1
|
Li H, Lu Y, Xu N, Jin X, Chen T, Yu J, Liu J. Rhodium(III)-Catalyzed C-H Cascade Annulation of Arylhydrazines with 2-Diazo-1,3-indandiones for the Synthesis of Tetracyclic Indeno[1,2- b]indoles. J Org Chem 2024. [PMID: 38176055 DOI: 10.1021/acs.joc.3c02243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
An efficient approach for the preparation of tetracyclic indeno[1,2-b]indoles via Rh(III)-catalyzed C-H cascade annulation between arylhydrazines and diazo indan-1,3-diones has been established. In addition, a series of indeno[1,2-b]indoles were obtained in up to 96% yield with a wide range of substrates and high functional group tolerance. Finally, the diverse transformations of the desired products demonstrate the synthetic utility and utilization of this protocol.
Collapse
Affiliation(s)
- He Li
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ye Lu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ning Xu
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xinxin Jin
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Tao Chen
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jiaqi Yu
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jinglin Liu
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
2
|
Li MY, Li Y, Wang LL, Xu F, Guo XY, Zhang J, Lv Y, Wang PP, Wang SQ, Min JG, Zou X, Cai SQ. Chemical profiling of Sanjin tablets and exploration of their effective substances and mechanism in the treatment of urinary tract infections. Front Chem 2023; 11:1179956. [PMID: 37408563 PMCID: PMC10318440 DOI: 10.3389/fchem.2023.1179956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/07/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction: Sanjin tablets (SJT) are a well-known Chinese patent drug that have been used to treat urinary tract infections (UTIs) for the last 40 years. The drug consists of five herbs, but only 32 compounds have been identified, which hinders the clarification of its effective substances and mechanism. Methods: The chemical constituents of SJT and their effective substances and functional mechanism involved in the treatment of UTIs were investigated by using high performance liquid chromatography-electrospray ionization-ion trap-time of flight-mass spectrometry (HPLC-ESI-IT-TOF-MSn), network pharmacology, and molecular docking. Results: A total of 196 compounds of SJT (SJT-MS) were identified, and 44 of them were unequivocally identified by comparison with the reference compounds. Among 196 compounds, 13 were potential new compounds and 183 were known compounds. Among the 183 known compounds, 169 were newly discovered constituents of SJT, and 93 compounds were not reported in the five constituent herbs. Through the network pharmacology method, 119 targets related to UTIs of 183 known compounds were predicted, and 20 core targets were screened out. Based on the "compound-target" relationship analysis, 94 compounds were found to act on the 20 core targets and were therefore regarded as potential effective compounds. According to the literature, 27 of the 183 known compounds were found to possess antimicrobial and anti-inflammatory activities and were verified as effective substances, of which 20 were first discovered in SJT. Twelve of the 27 effective substances overlapped with the 94 potential effective compounds and were determined as key effective substances of SJT. The molecular docking results showed that the 12 key effective substances and 10 selected targets of the core targets have good affinity for each other. Discussion: These results provide a solid foundation for understanding the effective substances and mechanism of SJT.
Collapse
Affiliation(s)
- Meng-Yuan Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yang Li
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Li-Li Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Feng Xu
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xu-Yan Guo
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jing Zhang
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yang Lv
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Peng-Pu Wang
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Shun-Qi Wang
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jian-Guo Min
- Guilin Sanjin Pharmaceutical Company Limited, Guilin, China
| | - Xun Zou
- Guilin Sanjin Pharmaceutical Company Limited, Guilin, China
| | - Shao-Qing Cai
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
3
|
Nasuhipur F, Ghasemi Z, Poupon M, Dušek M. POCl 3 mediated one-pot deoxygenative aromatization and electrophilic chlorination of dihydroxy-2-methyl-4-oxo-indeno[1,2- b]pyrroles. RSC Adv 2023; 13:17812-17816. [PMID: 37323449 PMCID: PMC10261912 DOI: 10.1039/d3ra02515b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
A class of indenopyrroles is presented by the treatment of known dihydroxy-2-methyl-4-oxoindeno[1,2-b]pyrroles with phosphorus oxychloride (POCl3). The elimination of vicinal hydroxyl groups at the 3a and 8b positions, formation of a π bond, and electrophilic chlorination of the methyl group attached to C2 resulted in the fused aromatic pyrrole structures. Benzylic substitution of various nucleophiles such as H2O, EtOH, and NaN3 with a chlorine atom gave diverse 4-oxoindeno[1,2-b]pyrrole derivatives in 58 to 93% yields. The reaction was investigated in different aprotic solvents, and the highest reaction yield was obtained in DMF. The structures of the products were confirmed by spectroscopic methods, elemental analysis, and X-ray crystallography.
Collapse
Affiliation(s)
- Forough Nasuhipur
- Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, University of Tabriz Tabriz 5166614766 Iran
| | - Zarrin Ghasemi
- Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, University of Tabriz Tabriz 5166614766 Iran
| | - Morgane Poupon
- Institute of Physics ASCR, v.v.i. Na Slovance 2, 182 21 Praha 8 Czech Republic
| | - Michal Dušek
- Institute of Physics ASCR, v.v.i. Na Slovance 2, 182 21 Praha 8 Czech Republic
| |
Collapse
|
4
|
Patel S, Vyas VK, Sharma M, Ghate M. Structure-guided discovery of adenosine triphosphate-competitive casein kinase 2 inhibitors. Future Med Chem 2023; 15:987-1014. [PMID: 37307219 DOI: 10.4155/fmc-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
Casein kinase 2 (CK2) is a ubiquitous, highly pleiotropic serine-threonine kinase. CK2 has been identified as a potential drug target for the treatment of cancer and related disorders. Several adenosine triphosphate-competitive CK2 inhibitors have been identified and have progressed at different levels of clinical trials. This review presents details of CK2 protein, structural insights into adenosine triphosphate binding pocket, current clinical trial candidates and their analogues. Further, it includes the emerging structure-based drug design approaches, chemistry, structure-activity relationship and biological screening of potent and selective CK2 inhibitors. The authors tabulated the details of CK2 co-crystal structures because these co-crystal structures facilitated the structure-guided discovery of CK2 inhibitors. The narrow hinge pocket compared with related kinases provides useful insights into the discovery of CK2 inhibitors.
Collapse
Affiliation(s)
- Shivani Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manmohan Sharma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manjunath Ghate
- School of Pharmacy, National Forensic Science University, Gandhinagar, Gujarat, 382007, India
| |
Collapse
|
5
|
Wojciechowski MN, Schreiber S, Jose J. A Novel Flow Cytometry-Based Assay for the Identification of HCN4 CNBD Ligands. Pharmaceuticals (Basel) 2023; 16:ph16050710. [PMID: 37242492 DOI: 10.3390/ph16050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels are promising therapeutic targets because of their association with the genesis of several diseases. The identification of selective compounds that alter cAMP-induced ion channel modulation by binding to the cyclic nucleotide-binding domain (CNBD) will facilitate HCN channel-specific drug development. In this study, a fast and protein purification-free ligand-binding approach with a surface-displayed HCN4 C-Linker-CNBD on E. coli is presented. 8-Fluo-cAMP ligand binding was monitored by single-cell analysis via flow cytometry, and a Kd-value of 173 ± 46 nM was determined. The Kd value was confirmed by ligand depletion analysis and equilibrium state measurements. Applying increasing concentrations of cAMP led to a concentration-dependent decrease in fluorescence intensity, indicating a displacement of 8-Fluo-cAMP. A Ki-value of 8.5 ± 2 µM was determined. The linear relationship of IC50 values obtained for cAMP as a function of ligand concentration confirmed the competitive binding mode: IC50: 13 ± 2 µM/16 ± 3 µM/23 ± 1 µM/27 ± 1 µM for 50 nM/150 nM/250 nM/500 nM 8-Fluo-cAMP. A similar competitive mode of binding was confirmed for 7-CH-cAMP, and an IC50 value of 230 ± 41 nM and a Ki of 159 ± 29 nM were determined. Two established drugs were tested in the assay. Ivabradine, an approved HCN channel pore blocker and gabapentin, is known to bind to HCN4 channels in preference to other isoforms with an unknown mode of action. As expected, ivabradine had no impact on ligand binding. In addition, gabapentin had no influence on 8-Fluo-cAMP's binding to HCN4-CNBD. This is the first indication that gabapentin is not interacting with this part of the HCN4 channel. The ligand-binding assay as described can be used to determine binding constants for ligands such as cAMP and derivatives. It could also be applied for the identification of new ligands binding to the HCN4-CNBD.
Collapse
Affiliation(s)
- Magdalena N Wojciechowski
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, 48149 Münster, Germany
| | - Sebastian Schreiber
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, 48149 Münster, Germany
| | - Joachim Jose
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, 48149 Münster, Germany
| |
Collapse
|
6
|
Díaz-de-Cerio E, Girón F, Pérez-Garrido A, Pereira ASP, Gabaldón-Hernández JA, Verardo V, Segura Carretero A, Pérez-Sánchez H. Fishing the Targets of Bioactive Compounds from Psidium guajava L. Leaves in the Context of Diabetes. Int J Mol Sci 2023; 24:ijms24065761. [PMID: 36982836 PMCID: PMC10057723 DOI: 10.3390/ijms24065761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Psidium guajava L. (guava) leaves have demonstrated their in vitro and in vivo effect against diabetes mellitus (DM). However, there is a lack of literature concerning the effect of the individual phenolic compounds present in the leaves in DM disease. The aim of the present work was to identify the individual compounds in Spanish guava leaves and their potential contribution to the observed anti-diabetic effect. Seventy-three phenolic compounds were identified from an 80% ethanol extract of guava leaves by high performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry. The potential anti-diabetic activity of each compound was evaluated with the DIA-DB web server that uses a docking and molecular shape similarity approach. The DIA-DB web server revealed that aldose reductase was the target protein with heterogeneous affinity for compounds naringenin, avicularin, guaijaverin, quercetin, ellagic acid, morin, catechin and guavinoside C. Naringenin exhibited the highest number of interactions with target proteins dipeptidyl peptidase-4, hydroxysteroid 11-beta dehydrogenase 1, aldose reductase and peroxisome proliferator-activated receptor. Compounds catechin, quercetin and naringenin displayed similarities with the known antidiabetic drug tolrestat. In conclusion, the computational workflow showed that guava leaves contain several compounds acting in the DM mechanism by interacting with specific DM protein targets.
Collapse
Affiliation(s)
- Elixabet Díaz-de-Cerio
- Department of Nutrition and Food Science, University of Granada, Campus of Melilla, 52005 Melilla, Spain
| | - Francisco Girón
- Department of Human Nutrition and Food Technology, Universidad Católica de Murcia UCAM, Campus de los Jerónimos, 30107 Guadalupe, Spain
| | - Alfonso Pérez-Garrido
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Universidad Católica San Antonio de Murcia (UCAM), 30107 Guadalupe, Spain
| | - Andreia S P Pereira
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0083, South Africa
| | | | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Center, University of Granada, Avda del Conocimiento Sn., 18100 Armilla, Spain
| | - Antonio Segura Carretero
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Universidad Católica San Antonio de Murcia (UCAM), 30107 Guadalupe, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Universidad Católica San Antonio de Murcia (UCAM), 30107 Guadalupe, Spain
| |
Collapse
|
7
|
Gomaa MAM, Hassan DK. Catalyst-free direct synthesis of indeno[1,2- b]indol-5(4b H)-yl benzimidamides. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2023. [DOI: 10.1515/znb-2022-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Abstract
A new series of indeno[1,2-b]indol-5(4bH)-ylbenzimidamide derivatives 3a–3j has been synthesized as potential casein kinase II (CK2) inhibitors. A convenient and straightforward synthesis protocol was used via a reaction of β-enaminones 1a–1j with ninhydrin 2. This transformation proceeds under mild conditions (boiling ethanol, 0.5 h) in absence of catalyst in good to excellent yields (66–86%). The new compounds have been characterized by NMR, HRMS and IR spectra.
Collapse
Affiliation(s)
- Mohsen A.-M. Gomaa
- Chemistry Department , Faculty of Science, Minia University , Minia 61519 , A. R. Egypt
| | - Doaa K. Hassan
- Chemistry Department , Faculty of Science, Minia University , Minia 61519 , A. R. Egypt
| |
Collapse
|
8
|
Chen Y, Wang Y, Wang J, Zhou Z, Cao S, Zhang J. Strategies of Targeting CK2 in Drug Discovery: Challenges, Opportunities, and Emerging Prospects. J Med Chem 2023; 66:2257-2281. [PMID: 36745746 DOI: 10.1021/acs.jmedchem.2c01523] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CK2 (casein kinase 2) is a serine/threonine protein kinase that is ubiquitous in eukaryotic cells and plays important roles in a variety of cellular functions, including cell growth, apoptosis, circadian rhythms, DNA damage repair, transcription, and translation. CK2 is involved in cancer pathogenesis and the occurrence of many diseases. Therefore, targeting CK2 is a promising therapeutic strategy. Although many CK2-specific small-molecule inhibitors have been developed, only CX-4945 has progressed to clinical trials. In recent years, novel CK2 inhibitors have gradually become a research hotspot, which is expected to overcome the limitations of traditional inhibitors. Herein, we summarize the structure, biological functions, and disease relevance of CK2 and emphatically analyze the structure-activity relationship (SAR) and binding modes of small-molecule CK2 inhibitors. We also discuss the latest progress of novel strategies, providing insights into new drugs targeting CK2 for clinical practice.
Collapse
Affiliation(s)
- Yijia Chen
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuxi Wang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Zhilan Zhou
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shu Cao
- West China School of Stomatology Sichuan University, Chengdu, Sichuan 610064, China
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| |
Collapse
|
9
|
Nasuhipur F, Ghasemi Z, Shahrisa A, Arsalani N. Ultrasound promoted three‐component synthesis of dihydroindeno[1,2‐
b
]pyrrole derivatives. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Forough Nasuhipur
- Department of Organic Chemistry and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Zarrin Ghasemi
- Department of Organic Chemistry and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Aziz Shahrisa
- Department of Organic Chemistry and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Nasser Arsalani
- Research Laboratory of Polymer, Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| |
Collapse
|
10
|
Wang Q, Hu X, Shi W, Long H, Wang H. Design, synthesis and biological evaluation of chromone derivatives as novel protein kinase CK2 inhibitors. Bioorg Med Chem Lett 2022; 69:128799. [PMID: 35580724 DOI: 10.1016/j.bmcl.2022.128799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Protein kinase CK2 is a potential target for the discovery of anticancer drugs. Flavonoids are reported to be effective CK2 inhibitors. Herein, based on structural trimming of flavonoids, a series of chromone-2-aminothiazole derivatives (1a-d, 2a-g, 4a-j, 5a-k) were designed and synthesized by hybridizing the chromone skeleton with 2-aminothiazole scaffold. Among these compounds, compound 5i was the most effective CK2 inhibitor (IC50 = 0.08 μM) and possessed potent anti-proliferative activity against HL-60 tumor cells (IC50 = 0.25 μM). Cellular thermal shift assay (CESTA) confirmed that 5i directly bound to the CK2, and the possible binding mode of 5i toward CK2 was also simulated. Further studies showed that 5i induced the apoptosis of HL-60 cells and arrested the cell cycle. Finally, western-blot analysis showed that 5i could inhibit the downstream of CK2, including α-catenin/Akt pathway and PARP/Survivin pathway.
Collapse
Affiliation(s)
- Quan Wang
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - XiaoLong Hu
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wei Shi
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Huan Long
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
11
|
Updated chemical scaffolds of ABCG2 inhibitors and their structure-inhibition relationships for future development. Eur J Med Chem 2022; 241:114628. [DOI: 10.1016/j.ejmech.2022.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022]
|
12
|
Das D, Saha M, Das AR. Synthesis, properties and catalysis of quantum dots in C–C and C-heteroatom bond formations. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Luminescent quantum dots (QDs) represent a new form of carbon nanomaterials which have gained widespread attention in recent years, especially in the area of chemical sensing, bioimaging, nanomedicine, solar cells, light-emitting diode (LED), and electrocatalysis. Their extremely small size renders some unusual properties such as quantum confinement effects, good surface binding properties, high surface‐to‐volume ratios, broad and intense absorption spectra in the visible region, optical and electronic properties different from those of bulk materials. Apart from, during the past few years, QDs offer new and versatile ways to serve as photocatalysts in organic synthesis. Quantum dots (QD) have band gaps that could be nicely controlled by a number of factors in a complicated way, mentioned in the article. Processing, structure, properties and applications are also reviewed for semiconducting quantum dots. Overall, this review aims to summarize the recent innovative applications of QD or its modified nanohybrid as efficient, robust, photoassisted redox catalysts in C–C and C-heteroatom bond forming reactions. The recent structural modifications of QD or its core structure in the development of new synthetic methodologies are also highlighted. Following a primer on the structure, properties, and bio-functionalization of QDs, herein selected examples of QD as a recoverable sustainable nanocatalyst in various green media are embodied for future reference.
Collapse
Affiliation(s)
- Dwaipayan Das
- Department of Chemistry , University of Calcutta , Kolkata 700009 , India
| | - Moumita Saha
- Department of Chemistry , University of Calcutta , Kolkata 700009 , India
| | - Asish. R. Das
- Department of Chemistry , University of Calcutta , Kolkata 700009 , India
| |
Collapse
|
13
|
Singh B, Bankar SK, Ramasastry SSV. Pd-Catalyzed Nazarov-Type Cyclization: Application in the Total Synthesis of β-Diasarone and Other Complex Cyclopentanoids. Org Lett 2022; 24:1043-1048. [PMID: 35060746 DOI: 10.1021/acs.orglett.1c04243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe the palladium-catalyzed Nazarov-type cyclization of easily accessible (hetero)arylallyl acetates to pentannulated (hetero)arenes. This method provides ready access to various types of bi-, tri-, tetra-, and pentacyclic cyclopentanoids under neutral conditions. The synthetic utility is further demonstrated in the first total synthesis of β-diasarone and several other complex cyclopentanoids relevant to medicinal chemistry and materials science.
Collapse
Affiliation(s)
- Bara Singh
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)─Mohali, Sector 81, S A S Nagar, Manauli PO, Punjab 140306, India
| | - Siddheshwar K Bankar
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)─Mohali, Sector 81, S A S Nagar, Manauli PO, Punjab 140306, India
| | - S S V Ramasastry
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)─Mohali, Sector 81, S A S Nagar, Manauli PO, Punjab 140306, India
| |
Collapse
|
14
|
Kumar S, Patil MT, Salunke DB. Indole based prostate cancer agents. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Cancer weakens the immune system which fails to fight against the rapidly growing cells. Among the various types of cancers, prostate cancer (PCa) is causing greater number of deaths in men after lung cancer, demanding advancement to prevent, detect and treat PCa. Several small molecule heterocycles and few peptides are being used as oncological drugs targeting PCa. Heterocycles are playing crucial role in the development of novel cancer chemotherapeutics as well as immunotherapeutics. Indole skeleton, being a privileged structure has been extensively used for the discovery of novel anticancer agents and the application of indole derivatives against breast cancer is well documented. The present article highlights the usefulness of indole linked heterocyclic compounds as well as the fused indole derivatives against prostate cancer.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry and Centre for Advanced Studies in Chemistry , Panjab University , Chandigarh , 160014 , India
- Department of Chemistry , J. C. Bose University of Science and Technology, YMCA , Faridabad 121006 , Haryana , India
| | - Madhuri T. Patil
- Mehr Chand Mahajan DAV College for Women , Sector 36A , Chandigarh 160036 , India
| | - Deepak B. Salunke
- Department of Chemistry and Centre for Advanced Studies in Chemistry , Panjab University , Chandigarh , 160014 , India
- National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials , Panjab University , Chandigarh 160014 , India
| |
Collapse
|
15
|
Tang Z, Hong G, Hu C, Wang Q, Zhong Y, Gong Y, Yang P, Wang L. La(OTf) 3 facilitated self-condensation of 2-indolylmethanol: construction of highly substituted indeno[1,2- b]indoles. Org Biomol Chem 2021; 19:10337-10342. [PMID: 34553205 DOI: 10.1039/d1ob01517f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The Lewis acid-promoted self-condensation of 2-indolylmethanols has been revealed. On treatment with La(OTf)3, highly substituted indeno[1,2-b]indole derivatives have been synthesized by using easily accessible 2-indolylmethanols with up to 94% yields. The utility of this method is further highlighted by evaluating the initial photophysical properties of some prepared products, indicating that the protocol may have potential applications in the construction of novel fluorescent materials.
Collapse
Affiliation(s)
- Zhicong Tang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Gang Hong
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Chen Hu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Qi Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Yi Zhong
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Yu Gong
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Peng Yang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Limin Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| |
Collapse
|
16
|
Birus R, El-Awaad E, Ballentin L, Alchab F, Aichele D, Ettouati L, Götz C, Le Borgne M, Jose J. 4,5,7-Trisubstituted indeno[1,2-b]indole inhibits CK2 activity in tumor cells equivalent to CX-4945 and shows strong anti-migratory effects. FEBS Open Bio 2021; 12:394-411. [PMID: 34873879 PMCID: PMC8804612 DOI: 10.1002/2211-5463.13346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 11/07/2022] Open
Abstract
Highly pleiotropic and constitutively active protein kinase CK2 is a key target in cancer therapy, but only one small-molecule inhibitor has reached clinical trials-CX-4945. In this study, we present the indeno[1,2-b]indole derivative 5-isopropyl-4-methoxy-7-methyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (5a-2) that decreased the intracellular CK2 activity in A431, A549, and LNCaP tumor cell lines analogous to CX-4945 (> 75% inhibition at 20 µm) and similarly blocked CK2-specific Akt phosphorylation in LNCaP cells. Cellular uptake analysis demonstrated higher intracellular concentrations of 5a-2 (408.3 nm) compared with CX-4945 (119.3 nm). This finding clarifies the comparable effects of both compounds on the intracellular CK2 activity despite their different inhibitory potency in vitro [IC50 = 25 nm (5a-2) and 3.7 nm (CX-4945)]. Examination of the effects of both CK2 inhibitors on cancer cells using live-cell imaging revealed notable differences. Whereas CX-4945 showed a stronger pro-apoptotic effect on tumor cells, 5a-2 was more effective in inhibiting tumor cell migration. Our results showed that 49% of intracellular CX-4945 was localized in the nuclear fraction, whereas 71% of 5a-2 was detectable in the cytoplasm. The different subcellular distribution, and thus the site of CK2 inhibition, provides a possible explanation for the different cellular effects. Our study indicates that investigating CK2 inhibition-mediated cellular effects in relation to the subcellular sites of CK2 inhibition may help to improve our understanding of the preferential roles of CK2 within different cancer cell compartments.
Collapse
Affiliation(s)
- Robin Birus
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universtität Münster, Germany
| | - Ehab El-Awaad
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universtität Münster, Germany.,Department of Pharmacology, Faculty of Medicine, Assiut University, Egypt
| | - Laurens Ballentin
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universtität Münster, Germany
| | - Faten Alchab
- EEA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie-ISPB, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, Université Claude Bernard Lyon 1, Université de Lyon, France.,Faculty of Pharmacy, Manara University, Latakia, Syria
| | - Dagmar Aichele
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universtität Münster, Germany
| | - Laurent Ettouati
- CNRS UMR 5246 Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), Faculté de Pharmacie, ISPB, Université Lyon 1, Université de Lyon, France
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, Germany
| | - Marc Le Borgne
- Small Molecules for Biological Targets Team, Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Université de Lyon, France
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universtität Münster, Germany
| |
Collapse
|
17
|
Debnath S, Lu M, Liang L, Shi Y. A Tandem Nucleophilic Aminopalladation and Carbene Insertion Sequence for Indole Fused Polycycles. Org Lett 2021; 23:7118-7122. [PMID: 34491766 DOI: 10.1021/acs.orglett.1c02512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient tandem nucleophilic aminopalladation and carbene insertion sequence is described for the synthesis of indole fused polycycles. The reaction process provides a variety of substituted indeno[1,2-b]indoles in up to 99% yields.
Collapse
Affiliation(s)
- Sudarshan Debnath
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Mei Lu
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Lingli Liang
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Yian Shi
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China.,Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
18
|
Horsten T, Dehaen W. 4,5,6,7-Tetrahydroindol-4-Ones as a Valuable Starting Point for the Synthesis of Polyheterocyclic Structures. Molecules 2021; 26:4596. [PMID: 34361747 PMCID: PMC8348459 DOI: 10.3390/molecules26154596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
This review focuses on the synthesis of polyheterocyclic structures with a variety of medicinal and optoelectronic applications, starting from readily available 4,5,6,7-tetrahydroindol-4-one analogs. First, routes toward the 4,5,6,7-tetrahydroindol-4-one starting materials are summarized, followed by synthetic pathways towards polyheterocyclic structures which are categorized based on the size and attachment point of the newly formed (hetero)cyclic ring.
Collapse
Affiliation(s)
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium;
| |
Collapse
|
19
|
El-Awaad E, Birus R, Marminon C, Bouaziz Z, Ballentin L, Aichele D, Le Borgne M, Jose J. Broad-Spectrum Anticancer Activity and Pharmacokinetic Properties of a Prenyloxy-Substituted Indeno[1,2- b]indole Derivative, Discovered as CK2 Inhibitor. Pharmaceuticals (Basel) 2021; 14:ph14060542. [PMID: 34198928 PMCID: PMC8226678 DOI: 10.3390/ph14060542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/27/2022] Open
Abstract
Protein kinase CK2 is involved in regulating cellular processes, such as cell cycle, proliferation, migration, and apoptosis, making it an attractive anticancer target. We previously described a prenyloxy-substituted indeno[1,2-b]indole (5-isopropyl-4-(3-methylbut-2-enyloxy)-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (4p)) as a very potent inhibitor of CK2 holoenzyme (IC50 = 25 nM). Here, we report the broad-spectrum anticancer activity of 4p and provide substantial progress on its pharmacokinetic properties. Using a cell-based CK2 activity assay and live-cell imaging of cultured A431, A549, and LNCaP cancer cell lines, cellular CK2 target engagement was shown as well as strong antiproliferative, anti-migratory and apoptosis-inducing effects of 4p. Furthermore, evidence was found for the ability of 4p to disrupt A549 spheroid cohesion. A series of LC-MS/MS experiments revealed high and rapid cellular uptake (intracellular concentration is approximately 5 µM after 1 h incubation) and low metabolic stability of 4p. These results point to the value of 4p as a potent CK2 inhibitor with promising anticancer activities and should trigger future medicinal chemistry efforts to improve the drug-like properties of this compound.
Collapse
Affiliation(s)
- Ehab El-Awaad
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149 Münster, Germany; (E.E.-A.); (R.B.); (L.B.); (D.A.)
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Robin Birus
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149 Münster, Germany; (E.E.-A.); (R.B.); (L.B.); (D.A.)
| | - Christelle Marminon
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373 Lyon, France;
| | - Zouhair Bouaziz
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Université Claude Bernard Lyon 1, Univ Lyon, 69373 Lyon, France;
| | - Laurens Ballentin
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149 Münster, Germany; (E.E.-A.); (R.B.); (L.B.); (D.A.)
| | - Dagmar Aichele
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149 Münster, Germany; (E.E.-A.); (R.B.); (L.B.); (D.A.)
| | - Marc Le Borgne
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373 Lyon, France;
- Correspondence: (M.L.B.); (J.J.); Tel.: +49-251-8332200 (J.J.); Fax: +49-251-8332211 (J.J.)
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149 Münster, Germany; (E.E.-A.); (R.B.); (L.B.); (D.A.)
- Correspondence: (M.L.B.); (J.J.); Tel.: +49-251-8332200 (J.J.); Fax: +49-251-8332211 (J.J.)
| |
Collapse
|
20
|
Kita DH, Guragossian N, Zattoni IF, Moure VR, Rego FGDM, Lusvarghi S, Moulenat T, Belhani B, Picheth G, Bouacida S, Bouaziz Z, Marminon C, Berredjem M, Jose J, Gonçalves MB, Ambudkar SV, Valdameri G, Le Borgne M. Mechanistic basis of breast cancer resistance protein inhibition by new indeno[1,2-b]indoles. Sci Rep 2021; 11:1788. [PMID: 33469044 PMCID: PMC7815716 DOI: 10.1038/s41598-020-79892-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
The ATP-binding cassette transporter ABCG2 mediates the efflux of several chemotherapeutic drugs, contributing to the development of multidrug resistance (MDR) in many cancers. The most promising strategy to overcome ABCG2-mediated MDR is the use of specific inhibitors. Despite many efforts, the identification of new potent and specific ABCG2 inhibitors remains urgent. In this study, a structural optimization of indeno[1,2-b]indole was performed and a new generation of 18 compounds was synthesized and tested as ABCG2 inhibitors. Most compounds showed ABCG2 inhibition with IC50 values below 0.5 µM. The ratio between cytotoxicity (IG50) and ABCG2 inhibition potency (IC50) was used to identify the best inhibitors. In addition, it was observed that some indeno[1,2-b]indole derivatives produced complete inhibition, while others only partially inhibited the transport function of ABCG2. All indeno[1,2-b]indole derivatives are not transported by ABCG2, and even the partial inhibitors are able to fully chemosensitize cancer cells overexpressing ABCG2. The high affinity of these indeno[1,2-b]indole derivatives was confirmed by the strong stimulatory effect on ABCG2 ATPase activity. These compounds did not affect the binding of conformation-sensitive antibody 5D3 binding, but stabilized the protein structure, as revealed by the thermostabilization assay. Finally, a docking study showed the indeno[1,2-b]indole derivatives share the same binding site as the substrate estrone-3-sulfate.
Collapse
Affiliation(s)
- Diogo Henrique Kita
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, 80210-170, Brazil.,Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nathalie Guragossian
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France
| | - Ingrid Fatima Zattoni
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, 80210-170, Brazil
| | - Vivian Rotuno Moure
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, 80210-170, Brazil.,Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, 80210-170, Brazil
| | | | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Moulenat
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France
| | - Billel Belhani
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar-Annaba University, Box 12, 23000, Annaba, Algeria
| | - Geraldo Picheth
- Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, 80210-170, Brazil
| | - Sofiane Bouacida
- Département Sciences de la Matière, Faculté des Sciences exactes et Sciences de la nature et de la vie, Université Larbi Ben M'hidi, Oum El Bouaghi, Algeria.,Research Unit for Chemistry of the Environment and Molecular Structural, University of Constantine 1, Constantine, Algeria
| | - Zouhair Bouaziz
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France
| | - Christelle Marminon
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France.,Small Molecules for Biological Targets Team, Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar-Annaba University, Box 12, 23000, Annaba, Algeria
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Marcos Brown Gonçalves
- Department of Physics, Federal Technological University of Paraná, Curitiba, PR, 80230-901, Brazil
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Glaucio Valdameri
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, 80210-170, Brazil. .,Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, 80210-170, Brazil.
| | - Marc Le Borgne
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France. .,Small Molecules for Biological Targets Team, Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France.
| |
Collapse
|
21
|
Guragossian N, Belhani B, Moreno A, Nunes MT, Gonzalez-Lobato L, Marminon C, Berthier L, Rocio Andrade Pires AD, Özvegy-Laczka C, Sarkadi B, Terreux R, Bouaziz Z, Berredjem M, Jose J, Di Pietro A, Falson P, Le Borgne M. Uncompetitive nanomolar dimeric indenoindole inhibitors of the human breast cancer resistance pump ABCG2. Eur J Med Chem 2020; 211:113017. [PMID: 33223263 DOI: 10.1016/j.ejmech.2020.113017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 01/01/2023]
Abstract
Multidrug resistance membrane pumps reduce the efficacy of chemotherapies by exporting a wide panel of structurally-divergent drugs. Here, to take advantage of the polyspecificity of the human Breast Cancer Resistance Protein (BCRP/ABCG2) and the dimeric nature of this pump, new dimeric indenoindole-based inhibitors from the monomeric α,β-unsaturated ketone 4b and phenolic derivative 5a were designed. A library of 18 homo/hetero-dimers was synthesised. Homo-dimerization shifted the inhibition efficacy from sub-micromolar to nanomolar range, correlated with the presence of 5a, linked by a 2-6 methylene-long linker. Non-toxic, the best dimers displayed a therapeutic ratio as high as 70,000. It has been found that the high potency of the best compound 7b that displays a KI of 17 nM is due to an uncompetitive behavior toward mitoxantrone efflux and specific for that drug, compared to Hoechst 33342 efflux. Such property may be useful to target such anticancer drug efflux mediated by ABCG2. Finally, at a molecular level, an uncompetitive mechanism by which substrate promotes inhibitor binding implies that at least 2 ligands should bind simultaneously to the drug-binding pocket of ABCG2.
Collapse
Affiliation(s)
- Nathalie Guragossian
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Université Claude Bernard Lyon 1, 69373, Lyon, France; Drug Resistance & Membrane Proteins Group - Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-UCBL1 UMR 5086, IBCP, 69367, Lyon, France
| | - Billel Belhani
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Université Claude Bernard Lyon 1, 69373, Lyon, France; Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Badji Mokhtar - Annaba University, 23000, Annaba, Algeria
| | - Alexis Moreno
- Drug Resistance & Membrane Proteins Group - Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-UCBL1 UMR 5086, IBCP, 69367, Lyon, France
| | - Magda Teixeira Nunes
- Drug Resistance & Membrane Proteins Group - Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-UCBL1 UMR 5086, IBCP, 69367, Lyon, France
| | - Lucia Gonzalez-Lobato
- Drug Resistance & Membrane Proteins Group - Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-UCBL1 UMR 5086, IBCP, 69367, Lyon, France
| | - Christelle Marminon
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Université Claude Bernard Lyon 1, 69373, Lyon, France; Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, 69373, France
| | - Laurent Berthier
- Laboratoire de Biologie Tissulaire et Ingénierie, CNRS-UCBL1 UMR 5305, IBCP, 69367, Lyon, France
| | - Amanda Do Rocio Andrade Pires
- Drug Resistance & Membrane Proteins Group - Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-UCBL1 UMR 5086, IBCP, 69367, Lyon, France; Departamento de Bioquímica e Biologia Molecular, Universidade Federal Do Paraná, Curitiba, Brazil
| | - Csilla Özvegy-Laczka
- Lnstitute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary
| | - Balázs Sarkadi
- Lnstitute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary
| | - Raphaël Terreux
- Laboratoire de Biologie Tissulaire et Ingénierie, CNRS-UCBL1 UMR 5305, IBCP, 69367, Lyon, France
| | - Zouhair Bouaziz
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Université Claude Bernard Lyon 1, 69373, Lyon, France
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Badji Mokhtar - Annaba University, 23000, Annaba, Algeria
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus - Westfälische Wilhelms-Universität Münster, D-48149, Münster, Germany
| | - Attilio Di Pietro
- Drug Resistance & Membrane Proteins Group - Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-UCBL1 UMR 5086, IBCP, 69367, Lyon, France
| | - Pierre Falson
- Drug Resistance & Membrane Proteins Group - Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-UCBL1 UMR 5086, IBCP, 69367, Lyon, France.
| | - Marc Le Borgne
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Université Claude Bernard Lyon 1, 69373, Lyon, France; Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, 69373, France.
| |
Collapse
|
22
|
Protopopov MV, Vdovin VS, Starosyla SA, Borysenko IP, Prykhod'ko AO, Lukashov SS, Bilokin YV, Bdzhola VG, Yarmoluk SM. Flavone inspired discovery of benzylidenebenzofuran-3(2H)-ones (aurones) as potent inhibitors of human protein kinase CK2. Bioorg Chem 2020; 102:104062. [PMID: 32683178 DOI: 10.1016/j.bioorg.2020.104062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/19/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022]
Abstract
In this work, we describe the design, synthesis and SAR studies of 2-benzylidenebenzofuran-3-ones (aurones), a new family of potent inhibitors of CK2. A series of aurones have been synthesized. These compounds are structurally related to the synthetic flavones and showed nanomolar activities towards CK2. Biochemical tests revealed that 20 newly synthesized compounds inhibited CK2 with IC50 values in the nanomolar range. Further property-based optimization of aurones was performed, yielding a series of CK2 inhibitors with enhanced lipophilic efficiency. The most potent compound 12m (BFO13) has CLipE = 4.94 (CLogP = 3.5; IC50 = 3.6 nM) commensurable with the best known inhibitors of CK2.
Collapse
Affiliation(s)
- M V Protopopov
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine.
| | - V S Vdovin
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - S A Starosyla
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - I P Borysenko
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine; LLC Scientific and Service Firm "Otava", 117/125 Borschagivska St., Suite 79, 03056 Kyiv, Ukraine
| | - A O Prykhod'ko
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine; LLC Scientific and Service Firm "Otava", 117/125 Borschagivska St., Suite 79, 03056 Kyiv, Ukraine
| | - S S Lukashov
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - Y V Bilokin
- OTAVA Ltd., 400 Applewood Crescent, Unit 100, Vaughan, Ontario L4K 0C3, Canada
| | - V G Bdzhola
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - S M Yarmoluk
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| |
Collapse
|
23
|
Sharma S, Sharma H, Sharma S, Paul S, Gupta VK, Boukabcha N, Chouaih A. Triflic Acid Functionalized Carbon@Silica Composite: Synthesis and Applications in Organic Synthesis; DFT Studies of Indeno[1,2‐b]indole. ChemistrySelect 2020. [DOI: 10.1002/slct.201904727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shally Sharma
- Department of ChemistryUniversity of Jammu Jammu Tawi 180006 India
| | - Harsha Sharma
- Department of ChemistryUniversity of Jammu Jammu Tawi 180006 India
| | - Sukanya Sharma
- Department of ChemistryUniversity of Jammu Jammu Tawi 180006 India
| | - Satya Paul
- Department of ChemistryUniversity of Jammu Jammu Tawi 180006 India
| | - Vivek K. Gupta
- X-Ray Crystallography Laboratory, Post-graduate Department of PhysicsUniversity of Jammu Jammu Tawi 180006 India
| | - Nordine Boukabcha
- Laboratory of Technology and Solid Properties (LTPS)Abdelhamid Ibn Badis University, BP227 Mostaganem 27000 Algeria
| | - Abdelkader Chouaih
- Laboratory of Technology and Solid Properties (LTPS)Abdelhamid Ibn Badis University, BP227 Mostaganem 27000 Algeria
| |
Collapse
|
24
|
Strätker K, Haidar S, Amesty Á, El-Awaad E, Götz C, Estévez-Braun A, Jose J. Development of an in vitro screening assay for PIP5K1α lipid kinase and identification of potent inhibitors. FEBS J 2020; 287:3042-3064. [PMID: 31876381 DOI: 10.1111/febs.15194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/28/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022]
Abstract
The human phosphatidylinositol 4-phosphate 5-kinase type I α (hPIP5K1α) participates in the phosphoinositide-3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway. Despite the evidence that hPIP5K1α plays a role in the development of prostate cancer (PCa), only one inhibitor is known to date. With the aim of identifying new inhibitors, a nonradiometric assay for measurement of the hPIP5K1α enzyme activity was developed. The assay is based on the separation of the fluorescently labeled substrate phosphatidylinositol-4-phosphate (PI(4)P) and the resulting product phosphatidylinositol-4,5-bisphosphate (PIP2 ) by capillary electrophoresis (CE). Furthermore, an inactive mutant K261A of hPIP5K1α was generated by site-directed mutagenesis and used as a control. Michaelis-Menten analysis revealed a Km value of 21.6 µm and Vmax of 0.65 pmol·min-1 for the cosubstrate ATP. The average Z' value was determined to be 0.86, indicating a high reliability of the assay. An in silico screening of an in-house compound library was performed employing the crystal structure of zebrafish PIP5K1α. By applying this strategy, three compounds with a 2-amino-3-cyano-4H-pyranobenzoquinone scaffold were identified and tested using the CE-based assay. These compounds inhibited hPIP5K1α to > 90% at a concentration of 50 µm. Subsequently, the inhibitory activity of all compounds with a pyranobenzoquinone scaffold (29) was tested on hPIP5K1α. Compound 4-(2-amino-3-cyano-6-hydroxy-5,8-dioxo-7-undecyl-5,8-dihydro-4H-chromen-4-yl)benzoic acid appeared to be the most potent inhibitor of hPIP5K1α identified so far with an IC50 value of 1.55 µm, exhibiting a substrate-competitive mode of action. The effects of this compound on cell viability and the induction of apoptosis were investigated in LNCaP, DU145, and PC3 PCa cells.
Collapse
Affiliation(s)
- Katja Strätker
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Germany
| | - Samer Haidar
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Germany.,Faculty of Pharmacy, Damascus University, Syria
| | - Ángel Amesty
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González (CIBICAN), Universidad de La Laguna, Spain
| | - Ehab El-Awaad
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Germany.,Department of Pharmacology, Faculty of Medicine, Assiut University, Egypt
| | - Claudia Götz
- Universität des Saarlandes Medizinische Biochemie und Molekularbiologie Geb, Homburg, Germany
| | - Ana Estévez-Braun
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González (CIBICAN), Universidad de La Laguna, Spain
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Germany
| |
Collapse
|
25
|
Li EQ, Huang Y. Recent advances in phosphine catalysis involving γ-substituted allenoates. Chem Commun (Camb) 2020; 56:680-694. [DOI: 10.1039/c9cc08241g] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This feature article will describe the selected examples of organophosphine catalysis of γ-substituent allenoates with a wide range of electrophiles to give diverse annulations.
Collapse
Affiliation(s)
- Er-Qing Li
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - You Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
26
|
Sorabad GS, Maddani MR. Facile, regioselective oxidative selenocyanation of N-aryl enaminones under transition-metal-free conditions. NEW J CHEM 2020. [DOI: 10.1039/c9nj05845a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The present selenocyanation is applied for the synthesis of selenocyanated chromones, indoles and anilines in good to excellent yields.
Collapse
Affiliation(s)
- Ganesh Shivayogappa Sorabad
- Department of Post-Graduate Studies and Research in Chemistry Mangalore University
- Mangalgangothri-574199
- India
| | | |
Collapse
|
27
|
Haidar S, Marminon C, Aichele D, Nacereddine A, Zeinyeh W, Bouzina A, Berredjem M, Ettouati L, Bouaziz Z, Le Borgne M, Jose J. QSAR Model of Indeno[1,2- b]indole Derivatives and Identification of N-isopentyl-2-methyl-4,9-dioxo-4,9-Dihydronaphtho[2,3- b]furan-3-carboxamide as a Potent CK2 Inhibitor. Molecules 2019; 25:molecules25010097. [PMID: 31888043 PMCID: PMC6982966 DOI: 10.3390/molecules25010097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/25/2022] Open
Abstract
Casein kinase II (CK2) is an intensively studied enzyme, involved in different diseases, cancer in particular. Different scaffolds were used to develop inhibitors of this enzyme. Here, we report on the synthesis and biological evaluation of twenty phenolic, ketonic, and para-quinonic indeno[1,2-b]indole derivatives as CK2 inhibitors. The most active compounds were 5-isopropyl-1-methyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione 4h and 1,3-dibromo-5-isopropyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione 4w with identical IC50 values of 0.11 µM. Furthermore, the development of a QSAR model based on the structure of indeno[1,2-b]indoles was performed. This model was used to predict the activity of 25 compounds with naphtho[2,3-b]furan-4,9-dione derivatives, which were previously predicted as CK2 inhibitors via a molecular modeling approach. The activities of four naphtho[2,3-b]furan-4,9-dione derivatives were determined in vitro and one of them (N-isopentyl-2-methyl-4,9-dioxo-4,9-dihydronaphtho[2,3-b]furan-3-carboxamide) turned out to inhibit CK2 with an IC50 value of 2.33 µM. All four candidates were able to reduce the cell viability by more than 60% after 24 h of incubation using 10 µM.
Collapse
Affiliation(s)
- Samer Haidar
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149 Münster, Germany; (S.H.); (D.A.)
- Faculty of Pharmacy, 17 April street, Damascus University, Damascus P.O. Box 9411, Syria
| | - Christelle Marminon
- Faculté de Pharmacie—ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453—INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon CEDEX 8, France; (C.M.); (A.N.); (W.Z.); (A.B.); (L.E.); (Z.B.); (M.L.B.)
| | - Dagmar Aichele
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149 Münster, Germany; (S.H.); (D.A.)
| | - Abdelhamid Nacereddine
- Faculté de Pharmacie—ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453—INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon CEDEX 8, France; (C.M.); (A.N.); (W.Z.); (A.B.); (L.E.); (Z.B.); (M.L.B.)
| | - Wael Zeinyeh
- Faculté de Pharmacie—ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453—INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon CEDEX 8, France; (C.M.); (A.N.); (W.Z.); (A.B.); (L.E.); (Z.B.); (M.L.B.)
| | - Abdeslem Bouzina
- Faculté de Pharmacie—ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453—INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon CEDEX 8, France; (C.M.); (A.N.); (W.Z.); (A.B.); (L.E.); (Z.B.); (M.L.B.)
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar—Annaba University, Box 12, Annaba 23000, Algeria;
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar—Annaba University, Box 12, Annaba 23000, Algeria;
| | - Laurent Ettouati
- Faculté de Pharmacie—ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453—INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon CEDEX 8, France; (C.M.); (A.N.); (W.Z.); (A.B.); (L.E.); (Z.B.); (M.L.B.)
| | - Zouhair Bouaziz
- Faculté de Pharmacie—ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453—INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon CEDEX 8, France; (C.M.); (A.N.); (W.Z.); (A.B.); (L.E.); (Z.B.); (M.L.B.)
| | - Marc Le Borgne
- Faculté de Pharmacie—ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453—INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon CEDEX 8, France; (C.M.); (A.N.); (W.Z.); (A.B.); (L.E.); (Z.B.); (M.L.B.)
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149 Münster, Germany; (S.H.); (D.A.)
- Correspondence: ; Tel.: +49-251-8332200; Fax: +49-251-8332211
| |
Collapse
|
28
|
Abstract
Cancer is known as one of the main causes of death in the world; and many compounds have been synthesized to date with potential use in cancer therapy. Thiazole is a versatile heterocycle, found in the structure of many drugs in use as well as anticancer agents. This review provides an overview of recent advances in thiazole-bearing compounds as anticancer agents with particular emphasis on their mechanism of action in cancerous cells. Chemical designs, structure–activity relationships and relevant preclinical properties have been comprehensively described.
Collapse
|
29
|
Magarò G, Prati F, Garofalo B, Corso G, Furlotti G, Apicella C, Mangano G, D'Atanasio N, Robinson D, Di Giorgio FP, Ombrato R. Virtual Screening Approach and Investigation of Structure-Activity Relationships To Discover Novel Bacterial Topoisomerase Inhibitors Targeting Gram-Positive and Gram-Negative Pathogens. J Med Chem 2019; 62:7445-7472. [PMID: 31276392 DOI: 10.1021/acs.jmedchem.9b00394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial resistance is increasing rapidly, requiring urgent identification of new antibacterial drugs that are effective against multidrug-resistant pathogens. Novel bacterial topoisomerase inhibitors (NBTIs) provide a new strategy for investigating the well-validated DNA gyrase and topoisomerase IV targets while preventing cross-resistance issues. On this basis, starting from a virtual screening campaign and subsequent structure-based hit optimization guided by X-ray studies, a novel class of piperazine-like NBTIs with outstanding enzymatic activity against Staphylococcus aureus and Escherichia coli DNA gyrase and topoisomerase IV was identified. Notably, compounds (±)-33, (±)-35, and (±)-36 with potent and balanced multitarget enzymatic profiles exhibited excellent efficacy against selected Gram-positive and Gram-negative pathogens, as well as clinically relevant resistant strains. Overall, the new NBTI chemotype described herein, owing to the broad-spectrum antibacterial activity and favorable in vitro safety profile, might serve as a basis for the development of novel treatments against serious infections.
Collapse
Affiliation(s)
- Gabriele Magarò
- Angelini RR&D (Research, Regulatory & Development) , Angelini S.p.A. , Piazzale della Stazione SNC, S. Palomba-Pomezia , Rome 00071 , Italy
| | - Federica Prati
- Angelini RR&D (Research, Regulatory & Development) , Angelini S.p.A. , Piazzale della Stazione SNC, S. Palomba-Pomezia , Rome 00071 , Italy
| | - Barbara Garofalo
- Angelini RR&D (Research, Regulatory & Development) , Angelini S.p.A. , Piazzale della Stazione SNC, S. Palomba-Pomezia , Rome 00071 , Italy
| | - Gaia Corso
- Angelini RR&D (Research, Regulatory & Development) , Angelini S.p.A. , Piazzale della Stazione SNC, S. Palomba-Pomezia , Rome 00071 , Italy
| | - Guido Furlotti
- Angelini RR&D (Research, Regulatory & Development) , Angelini S.p.A. , Piazzale della Stazione SNC, S. Palomba-Pomezia , Rome 00071 , Italy
| | - Claudia Apicella
- Angelini RR&D (Research, Regulatory & Development) , Angelini S.p.A. , Piazzale della Stazione SNC, S. Palomba-Pomezia , Rome 00071 , Italy
| | - Giorgina Mangano
- Angelini RR&D (Research, Regulatory & Development) , Angelini S.p.A. , Piazzale della Stazione SNC, S. Palomba-Pomezia , Rome 00071 , Italy
| | - Noemi D'Atanasio
- Angelini RR&D (Research, Regulatory & Development) , Angelini S.p.A. , Piazzale della Stazione SNC, S. Palomba-Pomezia , Rome 00071 , Italy
| | - Daniel Robinson
- Schrodinger , 120 West 45th Street , New York , New York 10036 , United States
| | - Francesco Paolo Di Giorgio
- Angelini RR&D (Research, Regulatory & Development) , Angelini S.p.A. , Piazzale della Stazione SNC, S. Palomba-Pomezia , Rome 00071 , Italy
| | - Rosella Ombrato
- Angelini RR&D (Research, Regulatory & Development) , Angelini S.p.A. , Piazzale della Stazione SNC, S. Palomba-Pomezia , Rome 00071 , Italy
| |
Collapse
|
30
|
Chen XB, Xiong SL, Xie ZX, Wang YC, Liu W. Three-Component One-Pot Synthesis of Highly Functionalized Bis-Indole Derivatives. ACS OMEGA 2019; 4:11832-11837. [PMID: 31460292 PMCID: PMC6682060 DOI: 10.1021/acsomega.9b01159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/25/2019] [Indexed: 05/10/2023]
Abstract
In this study, we detail the development of a concise and efficient three-component protocol for the regioselective synthesis of highly functionalized bis-indoles through a one-pot, two-step sequential process starting from enaminones 1, indoles 2, and acenaphthylene-1,2-dione 3 that is catalyzed by piperidine and p-methyl benzenesulfonic acid. This protocol has several advantages including simplicity of experimental operation, high efficiency of bond formation, ready availability and low cost of starting materials, environmentally benign conditions, and target molecular diversity.
Collapse
Affiliation(s)
- Xue-Bing Chen
- School
of Science, Honghe University, Mengzi, 661100 Yunnan, P. R. China
| | - Sheng-Li Xiong
- School
of Science, Honghe University, Mengzi, 661100 Yunnan, P. R. China
| | - Zhi-Xu Xie
- School
of Science, Honghe University, Mengzi, 661100 Yunnan, P. R. China
| | - Yong-Chao Wang
- School
of Vocational and Technical Education, Yunnan
Normal University, Kunming 650092, P. R. China
| | - Wei Liu
- School
of Science, Honghe University, Mengzi, 661100 Yunnan, P. R. China
| |
Collapse
|
31
|
Perrone S, Troisi L, Salomone A. Heterocycle Synthesis through Pd-Catalyzed Carbonylative Coupling. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900439] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Serena Perrone
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali; Università del Salento; Campus Ecotekne, Prov.le Lecce-Monteroni 73100 Lecce Italy
| | - Luigino Troisi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali; Università del Salento; Campus Ecotekne, Prov.le Lecce-Monteroni 73100 Lecce Italy
| | - Antonio Salomone
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali; Università del Salento; Campus Ecotekne, Prov.le Lecce-Monteroni 73100 Lecce Italy
| |
Collapse
|
32
|
Goryaeva MV, Kushch SO, Khudina OG, Burgart YV, Kudyakova YS, Ezhikova MA, Kodess MI, Slepukhin PA, Sadretdinova LS, Evstigneeva NP, Gerasimova NA, Saloutin VI. Autocatalyzed three-component cyclization of polyfluoroalkyl-3-oxo esters, methyl ketones and alkyl amines: a novel approach to 3-alkylamino-5-hydroxy-5-polyfluoroalkylcyclohex-2-en-1-ones. Org Biomol Chem 2019; 17:4273-4280. [PMID: 30938405 DOI: 10.1039/c9ob00293f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new one-pot reaction between polyfluoroalkylated 3-oxo esters, methyl ketones and primary or secondary alkyl amines is reported as an efficient approach to 3-alkylamino-5-hydroxy-5-polyfluoroalkylcyclohex-2-en-1-ones. The scope of three-component cyclization and its plausible mechanism are discussed. The described protocol makes it possible to vary the functional substituents in 2, 3 and 5 positions of carbocycles. Anhydrous conditions are necessary for the productive synthesis of aminocyclohexenones, whereas in the presence of water the competitive formation of alkyl ammonium salts of keto hydroxy carboxylates is observed. Dehydration of the aminocyclohexenones was effectively used for the synthesis of 3-alkylamino-5-trifluoromethylphenols, some of which exhibited moderate antifungal activities against eight pathogenic fungal strains.
Collapse
Affiliation(s)
- Marina V Goryaeva
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, S. Kovalevskoy St. 22, 620990 Ekaterinburg, Russia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lindenblatt D, Nickelsen A, Applegate VM, Hochscherf J, Witulski B, Bouaziz Z, Marminon C, Bretner M, Le Borgne M, Jose J, Niefind K. Diacritic Binding of an Indenoindole Inhibitor by CK2α Paralogs Explored by a Reliable Path to Atomic Resolution CK2α' Structures. ACS OMEGA 2019; 4:5471-5478. [PMID: 31559376 PMCID: PMC6756786 DOI: 10.1021/acsomega.8b03415] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/14/2019] [Indexed: 06/01/2023]
Abstract
CK2α and CK2α' are the two isoforms of the catalytic subunit of human protein kinase CK2, an important target for cancer therapy. They have similar, albeit not identical functional and structural properties, and were occasionally reported to be inhibited with distinct efficacies by certain ATP-competitive ligands. Here, we present THN27, an indeno[1,2-b]indole derivative, as a further inhibitor with basal isoform selectivity. The selectivity disappears when measured using CK2α/CK2α' complexes with CK2β, the regulatory CK2 subunit. Co-crystal structures of THN27 with CK2α and CK2α' reveal that subtle differences in the conformational variability of the interdomain hinge region are correlated with the observed effect. In the case of CK2α', a crystallographically problematic protein so far, this comparative structural analysis required the development of an experimental strategy that finally enables atomic resolution structure determinations with ab initio phasing of potentially any ATP-competitive CK2 inhibitor and possibly many non-ATP-competitive ligands as well bound to CK2α'.
Collapse
Affiliation(s)
- Dirk Lindenblatt
- Department
für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany
| | - Anna Nickelsen
- Institut
für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstr. 48, D-48149 Münster, Germany
| | - Violetta M. Applegate
- Department
für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany
| | - Jennifer Hochscherf
- Department
für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany
| | - Benedict Witulski
- Department
für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany
| | - Zouhair Bouaziz
- EA 4446
Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est
CNRS UMS 3453 - INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon Cedex 8, France
| | - Christelle Marminon
- EA 4446
Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est
CNRS UMS 3453 - INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon Cedex 8, France
| | - Maria Bretner
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Marc Le Borgne
- EA 4446
Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est
CNRS UMS 3453 - INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon Cedex 8, France
| | - Joachim Jose
- Institut
für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstr. 48, D-48149 Münster, Germany
| | - Karsten Niefind
- Department
für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany
| |
Collapse
|
34
|
Sorabad GS, Maddani MR. Metal-free, green and efficient oxidative α halogenation of enaminones by halo acid and DMSO. NEW J CHEM 2019. [DOI: 10.1039/c8nj06412a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal free oxidative halogenation of N-aryl enaminones has been demonstrated using a DMSO–halo acid combination under mild reaction conditions. The present method is a straightforward approach and is also applied for the synthesis of chromenone derivatives in excellent yields.
Collapse
Affiliation(s)
- Ganesh Shivayogappa Sorabad
- Department of Post-Graduate Studies and Research in Chemistry
- Mangalore University
- Mangalagangothri-574199
- India
| | | |
Collapse
|
35
|
Liu FJ, Sun TT, Yang YG, Huang C, Chen XB. Divergent synthesis of dual 1,4-dihydropyridines with different substituted patterns from enaminones and aldehydes through domino reactions. RSC Adv 2018; 8:12635-12640. [PMID: 35541228 PMCID: PMC9079339 DOI: 10.1039/c8ra01236a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/26/2018] [Indexed: 11/21/2022] Open
Abstract
A concise and efficient protocol for the regioselective synthesis of dual 1,4-dihydropyridines with several substituted patterns has been developed from a cascade cyclization of enaminones and aldehydes in different media (EtOH/CH3CN). The one-pot cascade reaction involves at least five reactive sites and generates multiple C-C and C-N bonds. The established protocol explores the chemistry of enaminones by employing their three reactive sites. The method has several advantages including mild conditions, operational simplicity, and high bond-forming efficiency. It may offer promise in a variety of biochemical applications.
Collapse
Affiliation(s)
- Fu-Jun Liu
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Science, Honghe University Mengzi Yunnan 661100 China
| | - Tian-Tian Sun
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Science, Honghe University Mengzi Yunnan 661100 China
| | - Yun-Gang Yang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Science, Honghe University Mengzi Yunnan 661100 China
| | - Chao Huang
- School of Chemistry and Environment, Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University Kunming Yunnan 650503 China
| | - Xue-Bing Chen
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Science, Honghe University Mengzi Yunnan 661100 China
| |
Collapse
|
36
|
Self-Assembled Supramolecular Nanoparticles Improve the Cytotoxic Efficacy of CK2 Inhibitor THN7. Pharmaceuticals (Basel) 2018; 11:ph11010010. [PMID: 29373552 PMCID: PMC5874706 DOI: 10.3390/ph11010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 01/19/2023] Open
Abstract
Since the approval of imatinib in 2001, kinase inhibitors have revolutionized cancer therapies. Inside this family of phosphotransferases, casein kinase 2 (CK2) is of great interest and numerous scaffolds have been investigated to design CK2 inhibitors. Recently, functionalized indeno[1,2-b]indoles have been revealed to have high potency against human cancer cell lines such as MCF-7 breast carcinoma and A-427 lung carcinoma. 4-Methoxy-5-isopropyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (THN7), identified as a potent inhibitor of CK2 (IC50 = 71 nM), was selected for an encapsulation study in order to evaluate its antiproliferative activity as THN7-loaded cyclodextrin nanoparticles. Four α-cyclodextrins (α-CDs) were selected to encapsulate THN7 and all experiments indicated that the nanoencapsulation of this CK2 inhibitor in α-CDs was successful. No additional surface-active agent was used during the nanoformulation process. Nanoparticles formed between THN7 and α-C6H13 amphiphilic derivative gave the best results in terms of encapsulation rate (% of associated drug = 35%), with a stability constant (K11) of 298 mol·L−1 and a size of 132 nm. Hemolytic activity of the four α-CDs was determined before the in cellulo evaluation and the α-C6H13 derivative gave the lowest value of hemolytic potency (HC50 = 1.93 mol·L−1). Only the THN7-loaded cyclodextrin nanoparticles showing less toxicity on human erythrocytes (α-C6H13, α-C8H17 and α-C4H9) were tested against A-427 cells. All drug-loaded nanoparticles caused more cytotoxicity against A-427 cells than THN7 alone. Based on these results, the use of amphiphilic CD nanoparticles could be considered as a drug delivery system for indeno[1,2-b]indoles, allowing an optimized bioavailability and offering perspectives for the in vivo development of CK2 inhibitors.
Collapse
|
37
|
Chen XB, Gong JW, Zhang XD, Liu XL, Liu W, Wang YC. Catalyst-free concise synthesis of multi-functional 3-cyano-4-quinolinone derivatives from cyanoacetylenaminones and DMF-DMA. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Martín-Acosta P, Haider S, Amesty Á, Aichele D, Jose J, Estévez-Braun A. A new family of densely functionalized fused-benzoquinones as potent human protein kinase CK2 inhibitors. Eur J Med Chem 2018; 144:410-423. [DOI: 10.1016/j.ejmech.2017.12.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022]
|
39
|
Hochscherf J, Lindenblatt D, Witulski B, Birus R, Aichele D, Marminon C, Bouaziz Z, Le Borgne M, Jose J, Niefind K. Unexpected Binding Mode of a Potent Indeno[1,2-b]indole-Type Inhibitor of Protein Kinase CK2 Revealed by Complex Structures with the Catalytic Subunit CK2α and Its Paralog CK2α'. Pharmaceuticals (Basel) 2017; 10:ph10040098. [PMID: 29236079 PMCID: PMC5748653 DOI: 10.3390/ph10040098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
Protein kinase CK2, a member of the eukaryotic protein kinase superfamily, is associated with cancer and other human pathologies and thus an attractive drug target. The indeno[1,2-b]indole scaffold is a novel lead structure to develop ATP-competitive CK2 inhibitors. Some indeno[1,2-b]indole-based CK2 inhibitors additionally obstruct ABCG2, an ABC half transporter overexpressed in breast cancer and co-responsible for drug efflux and resistance. Comprehensive derivatization studies revealed substitutions of the indeno[1,2-b]indole framework that boost either the CK2 or the ABCG2 selectivity or even support the dual inhibition potential. The best indeno[1,2-b]indole-based CK2 inhibitor described yet (IC50 = 25 nM) is 5-isopropyl-4-(3-methylbut-2-enyl-oxy)-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (4p). Herein, we demonstrate the membrane permeability of 4p and describe co-crystal structures of 4p with CK2α and CK2α′, the paralogs of human CK2 catalytic subunit. As expected, 4p occupies the narrow, hydrophobic ATP site of CK2α/CK2α′, but surprisingly with a unique orientation: its hydrophobic substituents point towards the solvent while its two oxo groups are hydrogen-bonded to a hidden water molecule. An equivalent water molecule was found in many CK2α structures, but never as a critical mediator of ligand binding. This unexpected binding mode is independent of the interdomain hinge/helix αD region conformation and of the salt content in the crystallization medium.
Collapse
Affiliation(s)
- Jennifer Hochscherf
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Dirk Lindenblatt
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Benedict Witulski
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Robin Birus
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Dagmar Aichele
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Christelle Marminon
- EA4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, F-69373 Lyon CEDEX 8, France.
| | - Zouhair Bouaziz
- EA4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, F-69373 Lyon CEDEX 8, France.
| | - Marc Le Borgne
- EA4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, F-69373 Lyon CEDEX 8, France.
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Karsten Niefind
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| |
Collapse
|
40
|
Baier A, Nazaruk J, Galicka A, Szyszka R. Inhibitory influence of natural flavonoids on human protein kinase CK2 isoforms: effect of the regulatory subunit. Mol Cell Biochem 2017; 444:35-42. [PMID: 29188536 PMCID: PMC6002439 DOI: 10.1007/s11010-017-3228-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/24/2017] [Indexed: 11/25/2022]
Abstract
CK2 is a pleiotropic, constitutively active protein kinase responsible for the phosphorylation of more than 300 physiological substrates. Typically, this enzyme is found in tetrameric form consisting of two regulatory subunits CK2β and two catalytic subunits CK2α or CK2α′. Several natural occurring flavonoids were tested for their ability to inhibit both CK2 holoenzymes, CK2α2β2 and CK2α′2β2. We identified few substances selectively inhibiting only the α′ subunit. Other compounds showed similar effect towards all four isoforms. In some cases, like chrysoeriol, pedalitin, apigenin, and luteolin, the α2β2 holoenzyme was at least six times better inhibited than the free α subunit. Otherwise, we have found a luteolin derivative decreased the kinase activity of CK2α′ with an IC50 value of 0.8 μM, but the holoenzyme only with 9.5 µM.
Collapse
Affiliation(s)
- Andrea Baier
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, ul. Konstantynow 1i, 20-708, Lublin, Poland.
| | - Jolanta Nazaruk
- Department of Pharmacognosy, Medical University of Białystok, ul. Mickiewicza 2a, 15-089, Białystok, Poland
| | - Anna Galicka
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-089, Białystok, Poland
| | - Ryszard Szyszka
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, ul. Konstantynow 1i, 20-708, Lublin, Poland
| |
Collapse
|
41
|
Annulation of five-membered cyclic enols with 3-aryl-2 H -azirines: Catalytic versus non-catalytic cycloaddition. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.06.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistry; Indian Institute of Technology-Bombay; Powai 400076 Mumbai India
| | | | - Rashid Ali
- Department of Chemistry; Indian Institute of Technology-Bombay; Powai 400076 Mumbai India
| |
Collapse
|
43
|
Development of Pharmacophore Model for Indeno[1,2-b]indoles as Human Protein Kinase CK2 Inhibitors and Database Mining. Pharmaceuticals (Basel) 2017; 10:ph10010008. [PMID: 28075359 PMCID: PMC5374412 DOI: 10.3390/ph10010008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/16/2022] Open
Abstract
Protein kinase CK2, initially designated as casein kinase 2, is an ubiquitously expressed serine/threonine kinase. This enzyme, implicated in many cellular processes, is highly expressed and active in many tumor cells. A large number of compounds has been developed as inhibitors comprising different backbones. Beside others, structures with an indeno[1,2-b]indole scaffold turned out to be potent new leads. With the aim of developing new inhibitors of human protein kinase CK2, we report here on the generation of common feature pharmacophore model to further explain the binding requirements for human CK2 inhibitors. Nine common chemical features of indeno[1,2-b]indole-type CK2 inhibitors were determined using MOE software (Chemical Computing Group, Montreal, Canada). This pharmacophore model was used for database mining with the aim to identify novel scaffolds for developing new potent and selective CK2 inhibitors. Using this strategy several structures were selected by searching inside the ZINC compound database. One of the selected compounds was bikaverin (6,11-dihydroxy-3,8-dimethoxy-1-methylbenzo[b]xanthene-7,10,12-trione), a natural compound which is produced by several kinds of fungi. This compound was tested on human recombinant CK2 and turned out to be an active inhibitor with an IC50 value of 1.24 µM.
Collapse
|
44
|
Chen XB, Wang XQ, Song JN, Yang QL, Huang C, Liu W. Efficient construction of C–N and C–S bonds in 2-iminothiazoles via cascade reaction of enaminones with potassium thiocyanate. Org Biomol Chem 2017; 15:3611-3615. [DOI: 10.1039/c7ob00306d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regioselective cascade reactions have been developed by using enaminones and potassium thiocyanate, offering a novel protocol for the synthesis of thiazoles from enaminones.
Collapse
Affiliation(s)
- Xue-Bing Chen
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province
- School of Science Honghe
- University Mengzi
- China
| | - Xue-Quan Wang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province
- School of Science Honghe
- University Mengzi
- China
| | - Jia-Na Song
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province
- School of Science Honghe
- University Mengzi
- China
| | - Qing-Li Yang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province
- School of Science Honghe
- University Mengzi
- China
| | - Chao Huang
- School of Chemistry and Environment
- Engineering Research Center of Biopolymer Functional Materials of Yunnan
- Yunnan Minzu University
- Kunming
- China
| | - Wei Liu
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province
- School of Science Honghe
- University Mengzi
- China
| |
Collapse
|
45
|
Kour M, Bhardwaj M, Sharma H, Paul S, Clark JH. Ionic liquid coated sulfonated carbon@titania composites for the one-pot synthesis of indeno[1,2-b]indole-9,10-diones and 1H-pyrazolo[1,2-b]phthalazine-5,10-diones in aqueous media. NEW J CHEM 2017. [DOI: 10.1039/c7nj00361g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and efficient ionic liquid based solid Bronsted acid catalyst has been designed and explored as a recyclable catalytic system for multicomponent synthesis in an aqueous reaction media.
Collapse
Affiliation(s)
- Manmeet Kour
- Department of Chemistry
- University of Jammu
- Jammu-180 006
- India
| | - Madhvi Bhardwaj
- Department of Chemistry
- University of Jammu
- Jammu-180 006
- India
| | - Harsha Sharma
- Department of Chemistry
- University of Jammu
- Jammu-180 006
- India
| | - Satya Paul
- Department of Chemistry
- University of Jammu
- Jammu-180 006
- India
| | - James H. Clark
- Green Chemistry Centre of Excellence
- Department of Chemistry
- University of York
- UK
| |
Collapse
|
46
|
Guo S, Tao L, Wang F, Fan X. Pd-Catalyzed Cyclocarbonylation of 2-(2-Bromoaryl)indoles with CO as a C1 Source: Selective Access to 6 H
-Isoindolo[2,1-a
]indol-6-ones and Indeno[1,2-b
]indol-10(5 H
)-ones. Chem Asian J 2016; 11:3090-3096. [DOI: 10.1002/asia.201601067] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Shenghai Guo
- School of Chemistry and Chemical Engineering; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; Henan Normal University; 46 Jianshe Road Xinxiang 453007 P. R. China
| | - Li Tao
- School of Chemistry and Chemical Engineering; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; Henan Normal University; 46 Jianshe Road Xinxiang 453007 P. R. China
| | - Fang Wang
- School of Chemistry and Chemical Engineering; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; Henan Normal University; 46 Jianshe Road Xinxiang 453007 P. R. China
| | - Xuesen Fan
- School of Chemistry and Chemical Engineering; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; Henan Normal University; 46 Jianshe Road Xinxiang 453007 P. R. China
| |
Collapse
|
47
|
Li E, Jin H, Jia P, Dong X, Huang Y. Bifunctional-Phosphine-Catalyzed Sequential Annulations of Allenoates and Ketimines: Construction of Functionalized Poly-heterocycle Rings. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605189] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Erqing Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 China
| | - Hongxing Jin
- State Key Laboratory and Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 China
| | - Penghao Jia
- State Key Laboratory and Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 China
| | - Xuelin Dong
- State Key Laboratory and Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 China
| | - You Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300071 China
| |
Collapse
|
48
|
Li E, Jin H, Jia P, Dong X, Huang Y. Bifunctional-Phosphine-Catalyzed Sequential Annulations of Allenoates and Ketimines: Construction of Functionalized Poly-heterocycle Rings. Angew Chem Int Ed Engl 2016; 55:11591-4. [DOI: 10.1002/anie.201605189] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Erqing Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 China
| | - Hongxing Jin
- State Key Laboratory and Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 China
| | - Penghao Jia
- State Key Laboratory and Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 China
| | - Xuelin Dong
- State Key Laboratory and Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 China
| | - You Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300071 China
| |
Collapse
|
49
|
Synthesis and evaluation of novel 1,2,3-triazole-based acetylcholinesterase inhibitors with neuroprotective activity. Bioorg Med Chem Lett 2016; 26:3881-5. [DOI: 10.1016/j.bmcl.2016.07.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 12/26/2022]
|
50
|
Baiceanu E, Nguyen KA, Gonzalez-Lobato L, Nasr R, Baubichon-Cortay H, Loghin F, Le Borgne M, Chow L, Boumendjel A, Peuchmaur M, Falson P. 2-Indolylmethylenebenzofuranones as first effective inhibitors of ABCC2. Eur J Med Chem 2016; 122:408-418. [PMID: 27393949 DOI: 10.1016/j.ejmech.2016.06.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/18/2016] [Accepted: 06/20/2016] [Indexed: 12/18/2022]
Abstract
ABC-transporters play a vital role in drugs bioavailability. They prevent intracellular accumulation of toxic compounds, rendering them a major defense mechanism against harmful substances. In this large family, ABCC2 is an apical efflux pump representing about 10% of all membrane proteins in liver and small intestine, and up to 25% in colon. In these tissues, ABCC2 plays a major role in the pharmacokinetics and pharmacodynamics of endo- and xenobiotics. To gain insight in the function of this crucial protein, we have investigated and developed the first effective inhibitors of this pump. Firstly, we set up a cellular flow cytometry assay for monitoring the drug efflux carried out by ABCC2, and used it for the screening of chemical libraries derived from several chemical classes. We found that 2-indolylmethylenebenzofuranone derivatives as promising candidates. Optimization of the hits provided new compounds that inhibit ABCC2 in the micromolar range, making them the first potent ABCC2 inhibitors reported so far. Such compounds would constitute valuable tools to further investigate the role of ABCC2 in the pharmacokinetics and pharmacodynamics of drugs.
Collapse
Affiliation(s)
- Elisabeta Baiceanu
- Drug Resistance Mechanisms and Membrane Proteins Laboratory, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France; Toxicology Department, Faculty of Pharmacy, Univ. Medicine and Pharmacy ¨Iuliu Hatieganu¨, Cluj-Napoca, Romania
| | - Kim-Anh Nguyen
- Univ. Grenoble Alpes, Département de Pharmacochimie Moléculaire DPM UMR 5063, 38041 Grenoble, France; CNRS, DPM UMR 5063, 38041 Grenoble, France
| | - Lucia Gonzalez-Lobato
- Drug Resistance Mechanisms and Membrane Proteins Laboratory, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Rachad Nasr
- Drug Resistance Mechanisms and Membrane Proteins Laboratory, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Hélène Baubichon-Cortay
- Drug Resistance Mechanisms and Membrane Proteins Laboratory, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Felicia Loghin
- Toxicology Department, Faculty of Pharmacy, Univ. Medicine and Pharmacy ¨Iuliu Hatieganu¨, Cluj-Napoca, Romania
| | - Marc Le Borgne
- Université de Lyon, Université Lyon 1, Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, 8 Avenue Rockefeller, F-69373 Lyon Cedex 8, France
| | - Larry Chow
- Department of Applied Biology and Chemical Technology, and State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region
| | - Ahcène Boumendjel
- Univ. Grenoble Alpes, Département de Pharmacochimie Moléculaire DPM UMR 5063, 38041 Grenoble, France; CNRS, DPM UMR 5063, 38041 Grenoble, France
| | - Marine Peuchmaur
- Univ. Grenoble Alpes, Département de Pharmacochimie Moléculaire DPM UMR 5063, 38041 Grenoble, France; CNRS, DPM UMR 5063, 38041 Grenoble, France
| | - Pierre Falson
- Drug Resistance Mechanisms and Membrane Proteins Laboratory, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France.
| |
Collapse
|