1
|
Mohammed YHI, Shamkh IM, Alharthi NS, Shanawaz MA, Alzahrani HA, Jabbar B, Beigh S, Alghamdi S, Alsakhen N, Khidir EB, Alhuthali HM, Karamalla THE, Rabie AM. Discovery of 1-(5-bromopyrazin-2-yl)-1-[3-(trifluoromethyl)benzyl]urea as a promising anticancer drug via synthesis, characterization, biological screening, and computational studies. Sci Rep 2023; 13:22824. [PMID: 38129413 PMCID: PMC10739849 DOI: 10.1038/s41598-023-44662-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/11/2023] [Indexed: 12/23/2023] Open
Abstract
Cancer and different types of tumors are still the most resistant diseases to available therapeutic agents. Finding a highly effective anticancer drug is the first target and concern of thousands of drug designers. In our attempts to address this concern, a new pyrazine derivative, 1-(5-bromopyrazin-2-yl)-1-[3-(trifluoromethyl)benzyl]urea (BPU), was designed via structural optimization and synthesized to investigate its anticancer/antitumor potential. The in-vitro anticancer properties of BPU were evaluated by MTT assay using selected cell lines, including the Jurkat, HeLa, and MCF-7 cells. The Jurkat cells were chosen to study the effect of BPU on cell cycle analysis using flow cytometry technique. BPU exhibited an effective cytotoxic ability in all the three cell lines assessed. It was found to be more prominent with the Jurkat cell line (IC50 = 4.64 ± 0.08 µM). When it was subjected to cell cycle analysis, this compound effectively arrested cell cycle progression in the sub-G1 phase. Upon evaluating the antiangiogenic potential of BPU via the in-vivo/ex-vivo shell-less chick chorioallantoic membrane (CAM) assays, the compound demonstrated very significant findings, revealing a complementary supportive action for the compound to act as a potent anticancer agent through inhibiting blood vessel formation in tumor tissues. Moreover, the docking energy of BPU computationally scored - 9.0 kcal/mol with the human matrix metalloproteinase 2 (MMP-2) and - 7.8 kcal/mol with the human matrix metalloproteinase 9 (MMP-9), denoting promising binding results as compared to the existing drugs for cancer therapy. The molecular dynamics (MD) simulation outcomes showed that BPU could effectively bind to the previously-proposed catalytic sites of both MMP-2 and MMP-9 enzymes with relatively stable statuses and good inhibitory binding abilities and parameters. Our findings suggest that the compound BPU could be a promising anticancer agent since it effectively inhibited cell proliferation and can be selected for further in-vitro and in-vivo investigations. In addition, the current results can be extensively validated by conducting wet-lab analysis so as to develop novel and better derivatives of BPU for cancer therapy with much less side effects and higher activities.
Collapse
Affiliation(s)
- Yasser Hussein Issa Mohammed
- Department of Biochemistry, Faculty of Applied Science, University of Hajjah, Hajjah, Yemen.
- Department of Pharmacy, Faculty of Medicine and Medical Science, University of Al-Razi, Sana'a, Yemen.
| | - Israa M Shamkh
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
- Chemo and Bioinformatics Lab, Bio Search Research Institution (BSRI), Giza, Egypt
| | - Nahed S Alharthi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Mohammed A Shanawaz
- Department of Public Health, Faculty of Applied Medical Sciences, Albaha University, Albaha, 65431, Saudi Arabia
| | - Hind A Alzahrani
- Department of Basic Sciences, Faculty of Applied Medical Sciences, Albaha University, Albaha, 65431, Saudi Arabia
| | - Basit Jabbar
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Saba Beigh
- Department of Public Health, Faculty of Applied Medical Sciences, Albaha University, Albaha, 65431, Saudi Arabia
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nada Alsakhen
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Elshiekh B Khidir
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hayaa M Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | | | - Amgad M Rabie
- Head of Drug Discovery and Clinical Research Department, Dikernis General Hospital (DGH), Magliss El-Madina Street, Dikernis City 35744, Dikernis, Dakahlia Governorate, Egypt.
| |
Collapse
|
2
|
Ewieda SY, Ahmed EM, Hassan RA, Hassan MSA. Pyridazine derivatives as selective COX-2 inhibitors: A review on recent updates. Drug Dev Res 2023; 84:1595-1623. [PMID: 37751330 DOI: 10.1002/ddr.22118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
Selective cyclooxygenase (COX)-2 inhibitors have several advantages over nonselective COX inhibitors (nonsteroidal anti-inflammatory drugs [NSAIDs]), including the absence of adverse effects (renal and hepatic disorders) associated with the long-term use of standard NSAIDs, as well as an improved gastrointestinal profile. The pyridazine nucleus is regarded as a promising scaffold for the development of powerful COX-2 inhibitors, particularly when selectively functionalized. This article summarizes some methods for the synthesis of pyridazine derivatives. Furthermore, it covers all of the pyridazine derivatives that have appeared as selective COX-2 inhibitors, making it useful as a reference for the rational design of novel selective COX-2 inhibitors.
Collapse
Affiliation(s)
- Sara Y Ewieda
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Eman M Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Marwa S A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Ozadali-Sari K, Ceylan S, Yucel ES, Sabuncuoglu S, Unsal-Tan O. Design, Synthesis and Cytotoxic Evaluation of N‐acylhydrazone‐Incorporated Isoxazolo[4,5‐d]pyridazin‐4(5H)‐one Derivatives. Chem Biodivers 2022; 19:e202200389. [DOI: 10.1002/cbdv.202200389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/19/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Keriman Ozadali-Sari
- Hacettepe Universitesi Eczacilik Fakultesi Pharmaceutical chemistry Department of Pharmaceutical Chemistry, Hacettepe UniversityFaculty of Pharmacy, Ankara 06100 06100 Ankara TURKEY
| | - Serenay Ceylan
- Hacettepe Universitesi Eczacilik Fakultesi Pharmaceutical Chemistry 1Department of Pharmaceutical Chemistry, Hacettepe UniversityFaculty of PharmacyAnkara 06100, Turkey 06100 Ankara TURKEY
| | - Evnur Sinem Yucel
- Hacettepe Universitesi Eczacilik Fakultesi Pharmaceutical Chemistry Department of Pharmaceutical Chemistry, Hacettepe University,Faculty of Pharmacy 06100 Ankara TURKEY
| | - Suna Sabuncuoglu
- Hacettepe Universitesi Eczacilik Fakultesi Pharmaceutical Toxicology Department of Pharmaceutical Toxicology, Hacettepe University,Faculty of Pharmacy, Ankara 06100 06100 Ankara TURKEY
| | - Oya Unsal-Tan
- Hacettepe Universitesi Eczacilik Fakultesi Department of Pharmaceutical Chemistry, Hacettepe University, Faculty of Pharmacy, Ankara 06100 06100 Ankara TURKEY
| |
Collapse
|
4
|
Hassan MSA, Ahmed EM, El-Malah AA, Kassab AE. Anti-inflammatory activity of pyridazinones: A review. Arch Pharm (Weinheim) 2022; 355:e2200067. [PMID: 35532263 DOI: 10.1002/ardp.202200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/06/2022]
Abstract
The pyridazinone core has emerged as a leading structure for fighting inflammation, with low ulcerogenic effects. Moreover, easy functionalization of various ring positions of the pyridazinone core structure makes it an attractive synthetic and therapeutic target for the design and synthesis of anti-inflammatory agents. The present review surveys the recent advances of pyridazinone derivatives as potential anti-inflammatory agents to provide insights into the rational design of more effective anti-inflammatory pyridazinones.
Collapse
Affiliation(s)
- Marwa S A Hassan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Eman M Ahmed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Afaf A El-Malah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Bošković J, Ružić D, Čudina O, Nikolic K, Dobričić V. Design of Dual COX-2 and 5-LOX Inhibitors with Iron-Chelating Properties
Using Structure-Based and Ligand-Based Methods. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666210714161908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Inflammation is a critical component of many disease progressions, such as malignancy,
cardiovascular and rheumatic diseases. The inhibition of inflammatory mediators synthesis by
modulation of cyclooxygenase (COX) and lipoxygenase (LOX) pathways provides challenging strategy
for development of more effective drugs.
Objective:
The aim of this study was to design dual COX-2 and 5-LOX inhibitors with iron-chelating
properties using a combination of ligand-based (three-dimensional quantitative structure-activity relationship
(3D-QSAR)) and structure-based (molecular docking) methods.
Methods:
The 3D-QSAR analysis was applied on a literature dataset consisting of 28 dual COX-2 and 5-
LOX inhibitors in Pentacle software. The quality of developed COX-2 and 5-LOX 3D-QSAR models
were evaluated by internal and external validation methods. The molecular docking analysis was performed
in GOLD software, while selected ADMET properties were predicted in ADMET predictor software.
Results:
According to the molecular docking studies, the class of sulfohydroxamic acid analogues, previously
designed by 3D-QSAR, were clustered as potential dual COX-2 and 5-LOX inhibitors with ironchelating
properties. Based on the 3D-QSAR and molecular docking, 1j, 1g and 1l were selected as the
most promising dual COX-2 and 5-LOX inhibitors. According to the in silico ADMET predictions, all
compounds had ADMET_Risk score less than 7 and CYP_Risk score lower than 2.5. Designed compounds
were not estimated as hERG inhibitors and 1j had improved intrinsic solubility (8.704) in comparison
to the dataset compounds (0.411-7.946).
Conclusion:
By combining 3D-QSAR and molecular docking, three compounds (1j, 1g and 1l) were
selected as the most promising designed dual COX-2 and 5-LOX inhibitors, for which good activity, as
well as favourable ADMET properties and toxicity, are expected.
Collapse
Affiliation(s)
- Jelena Bošković
- Department of Pharmaceutical Chemistry, University of Belgrade – Faculty of Pharmacy, Belgrade, Serbia
| | - Dušan Ružić
- Department of Pharmaceutical Chemistry, University of Belgrade – Faculty of Pharmacy, Belgrade, Serbia
| | - Olivera Čudina
- Department of Pharmaceutical Chemistry, University of Belgrade – Faculty of Pharmacy, Belgrade, Serbia
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, University of Belgrade – Faculty of Pharmacy, Belgrade, Serbia
| | - Vladimir Dobričić
- Department of Pharmaceutical Chemistry, University of Belgrade – Faculty of Pharmacy, Belgrade, Serbia
| |
Collapse
|
6
|
Optimized POCl3-assisted synthesis of 2-amino-1,3,4-thiadiazole/1,3,4-oxadiazole derivatives as anti-influenza agents. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
7
|
Fear EJ, Kennerley AJ, Rayner PJ, Norcott P, Roy SS, Duckett SB. SABRE hyperpolarized anticancer agents for use in
1
H MRI. Magn Reson Med 2022; 88:11-27. [PMID: 35253267 PMCID: PMC9310590 DOI: 10.1002/mrm.29166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022]
Abstract
Purpose Enabling drug tracking (distribution/specific pathways) with magnetic resonance spectroscopy requires manipulation (via hyperpolarization) of spin state populations and targets with sufficiently long magnetic lifetimes to give the largest possible window of observation. Here, we demonstrate how the proton resonances of a group of thienopyridazines (with known anticancer properties), can be amplified using the para‐hydrogen (p‐H2) based signal amplification by reversible exchange (SABRE) hyperpolarization technique. Methods Thienopyridazine isomers, including a 2H version, were synthesized in house. Iridium‐based catalysts dissolved in a methanol‐d4 solvent facilitated polarization transfer from p‐H2 gas to the target thienopyridazines. Subsequent SABRE 1H responses of hyperpolarized thienopyridazines were completed (400 MHz NMR). Pseudo‐singlet state approaches were deployed to extend magnetic state lifetimes. Proof of principle spectral‐spatial images were acquired across a range of field strengths (7T‐9.4T MRI). Results 1H‐NMR signal enhancements of −10,130‐fold at 9.4T (~33% polarization) were achieved on thieno[2,3‐d]pyridazine (T[2,3‐d]P), using SABRE under optimal mixing/field transfer conditions. 1H T1 lifetimes for the thienopyridazines were ~18‐50 s. Long‐lived state approaches extended the magnetic lifetime of target proton sites in T[2,3‐d]P from an average of 25‐40 seconds. Enhanced in vitro imaging (spatial and chemical shift based) of target T[2,3‐d]P was demonstrated. Conclusion Here, we demonstrate the power of SABRE to deliver a fast and cost‐effective route to hyperpolarization of important chemical motifs of anticancer agents. The SABRE approach outlined here lays the foundations for realizing continuous flow, hyperpolarized tracking of drug delivery/pathways.
Collapse
Affiliation(s)
| | - Aneurin J. Kennerley
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM) University of York York United Kingdom
| | - Peter J. Rayner
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM) University of York York United Kingdom
| | - Philip Norcott
- Research School of Chemistry Australian National University Canberra Australia
| | - Soumya S. Roy
- School of Chemistry University of Southampton Southampton United Kingdom
- Defence Science and Technology Laboratory (DSTL) Salisbury United Kingdom
| | - Simon B. Duckett
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM) University of York York United Kingdom
| |
Collapse
|
8
|
Sipkina NY, Sipkin DI, Yakovlev IP. Quantification of a New Antifungal Drug Based on 1,3,4-Thiadiazole by HPLC-ESI/MS: Method Development, Validation and Pharmacokinetic Application. Drug Res (Stuttg) 2021; 72:47-52. [PMID: 34535039 DOI: 10.1055/a-1625-3121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The high sensitive HPLC-ESI/MS method for quantitative determination of a new antifungal drug - 2-[(1Z)-1-(3,5-diphenyl-1,3,4-thiadiazol-2(3Н)-ylidene)methyl]-3,5-diphenyl-1,3,4-thiadiazol-3-ium chloride (TDZ) - was developed and fully validated. TDZ was separated from plasma and urine samples by acetonitrile deproteinization and extraction without time-consuming sample preparation. The reversed-phase high-performance liquid chromatography on Kromasil 100-3.5 C8 column of TDZ in isocratic elution mode using 0.03% trifluoroacetic acid : acetonitrile (65:35, v/v) at a flow rate of 0.2 mL min-1 was performed. Determination of TDZ was carried out by a positive electrospray ionization in a selected ion monitoring mode for [M+]=489 m/z. The method of absolute calibration was used for quantification of TDZ in two concentrations ranges: 100-2500 pg mL-1 and 2500-30 000 pg mL-1. The established method showed a good linearity (R=0.999 for both ranges), the limits of determination and quantification were 50 and 100 pg mL-1, respectively. The Intra- and Inter-day precision values were measured by t-Distribution and Fisher's Exact Test and were in accordance with the regulatory guidance. Low matrix effects and good recovery were found for TDZ. The present method was successfully applied to determine the pharmacokinetic parameters of TDZ by means of intravenous and oral administrations to rats at 5.0 mg kg-1 and 10.0 mg kg-1, respectively.
Collapse
|
9
|
Abd El-Hameed RH, Mahgoub S, El-Shanbaky HM, Mohamed MS, Ali SA. Utility of novel 2-furanones in synthesis of other heterocyclic compounds having anti-inflammatory activity with dual COX2/LOX inhibition. J Enzyme Inhib Med Chem 2021; 36:977-986. [PMID: 33957835 PMCID: PMC8118430 DOI: 10.1080/14756366.2021.1908277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Inflammation is associated with the development of several diseases comprising cancer and cardiovascular disease. Agents that suppress cyclooxygenase (COX) and lipoxygenase (LOX) enzymes, besides chemokines have been suggested to minimise inflammation. Here, a variety of novel heterocyclic and non-heterocyclic compounds were prepared from novel three furanone derivatives. The structures of all synthesised compounds were confirmed by elemental and spectral analysis including mass, IR, and 1H-NMR spectroscopy. Anti-inflammatory activities of these synthesised compounds were examined in vitro against COX enzymes, 15-LOX, and tumour necrosis factor-α (TNF-α), using inhibition screening assays. The majority of these derivatives showed significant to high activities, with three pyridazinone derivatives (5b, 8b, and 8c) being the most promising anti-inflammatory agents with dual COX-2/15-LOX inhibition activities along with high TNF-α inhibition activity.
Collapse
Affiliation(s)
- Rania H Abd El-Hameed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Shahenda Mahgoub
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Hend M El-Shanbaky
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mosaad S Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Sahar A Ali
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
10
|
Microwave-assisted synthesis of double-headed derivatives of (4-amino-5-mercapto-4H-1,2,4-triazol-3-yl)-ethan-1-ol and study of their biological activity. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04501-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Zaoui Y, Ramli Y, Tan SL, Tiekink ER, Chemlal L, Mague JT, Taoufik J, Faouzi MEA, Ansar M. Synthesis, structural characterisation and theoretical studies of a novel pyridazine derivative: Investigations of anti-inflammatory activity and inhibition of α-glucosidase. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Abstract
Azolo[d]pyridazinone is a privileged structure and versatile pharmacophore whose derivatives are associated with diverse biological activities, in particular antidiabetic, antiasthmatic, anticancer, analgesic, anti-inflammatory, antithrombotic, antidepressant and antimicrobial activities. The importance of this scaffold against some targets like PDE, COX and DPP-4 has been reviewed in detail previously. In the present review, we have summarized comprehensive information on azolo[d]pyridazinone derivatives investigated by many researchers for their diverse pharmacological activities, structure-activity relationship and molecular modeling studies since 2000. The review may lead scientists in the research fields of organic synthesis, medicinal chemistry and pharmacology to the strategic design and development of azolo[d]pyridazinone-based drug candidates in the future.
Collapse
|
13
|
Synthesis of New Planar-Chiral Linked [2.2]Paracyclophanes- N-([2.2]-Paracyclophanylcarbamoyl)-4-([2.2]Paracyclophanylcarboxamide, [2.2]Paracyclophanyl-Substituted Triazolthiones and -Substituted Oxadiazoles. Molecules 2020; 25:molecules25153315. [PMID: 32707754 PMCID: PMC7436044 DOI: 10.3390/molecules25153315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 01/26/2023] Open
Abstract
The manuscript describes the synthesis of new racemic and chiral linked paracyclophane assigned as N-5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)carbamoyl)-5’-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)carboxamide. The procedure depends upon the reaction of 5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)hydrazide with 5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)isocyanate. To prepare the homochiral linked paracyclophane of a compound, the enantioselectivity of 5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)carbaldehyde (enantiomeric purity 60% ee), was oxidized to the corresponding acid, which on chlorination, gave the corresponding acid chloride of [2.2]paracyclophane. Following up on the same procedure applied for the preparation of racemic-carbamoyl and purified by HPLC purification, we succeeded to obtain the target Sp-Sp-N-5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)carbamoyl)-5’-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)carboxamide. Subjecting N-5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)hydrazide to various isothiocyanates, the corresponding paracyclophanyl-acylthiosemicarbazides were obtained. The latter compounds were then cyclized to a new series of 5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)-2,4-dihydro-3H-1,2,4-triazol-3-thiones. 5-(1,4(1,4)-Dibenzenacyclohexaphane-12-yl)-1,3,4-oxadiazol-2-amines were also synthesized in good yields via internal cyclization of the same paracyclophanyl-acylthiosemicarbazides. NMR, IR, and mass spectra (HRMS) were used to elucidate the structure of the obtained products. The X-ray structure analysis was also used as an unambiguous tool to elucidate the structure of the products.
Collapse
|
14
|
Aly AA, A. Hassan A, Makhlouf MM, Bräse S. Chemistry and Biological Activities of 1,2,4-Triazolethiones-Antiviral and Anti-Infective Drugs. Molecules 2020; 25:E3036. [PMID: 32635156 PMCID: PMC7412134 DOI: 10.3390/molecules25133036] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 11/16/2022] Open
Abstract
Mercapto-substituted 1,2,4-triazoles are very interesting compounds as they play an important role in chemopreventive and chemotherapeutic effects on cancer. In recent decades, literature has been enriched with sulfur- and nitrogen-containing heterocycles which are used as a basic nucleus of different heterocyclic compounds with various biological applications in medicine and also occupy a huge part of natural products. Therefore, we shed, herein, more light on the synthesis of this interesting class and its application as a biologically active moiety. They might also be suitable as antiviral and anti-infective drugs.
Collapse
Affiliation(s)
- Ashraf A. Aly
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt; (A.A.H.); (M.M.M.)
| | - Alaa A. Hassan
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt; (A.A.H.); (M.M.M.)
| | - Maysa M. Makhlouf
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt; (A.A.H.); (M.M.M.)
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
15
|
Sinha S, Doble M, Manju SL. 5-Lipoxygenase as a drug target: A review on trends in inhibitors structural design, SAR and mechanism based approach. Bioorg Med Chem 2019; 27:3745-3759. [PMID: 31331653 DOI: 10.1016/j.bmc.2019.06.040] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 01/22/2023]
Abstract
The most common inflammatory disease of the airways is asthma among children affecting around 235 million people worldwide. 5-Lipoxygenase (5-LOX) is a crucial enzyme which helps in the conversion of arachidonic acid (AA) to leukotrienes (LTs), the lipid mediators. It is associated with several inflammation related disorders such as asthma, allergy, and atherosclerosis. Therefore, it is considered as a promising target against inflammation and asthma. Currently, the only drug against 5-LOX which is available is Zileuton, while a few inhibitors are in clinical trial stages such as Atreleuton and Setileuton. So, there is a dire requirement in the area of progress of novel 5-LOX inhibitors which necessitates an understanding of their structure activity relationship and mode of action. In this review, novel 5-LOX inhibitors reported so far, their structural design, SAR and developmental strategies along with clinical updates are discussed over the last two decades.
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India; Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Tamil Nadu 600036, India
| | - Mukesh Doble
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Tamil Nadu 600036, India.
| | - S L Manju
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
16
|
Qin Z, Xi Y, Zhang S, Tu G, Yan A. Classification of Cyclooxygenase-2 Inhibitors Using Support Vector Machine and Random Forest Methods. J Chem Inf Model 2019; 59:1988-2008. [PMID: 30762371 DOI: 10.1021/acs.jcim.8b00876] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This work reports the classification study conducted on the biggest COX-2 inhibitor data set so far. Using 2925 diverse COX-2 inhibitors collected from 168 pieces of literature, we applied machine learning methods, support vector machine (SVM) and random forest (RF), to develop 12 classification models. The best SVM and RF models resulted in MCC values of 0.73 and 0.72, respectively. The 2925 COX-2 inhibitors were reduced to a data set of 1630 molecules by removing intermediately active inhibitors, and 12 new classification models were constructed, yielding MCC values above 0.72. The best MCC value of the external test set was predicted to be 0.68 by the RF model using ECFP_4 fingerprints. Moreover, the 2925 COX-2 inhibitors were clustered into eight subsets, and the structural features of each subset were investigated. We identified substructures important for activity including halogen, carboxyl, sulfonamide, and methanesulfonyl groups, as well as the aromatic nitrogen atoms. The models developed in this study could serve as useful tools for compound screening prior to lab tests.
Collapse
Affiliation(s)
- Zijian Qin
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , P.O. Box 53, 15 BeiSanHuan East Road , Beijing 100029 , P. R. China
| | - Yao Xi
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , P.O. Box 53, 15 BeiSanHuan East Road , Beijing 100029 , P. R. China
| | - Shengde Zhang
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , P.O. Box 53, 15 BeiSanHuan East Road , Beijing 100029 , P. R. China
| | - Guiping Tu
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , P.O. Box 53, 15 BeiSanHuan East Road , Beijing 100029 , P. R. China
| | - Aixia Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , P.O. Box 53, 15 BeiSanHuan East Road , Beijing 100029 , P. R. China
| |
Collapse
|
17
|
Khathi SP, Chandrasekaran B, Karunanidhi S, Tham CL, Kozielski F, Sayyad N, Karpoormath R. Design and synthesis of novel thiadiazole-thiazolone hybrids as potential inhibitors of the human mitotic kinesin Eg5. Bioorg Med Chem Lett 2018; 28:2930-2938. [DOI: 10.1016/j.bmcl.2018.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022]
|
18
|
Herrmann S, Schübel T, Costa FN, Barbosa MLC, Ferreira FF, Dias TLMF, Araújo MV, Alexandre-Moreira MS, Lima LM, Laufer S, Barreiro EJ. Synthesis, X-ray diffraction study and pharmacological evaluation of 3-amino-4-methylthiophene-2-acylcarbohydrazones. AN ACAD BRAS CIENC 2018; 90:1073-1088. [PMID: 29873669 DOI: 10.1590/0001-3765201820170796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022] Open
Abstract
N-acylhydrazone is an interesting privileged structure that has been used in the molecular design of a myriad of bioactive compounds. In order to identify new antinociceptive drug candidates, we described herein the design, synthesis, X-ray diffraction study and the pharmacological evaluation of a series of 3-amino-4-methylthiophene-2-acylcarbohydrazone derivatives (8a-t). Compounds were prepared in good overall yields through divergent synthesis from a common key intermediate and were characterized by classical spectroscopy methods. X-ray diffraction study was employed for unequivocal determination of the imine double bond stereochemistry. 8a-t were evaluated in vivo through oral administration using the classical writhing test in mice. N-acylhydrazone derivatives 8j and 8l displayed relative potency similar to dipyrone, highlighting them as promising analgesic lead-candidates for further investigation.
Collapse
Affiliation(s)
- Sonja Herrmann
- Laboratório de Avaliação e Síntese de Substâncias Bioativas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tabea Schübel
- Laboratório de Avaliação e Síntese de Substâncias Bioativas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fanny N Costa
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Maria Letícia C Barbosa
- Laboratório de Avaliação e Síntese de Substâncias Bioativas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fabio F Ferreira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Thays L M F Dias
- Laboratório de Farmacologia e Imunidade, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Morgana V Araújo
- Laboratório de Farmacologia e Imunidade, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Magna S Alexandre-Moreira
- Laboratório de Farmacologia e Imunidade, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Lídia M Lima
- Laboratório de Avaliação e Síntese de Substâncias Bioativas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Stefan Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Eliezer J Barreiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
19
|
Safer anti-inflammatory therapy through dual COX-2/5-LOX inhibitors: A structure-based approach. Eur J Pharm Sci 2018; 121:356-381. [PMID: 29883727 DOI: 10.1016/j.ejps.2018.06.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 12/22/2022]
Abstract
Inflammatory mediators of the arachidonic acid cascade from cyclooxygenase (COX) and lipoxygenase (LOX) pathways are primarily responsible for many diseases in human beings. Chronic inflammation is associated with the pathogenesis and progression of cancer, arthritis, autoimmune, cardiovascular and neurological diseases. Traditional non-steroidal anti-inflammatory agents (tNSAIDs) inhibit cyclooxygenase pathway non-selectively and produce gastric mucosal damage due to COX-1 inhibition and allergic reactions and bronchospasm resulting from increased leukotriene levels. 'Coxibs' which are selective COX-2 inhibitors cause adverse cardiovascular events. Inhibition of any of these biosynthetic pathways could switch the metabolism to the other, which can lead to fatal side effects. Hence, there is undoubtedly an urgent need for new anti-inflammatory agents having dual mechanism that prevent release of both prostaglandins and leukotrienes. Though several molecules have been synthesized with this objective, their unfavourable toxicity profile prevented them from being used in clinics. Here, this integrative review attempts to identify the promising pharmacophore that serves as dual inhibitors of COX-2/5-LOX enzymes with improved safety profile. A better acquaintance of structural features that balance safety and efficacy of dual inhibitors would be a different approach to the process of understanding and interpreting the designing of novel anti-inflammatory agents.
Collapse
|
20
|
El-Badry YAM, Sallam MS, El-Hashash MAA. Efficient 1,3,4-Thiadiazole-4,5-dihydropyridazin-3(2H)-ones as Antimicrobial Agents. Chem Pharm Bull (Tokyo) 2018; 66:427-433. [PMID: 29607908 DOI: 10.1248/cpb.c17-00918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A set of novel series of 1,3,4-thiadiazolyl-sulfanyl-4,5-dihydropyridazin-3(2H)-ones with anticipated antimicrobial activity has been synthesized. The synthetic protocol of the targeted compounds was accomplished by treating β-aroylacrylic acid 1 with 5-amino-1,3,4-thiadiazole-2-thiol (2) to afford the thia-Michael adduct 3. Afterwards, the obtained thia-Michael adduct 3 was cyclized to 4,5-dihydropyridazin-3(2H)-ones 4a-d and the non-cyclized product hydrazone 5 by using different hydrazines. Moreover, adduct 3 was reacted with esters like diethyl malonate and ethyl acetoacetate affording 1,3,4-thiadiazolobutanamides 6a, b. Furthermore, the concurrent reaction of later butamides 6a, b with the hydrazine derivatives furnished thiadiazolopyridazin-3(2H)-ones 7a-d, 8, and butanoic acid 9.
Collapse
Affiliation(s)
- Yaser Abdel-Moemen El-Badry
- Organic Chemistry Lab., Faculty of Specific Education, Ain Shams University.,Organic Chemistry Dep., Faculty of Science, Taif University
| | | | | |
Collapse
|
21
|
Boukharsa Y, Lakhlili W, El harti J, Meddah B, Tiendrebeogo RY, Taoufik J, El Abbes Faouzi M, Ibrahimi A, Ansar M. Synthesis, anti-inflammatory evaluation in vivo and docking studies of some new 5-(benzo[b]furan-2-ylmethyl)-6-methyl-pyridazin- 3(2H) -one derivatives. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.09.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Hu C, Ma S. Recent development of lipoxygenase inhibitors as anti-inflammatory agents. MEDCHEMCOMM 2018; 9:212-225. [PMID: 30108915 PMCID: PMC6083793 DOI: 10.1039/c7md00390k] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/28/2017] [Indexed: 01/05/2023]
Abstract
Inflammation is favorable in most cases, because it is a kind of body defensive response to external stimuli; sometimes, inflammation is also harmful, such as attacks on the body's own tissues. It could be that inflammation is a unified process of injury and resistance to injury. Inflammation brings extreme pain to patients, showing symptoms of rubor, swelling, fever, pain and dysfunction. As the specific mechanism is not clear yet, the current anti-inflammatory agents are given priority for relieving suffering of patients. Thus it is emergent to find new anti-inflammatory agents with rapid effect. Lipoxygenase (LOX) is a kind of rate-limiting enzyme in the process of arachidonic acid metabolism into leukotriene (LT) which mediates the occurrence of inflammation. The inhibition of LOX can reduce LT, thereby producing an anti-inflammatory effect. In this review, the LOX inhibitors reported in recent years are summarized, and, in particular, their activities, structure-activity relationships and molecular docking studies are emphasized, which will provide new ideas to design novel LOX inhibitors.
Collapse
Affiliation(s)
- Chaoyu Hu
- Department of Medicinal Chemistry , Key Laboratory of Chemical Biology (Ministry of Education) , School of Pharmaceutical Sciences , Shandong University , 44, West Culture Road , Jinan 250012 , P.R. China .
| | - Shutao Ma
- Department of Medicinal Chemistry , Key Laboratory of Chemical Biology (Ministry of Education) , School of Pharmaceutical Sciences , Shandong University , 44, West Culture Road , Jinan 250012 , P.R. China .
| |
Collapse
|
23
|
Flefel EM, Tantawy WA, El-Sofany WI, El-Shahat M, El-Sayed AA, Abd-Elshafy DN. Synthesis of Some New Pyridazine Derivatives for Anti-HAV Evaluation. Molecules 2017; 22:molecules22010148. [PMID: 28106751 PMCID: PMC6155805 DOI: 10.3390/molecules22010148] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 11/23/2022] Open
Abstract
4-(2-(4-Halophenyl)hydrazinyl)-6-phenylpyridazin-3(2H)-ones 1a,b were prepared and treated with phosphorus oxychloride, phosphorus pentasulphide and ethyl chloroformate to give the corresponding chloropyridazine, pyridazinethione, oxazolopyridazine derivatives 2–4, respectively. Compound 2 reacted with hydrazine hydrate to afford hydrazinylpyridazine 7. The reaction of 4-(2-(4-chlorophenyl)hydrazinyl)-3-hydrazinyl-6-phenylpyridazine (7) with acetic anhydride, p-chlorobenzaldehyde and carbon disulphide gave the corresponding pyridazinotriazine derivatives 8–10. On the other hand, 5-(4-chlorophenylamino)-7-(3,5-dimethoxybenzylidene)-3-phenyl-5H-pyridazino[3,4-b][1,4]thiazin-6(7H)-one (11) was prepared directly from the reaction of compound 3 with chloroacetic acid in presence of p-chlorobenzaldehyde. Compound 11 reacted with nitrogen nucleophiles (hydroxylamine hydrochloride, hydrazine hydrate) and active methylene group-containing reagents (malononitrile, ethyl cyanoacetate) to afford the corresponding fused compounds 12–15, respectively. Pharmacological screening for antiviral activity against hepatitis A virus (HAV) was performed for the new compounds. 4-(4-Chlorophenylamino)-6-phenyl-1,2-dihydropyridazino[4,3-e][1,2,4]triazine-3(4H)-thione (10) showed the highest effect against HAV.
Collapse
Affiliation(s)
- Eman M Flefel
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Monawarah 1343, Saudi Arabia.
- Department of Photochemistry, Chemical Industries Research Division, National Research Centre, 33 EL-Bohouth St., Dokki 12622, Giza, Egypt.
| | - Waled A Tantawy
- Department of Photochemistry, Chemical Industries Research Division, National Research Centre, 33 EL-Bohouth St., Dokki 12622, Giza, Egypt.
| | - Walaa I El-Sofany
- Department of Photochemistry, Chemical Industries Research Division, National Research Centre, 33 EL-Bohouth St., Dokki 12622, Giza, Egypt.
| | - Mahmoud El-Shahat
- Department of Photochemistry, Chemical Industries Research Division, National Research Centre, 33 EL-Bohouth St., Dokki 12622, Giza, Egypt.
| | - Ahmed A El-Sayed
- Department of Photochemistry, Chemical Industries Research Division, National Research Centre, 33 EL-Bohouth St., Dokki 12622, Giza, Egypt.
| | - Dina N Abd-Elshafy
- Department of Water Pollution, Environmental Research Division, National Research Centre, 33 EL-Bohouth St., Dokki 12622, Giza, Egypt.
| |
Collapse
|
24
|
Abstract
INTRODUCTION Four isomeric structures of thiadiazole motifs have outstanding pharmacological inhibitory applications are reported in this review. Thiadiazole nucleus is present in several biologically active natural products and commercial drugs. Most of thiadiazoles reported herein are emphasized to have broad spectrum of medicinal activities. Areas covered: This review represents the recent inhibitory activities of thiadiazole isomeric scaffolds and their broad-spectrum biological applications published as full texts during 2010-2016 as well as the patents published during 2005-2016. The inhibition areas covered included anti-inflammatory, antimicrobial, antitumor, antioxidant, antitubercular, antiviral, antileishmanial, anticonvulsant, herbicidal and algicidal activities in addition to enzymes, human platelet aggregation and neuroprotective inhibitors. Expert opinion: This survey revealed very interesting data about the applications of thiadiazoles, where some synthetic or natural thiadiazole derivatives were components of drugs available in the market. Many thiadiazole derivatives can be considered as lead compounds for drug synthesis. The most inhibitory active 1,3,4-thiadiazole compounds are those incorporating secondary alkyl(aryl)amido- and/or benzylthio(mercapto) groups at positions 2 and 5. Several thiadiazole derivatives demonstrated higher antibacterial, antitumor and antiviral activities than the standard drugs. Some thiadiazole derivatives exhibited high selective enzymes inhibitory activities based on the electronic properties of the substituents at positions 2 or 5.
Collapse
Affiliation(s)
- Kamal M Dawood
- a Department of Chemistry, Faculty of Science , Kuwait University , Safat , Kuwait.,b Department of Chemistry, Faculty of Science , Cairo University , Giza , Egypt
| | - Thoraya A Farghaly
- b Department of Chemistry, Faculty of Science , Cairo University , Giza , Egypt.,c Department of Chemistry, Faculty of Applied Science , Umm Al-Qura University , Makkah Almukkarramah , Saudi Arabia
| |
Collapse
|
25
|
Pyridazinone: an attractive lead for anti-inflammatory and analgesic drug discovery. Future Med Chem 2017; 9:95-127. [DOI: 10.4155/fmc-2016-0194] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In spite of the availability of a large number of anti-inflammatory and analgesic agents, fighting pain and inflammation remains a common problem. The current review article discusses the need of novel therapeutic targets for risk-free anti-inflammatory and analgesic therapy and summarizes some new agents in various stages of drug discovery pipeline. Pyridazin-3(2H)-ones are nitrogen-rich heterocyclic compounds of considerable medicinal interest due to their diverse biological activities. The current review article focuses on progressive development of this attractive scaffold for the design and synthesis of new pyridazinone-based anti-inflammatory and analgesic agents. Mechanistic insights into the anti-inflammatory and analgesic properties of pyridazinone derivatives and various synthetic techniques used for their synthesis are also described.
Collapse
|
26
|
Pereira-Leite C, Nunes C, Jamal SK, Cuccovia IM, Reis S. Nonsteroidal Anti-Inflammatory Therapy: A Journey Toward Safety. Med Res Rev 2016; 37:802-859. [PMID: 28005273 DOI: 10.1002/med.21424] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/27/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023]
Abstract
The efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs) against inflammation, pain, and fever has been supporting their worldwide use in the treatment of painful conditions and chronic inflammatory diseases until today. However, the long-term therapy with NSAIDs was soon associated with high incidences of adverse events in the gastrointestinal tract. Therefore, the search for novel drugs with improved safety has begun with COX-2 selective inhibitors (coxibs) being straightaway developed and commercialized. Nevertheless, the excitement has fast turned to disappointment when diverse coxibs were withdrawn from the market due to cardiovascular toxicity. Such events have once again triggered the emergence of different strategies to overcome NSAIDs toxicity. Here, an integrative review is provided to address the breakthroughs of two main approaches: (i) the association of NSAIDs with protective mediators and (ii) the design of novel compounds to target downstream and/or multiple enzymes of the arachidonic acid cascade. To date, just one phosphatidylcholine-associated NSAID has already been approved for commercialization. Nevertheless, the preclinical and clinical data obtained so far indicate that both strategies may improve the safety of nonsteroidal anti-inflammatory therapy.
Collapse
Affiliation(s)
- Catarina Pereira-Leite
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Cláudia Nunes
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Sarah K Jamal
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Iolanda M Cuccovia
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Salette Reis
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
27
|
Akhtar W, Shaquiquzzaman M, Akhter M, Verma G, Khan MF, Alam MM. The therapeutic journey of pyridazinone. Eur J Med Chem 2016; 123:256-281. [DOI: 10.1016/j.ejmech.2016.07.061] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/20/2016] [Accepted: 07/24/2016] [Indexed: 11/17/2022]
|
28
|
Yang L, Zhu Y, Shui M, Zhou T, Cai Y, Wang W, Xu F, Niu Y, Wang C, Zhang JL, Xu P, Yuan L, Liang L. Rational Design of Fluorescent Phthalazinone Derivatives for One- and Two-Photon Imaging. Chemistry 2016; 22:12363-70. [DOI: 10.1002/chem.201601499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Lingfei Yang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences; Peking University Health Science Center; Beijing P. R. China
- Medical and Healthy Analysis Center; Peking University; Beijing P. R. China
| | - Yuanjun Zhu
- Department of Molecular and Cellular Pharmacology; School of Pharmaceutical Sciences; Peking University; Beijing P. R. China
| | - Mengyang Shui
- Department of Molecular and Cellular Pharmacology; School of Pharmaceutical Sciences; Peking University; Beijing P. R. China
| | - Tongliang Zhou
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences; Peking University Health Science Center; Beijing P. R. China
| | - Yuanbo Cai
- Beijing National Laboratory for Molecular Science; State Key Laboratory of Rare Earth Materials Chemistry and Applications; College of Chemistry and Molecular Engineering; Peking University; Beijing P. R.China
| | - Wei Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences; Peking University Health Science Center; Beijing P. R. China
| | - Fengrong Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences; Peking University Health Science Center; Beijing P. R. China
| | - Yan Niu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences; Peking University Health Science Center; Beijing P. R. China
| | - Chao Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences; Peking University Health Science Center; Beijing P. R. China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Science; State Key Laboratory of Rare Earth Materials Chemistry and Applications; College of Chemistry and Molecular Engineering; Peking University; Beijing P. R.China
| | - Ping Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences; Peking University Health Science Center; Beijing P. R. China
| | - Lan Yuan
- Medical and Healthy Analysis Center; Peking University; Beijing P. R. China
| | - Lei Liang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences; Peking University Health Science Center; Beijing P. R. China
| |
Collapse
|
29
|
Yang L, Wang W, Sun Q, Xu F, Niu Y, Wang C, Liang L, Xu P. Development of novel proteasome inhibitors based on phthalazinone scaffold. Bioorg Med Chem Lett 2016; 26:2801-2805. [PMID: 27158142 DOI: 10.1016/j.bmcl.2016.04.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/11/2016] [Accepted: 04/23/2016] [Indexed: 11/18/2022]
Abstract
In this study we designed a series of proteasome inhibitors using pyridazinone as initial scaffold, and extended the structure with rational design by computer aided drug design (CADD). Two different synthetic routes were explored and the biological evaluation of the phthalazinone derivatives was investigated. Most importantly, electron positive triphenylphosphine group was first introduced in the structure of proteasome inhibitors and potent inhibition was achieved. As 6c was the most potent inhibitor of proteasome, we examined the structure-activity relationship (SAR) of 6c analogs.
Collapse
Affiliation(s)
- Lingfei Yang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qi Sun
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Fengrong Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yan Niu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chao Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Lei Liang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Ping Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
30
|
Synthesis and antidepressant activity of 5-(benzo[b]furan-2-ylmethyl)-6-methylpyridazin-3(2H)-one derivatives. Med Chem Res 2016. [DOI: 10.1007/s00044-015-1490-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Küçükgüzel ŞG, Koç D, Çıkla-Süzgün P, Özsavcı D, Bingöl-Özakpınar Ö, Mega-Tiber P, Orun O, Erzincan P, Sağ-Erdem S, Şahin F. Synthesis of Tolmetin Hydrazide-Hydrazones and Discovery of a Potent Apoptosis Inducer in Colon Cancer Cells. Arch Pharm (Weinheim) 2015; 348:730-42. [PMID: 26287512 DOI: 10.1002/ardp.201500178] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/07/2015] [Accepted: 07/21/2015] [Indexed: 02/05/2023]
Abstract
Tolmetin hydrazide and a novel series of tolmetin hydrazide-hydrazones 4a-l were synthesized in this study. The structures of the new compounds were determined by spectral (FT-IR, (1)H NMR) methods. N'-[(2,6-Dichlorophenyl)methylidene]-2-[1-methyl-5-(4-methylbenzoyl)-1H-pyrrol-2-yl]acetohydrazide (4g) was evaluated in vitro using the MTT colorimetric method against the colon cancer cell lines HCT-116 (ATCC, CCL-247) and HT-29 (ATCC, HTB-38) to determine growth inhibition and cell viability at different doses. Compound 4g exhibited anti-cancer activity with an IC50 value of 76 μM against colon cancer line HT-29 (ATCC, HTB-38) and did not display cytotoxicity toward control NIH3T3 mouse embryonic fibroblast cells compared to tolmetin. In addition, this compound was evaluated for caspase-3, caspase-8, caspase-9, and annexin-V activation in the apoptotic pathway, which plays a key role in the treatment of cancer. We demonstrated that the anti-cancer activity of this compound was due to the activation of caspase-8 and caspase-9 involved in the apoptotic pathway. In addition, in this study, we investigated the catalytical effect of COX on the HT-29 cancer line, the apoptotic mechanism, and the moleculer binding of tolmetin and compound 4g on the COX enzyme active site.
Collapse
Affiliation(s)
- Ş Güniz Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, İstanbul, Turkey
| | - Derya Koç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, İstanbul, Turkey
| | - Pelin Çıkla-Süzgün
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, İstanbul, Turkey
| | - Derya Özsavcı
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, İstanbul, Turkey
| | - Özlem Bingöl-Özakpınar
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, İstanbul, Turkey
| | - Pınar Mega-Tiber
- Department of Biophysics, School of Medicine, Marmara University, Başıbüyük, İstanbul, Turkey
| | - Oya Orun
- Department of Biophysics, School of Medicine, Marmara University, Başıbüyük, İstanbul, Turkey
| | - Pınar Erzincan
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, Göztepe, Istanbul, Turkey
| | - Safiye Sağ-Erdem
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, Göztepe, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Kayışdağı, İstanbul, Turkey
| |
Collapse
|
32
|
Wang W, Liang L, Xu F, Huang W, Niu Y, Sun Q, Xu P. Ruthenium-Catalyzed Switchable N-H/C-H Alkenylation of 6-Phenyl(dihydro)pyridazinones with Alkynes. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402986] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Synthesis and antioxidant activity evaluation of new compounds from hydrazinecarbothioamide and 1,2,4-triazole class containing diarylsulfone and 2,4-difluorophenyl moieties. Int J Mol Sci 2014; 15:10908-25. [PMID: 24941252 PMCID: PMC4100188 DOI: 10.3390/ijms150610908] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/07/2014] [Accepted: 06/10/2014] [Indexed: 12/02/2022] Open
Abstract
In the present investigation, new hydrazinecarbothioamides 4–6 were synthesized by reaction of 4-(4-X-phenylsulfonyl)benzoic acids hydrazides (X= H, Cl, Br) 1–3 with 2,4-difluorophenyl isothiocyanate and further these were treated with sodium hydroxide to obtain 1,2,4-triazole-3-thione derivatives 7–9. The reaction of 7–9 with α-halogenated ketones, in basic media, afforded new S-alkylated derivatives 10–15. The structures of the synthesized compounds have been established on the basis of 1H-NMR, 13C-NMR, IR, mass spectral studies and elemental analysis. The antioxidant activity of all compounds has been screened. Hydrazinecarbothioamides 4–6 showed excellent antioxidant activity and 1,2,4-triazole-3-thiones 7–9 showed good antioxidant activity using the DPPH method.
Collapse
|
34
|
Hu Y, Li CY, Wang XM, Yang YH, Zhu HL. 1,3,4-Thiadiazole: synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry. Chem Rev 2014; 114:5572-610. [PMID: 24716666 DOI: 10.1021/cr400131u] [Citation(s) in RCA: 331] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yang Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University , Nanjing 210093, People's Republic of China
| | | | | | | | | |
Collapse
|
35
|
El-Gazzar MG, Zaher NH, El-Tablawy SY. Morphological changes of some pathogenic microbial strains induced by novel thiadiazole derivatives. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0779-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Barbuceanu SF, Bancescu G, Saramet G, Barbuceanu F, Draghici C, Radulescu FS, Ionescu A, Negres S. Synthesis and Biological Evaluation of Some NewN1-[4-(4-Chlorophenylsulfonyl)benzoyl]-N 4-(aryl)-thiosemicarbazides and Products of Their Cyclization. HETEROATOM CHEMISTRY 2013. [DOI: 10.1002/hc.21095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Gabriela Bancescu
- Microbiology Department; Faculty of Dentistry; 050051; Bucharest; Romania
| | - Gabriel Saramet
- Pharmaceutical Techniques Department; Faculty of Pharmacy; 020956; Bucharest; Romania
| | | | - Constantin Draghici
- C. D. Nenitescu Institute of Organic Chemistry; Romanian Academy; 060023; Bucharest; Romania
| | | | - Aura Ionescu
- Pharmacology and Clinical Pharmacy Department; Faculty of Pharmacy; 020956; Bucharest; Romania
| | - Simona Negres
- Pharmacology and Clinical Pharmacy Department; Faculty of Pharmacy; 020956; Bucharest; Romania
| |
Collapse
|
37
|
Il’inykh ES, Kim DG, Kodess MI, Matochkina EG, Slepukhin PA. Synthesis of novel fluorine- and iodine-containing [1,2,4]triazolo[3,4-b][1,3]thiazines based 3-(alkenylthio)-5-(trifluoromethyl)-4H-1,2,4-triazole-3-thiols. J Fluor Chem 2013. [DOI: 10.1016/j.jfluchem.2013.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Li Y, Geng J, Liu Y, Yu S, Zhao G. Thiadiazole-a Promising Structure in Medicinal Chemistry. ChemMedChem 2012. [DOI: 10.1002/cmdc.201200355] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|