1
|
Doman AJ, Perkins MV, Tommasi S, Mangoni AA, Nair PC. Recent advances in DDAH1 inhibitor design and discovery: insights from structure-activity relationships and X-ray crystal structures. RSC Adv 2024; 14:9619-9630. [PMID: 38525060 PMCID: PMC10958460 DOI: 10.1039/d3ra08210e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/15/2024] [Indexed: 03/26/2024] Open
Abstract
Nitric oxide (NO) is an important signalling molecule which modulates several biological and pathological processes. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) plays a key role indirectly regulating NO concentrations in the body. It has been shown that DDAH1 inhibition may be an effective therapeutic strategy in certain pathological states in which excessive NO is produced. In recent years, specific DDAH1 inhibitors have shown promise in suppressing abnormal neovascularization in cancer. However, the available DDAH1 inhibitors lack potency and selectivity and are mostly arginine-based. Further, these inhibitors display unfavourable pharmacokinetics and have not been tested in humans. Thus, the development of potent, selective, and chemically diverse DDAH1 inhibitors is essential. In this review, we examine the structure activity relationships (SARs) and X-ray crystal structures of known DDAH1 inhibitors. Then, we discuss current challenges in the design and development of novel DDAH1 inhibitors and provide future directions for developing potent and chemically diverse compounds.
Collapse
Affiliation(s)
- Anthony J Doman
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network Adelaide Australia
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders Medical Centre, Flinders University Adelaide Australia +61-8-82043155
| | - Michael V Perkins
- College of Science and Engineering, Flinders University Adelaide Australia
| | - Sara Tommasi
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network Adelaide Australia
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders Medical Centre, Flinders University Adelaide Australia +61-8-82043155
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network Adelaide Australia
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders Medical Centre, Flinders University Adelaide Australia +61-8-82043155
- Flinders Health and Medical Research Institute, Flinders University Adelaide Australia
| | - Pramod C Nair
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders Medical Centre, Flinders University Adelaide Australia +61-8-82043155
- Flinders Health and Medical Research Institute, Flinders University Adelaide Australia
- Cancer Program, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide Adelaide SA Australia
- Discipline of Medicine, Adelaide Medical School, The University of Adelaide Adelaide SA Australia
| |
Collapse
|
2
|
Lee Y, Mehrotra P, Basile D, Ullah M, Singh A, Skill N, Younes ST, Sasser J, Shekhar A, Singh J. Specific Lowering of Asymmetric Dimethylarginine by Pharmacological Dimethylarginine Dimethylaminohydrolase Improves Endothelial Function, Reduces Blood Pressure and Ischemia-Reperfusion Injury. J Pharmacol Exp Ther 2020; 376:181-189. [PMID: 33214214 DOI: 10.1124/jpet.120.000212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022] Open
Abstract
Multiple clinical and preclinical studies have demonstrated that plasma levels of asymmetric dimethylarginine (ADMA) are strongly associated with hypertension, diabetes, and cardiovascular and renal disease. Genetic studies in rodents have provided evidence that ADMA metabolizing dimethylarginine dimethylaminohydrolase (DDAH)-1 plays a role in hypertension and cardiovascular disease. However, it remains to be established whether ADMA is a bystander, biomarker, or sufficient contributor to the pathogenesis of hypertension and cardiovascular and renal disease. The goal of the present investigation was to develop a pharmacological molecule to specifically lower ADMA and determine the physiologic consequences of ADMA lowering in animal models. Further, we sought to determine whether ADMA lowering will produce therapeutic benefits in vascular disease in which high ADMA levels are produced. A novel long-acting recombinant DDAH (M-DDAH) was produced by post-translational modification, which effectively lowered ADMA in vitro and in vivo. Treatment with M-DDAH improved endothelial function as measured by increase in cGMP and in vitro angiogenesis. In a rat model of hypertension, M-DDAH significantly reduced blood pressure (vehicle: 187 ± 19 mm Hg vs. M-DDAH: 157 ± 23 mm Hg; P < 0.05). Similarly, in a rat model of ischemia-reperfusion injury, M-DDAH significantly improved renal function as measured by reduction in serum creatinine (vehicle: 3.14 ± 0.74 mg/dl vs. M-DDAH: 1.1 ± 0.75 mg/dl; P < 0.01), inflammation, and injured tubules (vehicle: 73.1 ± 11.1% vs. M-DDAH: 22.1 ± 18.4%; P < 0.001). These pharmacological studies have provided direct evidence for a pathologic role of ADMA and the therapeutic benefits of ADMA lowering in preclinical models of endothelial dysfunction, hypertension, and ischemia-reperfusion injury. SIGNIFICANCE STATEMENT: High levels of ADMA occur in patients with cardiovascular and renal disease. A novel modified dimethylarginine dimethylaminohydrolase by PEGylation effectively lowers ADMA, improves endothelial function, reduces blood pressure and protects from ischemia-reperfusion renal injury.
Collapse
Affiliation(s)
- Young Lee
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., Ar.S., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (P.M., D.B., M.U., N.S., Ar.S., J.S.); University of Mississippi Medical Center, Jackson, Mississippi (S.T.Y., Je.S.); and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - Purvi Mehrotra
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., Ar.S., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (P.M., D.B., M.U., N.S., Ar.S., J.S.); University of Mississippi Medical Center, Jackson, Mississippi (S.T.Y., Je.S.); and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - David Basile
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., Ar.S., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (P.M., D.B., M.U., N.S., Ar.S., J.S.); University of Mississippi Medical Center, Jackson, Mississippi (S.T.Y., Je.S.); and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - Mahbub Ullah
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., Ar.S., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (P.M., D.B., M.U., N.S., Ar.S., J.S.); University of Mississippi Medical Center, Jackson, Mississippi (S.T.Y., Je.S.); and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - Arshnoor Singh
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., Ar.S., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (P.M., D.B., M.U., N.S., Ar.S., J.S.); University of Mississippi Medical Center, Jackson, Mississippi (S.T.Y., Je.S.); and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - Nicholas Skill
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., Ar.S., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (P.M., D.B., M.U., N.S., Ar.S., J.S.); University of Mississippi Medical Center, Jackson, Mississippi (S.T.Y., Je.S.); and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - Subhi Talal Younes
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., Ar.S., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (P.M., D.B., M.U., N.S., Ar.S., J.S.); University of Mississippi Medical Center, Jackson, Mississippi (S.T.Y., Je.S.); and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - Jennifer Sasser
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., Ar.S., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (P.M., D.B., M.U., N.S., Ar.S., J.S.); University of Mississippi Medical Center, Jackson, Mississippi (S.T.Y., Je.S.); and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - Anantha Shekhar
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., Ar.S., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (P.M., D.B., M.U., N.S., Ar.S., J.S.); University of Mississippi Medical Center, Jackson, Mississippi (S.T.Y., Je.S.); and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - Jaipal Singh
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., Ar.S., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (P.M., D.B., M.U., N.S., Ar.S., J.S.); University of Mississippi Medical Center, Jackson, Mississippi (S.T.Y., Je.S.); and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| |
Collapse
|
3
|
The Second Life of Methylarginines as Cardiovascular Targets. Int J Mol Sci 2019; 20:ijms20184592. [PMID: 31533264 PMCID: PMC6769906 DOI: 10.3390/ijms20184592] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 02/07/2023] Open
Abstract
Endogenous methylarginines were proposed as cardiovascular risk factors more than two decades ago, however, so far, this knowledge has not led to the development of novel therapeutic approaches. The initial studies were primarily focused on the endogenous inhibitors of nitric oxide synthases asymmetric dimethylarginine (ADMA) and monomethylarginine (MMA) and the main enzyme regulating their clearance dimethylarginine dimethylaminohydrolase 1 (DDAH1). To date, all the screens for DDAH1 activators performed with the purified recombinant DDAH1 enzyme have not yielded any promising hits, which is probably the main reason why interest towards this research field has started to fade. The relative contribution of the second DDAH isoenzyme DDAH2 towards ADMA and MMA clearance is still a matter of controversy. ADMA, MMA and symmetric dimethylarginine (SDMA) are also metabolized by alanine: glyoxylate aminotransferase 2 (AGXT2), however, in addition to methylarginines, this enzyme also has several cardiovascular protective substrates, so the net effect of possible therapeutic targeting of AGXT2 is currently unclear. Recent studies on regulation and functions of the enzymes metabolizing methylarginines have given a second life to this research direction. Our review discusses the latest discoveries and controversies in the field and proposes novel directions for targeting methylarginines in clinical settings.
Collapse
|
4
|
Kami Reddy KR, Dasari C, Vandavasi S, Natani S, Supriya B, Jadav SS, Sai Ram N, Kumar JM, Ummanni R. Novel Cellularly Active Inhibitor Regresses DDAH1 Induced Prostate Tumor Growth by Restraining Tumor Angiogenesis through Targeting DDAH1/ADMA/NOS Pathway. ACS COMBINATORIAL SCIENCE 2019; 21:241-256. [PMID: 30673277 DOI: 10.1021/acscombsci.8b00133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dimethylarginine dimethylaminohydrolase1 (DDAH1) inhibitors are important therapeutics by virtue of their ability to control nitric oxide (NO) production by elevating asymmetric dimethylarginine (ADMA) levels. In a screening campaign, we identified that DD1E5 (3-amino-6- tert-butyl-N-(1,3-thiazol-2-yl)-4-(trifluoromethyl)thieno[2,3- b]pyridine-2- carboxamide) inhibits the DDAH1 activity both in vitro and in cultured cells. Mechanistic studies found that DD1E5 is a competitive inhibitor (dissociation constant ( Ki) of 2.05 ± 0.15 μM). Enzyme kinetic assays showed time and concentration dependent inhibition of DDAH1 with DD1E5, which shows tight binding with an inactivation rate constant of 0.2756 ± 0.015 M-1 S-1. Treatment of cancer cells with DDAH1 inhibitors shows inhibition of cell proliferation and a subsequent decrease in NO production with ADMA accumulation. DD1E5 reversed the elevated VEGF, c-Myc, HIF-1α, and iNOS levels induced by exogenous DDAH1 overexpression in PCa cells. Moreover, DD1E5 significantly increased intracellular levels of ADMA and reduced NO production, suggesting its therapeutic potential for cancers in which DDAH1 is upregulated. In in vitro assays, DD1E5 abrogated the secretion of angiogenic factors (bFGF and IL-8) into conditional media, indicating its antiangiogenic potential. DD1E5 inhibited in vivo growth of xenograft tumors derived from PCa cells with DDAH1 overexpression, by reducing tumor endothelial content represented with low CD31 expression. VEGF, HIF-1α, and iNOS expression were reversed in DD1E5 treated tumors compared to respective control tumors. In this work, integrating multiple approaches shows DD1E5 is a promising tool for the study of methylarginine-mediated NO control and a potential therapeutic lead compound against pathological conditions with elevated NO production such as cancers and other diseases.
Collapse
Affiliation(s)
- Karthik Reddy Kami Reddy
- Applied Biology, Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Centre for Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Chandrashekhar Dasari
- Applied Biology, Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Centre for Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Shalini Vandavasi
- Applied Biology, Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Sirisha Natani
- Applied Biology, Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Centre for Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Bhukya Supriya
- Applied Biology, Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Surender Singh Jadav
- Applied Biology, Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - N. Sai Ram
- Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | | | - Ramesh Ummanni
- Applied Biology, Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Centre for Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| |
Collapse
|
5
|
Burstein-Teitelbaum G, Er JAV, Monzingo AF, Tuley A, Fast W. Dissection, Optimization, and Structural Analysis of a Covalent Irreversible DDAH1 Inhibitor. Biochemistry 2018; 57:4574-4582. [PMID: 29983043 DOI: 10.1021/acs.biochem.8b00554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inhibitors of the human enzyme dimethylarginine dimethylaminohydrolase-1 (DDAH1) can control endogenous nitric oxide production. A time-dependent covalent inactivator of DDAH1, N5-(1-imino-2-chloroethyl)-l-ornithine ( KI = 1.3 μM, kinact = 0.34 min-1), was conceptually dissected into two fragments and each characterized separately: l-norvaline ( Ki = 470 μM) and 2-chloroacetamidine ( KI = 310 μM, kinact = 4.0 min-1). This analysis suggested that the two fragments were not linked in a manner that allows either to reach full affinity or reactivity, prompting the synthesis and characterization of three analogues: two that mimic the dimethylation status of the substrate, N5-(1-imino-2-chloroisopropyl)-l-ornithine ( kinact /KI = 208 M-1 s-1) and N5-(1-imino-2-chlorisopropyl)-l-lysine ( kinact /KI = 440 M-1 s-1), and one that lengthens the linker beyond that found in the substrate, N5-(1-imino-2-chloroethyl)-l-lysine (Cl-NIL, KI = 0.19 μM, kinact = 0.22 min-1). Cl-NIL is one of the most potent inhibitors reported for DDAH1, inactivates with a second order rate constant (1.9 × 104 M-1 s-1) larger than the catalytic efficiency of DDAH1 for its endogenous substrate (1.6 × 102 M-1 s-1), and has a partition ratio of 1 with a >100 000-fold selectivity for DDAH1 over arginase. An activity-based protein-profiling probe is used to show inhibition of DDAH1 within cultured HEK293T cells (IC50 = 10 μM) with cytotoxicity appearing only at higher concentrations (ED50 = 118 μM). A 1.91 Å resolution X-ray crystal structure reveals specific interactions made with DDAH1 upon covalent inactivation by Cl-NIL. Dissecting a covalent inactivator and analysis of its constituent fragments proved useful for the design and optimization of this potent and effective DDAH1 inhibitor.
Collapse
Affiliation(s)
- Gayle Burstein-Teitelbaum
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy , University of Texas , Austin , Texas 78712 , United States
| | - Joyce A V Er
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy , University of Texas , Austin , Texas 78712 , United States
| | - Arthur F Monzingo
- Center for Biomedical Research Support , University of Texas , Austin , Texas 78712 , United States
| | - Alfred Tuley
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy , University of Texas , Austin , Texas 78712 , United States
| | - Walter Fast
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy , University of Texas , Austin , Texas 78712 , United States
| |
Collapse
|
6
|
Inhibitors of the Hydrolytic Enzyme Dimethylarginine Dimethylaminohydrolase (DDAH): Discovery, Synthesis and Development. Molecules 2016; 21:molecules21050615. [PMID: 27187323 PMCID: PMC6273216 DOI: 10.3390/molecules21050615] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/19/2016] [Accepted: 05/04/2016] [Indexed: 02/07/2023] Open
Abstract
Dimethylarginine dimethylaminohydrolase (DDAH) is a highly conserved hydrolytic enzyme found in numerous species, including bacteria, rodents, and humans. In humans, the DDAH-1 isoform is known to metabolize endogenous asymmetric dimethylarginine (ADMA) and monomethyl arginine (l-NMMA), with ADMA proposed to be a putative marker of cardiovascular disease. Current literature reports identify the DDAH family of enzymes as a potential therapeutic target in the regulation of nitric oxide (NO) production, mediated via its biochemical interaction with the nitric oxide synthase (NOS) family of enzymes. Increased DDAH expression and NO production have been linked to multiple pathological conditions, specifically, cancer, neurodegenerative disorders, and septic shock. As such, the discovery, chemical synthesis, and development of DDAH inhibitors as potential drug candidates represent a growing field of interest. This review article summarizes the current knowledge on DDAH inhibition and the derived pharmacokinetic parameters of the main DDAH inhibitors reported in the literature. Furthermore, current methods of development and chemical synthetic pathways are discussed.
Collapse
|
7
|
|
8
|
Han WY, Zhao JQ, Zuo J, Xu XY, Zhang XM, Yuan WC. Recent Advances of α-Isothiocyanato Compounds in the Catalytic Asymmetric Reaction. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500264] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Tommasi S, Zanato C, Lewis BC, Nair PC, Dall'Angelo S, Zanda M, Mangoni AA. Arginine analogues incorporating carboxylate bioisosteric functions are micromolar inhibitors of human recombinant DDAH-1. Org Biomol Chem 2015; 13:11315-30. [DOI: 10.1039/c5ob01843a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Arginine analogues incorporating carboxylate bioisosteric functional groups exhibit low micromolar inhibitory potential against human dimethylarginine dimethylaminohydrolase (DDAH), a key enzyme in the nitric oxide pathway.
Collapse
Affiliation(s)
- Sara Tommasi
- Kosterlitz Centre for Therapeutics
- Institute of Medical Sciences
- School of Medical Sciences
- University of Aberdeen
- Aberdeen AB25 2ZD
| | - Chiara Zanato
- Kosterlitz Centre for Therapeutics
- Institute of Medical Sciences
- School of Medical Sciences
- University of Aberdeen
- Aberdeen AB25 2ZD
| | - Benjamin C. Lewis
- Department of Clinical Pharmacology
- School of Medicine
- Flinders University and Flinders Medical Centre
- Australia
| | - Pramod C. Nair
- Department of Clinical Pharmacology
- School of Medicine
- Flinders University and Flinders Medical Centre
- Australia
| | - Sergio Dall'Angelo
- Kosterlitz Centre for Therapeutics
- Institute of Medical Sciences
- School of Medical Sciences
- University of Aberdeen
- Aberdeen AB25 2ZD
| | - Matteo Zanda
- Kosterlitz Centre for Therapeutics
- Institute of Medical Sciences
- School of Medical Sciences
- University of Aberdeen
- Aberdeen AB25 2ZD
| | - Arduino A. Mangoni
- Department of Clinical Pharmacology
- School of Medicine
- Flinders University and Flinders Medical Centre
- Australia
| |
Collapse
|
10
|
Jung CS, Wispel C, Zweckberger K, Beynon C, Hertle D, Sakowitz OW, Unterberg AW. Endogenous nitric-oxide synthase inhibitor ADMA after acute brain injury. Int J Mol Sci 2014; 15:4088-103. [PMID: 24663083 PMCID: PMC3975386 DOI: 10.3390/ijms15034088] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/14/2014] [Accepted: 03/03/2014] [Indexed: 02/02/2023] Open
Abstract
Previous results on nitric oxide (NO) metabolism after traumatic brain injury (TBI) show variations in NO availability and controversial effects of exogenous nitric oxide synthase (NOS)-inhibitors. Furthermore, elevated levels of the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA) were reported in cerebro-spinal fluid (CSF) after traumatic subarachnoid hemorrhage (SAH). Therefore, we examined whether ADMA and the enzymes involved in NO- and ADMA-metabolism are expressed in brain tissue after TBI and if time-dependent changes occur. TBI was induced by controlled cortical impact injury (CCII) and neurological performance was monitored. Expression of NOS, ADMA, dimethylarginine dimethylaminohydrolases (DDAH) and protein-arginine methyltransferase 1 (PRMT1) was determined by immunostaining in different brain regions and at various time-points after CCII. ADMA and PRMT1 expression decreased in all animals after TBI compared to the control group, while DDAH1 and DDAH2 expression increased in comparison to controls. Furthermore, perilesionally ADMA is positively correlated with neuroscore performance, while DDAH1 and DDAH2 are negatively correlated. ADMA and its metabolizing enzymes show significant temporal changes after TBI and may be new targets in TBI treatment.
Collapse
Affiliation(s)
- Carla S Jung
- Department of Neurosurgery, University of Heidelberg, Heidelberg D-69120, Germany.
| | - Christian Wispel
- Department of Neurosurgery, University of Heidelberg, Heidelberg D-69120, Germany.
| | - Klaus Zweckberger
- Department of Neurosurgery, University of Heidelberg, Heidelberg D-69120, Germany.
| | - Christopher Beynon
- Department of Neurosurgery, University of Heidelberg, Heidelberg D-69120, Germany.
| | - Daniel Hertle
- Department of Neurosurgery, University of Heidelberg, Heidelberg D-69120, Germany.
| | - Oliver W Sakowitz
- Department of Neurosurgery, University of Heidelberg, Heidelberg D-69120, Germany.
| | - Andreas W Unterberg
- Department of Neurosurgery, University of Heidelberg, Heidelberg D-69120, Germany.
| |
Collapse
|
11
|
Rasheed M, Richter C, Chisty LT, Kirkpatrick J, Blackledge M, Webb MR, Driscoll PC. Ligand-dependent dynamics of the active-site lid in bacterial dimethylarginine dimethylaminohydrolase. Biochemistry 2014; 53:1092-104. [PMID: 24484052 PMCID: PMC3945819 DOI: 10.1021/bi4015924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The dimethylarginine dimethylaminohydrolase (DDAH) enzyme family has been the subject of substantial investigation as a potential therapeutic target for the regulation of vascular tension. DDAH enzymes catalyze the conversion of asymmetric N(η),N(η)-dimethylarginine (ADMA) to l-citrulline. Here the influence of substrate and product binding on the dynamic flexibility of DDAH from Pseudomonas aeruginosa (PaDDAH) has been assessed. A combination of heteronuclear NMR spectroscopy, static and time-resolved fluorescence measurements, and atomistic molecular dynamics simulations was employed. A monodisperse monomeric variant of the wild-type enzyme binds the reaction product l-citrulline with a low millimolar dissociation constant. A second variant, engineered to be catalytically inactive by substitution of the nucleophilic Cys249 residue with serine, can still convert the substrate ADMA to products very slowly. This PaDDAH variant also binds l-citrulline, but with a low micromolar dissociation constant. NMR and molecular dynamics simulations indicate that the active site "lid", formed by residues Gly17-Asp27, exhibits a high degree of internal motion on the picosecond-to-nanosecond time scale. This suggests that the lid is open in the apo state and allows substrate access to the active site that is otherwise buried. l-Citrulline binding to both protein variants is accompanied by an ordering of the lid. Modification of PaDDAH with a coumarin fluorescence reporter allowed measurement of the kinetic mechanism of the PaDDAH reaction. A combination of NMR and kinetic data shows that the catalytic turnover of the enzyme is not limited by release of the l-citrulline product. The potential to develop the coumarin-PaDDAH adduct as an l-citrulline sensor is discussed.
Collapse
Affiliation(s)
- Masooma Rasheed
- Division of Molecular Structure and ‡Division of Physical Biochemistry, MRC National Institute for Medical Research , The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
12
|
Ghebremariam YT, Erlanson DA, Cooke JP. A novel and potent inhibitor of dimethylarginine dimethylaminohydrolase: a modulator of cardiovascular nitric oxide. J Pharmacol Exp Ther 2013; 348:69-76. [PMID: 24135074 DOI: 10.1124/jpet.113.206847] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PD 404182 [6H-6-imino-(2,3,4,5-tetrahydropyrimido)[1,2-c]-[1,3]benzothiazine], a heterocyclic iminobenzothiazine derivative, is a member of the Library of Pharmacologically Active Compounds (LOPAC) that is reported to possess antimicrobial and anti-inflammatory properties. In this study, we used biochemical assays to screen LOPAC against human dimethylarginine dimethylaminohydrolase isoform 1 (DDAH1), an enzyme that physiologically metabolizes asymmetric dimethylarginine (ADMA), an endogenous and competitive inhibitor of nitric oxide (NO) synthase. We discovered that PD 404182 directly and dose-dependently inhibits DDAH. Moreover, PD 404182 significantly increased intracellular levels of ADMA in cultured primary human vascular endothelial cells (ECs) and reduced lipopolysaccharide-induced NO production in these cells, suggesting its therapeutic potential in septic shock-induced vascular collapse. In addition, PD 404182 abrogated the formation of tube-like structures by ECs in an in vitro angiogenesis assay, indicating its antiangiogenic potential in diseases characterized by pathologically excessive angiogenesis. Furthermore, we investigated the potential mechanism of inhibition of DDAH by this small molecule and found that PD 404182, which has striking structural similarity to ADMA, could be competed by a DDAH substrate, suggesting that it is a competitive inhibitor. Finally, our enzyme kinetics assay showed time-dependent inhibition, and our inhibitor dilution assay showed that the enzymatic activity of DDAH did not recover significantly after dilution, suggesting that PD 404182 might be a tightly bound, covalent, or an irreversible inhibitor of human DDAH1. This proposal is supported by mass spectrometry studies with PD 404182 and glutathione.
Collapse
Affiliation(s)
- Yohannes T Ghebremariam
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas (Y.T.G., J.P.C.); and SPARK Translational Research Program, Stanford University, School of Medicine, Stanford, California (D.A.E.)
| | | | | |
Collapse
|
13
|
Cao YM, Zhang FT, Shen FF, Wang R. Catalytic Enantioselective Ring-Opening Reaction ofmeso-Aziridines with α-Isothiocyanato Imides. Chemistry 2013; 19:9476-80. [DOI: 10.1002/chem.201300297] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 05/08/2013] [Indexed: 11/09/2022]
|