1
|
Inhibition of SERCA and PMCA Ca 2+-ATPase activities by polyoxotungstates. J Inorg Biochem 2022; 236:111952. [PMID: 36049257 DOI: 10.1016/j.jinorgbio.2022.111952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022]
Abstract
Plasma membrane calcium ATPases (PMCA) and sarco(endo) reticulum calcium ATPases (SERCA) are key proteins in the maintenance of calcium homeostasis. Herein, we compare for the first time the inhibition of SERCA and PMCA calcium pumps by several polyoxotungstates (POTs), namely by Wells-Dawson phosphotungstate anions [P2W18O62]6- (intact, {P2W18}), [P2W17O61]10- (monolacunary, {P2W17}), [P2W15O56]12- (trilacunary, {P2W15}), [H2P2W12O48]12- (hexalacunary, {P2W12}), [H3P2W15V3O62]6- (trivanadium-substituted, {P2W15V3}) and by Preyssler-type anion [NaP5W30O110]14- ({P5W30}). The speciation in the solutions of tested POTs was investigated by 31P and 51V NMR spectroscopy. The tested POTs inhibited SERCA Ca2+-ATPase activity, whereby the Preyssler POT showed the strongest effect, with an IC50 value of 0.37 μM. For {P2W17} and {P2W15V3} higher IC50 values were determined: 0.72 and 0.95 μM, respectively. The studied POTs showed to be more potent inhibitors of PMCA Ca2+-ATPase activity, with lower IC50 values for {P2W17}, {P5W30} and {P2W15V3}.
Collapse
|
2
|
Zarroug R, Artetxe B, Ayed B, López X, Ribeiro N, Correia I, Pessoa JC. New phosphotetradecavanadate hybrids: crystal structure, DFT analysis, stability and binding interactions with bio-macromolecules. Dalton Trans 2022; 51:8303-8317. [PMID: 35583072 DOI: 10.1039/d2dt00690a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two novel bicapped Keggin polyoxidovanadates with organic cations, (C6H8N)5[H4PV14O42]·5H2O (1) and (C6H14N4)2(NH4)[H4PV14O42]·11H2O (2), (PV14O426- = PV14, C6H7N = 3-picoline and C6H12N4 = methenamine) were synthesized. These compounds were isolated and characterized in the solid state and in solution by elemental analysis, powder X-ray diffraction, FTIR, UV-vis, 51V, 31P, 13C and 1H NMR, and fluorescence spectroscopy. Further confirmation of the PV14 structures was obtained by single-crystal X-ray diffraction studies of 1 and 2. The Hirshfeld surface analysis was performed to confirm that within the intermolecular interactions occurring in the two crystals, the O⋯H/H⋯O, O⋯O and H⋯H interactions dominate. The protonation and one-electron reduction of the PV14 moiety were also analysed by means of DFT calculations; besides confirming the protonation sites and correctly predicting the pKa values, the DFT results also indicate that molecular reduction is energetically more favourable in protonated PV14 anions. Upon the addition of PV14 anions to bovine serum albumin (BSA) up to a ratio of 1 : 1, the fluorescence decreased by 45% for both 1 and 2, indicating that the interaction of vanadium-containing species with this protein takes place; log(KSV) values of ca. 5.5 were obtained in both systems. Upon the addition of 1 or 2 to solutions of calf-thymus DNA (ctDNA), changes were observed in the UV-vis absorption and circular dichroism spectra. The significance of the changes observed is discussed considering the several V-containing species that form in the solution.
Collapse
Affiliation(s)
- Rim Zarroug
- University of Monastir, Laboratory of Physico-Chemistry of Materials LR01ES19, Faculty of Sciences of Monastir, Tunisia.,Department of Chemistry, Faculty of Sciences, University of Gabes, Tunisia
| | - Beñat Artetxe
- Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain
| | - Brahim Ayed
- University of Monastir, Laboratory of Physico-Chemistry of Materials LR01ES19, Faculty of Sciences of Monastir, Tunisia
| | - Xavier López
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Nádia Ribeiro
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Isabel Correia
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - João Costa Pessoa
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
3
|
Yao S, Falaise C, Leclerc N, Roch-Marchal C, Haouas M, Cadot E. Improvement of the Hydrolytic Stability of the Keggin Molybdo- and Tungsto-Phosphate Anions by Cyclodextrins. Inorg Chem 2022; 61:4193-4203. [PMID: 35179360 DOI: 10.1021/acs.inorgchem.2c00095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Keggin-type molybdo- and tungsto-phosphate polyoxoanions are among the most popular polyoxometalates (POMs) but suffer from their limited stability at low pH in aqueous solution. Their superchaotropic properties generate strong supramolecular complexes with cyclodextrins (CDs), which significantly affect the hydrolytic stability of POM. This chaotropically driven stabilization effect was systematically monitored by 31P NMR spectroscopy covering a wide range of pH (from 0 to 8) and varying the nature of the CD (α-, β-, and γ-form). A shift of ca. two pH units of the stability domains of these POMs was found in the presence of two equivalents of γ-CD compared to pure water, leading to keep intact the PW12O403- anion without any decomposition up to pH 3.5 (versus 1.5 in pure water) and pH 2.5 for PMo12O403-, which begins to decompose even at pH 0 in pure water. The effect of the smaller CDs (α- and β-form) is much less pronounced (only 0.5 pH units shift of the stability domain) confirming the importance of host-guest size matching to form a sandwich-type inclusion complex and thus protect the POM structure against basic hydrolysis. Such complexation was further supported by 183W and 1H NMR spectroscopy. Finally, using quantitative 31P NMR analyses, the new speciation and formation constants of phospho-molybdates and phospho-tungstates in the presence of cyclodextrins are determined and compared to those previously reported in pure water or in the 50:50 water/1,4-dioxane mixture.
Collapse
Affiliation(s)
- Sa Yao
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| | - Clément Falaise
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| | - Nathalie Leclerc
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| | - Catherine Roch-Marchal
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| |
Collapse
|
4
|
Čolović MB. Meet the Editorial Board Member. Curr Med Chem 2022. [DOI: 10.2174/092986732904220207113045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Čolović MB, Lacković M, Lalatović J, Mougharbel AS, Kortz U, Krstić DZ. Polyoxometalates in Biomedicine: Update and Overview. Curr Med Chem 2020; 27:362-379. [PMID: 31453779 DOI: 10.2174/0929867326666190827153532] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/30/2019] [Accepted: 08/20/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Polyoxometalates (POMs) are negatively charged metal-oxo clusters of early transition metal ions in high oxidation states (e.g., WVI, MoVI, VV). POMs are of interest in the fields of catalysis, electronics, magnetic materials and nanotechnology. Moreover, POMs were shown to exhibit biological activities in vitro and in vivo, such as antitumor, antimicrobial, and antidiabetic. METHODS The literature search for this peer-reviewed article was performed using PubMed and Scopus databases with the help of appropriate keywords. RESULTS This review gives a comprehensive overview of recent studies regarding biological activities of polyoxometalates, and their biomedical applications as promising anti-viral, anti-bacterial, anti-tumor, and anti-diabetic agents. Additionally, their putative mechanisms of action and molecular targets are particularly considered. CONCLUSION Although a wide range of biological activities of Polyoxometalates (POMs) has been reported, they are to the best of our knowledge not close to a clinical trial or a final application in the treatment of diabetes or infectious and malignant diseases. Accordingly, further studies should be directed towards determining the mechanism of POM biological actions, which would enable fine-tuning at the molecular level, and consequently efficient action towards biological targets and as low toxicity as possible. Furthermore, biomedical studies should be performed on solutionstable POMs employing physiological conditions and concentrations.
Collapse
Affiliation(s)
- Mirjana B Čolović
- Department of Physical Chemistry, "Vinca" Institute of Nuclear Sciences, University of Belgrade, Belgrade 11,000, Serbia
| | - Milan Lacković
- University Clinical Hospital Center dr Dragisa Misovic-Dedinje, Belgrade 11,000, Serbia
| | - Jovana Lalatović
- Faculty of Medicine, University of Belgrade, Belgrade 11,000, Serbia
| | - Ali S Mougharbel
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Ulrich Kortz
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Danijela Z Krstić
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade, Belgrade 11,000, Serbia
| |
Collapse
|
6
|
Fraqueza G, Fuentes J, Krivosudský L, Dutta S, Mal SS, Roller A, Giester G, Rompel A, Aureliano M. Inhibition of Na +/K +- and Ca 2+-ATPase activities by phosphotetradecavanadate. J Inorg Biochem 2019; 197:110700. [PMID: 31075720 DOI: 10.1016/j.jinorgbio.2019.110700] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/16/2019] [Accepted: 04/25/2019] [Indexed: 02/07/2023]
Abstract
Polyoxometalates (POMs) are promising inorganic inhibitors for P-type ATPases. The experimental models used to study the effects of POMs on these ATPases are usually in vitro models using vesicles from several membrane sources. Very recently, some polyoxotungstates, such as the Dawson anion [P2W18O62]6-, were shown to be potent P-type ATPase inhibitors; being active in vitro as well as in ex-vivo. In the present study we broaden the spectrum of highly active inhibitors of Na+/K+-ATPase from basal membrane of epithelial skin to the bi-capped Keggin-type anion phosphotetradecavanadate Cs5.6H3.4PV14O42 (PV14) and we confront the data with activity of other commonly encountered polyoxovanadates, decavanadate (V10) and monovanadate (V1). The X-ray crystal structure of PV14 was solved and contains two trans-bicapped α-Keggin anions HxPV14O42(9-x)-. The anion is built up from the classical Keggin structure [(PO4)@(V12O36)] capped by two [VO] units. PV14 (10 μM) exhibited higher ex-vivo inhibitory effect on Na+/K+-ATPase (78%) than was observed at the same concentrations of V10 (66%) or V1 (33%). Moreover, PV14 is also a potent in vitro inhibitor of the Ca2+-ATPase activity (IC50 5 μM) exhibiting stronger inhibition than the previously reported activities for V10 (15 μM) and V1 (80 μM). Putting it all together, when compared both P-typye ATPases it is suggested that PV14 exibited a high potential to act as an in vivo inhibitor of the Na+/K+-ATPase associated with chloride secretion.
Collapse
Affiliation(s)
- Gil Fraqueza
- ISE, University of Algarve, 8005-139 Faro, Portugal; CCMar, University of Algarve, 8005-139 Faro, Portugal
| | - Juan Fuentes
- CCMar, University of Algarve, 8005-139 Faro, Portugal
| | - Lukáš Krivosudský
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstr. 14, 1090 Wien, Austria; Comenius University, Faculty of Natural Sciences, Department of Inorganic Chemistry, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Saikat Dutta
- Department of Chemistry, National Institute of Technology Karnataka, Mangalore 575025, Karnataka, India
| | - Sib Sankar Mal
- Department of Chemistry, National Institute of Technology Karnataka, Mangalore 575025, Karnataka, India.
| | - Alexander Roller
- Universität Wien, Fakultät für Chemie, Zentrum für Röntgenstrukturanalyse, 1090 Wien, Austria
| | - Gerald Giester
- Universität Wien, Fakultät für Geowissenschaften, Geographie und Astronomie, Institut für Mineralogie und Kristallographie, 1090 Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstr. 14, 1090 Wien, Austria.
| | - Manuel Aureliano
- CCMar, University of Algarve, 8005-139 Faro, Portugal; FCT, University of Algarve, 8005-139 Faro, Portugal.
| |
Collapse
|
7
|
Bošnjaković-Pavlović N, Xu X, Krstić D, Gillet JM, Wei Y, Wu P, Čolović M, Spasojević-de Biré A. Experimental and theoretical insights of functionalized hexavanadates on Na +/K +-ATPase activity; molecular interaction field, ab initio calculations and in vitro assays. J Inorg Biochem 2019; 198:110720. [PMID: 31150927 DOI: 10.1016/j.jinorgbio.2019.110720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/27/2019] [Accepted: 05/13/2019] [Indexed: 02/02/2023]
Abstract
The influence of three functionalized hexavanadates (V6): Na2 [V6O13{(OCH2)3CCH3}2], [H2]2 [V6O13{(OCH2)3CCH2OCOCH2CH3}2] and [(C4H9)4N]2 [V6O13{(OCH2)3CCH2OOC(CH3)2-COOH}2 on Na+/K+-ATPase activity, was investigated in vitro. Including compounds already tested by Xu et al. (Journal of Inorganic Biochemistry 161 (2016) 27-36), all functionalized hexavanadates inhibit the activity of Na+/K+-ATPase in a dose-dependent manner but with different inhibitory potencies. Na2 [V6O13{(OCH2)3CCH3}2] was found to have the best inhibition properties - showing 50% inhibition IC50 = 5.50 × 10-5 M, while [(C4H9)4N]2 [V6O13{(OCH2)3CCH2OOC(CH3)2-COOH}2] showed the lowest inhibitory power, IC50 = 1.31 × 10-4 M. In order to understand the bioactivity of functionalized hexavanadates series, we have also used a combined theoretical approach: determination of electrostatic potential from ab initio theoretical calculations and computation of the molecular interaction field (MIF) surface.
Collapse
Affiliation(s)
- Nada Bošnjaković-Pavlović
- Université Paris-Saclay, CentraleSupélec, Campus de Paris-Saclay, 8-10 rue Joliot-Curie, 91190 Gif-sur-Yvette, France; CNRS, UMR 8580, Laboratory "Structures Propriétés et Modélisation des Solides" (SPMS), Campus de Gif, 8-10 rue Joliot-Curie, 91190 Gif-sur-Yvette, France
| | - Xiao Xu
- Université Paris-Saclay, CentraleSupélec, Campus de Paris-Saclay, 8-10 rue Joliot-Curie, 91190 Gif-sur-Yvette, France; CNRS, UMR 8580, Laboratory "Structures Propriétés et Modélisation des Solides" (SPMS), Campus de Gif, 8-10 rue Joliot-Curie, 91190 Gif-sur-Yvette, France
| | - Danijela Krstić
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade, Serbia
| | - Jean-Michel Gillet
- Université Paris-Saclay, CentraleSupélec, Campus de Paris-Saclay, 8-10 rue Joliot-Curie, 91190 Gif-sur-Yvette, France; CNRS, UMR 8580, Laboratory "Structures Propriétés et Modélisation des Solides" (SPMS), Campus de Gif, 8-10 rue Joliot-Curie, 91190 Gif-sur-Yvette, France
| | - Yongge Wei
- Department of Chemistry, Tsinghua University, 100084 Beijing, PR China
| | - Pingfan Wu
- Institute of POM-based Materials, The Synergistic Innovation Center of Catalysis Materials of Hubei Province, Hubei University of Technology, 430086 Wuhan, Hubei Province, PR China
| | - Mirjana Čolović
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Serbia
| | - Anne Spasojević-de Biré
- Université Paris-Saclay, CentraleSupélec, Campus de Paris-Saclay, 8-10 rue Joliot-Curie, 91190 Gif-sur-Yvette, France; CNRS, UMR 8580, Laboratory "Structures Propriétés et Modélisation des Solides" (SPMS), Campus de Gif, 8-10 rue Joliot-Curie, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
8
|
Keggin-type polyoxotungstates as mushroom tyrosinase inhibitors - A speciation study. Sci Rep 2019; 9:5183. [PMID: 30914775 PMCID: PMC6435698 DOI: 10.1038/s41598-019-41261-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/19/2019] [Indexed: 02/04/2023] Open
Abstract
Mushroom tyrosinase abPPO4 is a commercially relevant polyphenol oxidase and has been being targeted for numerous inhibition studies including polyoxometalates (POMs). In the present work, its diphenolase activity was inhibited at pH 6.8 by a series of structurally related polyoxotungstates (POTs) of the α-Keggin archetype, exhibiting the general formula [Xn+W12O40](8−n)− in order to elucidate charge-dependent activity correlations. Kinetic data were obtained from the dopachrome assay and 183W NMR was applied to obtain crucial insights into the actual Keggin POT speciation in solution, facilitating a straightforward assignment of inhibition effects to the identified POT species. While [PW12O40]3− was completely hydrolyzed to its moderately active lacunary form Hx[PW11O39](7−x)− (Ki = 25.6 mM), [SiW12O40]4− showed the most pronounced inhibition effects with a Ki of 4.7 mM despite of partial hydrolysis to its ineffective lacunary form Hx[SiW11O39](8−x)−. More negative Keggin cluster charges of 5− and 6− generally resulted in preclusion of inhibitory efficacy as well as hydrolysis, but with the Ni-substituted cluster [PW11O39{Ni(H2O)}]5− enzymatic inhibition was clearly restored (Ki = 9.7 mM). The inhibitory capacity of the structurally intact Keggin POTs was found to be inversely correlated to their net charge. The here applied speciation strategy is of utmost importance for any biological POM application to identify the actually active POM species.
Collapse
|
9
|
Vandebroek L, De Zitter E, Ly HGT, Conić D, Mihaylov T, Sap A, Proost P, Pierloot K, Van Meervelt L, Parac-Vogt TN. Protein-Assisted Formation and Stabilization of Catalytically Active Polyoxometalate Species. Chemistry 2018; 24:10099-10108. [PMID: 29797738 DOI: 10.1002/chem.201802052] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/17/2018] [Indexed: 01/24/2023]
Abstract
The effect of the protein environment on the formation and stabilization of an elusive catalytically active polyoxometalate (POM) species, K6 [Hf(α2 -P2 W17 O61 )] (1), is reported. In the co-crystal of hen egg-white lysozyme (HEWL) with 1, the catalytically active monomeric species is observed, originating from the dimeric 1:2 POM form, while it is intrinsically unstable under physiological pH conditions. The protein-assisted dissociation of the dimeric POM was rationalized by means of DFT calculations. The dissociation process is unfavorable in bulk water, but becomes favorable in the protein-POM complex due to the low dielectric response at the protein surface. The crystal structure shows that the monomeric form is stabilized by electrostatic and water-mediated hydrogen bonding interactions with the protein. It interacts at three distinct sites, close to the aspartate-containing hydrolysis sites, demonstrating high selectivity towards peptide bonds containing this residue.
Collapse
Affiliation(s)
- Laurens Vandebroek
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Elke De Zitter
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Hong Giang Thi Ly
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Dragan Conić
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Tzvetan Mihaylov
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Annelies Sap
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Paul Proost
- Department of Microbiology and Immunology, Rega Institute, Herestraat 49 box 1042, 3000, Leuven, Belgium
| | - Kristine Pierloot
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Luc Van Meervelt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Tatjana N Parac-Vogt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| |
Collapse
|
10
|
El Fawal GF, Abu-Serie MM, Hassan MA, Elnouby MS. Hydroxyethyl cellulose hydrogel for wound dressing: Fabrication, characterization and in vitro evaluation. Int J Biol Macromol 2018; 111:649-659. [PMID: 29339283 DOI: 10.1016/j.ijbiomac.2018.01.040] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/25/2017] [Accepted: 01/07/2018] [Indexed: 01/15/2023]
|
11
|
Gumerova N, Krivosudský L, Fraqueza G, Breibeck J, Al-Sayed E, Tanuhadi E, Bijelic A, Fuentes J, Aureliano M, Rompel A. The P-type ATPase inhibiting potential of polyoxotungstates. Metallomics 2018; 10:287-295. [PMID: 29313547 PMCID: PMC5824666 DOI: 10.1039/c7mt00279c] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/30/2017] [Indexed: 02/05/2023]
Abstract
Polyoxometalates (POMs) are transition metal complexes that exhibit a broad diversity of structures and properties rendering them promising for biological purposes. POMs are able to inhibit a series of biologically important enzymes, including phosphatases, and thus are able to affect many biochemical processes. In the present study, we analyzed and compared the inhibitory effects of nine different polyoxotungstates (POTs) on two P-type ATPases, Ca2+-ATPase from skeletal muscle and Na+/K+-ATPase from basal membrane of skin epithelia. For Ca2+-ATPase inhibition, an in vitro study was performed and the strongest inhibitors were determined to be the large heteropolytungstate K9(C2H8N)5[H10Se2W29O103] (Se2W29) and the Dawson-type POT K6[α-P2W18O62] (P2W18) exhibiting IC50 values of 0.3 and 0.6 μM, respectively. Promising results were also shown for the Keggin-based POTs K6H2[CoW11TiO40] (CoW11Ti, IC50 = 4 μM) and Na10[α-SiW9O34] (SiW9, IC50 = 16 μM), K14[As2W19O67(H2O)] (As2W19, IC50 = 28 μM) and the lacunary Dawson K12[α-H2P2W12O48] (P2W12, IC50 = 11 μM), whereas low inhibitory potencies were observed for the isopolytungstate Na12[H4W22O74] (W22, IC50 = 68 μM) and the Anderson-type Na6[TeW6O24] (TeW6, IC50 = 200 μM). Regarding the inhibition of Na+/K+-ATPase activity, for the first time an ex vivo study was conducted using the opercular epithelium of killifish in order to investigate the effects of POTs on the epithelial chloride secretion. Interestingly, 1 μM of the most potent Ca2+-ATPase inhibitor, Se2W29, showed only a minor inhibitory effect (14% inhibition) on Na+/K+-ATPase activity, whereas almost total inhibition (99% inhibition) was achieved using P2W18. The remaining POTs exhibited similar inhibition rates on both ATPases. These results reveal the high potential of some POTs to act as P-type ATPase inhibitors, with Se2W29 showing high selectivity towards Ca2+-ATPase.
Collapse
Affiliation(s)
- Nadiia Gumerova
- Universität Wien , Fakultät für Chemie , Institut für Biophysikalische Chemie , Althanstraße. 14 , 1090 Wien , Austria . ; www.bpc.univie.ac.at
| | - Lukáš Krivosudský
- Universität Wien , Fakultät für Chemie , Institut für Biophysikalische Chemie , Althanstraße. 14 , 1090 Wien , Austria . ; www.bpc.univie.ac.at
| | - Gil Fraqueza
- Centre of Marine Sciences , University of Algarve , 8005-139 Faro , Portugal
- Institute of Engineering , University of Algarve , 8005-139 Faro , Portugal
| | - Joscha Breibeck
- Universität Wien , Fakultät für Chemie , Institut für Biophysikalische Chemie , Althanstraße. 14 , 1090 Wien , Austria . ; www.bpc.univie.ac.at
| | - Emir Al-Sayed
- Universität Wien , Fakultät für Chemie , Institut für Biophysikalische Chemie , Althanstraße. 14 , 1090 Wien , Austria . ; www.bpc.univie.ac.at
| | - Elias Tanuhadi
- Universität Wien , Fakultät für Chemie , Institut für Biophysikalische Chemie , Althanstraße. 14 , 1090 Wien , Austria . ; www.bpc.univie.ac.at
| | - Aleksandar Bijelic
- Universität Wien , Fakultät für Chemie , Institut für Biophysikalische Chemie , Althanstraße. 14 , 1090 Wien , Austria . ; www.bpc.univie.ac.at
| | - Juan Fuentes
- Centre of Marine Sciences , University of Algarve , 8005-139 Faro , Portugal
| | - Manuel Aureliano
- Centre of Marine Sciences , University of Algarve , 8005-139 Faro , Portugal
- Faculty of Sciences and Technology , University of Algarve , 8005-139 Faro , Portugal .
| | - Annette Rompel
- Universität Wien , Fakultät für Chemie , Institut für Biophysikalische Chemie , Althanstraße. 14 , 1090 Wien , Austria . ; www.bpc.univie.ac.at
| |
Collapse
|
12
|
Bošnjaković-Pavlović N, Bajuk-Bogdanović D, Zakrzewska J, Yan Z, Holclajtner-Antunović I, Gillet JM, Spasojević-de Biré A. Reactivity of 12-tungstophosphoric acid and its inhibitor potency toward Na + /K + -ATPase: A combined 31 P NMR study, ab initio calculations and crystallographic analysis. J Inorg Biochem 2017; 176:90-99. [DOI: 10.1016/j.jinorgbio.2017.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 07/23/2017] [Accepted: 08/22/2017] [Indexed: 02/06/2023]
|
13
|
Čolović MB, Medić B, Ćetković M, Kravić Stevović T, Stojanović M, Ayass WW, Mougharbel AS, Radenković M, Prostran M, Kortz U, Krstić DZ. Toxicity evaluation of two polyoxotungstates with anti-acetylcholinesterase activity. Toxicol Appl Pharmacol 2017; 333:68-75. [PMID: 28830837 DOI: 10.1016/j.taap.2017.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 10/19/2022]
Abstract
A toxicity evaluation of two Keggin-type heteropolytungstates, K7[Ti2PW10O40]·6H2O and K6H[SiV3W9O40]·3H2O, with different inhibitory potencies toward acetylcholinesterase activity (IC50 values of 1.04×10-6 and 4.80×10-4mol/L, respectively) was performed. Wistar albino rats were orally treated with single doses (5 and 50mg/kg) of both investigated compounds. The biochemical parameters of renal (serum urea and creatinine) and liver function (direct and total bilirubin, alanine transaminase, and aspartate aminotransferase) were determined after 24h and 14days. A histopathological analysis of liver tissue was carried out 14days after the polyoxotungstate administration. Both applied doses of the investigated compounds did not induce statistically significant alterations of the renal function markers. However, the polyoxotungstate treatment caused an increase in the activities of serum alanine transaminase and aspartate aminotransferase in a time- and concentration-dependent manner, although statistically significant changes in bilirubin concentrations were not observed. Furthermore, the detected hepatotoxic effect was confirmed by histhopathological analysis that suggested some reversible liver tissue damage two weeks after the treatment, especially in the case of K6H[SiV3W9O40]·3H2O. Accordingly, the toxicity of these two polyoxotungstates with anti-acetylcholinesterase effect cannot be considered as a severe one, but their potential clinical application would require a more complex toxicological study.
Collapse
Affiliation(s)
- Mirjana B Čolović
- Department of Physical Chemistry, "Vinča" Institute of Nuclear Sciences, University of Belgrade, Serbia
| | - Branislava Medić
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Serbia
| | - Mila Ćetković
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Serbia
| | - Tamara Kravić Stevović
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Serbia
| | - Marko Stojanović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Serbia
| | - Wassim W Ayass
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Ali S Mougharbel
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Miroslav Radenković
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Serbia
| | - Milica Prostran
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Serbia
| | - Ulrich Kortz
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany.
| | - Danijela Z Krstić
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade, Serbia.
| |
Collapse
|
14
|
Escobar Caicedo AM, Rengifo-Herrera JA, Florian P, Blanco MN, Romanelli GP, Pizzio LR. Valorization of biomass derivatives: Keggin heteropolyacids supported on titania as catalysts in the suitable synthesis of 2-phenoxyethyl-2-furoate. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2016.10.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Nastasijev B, Milosevic M, Janjic G, Stanic V, Vasic V. Gentiana lutea Extracts and their Constituents as Inhibitors of Synaptosomal Ecto-NTPDase. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.272.289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Lemus R, Venezia CF. An update to the toxicological profile for water-soluble and sparingly soluble tungsten substances. Crit Rev Toxicol 2015; 45:388-411. [PMID: 25695728 PMCID: PMC4732414 DOI: 10.3109/10408444.2014.1003422] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 12/28/2014] [Indexed: 12/08/2022]
Abstract
Tungsten is a relatively rare metal with numerous applications, most notably in machine tools, catalysts, and superalloys. In 2003, tungsten was nominated for study under the National Toxicology Program, and in 2011, it was nominated for human health assessment under the US Environmental Protection Agency's (EPA) Integrated Risk Information System. In 2005, the Agency for Toxic Substances and Disease Registry (ATSDR) issued a toxicological profile for tungsten, identifying several data gaps in the hazard assessment of tungsten. By filling the data gaps identified by the ATSDR, this review serves as an update to the toxicological profile for tungsten and tungsten substances. A PubMed literature search was conducted to identify reports published during the period 2004-2014, in order to gather relevant information related to tungsten toxicity. Additional information was also obtained directly from unpublished studies from within the tungsten industry. A systematic approach to evaluate the quality of data was conducted according to published criteria. This comprehensive review has gathered new toxicokinetic information and summarizes the details of acute and repeated-exposure studies that include reproductive, developmental, neurotoxicological, and immunotoxicological endpoints. Such new evidence involves several relevant studies that must be considered when regulators estimate and propose a tungsten reference or concentration dose.
Collapse
Affiliation(s)
- Ranulfo Lemus
- International Tungsten Industry Association (ITIA), London, UK
| | | |
Collapse
|
17
|
Jintoku H, Ihara H. The simplest method for fabrication of high refractive index polymer–metal oxide hybrids based on a soap-free process. Chem Commun (Camb) 2014; 50:10611-4. [PMID: 25074440 DOI: 10.1039/c4cc04471a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We established a new strategy for fabricating high refractive index materials by using the tungsten heteropoly acid.
Collapse
Affiliation(s)
- Hirokuni Jintoku
- Department of Applied Chemistry and Biochemistry
- Kumamoto University
- Kumamoto, Japan
| | - Hirotaka Ihara
- Department of Applied Chemistry and Biochemistry
- Kumamoto University
- Kumamoto, Japan
- Kumamoto Institute for Photo-Electro Organics (PHOENICS)
- Kumamoto, Japan
| |
Collapse
|
18
|
al-Rashida M, Iqbal J. Therapeutic potentials of ecto-nucleoside triphosphate diphosphohydrolase, ecto-nucleotide pyrophosphatase/phosphodiesterase, ecto-5'-nucleotidase, and alkaline phosphatase inhibitors. Med Res Rev 2013; 34:703-43. [PMID: 24115166 DOI: 10.1002/med.21302] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The modulatory role of extracellular nucleotides and adenosine in relevance to purinergic cell signaling mechanisms has long been known and is an object of much research worldwide. These extracellular nucleotides are released by a variety of cell types either innately or as a response to patho-physiological stress or injury. A variety of surface-located ecto-nucleotidases (of four major types; nucleoside triphosphate diphosphohydrolases or NTPDases, nucleotide pyrophosphatase/phosphodiesterases or NPPs, alkaline phosphatases APs or ALPs, and ecto-5'-nucleotidase or e5NT) are responsible for meticulously controlling the availability of these important signaling molecules (at their respective receptors) in extracellular environment and are therefore crucial for maintaining the integrity of normal cell functioning. Overexpression of many of these ubiquitous ecto-enzymes has been implicated in a variety of disorders including cell adhesion, activation, proliferation, apoptosis, and degenerative neurological and immunological responses. Selective inhibition of these ecto-enzymes is an area that is currently being explored with great interest and hopes remain high that development of selective ecto-nucleotidase inhibitors will prove to have many beneficial therapeutic implications. The aim of this review is to emphasize and focus on recent developments made in the field of inhibitors of ecto-nucleotidases and to highlight their structure activity relationships wherever possible. Most recent and significant advances in field of NTPDase, NPP, AP, and e5NT inhibitors is being discussed in detail in anticipation of providing prolific leads and relevant background for research groups interested in synthesis of selective ecto-nucleotidase inhibitors.
Collapse
Affiliation(s)
- Mariya al-Rashida
- Department of Pharmaceutical Sciences, COMSATS Institute of Information Technology, Abbottabad, 22060, Pakistan
| | | |
Collapse
|
19
|
Abstract
The putative applications of poly-, oligo- and mono-oxometalates in biochemistry, biology, pharmacology and medicine are rapidly attracting interest. In particular, these compounds may act as potent ion pump inhibitors and have the potential to play a role in the treatment of e.g. ulcers, cancer and ischemic heart disease. However, the mechanism of action is not completely understood in most cases, and even remains largely unknown in other cases. In the present review we discuss the most recent insights into the interaction between mono- and polyoxometalate ions with ion pumps, with particular focus on the interaction of decavanadate with Ca(2+)-ATPase. We also compare the proposed mode of action with those of established ion pump inhibitors which are currently in therapeutic use. Of the 18 classes of compounds which are known to act as ion pump inhibitors, the complete mechanism of inhibition is only known for a handful. It has, however, been established that most ion pump inhibitors bind mainly to the E2 ion pump conformation within the membrane domain from the extracellular side and block the cation release. Polyoxometalates such as decavanadate, in contrast, interact with Ca(2+)-ATPase near the nucleotide binding site domain or at a pocket involving several cytoplasmic domains, and therefore need to cross through the membrane bilayer. In contrast to monomeric vanadate, which only binds to the E2 conformation, decavanadate binds to all protein conformations, i.e. E1, E1P, E2 and E2P. Moreover, the specific interaction of decavanadate with sarcoplasmic reticulum Ca(2+)-ATPase has been shown to be non-competitive with respect to ATP and induces protein cysteine oxidation with concomitant vanadium reduction which might explain the high inhibitory capacity of V10 (IC50 = 15 μM) which is quite similar to the majority of the established therapeutic drugs.
Collapse
|
20
|
Petrović V, Čolović M, Krstić D, Vujačić A, Petrović S, Joksić G, Bugarčić Z, Vasić V. In vitro effects of some gold complexes on Na(+)/K(+) ATPase activity and cell proliferation. J Inorg Biochem 2013; 124:35-41. [PMID: 23591145 DOI: 10.1016/j.jinorgbio.2013.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/25/2013] [Accepted: 03/25/2013] [Indexed: 11/17/2022]
Abstract
The in vitro influence of gold(III) complexes, H[AuCl4], [Au(DMSO)2Cl2]Cl and [Au(bipy)Cl2]Cl (bipy = 2,2'-bipyridine), upon commercially available Na(+)/K(+) ATPase activity, purified from porcine brain cortex, was investigated. Additionally, the complexes were tested on human lymphocytes, and incidence of micronuclei and cell proliferation index was determined. Concentration-dependent inhibition of the enzyme for all three compounds was obtained, but with differing potencies. Calculated IC50 from Hill analysis were (in M): 5.75×10(-7), 5.50×10(-6) and 3.98×10(-5), for H[AuCl4], [Au(DMSO)2Cl2]Cl and [Au(bipy)Cl2]Cl, respectively, while Hill coefficient values, n, were above 1 in all cases. This inhibition can be prevented using -SH donating ligands such as L-Cys and glutathione, and these ligands can also cause a recovery of the enzyme activity after the induced inhibition. Kinetic analysis demonstrated that each of the studied gold(III) complexes affects Na(+)/K(+) ATPase reducing maximum enzymatic velocity, Vmax, but not significantly changing the affinity for the substrate (KM value), implying a noncompetitive mode of the interaction. Furthermore, among investigated gold(III) complexes, the [Au(bipy)Cl2]Cl complex exhibits a strong cytotoxic effect on human lymphocytes, which suggests its potential for use in antitumor therapy.
Collapse
Affiliation(s)
- Voin Petrović
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Fraqueza G, Batista de Carvalho LAE, Marques MPM, Maia L, Ohlin CA, Casey WH, Aureliano M. Decavanadate, decaniobate, tungstate and molybdate interactions with sarcoplasmic reticulum Ca(2+)-ATPase: quercetin prevents cysteine oxidation by vanadate but does not reverse ATPase inhibition. Dalton Trans 2012; 41:12749-58. [PMID: 22968713 DOI: 10.1039/c2dt31688a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently we demonstrated that the decavanadate (V(10)) ion is a stronger Ca(2+)-ATPase inhibitor than other oxometalates, such as the isoelectronic and isostructural decaniobate ion, and the tungstate and molybdate monomer ions, and that it binds to this protein with a 1 : 1 stoichiometry. The V(10) interaction is not affected by any of the protein conformations that occur during the process of calcium translocation (i.e. E1, E1P, E2 and E2P) (Fraqueza et al., J. Inorg. Biochem., 2012). In the present study, we further explore this subject, and we can now show that the decaniobate ion, [Nb(10) = Nb(10)O(28)](6-), is a useful tool in deducing the interaction and the non-competitive Ca(2+)-ATPase inhibition by the decavanadate ion [V(10) = V(10)O(28)](6-). Moreover, decavanadate and vanadate induce protein cysteine oxidation whereas no effects were detected for the decaniobate, tungstate or molybdate ions. The presence of the antioxidant quercetin prevents cysteine oxidation, but not ATPase inhibition, by vanadate or decavanadate. Definitive V(IV) EPR spectra were observed for decavanadate in the presence of sarcoplasmic reticulum Ca(2+)-ATPase, indicating a vanadate reduction at some stage of the protein interaction. Raman spectroscopy clearly shows that the protein conformation changes that are induced by V(10), Nb(10) and vanadate are different from the ones induced by molybdate and tungstate monomer ions. Here, Mo and W cause changes similar to those by phosphate, yielding changes similar to the E1P protein conformation. The putative reduction of vanadium(V) to vanadium(IV) and the non-competitive binding of the V(10) and Nb(10) decametalates may explain the differences in the Raman spectra compared to those seen in the presence of molybdate or tungstate. Putting it all together, we suggest that the ability of V(10) to inhibit the Ca(2+)-ATPase may be at least in part due to the process of vanadate reduction and associated protein cysteine oxidation. These results contribute to the understanding and application of these families of mono- and polyoxometalates as effective modulators of many biological processes, particularly those associated with calcium homeostasis.
Collapse
Affiliation(s)
- Gil Fraqueza
- ISE and CCmar, University of Algarve, 8005-139 Faro, Portugal
| | | | | | | | | | | | | |
Collapse
|