrum antibiotics are responsible for promoting bacterial drug-resistance leading to substantial morbidity and mortality, especially in hospitalized and immunosuppressed patients. Therefore, early diagnosis of infection and targeted antibiotic treatments are urgently needed to reduce morbidity and mortality caused by bacterial infections worldwide. Reliable pathogen-specific bacterial imaging techniques have the potential to provide early diagnosis and guide antibiotic treatments.
Collapse
Affiliation(s)
- Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
13
|
Palmieri L, Elvas F, Vangestel C, Pak K, Gray B, Stroobants S, Staelens S, wyffels L. [ 99m Tc]duramycin for cell death imaging: Impact of kit formulation, purification and species difference. Nucl Med Biol 2018; 56:1-9. [DOI: 10.1016/j.nucmedbio.2017.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 01/23/2023]
|
14
|
|
15
|
Rice DR, Clear KJ, Smith BD. Imaging and therapeutic applications of zinc(ii)-dipicolylamine molecular probes for anionic biomembranes. Chem Commun (Camb) 2016; 52:8787-801. [PMID: 27302091 PMCID: PMC4949593 DOI: 10.1039/c6cc03669d] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This feature article describes the development of synthetic zinc(ii)-dipicolylamine (ZnDPA) receptors as selective targeting agents for anionic membranes in cell culture and living subjects. There is a strong connection between anionic cell surface charge and disease, and ZnDPA probes have been employed extensively for molecular imaging and targeted therapeutics. Fluorescence and nuclear imaging applications include detection of diseases such as cancer, neurodegeneration, arthritis, and microbial infection, and also quantification of cell death caused by therapy. Therapeutic applications include selective targeting of cytotoxic agents and drug delivery systems, photodynamic inactivation, and modulation of the immune system. The article concludes with a summary of expected future directions.
Collapse
Affiliation(s)
- Douglas R Rice
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, 46556 IN, USA.
| | - Kasey J Clear
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, 46556 IN, USA.
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, 46556 IN, USA.
| |
Collapse
|
16
|
Elvas F, Vangestel C, Rapic S, Verhaeghe J, Gray B, Pak K, Stroobants S, Staelens S, Wyffels L. Characterization of [(99m)Tc]Duramycin as a SPECT Imaging Agent for Early Assessment of Tumor Apoptosis. Mol Imaging Biol 2015; 17:838-47. [PMID: 25896815 PMCID: PMC4641155 DOI: 10.1007/s11307-015-0852-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE We investigated the usefulness of [(99m)Tc]duramycin for monitoring early response to cancer therapy in mice, with an eye towards clinical translation. PROCEDURES [(99m)Tc]Duramycin was injected in healthy CD1-/- mice to estimate human [(99m)Tc]duramycin radiation dose. [(99m)Tc]Duramycin single-photon emission computed tomography (SPECT) imaging of apoptosis was evaluated in a mouse model of colorectal cancer treated with irinotecan and validated ex vivo using autoradiography, cleaved caspase-3, and TdT-mediated dUTP nick-end labeling (TUNEL) histology of the tumors. RESULTS The mean effective dose was estimated to be 3.74 × 10(-3) ± 3.43 × 10(-4) mSv/MBq for non-purified and 3.19 × 10(-3) ± 2.16 × 10(-4) mSv/MBq for purified [(99m)Tc]duramycin. [(99m)Tc]Duramycin uptake in vivo following therapy increased significantly in apoptotic irinotecan-treated tumors (p = 0.008). Radioactivity in the tumors positively correlated with cleaved caspase-3 (r = 0.85, p < 0.001) and TUNEL (r = 0.92, p < 0.001) staining. CONCLUSION [(99m)Tc]Duramycin can be used to detect early chemotherapy-induced tumor cell death, and thus, may be a prospective candidate for clinical SPECT imaging of tumor response to therapy.
Collapse
Affiliation(s)
- Filipe Elvas
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
- Department of Nuclear Medicine, University Hospital Antwerp, Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Christel Vangestel
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
- Department of Nuclear Medicine, University Hospital Antwerp, Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Sara Rapic
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Brian Gray
- Molecular Targeting Technologies, Inc., West Chester, PA, USA
| | - Koon Pak
- Molecular Targeting Technologies, Inc., West Chester, PA, USA
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
- Department of Nuclear Medicine, University Hospital Antwerp, Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Leonie Wyffels
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium.
- Department of Nuclear Medicine, University Hospital Antwerp, Wilrijkstraat 10, 2650, Edegem, Belgium.
| |
Collapse
|
17
|
Clear KJ, Harmatys KM, Rice DR, Wolter WR, Suckow MA, Wang Y, Rusckowski M, Smith BD. Phenoxide-Bridged Zinc(II)-Bis(dipicolylamine) Probes for Molecular Imaging of Cell Death. Bioconjug Chem 2015; 27:363-75. [PMID: 26334386 DOI: 10.1021/acs.bioconjchem.5b00447] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cell death is involved in many pathological conditions, and there is a need for clinical and preclinical imaging agents that can target and report cell death. One of the best known biomarkers of cell death is exposure of the anionic phospholipid phosphatidylserine (PS) on the surface of dead and dying cells. Synthetic zinc(II)-bis(dipicolylamine) (Zn2BDPA) coordination complexes are known to selectively recognize PS-rich membranes and act as cell death molecular imaging agents. However, there is a need to improve in vivo imaging performance by selectively increasing target affinity and decreasing off-target accumulation. This present study compared the cell death targeting ability of two new deep-red fluorescent probes containing phenoxide-bridged Zn2BDPA complexes. One probe was a bivalent version of the other and associated more strongly with PS-rich liposome membranes. However, the bivalent probe exhibited self-quenching on the membrane surface, so the monovalent version produced brighter micrographs of dead and dying cells in cell culture and also better fluorescence imaging contrast in two living animal models of cell death (rat implanted tumor with necrotic core and mouse thymus atrophy). An (111)In-labeled radiotracer version of the monovalent probe also exhibited selective cell death targeting ability in the mouse thymus atrophy model, with relatively high amounts detected in dead and dying tissue and low off-target accumulation in nonclearance organs. The in vivo biodistribution profile is the most favorable yet reported for a Zn2BDPA complex; thus, the monovalent phenoxide-bridged Zn2BDPA scaffold is a promising candidate for further development as a cell death imaging agent in living subjects.
Collapse
Affiliation(s)
- Kasey J Clear
- Department of Chemistry and Biochemistry, University of Notre Dame , 236 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Kara M Harmatys
- Department of Chemistry and Biochemistry, University of Notre Dame , 236 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Douglas R Rice
- Department of Chemistry and Biochemistry, University of Notre Dame , 236 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - William R Wolter
- Freimann Life Science Center, University of Notre Dame , 400 Galvin Life Science, Notre Dame, Indiana 46556, United States
| | - Mark A Suckow
- Freimann Life Science Center, University of Notre Dame , 400 Galvin Life Science, Notre Dame, Indiana 46556, United States
| | - Yuzhen Wang
- Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School , Worcester, Massachusetts 01655, United States
| | - Mary Rusckowski
- Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School , Worcester, Massachusetts 01655, United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame , 236 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
18
|
Rice DR, Plaunt AJ, Turkyilmaz S, Smith M, Wang Y, Rusckowski M, Smith BD. Evaluation of [¹¹¹In]-labeled zinc-dipicolylamine tracers for SPECT imaging of bacterial infection. Mol Imaging Biol 2015; 17:204-13. [PMID: 25115869 PMCID: PMC4515950 DOI: 10.1007/s11307-014-0758-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE This study prepared three structurally related zinc-dipicolylamine (ZnDPA) tracers with [(111)In] labels and conducted biodistribution and single-photon emission computed tomography/computed tomography (SPECT/CT) imaging studies of a mouse leg infection model. PROCEDURES Two monovalent tracers, ZnDPA-[(111)In]DTPA and ZnDPA-[(111)In]DOTA, each with a single zinc-dipicolylamine targeting unit, and a divalent tracer, Bis(ZnDPA)-[(111)In]DTPA, with two zinc-dipicolylamine units were prepared. Organ biodistribution and SPECT and CT imaging studies were performed on living mice with a leg infection created by injection of clinically relevant Gram positive Streptococcus pyogenes. Fluorescent and luminescent Eu(3+)-labeled versions of these tracers were also prepared and used to measure relative affinity for the exterior membrane surface of bacterial cells and mimics of healthy mammalian cells. RESULTS All three (111)In-labeled radiotracers were prepared with a radiopurity of >90 %. The biodistribution studies showed that the two monovalent tracers were cleared from the body through the liver and kidney, with retained percentage injected dose for all organs of <8 % at 20 h and infected leg target to non-target ratio (T/NT) ratio of ≤3.0. Clearance of the divalent tracer from the bloodstream was slower and primarily through the liver, with a retained percentage injected dose for all organs <37 % at 20 h and T/NT ratio rising to 6.2 after 20 h. The SPECT/CT imaging indicated the same large difference in tracer pharmacokinetics and higher accumulation of the divalent tracer at the site of infection. CONCLUSIONS All three [(111)In]-ZnDPA tracers selectively targeted the site of a clinically relevant mouse infection model that could not be discerned by visual external inspection of the living animal. The highest target selectivity, observed with a divalent tracer equipped with two zinc-dipicolylamine targeting units, compares quite favorably with the imaging selectivities previously reported for other nuclear tracers that target bacterial cell surfaces. The tracer pharmacokinetics depended heavily on tracer molecular structure suggesting that it may be possible to rapidly fine tune the structural properties for optimized in vivo imaging performance and clinical translation.
Collapse
Affiliation(s)
- Douglas R Rice
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Characterization of 18F-dipicolylamine (DPA) derivatives in cells infected with influenza virus. Nucl Med Biol 2015; 42:283-91. [DOI: 10.1016/j.nucmedbio.2014.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/08/2014] [Accepted: 11/24/2014] [Indexed: 01/03/2023]
|
20
|
Zeng W, Wang X, Xu P, Liu G, Eden HS, Chen X. Molecular imaging of apoptosis: from micro to macro. Theranostics 2015; 5:559-82. [PMID: 25825597 PMCID: PMC4377726 DOI: 10.7150/thno.11548] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/18/2015] [Indexed: 12/21/2022] Open
Abstract
Apoptosis, or programmed cell death, is involved in numerous human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer, and is often confused with other types of cell death. Therefore strategies that enable visualized detection of apoptosis would be of enormous benefit in the clinic for diagnosis, patient management, and development of new therapies. In recent years, improved understanding of the apoptotic machinery and progress in imaging modalities have provided opportunities for researchers to formulate microscopic and macroscopic imaging strategies based on well-defined molecular markers and/or physiological features. Correspondingly, a large collection of apoptosis imaging probes and approaches have been documented in preclinical and clinical studies. In this review, we mainly discuss microscopic imaging assays and macroscopic imaging probes, ranging in complexity from simple attachments of reporter moieties to proteins that interact with apoptotic biomarkers, to rationally designed probes that target biochemical changes. Their clinical translation will also be our focus.
Collapse
|
21
|
Abstract
The main focus of this review is to discuss recent advances in nanoparticle-based multi-drug delivery platforms towards combination therapy.
Collapse
Affiliation(s)
- Suresh Gadde
- Department of Biochemistry
- Microbiology and Immunology
- University of Ottawa
- Ottawa
- Canada
| |
Collapse
|
22
|
Palmowski K, Rix A, Lederle W, Behrendt FF, Mottaghy FM, Gray BD, Pak KY, Palmowski M, Kiessling F. A low molecular weight zinc2+-dipicolylamine-based probe detects apoptosis during tumour treatment better than an annexin V-based probe. Eur Radiol 2014; 24:363-70. [PMID: 24121671 DOI: 10.1007/s00330-013-3014-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 02/01/2023]
Abstract
OBJECTIVES Molecular imaging of apoptosis is frequently discussed for monitoring cancer therapies. Here, we compare the low molecular weight phosphatidylserine-targeting ligand zinc2+-dipicolylamine (Zn2+-DPA) with the established but reasonably larger protein annexin V. METHODS Molecular apoptosis imaging with the fluorescently labelled probes annexin V (750 nm, 36 kDa) and Zn2+-DPA (794 nm, 1.84 kDa) was performed in tumour-bearing mice (A431). Three animal groups were investigated: untreated controls and treated tumours after 1 or 4 days of anti-angiogenic therapy (SU11248). Additionally, μPET with 18 F-FDG was performed. Imaging data were displayed as tumour-to-muscle ratio (TMR) and validated by quantitative immunohistochemistry. RESULTS Compared with untreated control tumours, TUNEL staining indicated significant apoptosis after 1 day (P < 0.05) and 4 days (P < 0.01) of treatment. Concordantly, Zn2+-DPA uptake increased significantly after 1 day (P < 0.05) and 4 days (P < 0.01). Surprisingly, annexin V failed to detect significant differences between control and treated animals. Contrary to the increasing uptake of Zn2+-DPA, 18 F-FDG tumour uptake decreased significantly at days 1 (P < 0.05) and 4 (P < 0.01). CONCLUSIONS Increase in apoptosis during anti-angiogenic therapy was detected significantly better with the low molecular weight probe Zn2+-DPA than with the annexin V-based probe. Additionally, significant treatment effects were detectable as early using Zn2+-DPA as with measurements of the glucose metabolism using 18 F-FDG. KEY POINTS • The detection of apoptosis by non-invasive imaging is important in oncology. • A new low molecular weight probe Zn2+-DPA shows promise in depicting anti-angiogenic effects. • The small Zn2+-DPA ligand appears well suited for monitoring therapy. • Treatment effects are detectable just as early with Zn2+-DPA as with 18F-FDG.
Collapse
|
23
|
Radiolabeled apoptosis imaging agents for early detection of response to therapy. ScientificWorldJournal 2014; 2014:732603. [PMID: 25383382 PMCID: PMC4212626 DOI: 10.1155/2014/732603] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 12/12/2022] Open
Abstract
Since apoptosis plays an important role in maintaining homeostasis and is associated with responses to therapy, molecular imaging of apoptotic cells could be useful for early detection of therapeutic effects, particularly in oncology. Radiolabeled annexin V compounds are the hallmark in apoptosis imaging in vivo. These compounds are reviewed from the genesis of apoptosis (cell death) imaging agents up to recent years. They have some disadvantages, including slow clearance and immunogenicity, because they are protein-based imaging agents. For this reason, several studies have been conducted in recent years to develop low molecule apoptosis imaging agents. In this review, radiolabeled phosphatidylserine targeted peptides, radiolabeled bis(zinc(II)-dipicolylamine) complex, radiolabeled 5-fluoropentyl-2-methyl-malonic acid (ML-10), caspase-3 activity imaging agents, radiolabeled duramycin, and radiolabeled phosphonium cation are reviewed as promising low-molecular-weight apoptosis imaging agents.
Collapse
|
24
|
Kwong JMK, Hoang C, Dukes RT, Yee RW, Gray BD, Pak KY, Caprioli J. Bis(zinc-dipicolylamine), Zn-DPA, a new marker for apoptosis. Invest Ophthalmol Vis Sci 2014; 55:4913-21. [PMID: 25034598 DOI: 10.1167/iovs.13-13346] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To characterize the labeling of apoptotic cells with a molecular probe of bis(zinc(II)-dipicolylamine) (Zn-DPA) conjugated with a fluorescent reporter in a rat model of retinal ganglion cell (RGC) degeneration induced by N-methyl-D-aspartate (NMDA). METHODS Adult Wistar rats were given unilateral intravitreal injections of 3 μL 40 mM neutralized NMDA and euthanized at 1, 2, 4, 24, and 48 hours. One hour before euthanasia, 3 μL Zn-DPA conjugated with fluorescein (Zn-DPA 480) was intravitreally injected. Prelabeling of RGC with retrograde fluorogold (FG), TUNEL, and immunohistochemistry with III β-tubulin and vimentin were performed. RESULTS Fluorescence labeling of Zn-DPA 480 was observed in the retinas from 1 hour up to 24 hours after NMDA injection, whereas the labeling was reduced at 48 hours postinjection. At both 4 and 24 hours postinjection, most Zn-DPA 480-positive cells in the RGC layer were labeled by FG and III β-tubulin. The number of TUNEL-positive cells increased from 4 to 24 hours. At 24 hours, 95.7% of Zn-DPA 480-positive cells were TUNEL positive, whereas 95.1% of TUNEL-positive cells were Zn-DPA 480 positive. The numbers of Zn-DPA 480-positive cells at 1 and 2 hours after NMDA injection were significantly higher than TUNEL. CONCLUSIONS Our findings demonstrate that intravitreal injection of fluorescent Zn-DPA 480 labels retinal neurons undergoing apoptosis and that recognition of exposed phosphatidylserine appears earlier than detection of DNA fragmentation, indicating the potential of Zn-DPA as an imaging probe for tracking degenerating retinal neurons.
Collapse
Affiliation(s)
- Jacky M K Kwong
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| | - Celia Hoang
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| | - Reshil T Dukes
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| | - Richard W Yee
- Cizik Eye Clinic, Hermann University Eye Associates, Houston, Texas, United States
| | - Brian D Gray
- Molecular Targeting Technologies, Inc., West Chester, Pennsylvania, United States
| | - Koon Y Pak
- Molecular Targeting Technologies, Inc., West Chester, Pennsylvania, United States
| | - Joseph Caprioli
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| |
Collapse
|
25
|
Wang H, Tang G, Hu K, Huang T, Liang X, Li S, Wu Z. PET imaging of sterile inflammation with a 18F-labeled bis(zinc(II)-dipicolylamine) complex. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3265-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Eggleston H, Panizzi P. Molecular imaging of bacterial infections in vivo: the discrimination of infection from inflammation. INFORMATICS (MDPI) 2014; 1:72-99. [PMID: 26985401 PMCID: PMC4790455 DOI: 10.3390/informatics1010072] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular imaging by definition is the visualization of molecular and cellular processes within a given system. The modalities and reagents described here represent a diverse array spanning both pre-clinical and clinical applications. Innovations in probe design and technologies would greatly benefit therapeutic outcomes by enhancing diagnostic accuracy and assessment of acute therapy. Opportunistic pathogens continue to pose a worldwide threat, despite advancements in treatment strategies, which highlights the continued need for improved diagnostics. In this review, we present a summary of the current clinical protocol for the imaging of a suspected infection, methods currently in development to optimize this imaging process, and finally, insight into endocarditis as a model of infectious disease in immediate need of improved diagnostic methods.
Collapse
Affiliation(s)
- Heather Eggleston
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849
| | - Peter Panizzi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849
| |
Collapse
|
27
|
Choi KY, Silvestre OF, Huang X, Min KH, Howard GP, Hida N, Jin AJ, Carvajal N, Lee SW, Hong JI, Chen X. Versatile RNA interference nanoplatform for systemic delivery of RNAs. ACS NANO 2014; 8:4559-70. [PMID: 24779637 PMCID: PMC4046792 DOI: 10.1021/nn500085k] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 04/29/2014] [Indexed: 05/21/2023]
Abstract
Development of nontoxic, tumor-targetable, and potent in vivo RNA delivery systems remains an arduous challenge for clinical application of RNAi therapeutics. Herein, we report a versatile RNAi nanoplatform based on tumor-targeted and pH-responsive nanoformulas (NFs). The NF was engineered by combination of an artificial RNA receptor, Zn(II)-DPA, with a tumor-targetable and drug-loadable hyaluronic acid nanoparticle, which was further modified with a calcium phosphate (CaP) coating by in situ mineralization. The NF can encapsulate small-molecule drugs within its hydrophobic inner core and strongly secure various RNA molecules (siRNAs, miRNAs, and oligonucleotides) by utilizing Zn(II)-DPA and a robust CaP coating. We substantiated the versatility of the RNAi nanoplatform by demonstrating effective delivery of siRNA and miRNA for gene silencing or miRNA replacement into different human types of cancer cells in vitro and into tumor-bearing mice in vivo by intravenous administration. The therapeutic potential of NFs coloaded with an anticancer drug doxorubicin (Dox) and multidrug resistance 1 gene target siRNA (siMDR) was also demonstrated in this study. NFs loaded with Dox and siMDR could successfully sensitize drug-resistant OVCAR8/ADR cells to Dox and suppress OVCAR8/ADR tumor cell proliferation in vitro and tumor growth in vivo. This gene/drug delivery system appears to be a highly effective nonviral method to deliver chemo- and RNAi therapeutics into host cells.
Collapse
Affiliation(s)
- Ki Young Choi
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
- Department of Chemical Engineering and the David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Oscar F. Silvestre
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xinglu Huang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kyung Hyun Min
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gregory P. Howard
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Naoki Hida
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Albert J. Jin
- Department of Chemical Engineering and the David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nicole Carvajal
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sang Wook Lee
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Jong-In Hong
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
- Address correspondence to
| |
Collapse
|
28
|
Plaunt AJ, Harmatys KM, Wolter WR, Suckow MA, Smith BD. Library synthesis, screening, and discovery of modified Zinc(II)-Bis(dipicolylamine) probe for enhanced molecular imaging of cell death. Bioconjug Chem 2014; 25:724-37. [PMID: 24575875 PMCID: PMC3993938 DOI: 10.1021/bc500003x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Zinc(II)-bis(dipicolylamine)
(Zn-BDPA) coordination complexes selectively
target the surfaces of dead and dying mammalian cells, and they have
promise as molecular probes for imaging cell death. A necessary step
toward eventual clinical imaging applications is the development of
next-generation Zn-BDPA complexes with enhanced affinity for the cell
death membrane biomarker, phosphatidylserine (PS). This study employed
an iterative cycle of library synthesis and screening, using a novel
rapid equilibrium dialysis assay, to discover a modified Zn-BDPA structure
with high and selective affinity for vesicles containing PS. The lead
structure was converted into a deep-red fluorescent probe and its
targeting and imaging performance was compared with an unmodified
control Zn-BDPA probe. The evaluation process included a series of
FRET-based vesicle titration studies, cell microscopy experiments,
and rat tumor biodistribution measurements. In all cases, the modified
probe exhibited comparatively higher affinity and selectivity for
the target membranes of dead and dying cells. The results show that
this next-generation deep-red fluorescent Zn-BDPA probe is well suited
for preclinical molecular imaging of cell death in cell cultures and
animal models. Furthermore, it should be possible to substitute the
deep-red fluorophore with alternative reporter groups that enable
clinically useful, deep-tissue imaging modalities, such as MRI and
nuclear imaging.
Collapse
Affiliation(s)
- Adam J Plaunt
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall and ‡Department of Biological Science, Galvin Life Sciences, University of Notre Dame , Notre Dame, 46556 Indiana, United States
| | | | | | | | | |
Collapse
|
29
|
Wang H, Tang X, Tang G, Huang T, Liang X, Hu K, Deng H, Yi C, Shi X, Wu K. Noninvasive positron emission tomography imaging of cell death using a novel small-molecule probe, (18)F labeled bis(zinc(II)-dipicolylamine) complex. Apoptosis 2014; 18:1017-27. [PMID: 23613106 DOI: 10.1007/s10495-013-0852-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The synthetic bis(zinc(II)-dipicolylamine) (DPAZn2) coordination complexes are known to have a high specific and selective affinity to target the exposed phosphatidylserine (PS) on the surface of dead and dying cells. An (18)F-labeled DPAZn2 complex (4-(18)F-Fluoro-benzoyl-bis(zinc(II)-dipicolylamine), (18)F-FB-DPAZn2) as positron emission tomography (PET) tracer was developed and evaluated for in vivo imaging of tumor treated with a chemical agent. The in vitro cell stain studies revealed that fluorescent DPAZn2 complexes (Dansyl-DPAZn2) stained the same cells (apoptotic and necrotic cells) as fluorescein isothiocyanate (FITC) labeled Annexin V (FITC-Annexin V). The radiosynthesis of (18)F-FB-DPAZn2 was achieved through the amidation the precursor bis(2,2'-dipicolylamine) derivative (DPA2) with the prosthetic group N-succinimidyl-4-[(18)F]-fluorobenzoate ((18)F-SFB) and chelation with zinc nitrate. In the biodistribution study, the fast clearance of (18)F-FB-DPAZn2 from blood and kidney was observed and high uptake in liver and intestine within 90 min postinjection was also found. For the PET imaging, significantly higher tumor uptake of (18)F-FB-DPAZn2 was observed in the adriamycin (ADM)-treated Hepa1-6 hepatocellular carcinoma-bearing mice than that in the untreated tumor-model mice, while a slightly decreased tumor uptake of (18)F-FDG was found in the ADM-treated tumor-bearing mice. The results indicate that (18)F-FB-DPAZn2 has the similar capability of apoptosis detection as FITC-Annexin V and seems to be a potential PET tracer for noninvasive evaluation and monitoring of anti-tumor chemotherapy. The high uptake of (18)F-FB-DPAZn2 in the abdomen needs to optimize the structure for improving its pharmacokinetics characteristics in the future work.
Collapse
Affiliation(s)
- Hongliang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ogasawara A, Tinianow JN, Vanderbilt AN, Gill HS, Yee S, Flores JE, Williams SP, Ashkenazi A, Marik J. ImmunoPET imaging of phosphatidylserine in pro-apoptotic therapy treated tumor models. Nucl Med Biol 2013; 40:15-22. [DOI: 10.1016/j.nucmedbio.2012.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 12/11/2022]
|
31
|
Smith BA, Smith BD. Biomarkers and molecular probes for cell death imaging and targeted therapeutics. Bioconjug Chem 2012; 23:1989-2006. [PMID: 22989049 DOI: 10.1021/bc3003309] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell death is a critically important biological process. Disruption of homeostasis, either by excessive or deficient cell death, is a hallmark of many pathological conditions. Recent research advances have greatly increased our molecular understanding of cell death and its role in a range of diseases and therapeutic treatments. Central to these ongoing research and clinical efforts is the need for imaging technologies that can locate and identify cell death in a wide array of in vitro and in vivo biomedical samples with varied spatiotemporal requirements. This review article summarizes community efforts over the past five years to identify useful biomarkers for dead and dying cells, and to develop molecular probes that target these biomarkers for optical, radionuclear, or magnetic resonance imaging. Apoptosis biomarkers are classified as either intracellular (caspase enzymes, mitochondrial membrane potential, cytosolic proteins) or extracellular (plasma membrane phospholipids, membrane potential, surface exposed histones). Necrosis, autophagy, and senescence biomarkers are described, as well as unexplored cell death biomarkers. The article discusses possible chemotherapeutic and theranostic strategies, and concludes with a summary of current challenges and expected eventual rewards of clinical cell death imaging.
Collapse
Affiliation(s)
- Bryan A Smith
- Department of Chemistry and Biochemistry, Notre Dame Integrated Imaging Facility, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
32
|
Ngo HT, Liu X, Jolliffe KA. Anion recognition and sensing with Zn(II)-dipicolylamine complexes. Chem Soc Rev 2012; 41:4928-65. [PMID: 22688834 DOI: 10.1039/c2cs35087d] [Citation(s) in RCA: 278] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This critical review covers the developments in anion recognition and sensing using Zn(II)-dipicolylamine functionalized receptors over the past decade with emphasis on recent rapid advances in the last five years.
Collapse
Affiliation(s)
- Huy Tien Ngo
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
33
|
Li J, Gray BD, Pak KY, Ng CK. Optimization of labeling dipicolylamine derivative, N,N'-(5-(4-aminobutoxy)-1,3-phenylene)bis(methylene)bis(1-(pyridin-2-yl)-N-(pyridin-2-ylmethyl)methanamine), with three 18F-prosthetic groups as potential imaging agents for metastatic infectious disease. J Labelled Comp Radiopharm 2012. [DOI: 10.1002/jlcr.2911] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Junling Li
- Department of Diagnostic Radiology; University of Louisville; Louisville; KY; USA
| | - Brian D. Gray
- Molecular Targeting Technologies, Inc.; West Chester; PA; USA
| | - Koon Y Pak
- Molecular Targeting Technologies, Inc.; West Chester; PA; USA
| | - Chin K. Ng
- Department of Diagnostic Radiology; University of Louisville; Louisville; KY; USA
| |
Collapse
|
34
|
Liu X, Cheng D, Gray BD, Wang Y, Akalin A, Rusckowski M, Pak KY, Hnatowich DJ. Radiolabeled Zn-DPA as a potential infection imaging agent. Nucl Med Biol 2012; 39:709-14. [PMID: 22321532 DOI: 10.1016/j.nucmedbio.2011.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 11/17/2011] [Accepted: 12/07/2011] [Indexed: 10/14/2022]
Abstract
INTRODUCTION A zinc-dipicolylamine analog (Zn-DPA) conjugated with a fluorophore (PSVue®794) has been shown to image bacterial infections in mice. However, radiolabeled Zn-DPA has not previously been considered for nuclear imaging of infection. METHODS Both 111In-labeled DOTA-biotin and Zn-DPA-biotin were combined using streptavidin (SA) as a noncovalent linker. Mice injected intramuscularly with Streptococcus pyogenes (infection model) or with lipopolysaccharide (LPS) (inflammation model) were coinjected intravenously with 6 μg of DPA as PSVue794 and as 111In-DOTA-biotin/SA/biotin-Zn-DPA. Periodic fluorescent and SPECT (single photon emission computed tomography)/CT (computed tomography) images were acquired, and biodistributions were obtained at 22 h. RESULTS Histological examination confirmed the validity of both the infection and inflammation animal models. Both the whole-body optical and nuclear images showed obvious accumulations in the target thigh in both models at all time points. At 22 h, the average target thigh accumulation of 111In was 1.66%ID/g (S.D. 0.15) in the infection mice compared to 0.58%ID/g (S.D. 0.07) in the inflammation mice (P<.01), and the 111In target/normal thigh ratio was 2.8 fold higher in the infection animals compared to the inflammation animals. CONCLUSIONS These preliminary results show that Zn-DPA within streptavidin targets S. pyogenes-infected mice similarly to its free fluorescent analogue. The significantly higher accumulation in the live bacterial infection thigh compared to that of the LPS-induced inflammation thigh suggests that Zn-DPA may be a promising imaging agent to distinguish between bacterial infections and sterile inflammations.
Collapse
Affiliation(s)
- Xinrong Liu
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | | | | | |
Collapse
|