1
|
Yang ZS, Lin CY, Khan MB, Hsu MC, Assavalapsakul W, Thitithanyanont A, Wang SF. Understanding the role of galectins toward influenza A virus infection. Expert Opin Ther Targets 2023; 27:927-937. [PMID: 37747065 DOI: 10.1080/14728222.2023.2263912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/24/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Influenza A virus (IAV) is highly contagious and causes respiratory diseases in birds, mammals, and humans. Some strains of IAV, whether from human or avian sources, have developed resistance to existing antiviral drugs. Therefore, the discovery of new influenza antiviral drugs and therapeutic approaches is crucial. Recent studies have shown that galectins (Gal), a group of β-galactose-binding lectins, play a role in regulating various viral infections, including IAVs. AREAS COVERED This review provides an overview of the roles of different galectins in IAV infection. We discuss the characteristics of galectins, their impact on IAV infection and spread, and highlight their positive or negative regulatory functions and potential mechanisms during IAV infection. Furthermore, we explore the potential application of galectins in IAV therapy. EXPERT OPINION Galectins were first identified in the mid-1970s, and currently, 15 mammalian galectins have been identified. While all galectin members possess the carbohydrate recognition domain (CRD) that interacts with β-galactoside, their regulatory functions vary in different DNA or RNA virus infections. Certain galectin members have been found to regulate IAV infection through diverse mechanisms. Therefore, a comprehensive understanding of their roles in IAV infection is essential, as it may pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Zih-Syuan Yang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Muhammad Bilal Khan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Cheng Hsu
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Parshad B, Schlecht MN, Baumgardt M, Ludwig K, Nie C, Rimondi A, Hönzke K, Angioletti-Uberti S, Khatri V, Schneider P, Herrmann A, Haag R, Hocke AC, Wolff T, Bhatia S. Dual-Action Heteromultivalent Glycopolymers Stringently Block and Arrest Influenza A Virus Infection In Vitro and Ex Vivo. NANO LETTERS 2023; 23:4844-4853. [PMID: 37220024 DOI: 10.1021/acs.nanolett.3c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Here, we demonstrate the concerted inhibition of different influenza A virus (IAV) strains using a low-molecular-weight dual-action linear polymer. The 6'-sialyllactose and zanamivir conjugates of linear polyglycerol are optimized for simultaneous targeting of hemagglutinin and neuraminidase on the IAV surface. Independent of IAV subtypes, hemagglutination inhibition data suggest better adsorption of the heteromultivalent polymer than homomultivalent analogs onto the virus surface. Cryo-TEM images imply heteromultivalent compound-mediated virus aggregation. The optimized polymeric nanomaterial inhibits >99.9% propagation of various IAV strains 24 h postinfection in vitro at low nM concentrations and is up to 10000× more effective than the commercial zanamivir drug. In a human lung ex vivo multicyclic infection setup, the heteromultivalent polymer outperforms the commercial drug zanamivir and homomultivalent analogs or their physical mixtures. This study authenticates the translational potential of the dual-action targeting approach using small polymers for broad and high antiviral efficacy.
Collapse
Affiliation(s)
- Badri Parshad
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Marlena N Schlecht
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestraße 10, 13353 Berlin, Germany
- Medical Clinic III, Division of Nephrology, Medizinische Fakultät Carl Gustav Carus an der TU Dresden, Fiedlerstr. 40, 01307 Dresden, Germany
| | - Morris Baumgardt
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie and Core Facility BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 36a, 14195 Berlin, Germany
| | - Chuanxiong Nie
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Agustina Rimondi
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestraße 10, 13353 Berlin, Germany
| | - Katja Hönzke
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | | | - Vinod Khatri
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Paul Schneider
- Department for Thoracic Surgery, DRK Clinics, 13359 Berlin, Germany
| | - Andreas Herrmann
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Andreas C Hocke
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Thorsten Wolff
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestraße 10, 13353 Berlin, Germany
| | - Sumati Bhatia
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
3
|
Donahue TC, Zong G, Ou C, DeShong P, Wang LX. Catanionic Vesicles as a Facile Scaffold to Display Natural N-Glycan Ligands for Probing Multivalent Carbohydrate-Lectin Interactions. Bioconjug Chem 2023; 34:392-404. [PMID: 36642983 PMCID: PMC10349922 DOI: 10.1021/acs.bioconjchem.2c00560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Multivalent interactions are a key characteristic of protein-carbohydrate recognition. Phospholipid-based liposomes have been explored as a popular platform for multivalent presentation of glycans, but this platform has been plagued by the instability of typical liposomal formulations in biological media. We report here the exploitation of catanionic vesicles as a stable lipid-based nanoparticle scaffold for displaying large natural N-glycans as multivalent ligands. Hydrophobic insertion of lipidated N-glycans into the catanionic vesicle bilayer was optimized to allow for high-density display of structurally diverse N-glycans on the outer membrane leaflet. In an enzyme-linked competitive lectin-binding assay, the N-glycan-coated vesicles demonstrated a clear clustering glycoside effect, with significantly enhanced affinity for the corresponding lectins including Sambucus nigra agglutinin (SNA), concanavalin A (ConA), and human galectin-3, in comparison with their respective natural N-glycan ligands. Our results showed that relatively low density of high-mannose and sialylated complex type N-glycans gave the maximal clustering effect for binding to ConA and SNA, respectively, while relatively high-density display of the asialylated complex type N-glycan provided maximal clustering effects for binding to human galectin 3. Moreover, we also observed a macromolecular crowding effect on the binding of ConA to high-mannose N-glycans when catanionic vesicles bearing mixed high-mannose and complex-type N-glycans were used. The N-glycan-coated catanionic vesicles are stable and easy to formulate with varied density of ligands, which could serve as a feasible vehicle for drug delivery and as potent inhibitors for intervening protein-carbohydrate interactions implicated in disease.
Collapse
Affiliation(s)
- Thomas C Donahue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Chong Ou
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Philip DeShong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| |
Collapse
|
4
|
Targeting galectin-driven regulatory circuits in cancer and fibrosis. Nat Rev Drug Discov 2023; 22:295-316. [PMID: 36759557 DOI: 10.1038/s41573-023-00636-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/11/2023]
Abstract
Galectins are a family of endogenous glycan-binding proteins that have crucial roles in a broad range of physiological and pathological processes. As a group, these proteins use both extracellular and intracellular mechanisms as well as glycan-dependent and independent pathways to reprogramme the fate and function of numerous cell types. Given their multifunctional roles in both tissue fibrosis and cancer, galectins have been identified as potential therapeutic targets for these disorders. Here, we focus on the therapeutic relevance of galectins, particularly galectin 1 (GAL1), GAL3 and GAL9 to tumour progression and fibrotic diseases. We consider an array of galectin-targeted strategies, including small-molecule carbohydrate inhibitors, natural polysaccharides and their derivatives, peptides, peptidomimetics and biological agents (notably, neutralizing monoclonal antibodies and truncated galectins) and discuss their mechanisms of action, selectivity and therapeutic potential in preclinical models of fibrosis and cancer. We also review the results of clinical trials that aim to evaluate the efficacy of galectin inhibitors in patients with idiopathic pulmonary fibrosis, nonalcoholic steatohepatitis and cancer. The rapid pace of glycobiology research, combined with the acute need for drugs to alleviate fibrotic inflammation and overcome resistance to anticancer therapies, will accelerate the translation of anti-galectin therapeutics into clinical practice.
Collapse
|
5
|
Konvalinková D, Dolníček F, Hovorková M, Červený J, Kundrát O, Pelantová H, Petrásková L, Cvačka J, Faizulina M, Varghese B, Kovaříček P, Křen V, Lhoták P, Bojarová P. Glycocalix[4]arenes and their affinity to a library of galectins: the linker matters. Org Biomol Chem 2023; 21:1294-1302. [PMID: 36647793 DOI: 10.1039/d2ob02235d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Galectins are lectins that bind β-galactosides. They are involved in important extra- and intracellular biological processes such as apoptosis, and regulation of the immune system or the cell cycle. High-affinity ligands of galectins may introduce new therapeutic approaches or become new tools for biomedical research. One way of increasing the low affinity of β-galactoside ligands to galectins is their multivalent presentation, e.g., using calixarenes. We report on the synthesis of glycocalix[4]arenes in cone, partial cone, 1,2-alternate, and 1,3-alternate conformations carrying a lactosyl ligand on three different linkers. The affinity of the prepared compounds to a library of human galectins was determined using competitive ELISA assay and biolayer interferometry. Structure-affinity relationships regarding the influence of the linker and the core structure were formulated. Substantial differences were found between various linker lengths and the position of the triazole unit. The formation of supramolecular clusters was detected by atomic force microscopy. The present work gives a systematic insight into prospective galectin ligands based on the calix[4]arene core.
Collapse
Affiliation(s)
- Dorota Konvalinková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic.
| | - František Dolníček
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-16628 Praha 6, Czech Republic.
| | - Michaela Hovorková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic. .,Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, CZ-12843 Prague 2, Czech Republic
| | - Jakub Červený
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic. .,Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Ondřej Kundrát
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-16628 Praha 6, Czech Republic.
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic.
| | - Lucie Petrásková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic.
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic
| | - Margarita Faizulina
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-16628 Praha 6, Czech Republic.
| | - Beena Varghese
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-16628 Praha 6, Czech Republic.
| | - Petr Kovaříček
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-16628 Praha 6, Czech Republic.
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic.
| | - Pavel Lhoták
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-16628 Praha 6, Czech Republic.
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic. .,Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, nám. Sítná 3105, CZ-272 01 Kladno, Czech Republic
| |
Collapse
|
6
|
Martínez-Bailén M, Rojo J, Ramos-Soriano J. Multivalent glycosystems for human lectins. Chem Soc Rev 2023; 52:536-572. [PMID: 36545903 DOI: 10.1039/d2cs00736c] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human lectins are involved in a wide variety of biological processes, both physiological and pathological, which have attracted the interest of the scientific community working in the glycoscience field. Multivalent glycosystems have been employed as useful tools to understand carbohydrate-lectin binding processes as well as for biomedical applications. The review shows the different scaffolds designed for a multivalent presentation of sugars and their corresponding binding studies to lectins and in some cases, their biological activities. We summarise this research by organizing based on lectin types to highlight the progression in this active field. The paper provides an overall picture of how these contributions have furnished relevant information on this topic to help in understanding and participate in these carbohydrate-lectin interactions.
Collapse
Affiliation(s)
- Macarena Martínez-Bailén
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| |
Collapse
|
7
|
Ou C, Li C, Feng C, Tong X, Vasta GR, Wang LX. Synthesis, binding affinity, and inhibitory capacity of cyclodextrin-based multivalent glycan ligands for human galectin-3. Bioorg Med Chem 2022; 72:116974. [PMID: 36108470 PMCID: PMC10349921 DOI: 10.1016/j.bmc.2022.116974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/06/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022]
Abstract
Human galectin 3 (Gal-3) has been implicated to play important roles in different biological recognition processes such as tumor growth and cancer metastasis. High-affinity Gal-3 ligands are desirable for functional studies and as inhibitors for potential therapeutic development. We report here a facile synthesis of β-cyclodextrin (CD)-based Tn and TF antigen-containing multivalent ligands via a click reaction. Binding studies indicated that the synthetic multivalent glycan ligands demonstrated a clear clustering effect in binding to human Gal-3, with up to 153-fold enhanced relative affinity in comparison with the monomeric glycan ligand. The GalNAc (Tn antigen) containing heptavalent ligand showed the highest affinity for human Gal-3 among the synthetic ligands tested, with an EC50 of 1.4 μM in binding to human Gal-3. A cell-based assay revealed that the synthetic CD-based multivalent ligands could efficiently inhibit Gal-3 binding to human airway epithelial cells, with an inhibitory capacity consistent with their binding affinity measured by SPR. The synthetic cyclodextrin-based ligands described in this study should be valuable for functional studies of human Gal-3 and potentially for therapeutic applications.
Collapse
Affiliation(s)
- Chong Ou
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Chiguang Feng
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, United States
| | - Xin Tong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
8
|
The Contribution of Viral Proteins to the Synergy of Influenza and Bacterial Co-Infection. Viruses 2022; 14:v14051064. [PMID: 35632805 PMCID: PMC9143653 DOI: 10.3390/v14051064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
A severe course of acute respiratory disease caused by influenza A virus (IAV) infection is often linked with subsequent bacterial superinfection, which is difficult to cure. Thus, synergistic influenza-bacterial co-infection represents a serious medical problem. The pathogenic changes in the infected host are accelerated as a consequence of IAV infection, reflecting its impact on the host immune response. IAV infection triggers a complex process linked with the blocking of innate and adaptive immune mechanisms required for effective antiviral defense. Such disbalance of the immune system allows for easier initiation of bacterial superinfection. Therefore, many new studies have emerged that aim to explain why viral-bacterial co-infection can lead to severe respiratory disease with possible fatal outcomes. In this review, we discuss the key role of several IAV proteins-namely, PB1-F2, hemagglutinin (HA), neuraminidase (NA), and NS1-known to play a role in modulating the immune defense of the host, which consequently escalates the development of secondary bacterial infection, most often caused by Streptococcus pneumoniae. Understanding the mechanisms leading to pathological disorders caused by bacterial superinfection after the previous viral infection is important for the development of more effective means of prevention; for example, by vaccination or through therapy using antiviral drugs targeted at critical viral proteins.
Collapse
|
9
|
Vrbata D, Filipová M, Tavares MR, Červený J, Vlachová M, Šírová M, Pelantová H, Petrásková L, Bumba L, Konefał R, Etrych T, Křen V, Chytil P, Bojarová P. Glycopolymers Decorated with 3- O-Substituted Thiodigalactosides as Potent Multivalent Inhibitors of Galectin-3. J Med Chem 2022; 65:3866-3878. [PMID: 35157467 DOI: 10.1021/acs.jmedchem.1c01625] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Galectin-3 (Gal-3) participates in many cancer-related metabolic processes. The inhibition of overexpressed Gal-3 by, e.g., β-galactoside-derived inhibitors is hence promising for cancer treatment. The multivalent presentation of such inhibitors on a suitable biocompatible carrier can enhance the overall affinity to Gal-3 and favorably modify the interaction with Gal-3-overexpressing cells. We synthesized a library of C-3 aryl-substituted thiodigalactoside inhibitors and their multivalent N-(2-hydroxypropyl)methacrylamide (HPMA)-based counterparts with two different glycomimetic contents. Glycopolymers with a higher content of glycomimetic exhibited a higher affinity to Gal-3 as assessed by ELISA and biolayer interferometry. Among them, four candidates (with 4-acetophenyl, 4-cyanophenyl, 4-fluorophenyl, and thiophen-3-yl substitution) were selected for further evaluation in cancer-related experiments in cell cultures. These glycopolymers inhibited Gal-3-induced processes in cancer cells. The cyanophenyl-substituted glycopolymer exhibited the strongest antiproliferative, antimigratory, antiangiogenic, and immunoprotective properties. The prepared glycopolymers appear to be prospective modulators of the tumor microenvironment applicable in the therapy of Gal-3-associated cancers.
Collapse
Affiliation(s)
- David Vrbata
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Marcela Filipová
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Marina R Tavares
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Jakub Červený
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic.,Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 6, CZ-128 43 Prague 2, Czech Republic
| | - Miluše Vlachová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Milada Šírová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Lucie Petrásková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Rafał Konefał
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Petr Chytil
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic.,Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, nám. Sítná 3105, CZ-272 01 Kladno, Czech Republic
| |
Collapse
|
10
|
Chen Z, Cui Q, Caffrey M, Rong L, Du R. Small Molecule Inhibitors of Influenza Virus Entry. Pharmaceuticals (Basel) 2021; 14:ph14060587. [PMID: 34207368 PMCID: PMC8234048 DOI: 10.3390/ph14060587] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
Hemagglutinin (HA) plays a critical role during influenza virus receptor binding and subsequent membrane fusion process, thus HA has become a promising drug target. For the past several decades, we and other researchers have discovered a series of HA inhibitors mainly targeting its fusion machinery. In this review, we summarize the advances in HA-targeted development of small molecule inhibitors. Moreover, we discuss the structural basis and mode of action of these inhibitors, and speculate upon future directions toward more potent inhibitors of membrane fusion and potential anti-influenza drugs.
Collapse
Affiliation(s)
- Zhaoyu Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.C.); (Q.C.)
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.C.); (Q.C.)
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China
| | - Michael Caffrey
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Correspondence: (L.R.); (R.D.); Tel.: +1-312-355-0203 (L.R.); +86-0531-89628505 (R.D.)
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.C.); (Q.C.)
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China
- Correspondence: (L.R.); (R.D.); Tel.: +1-312-355-0203 (L.R.); +86-0531-89628505 (R.D.)
| |
Collapse
|
11
|
Lin CY, Yang ZS, Wang WH, Urbina AN, Lin YT, Huang JC, Liu FT, Wang SF. The Antiviral Role of Galectins toward Influenza A Virus Infection-An Alternative Strategy for Influenza Therapy. Pharmaceuticals (Basel) 2021; 14:490. [PMID: 34065500 PMCID: PMC8160607 DOI: 10.3390/ph14050490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022] Open
Abstract
Animal lectins are proteins with carbohydrate recognition activity. Galectins, the β-galactoside binding lectins, are expressed in various cells and have been reported to regulate several immunological and physiological responses. Recently, some galectins have been reported to regulate some viral infections, including influenza A virus (IAV); however, the mechanism is still not fully understood. Thus, we aim to review systemically the roles of galectins in their antiviral functions against IAVs. The PRISMA guidelines were used to select the eligible articles. Results indicated that only Galectin-1, Galectin-3, and Galectin-9 were reported to play a regulatory role in IAV infection. These regulatory effects occur extracellularly, through their carbohydrate recognition domain (CRD) interacting with glycans expressed on the virus surface, as well as endogenously, in a cell-cell interaction manner. The inhibition effects induced by galectins on IAV infection were through blocking virus-host receptors interaction, activation of NLRP-3 inflammasome, augment expression of antiviral genes and related cytokines, as well as stimulation of Tim-3 related signaling to enhance virus-specific T cells and humoral immune response. Combined, this study concludes that currently, only three galectins have reported antiviral capabilities against IAV infection, thereby having the potential to be applied as an alternative anti-influenza therapeutic strategy.
Collapse
Affiliation(s)
- Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-Y.L.); (Z.-S.Y.); (W.-H.W.); (A.N.U.)
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Zih-Syuan Yang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-Y.L.); (Z.-S.Y.); (W.-H.W.); (A.N.U.)
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Wen-Hung Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-Y.L.); (Z.-S.Y.); (W.-H.W.); (A.N.U.)
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Aspiro Nayim Urbina
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-Y.L.); (Z.-S.Y.); (W.-H.W.); (A.N.U.)
| | - Yu-Ting Lin
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jason C. Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112304, Taiwan;
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan;
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-Y.L.); (Z.-S.Y.); (W.-H.W.); (A.N.U.)
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
12
|
Yang ZS, Lin CY, Huang SW, Wang WH, Urbina AN, Tseng SP, Lu PL, Chen YH, Wang SF. Regulatory roles of galectins on influenza A virus and their potential as a therapeutic strategy. Biomed Pharmacother 2021; 139:111713. [PMID: 34243634 DOI: 10.1016/j.biopha.2021.111713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 11/19/2022] Open
Abstract
Galectins, are β-galactoside binding lectins expressed in numerous cells and are known to regulate various immune responses and cellular physiological functions. Galectins have been reported to participate in the regulation of several viral infections via carbohydrate‑dependent/independent manner. Galectins have displayed various regulatory functions on viral infection, however, the detailed mechanism remains unclear. More recently, some members of galectins have been reported to regulate influenza A virus (IAV) infection. In this review, we aim to analyze and summarize current findings regarding the role of galectins in IAV infection and their antiviral potential therapeutic application in the treatment of IAVs. The eligible articles were selected according to the PRISMA guidelines. Results indicate that Galectin-1(Gal-1), Galectin-3(Gal-3) and Galectin-9 (Gal-9) were found as the predominant galectins reported to participate in the regulation of IAVs infection. The inhibitory regulation of IAVs by these galectins occurred mainly through extracellular binding to glycosylated envelope proteins, further blocking the interaction between influenza envelope and sialic acid receptor, interacting with ligands or receptors on immune cells to trigger immunol or cellular response against IAVs, and endogenously interacting cellular components in the cytoplasm to activate inflammasome and autophagy. This study offers information regarding the multiple roles of galectins observed in IAVs infection and suggest that galectins has the potential to be used as therapeutic agents for IAVs.
Collapse
Affiliation(s)
- Zih-Syuan Yang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Szu-Wei Huang
- Model Development Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Wen-Hung Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Aspiro Nayim Urbina
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Po-Liang Lu
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yen-Hsu Chen
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
13
|
Heine V, Hovorková M, Vlachová M, Filipová M, Bumba L, Janoušková O, Hubálek M, Cvačka J, Petrásková L, Pelantová H, Křen V, Elling L, Bojarová P. Immunoprotective neo-glycoproteins: Chemoenzymatic synthesis of multivalent glycomimetics for inhibition of cancer-related galectin-3. Eur J Med Chem 2021; 220:113500. [PMID: 33962190 DOI: 10.1016/j.ejmech.2021.113500] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Galectin-3 plays a crucial role in cancerogenesis; its targeting is a prospective pathway in cancer diagnostics and therapy. Multivalent presentation of glycans was shown to strongly increase the affinity of glycoconjugates to galectin-3. Further strengthening of interaction with galectin-3 may be accomplished using artificial glycomimetics with apt aryl substitutions. We established a new, as yet undescribed chemoenzymatic method to produce selective C-3-substituted N,N'-diacetyllactosamine glycomimetics and coupled them to human serum albumin. From a library of enzymes, only β-N-acetylhexosaminidase from Talaromyces flavus was able to efficiently synthesize the C-3-propargylated disaccharide. Various aryl residues were attached to the functionalized N,N'-diacetyllactosamine via click chemistry to assess the impact of the aromatic substitution. In ELISA-type assays with galectin-3, free glycomimetics exhibited up to 43-fold stronger inhibitory potency to Gal-3 than the lactose standard. Coupling to human serum albumin afforded multivalent neo-glycoproteins with up to 4209-fold increased inhibitory potency per glycan compared to the monovalent lactose standard. Surface plasmon resonance brought further information on the kinetics of galectin-3 inhibition. The potential of prepared neo-glycoproteins to target galectin-3 was demonstrated on colorectal adenocarcinoma DLD-1 cells. We investigated the uptake of neo-glycoproteins into cells and observed limited non-specific transport into the cytoplasm. Therefore, neo-glycoproteins primarily act as efficient scavengers of exogenous galectin-3 of cancer cells, inhibiting its interaction with the cell surface, and protecting T-lymphocytes against galectin-3-induced apoptosis. The present neo-glycoproteins combine the advantage of a straightforward synthesis, selectivity, non-toxicity, and high efficiency for targeting exogenous galectin-3, with possible application in the immunomodulatory treatment of galectin-3-overexpressing cancers.
Collapse
Affiliation(s)
- Viktoria Heine
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Prague 4, Czech Republic; Institute of Biotechnology and Helmholtz Institute for Biomedical Engineering, RWTH Aachen, Pauwelstr. 20, D-52079 Aachen, Germany
| | - Michaela Hovorková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Prague 4, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, CZ-12843, Prague 2, Czech Republic
| | - Miluše Vlachová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Prague 4, Czech Republic
| | - Marcela Filipová
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského Nám. 2, CZ-16206 Prague 6, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Prague 4, Czech Republic
| | - Olga Janoušková
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského Nám. 2, CZ-16206 Prague 6, Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 2, CZ-16610 Prague 6, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 2, CZ-16610 Prague 6, Czech Republic
| | - Lucie Petrásková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Prague 4, Czech Republic
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Prague 4, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Prague 4, Czech Republic
| | - Lothar Elling
- Institute of Biotechnology and Helmholtz Institute for Biomedical Engineering, RWTH Aachen, Pauwelstr. 20, D-52079 Aachen, Germany
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Prague 4, Czech Republic.
| |
Collapse
|
14
|
Shirakawa A, Manabe Y, Fukase K. Recent Advances in the Chemical Biology of N-Glycans. Molecules 2021; 26:molecules26041040. [PMID: 33669465 PMCID: PMC7920464 DOI: 10.3390/molecules26041040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022] Open
Abstract
Asparagine-linked N-glycans on proteins have diverse structures, and their functions vary according to their structures. In recent years, it has become possible to obtain high quantities of N-glycans via isolation and chemical/enzymatic/chemoenzymatic synthesis. This has allowed for progress in the elucidation of N-glycan functions at the molecular level. Interaction analyses with lectins by glycan arrays or nuclear magnetic resonance (NMR) using various N-glycans have revealed the molecular basis for the recognition of complex structures of N-glycans. Preparation of proteins modified with homogeneous N-glycans revealed the influence of N-glycan modifications on protein functions. Furthermore, N-glycans have potential applications in drug development. This review discusses recent advances in the chemical biology of N-glycans.
Collapse
Affiliation(s)
- Asuka Shirakawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Correspondence: (Y.M.); (K.F.); Tel.: +81-6-6850-5391 (Y.M.); +81-6-6850-5388 (K.F.)
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Correspondence: (Y.M.); (K.F.); Tel.: +81-6-6850-5391 (Y.M.); +81-6-6850-5388 (K.F.)
| |
Collapse
|
15
|
Luo M, Wu X, Li Y, Guo F. Synthesis of Four Pentacyclic Triterpene-Sialylglycopeptide Conjugates and Their Affinity Assays with Hemagglutinin. Molecules 2021; 26:895. [PMID: 33567740 PMCID: PMC7915185 DOI: 10.3390/molecules26040895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022] Open
Abstract
Influenza outbreaks pose a serious threat to human health. Hemagglutinin (HA) is an important target for influenza virus entry inhibitors. In this study, we synthesized four pentacyclic triterpene conjugates with a sialylglycopeptide scaffold through the Cu(I)-catalyzed alkyne-azide cycloaddition reaction (CuAAC) and prepared affinity assays of these conjugates with two HAs, namely H1N1 (A/WSN/1933) and H5N1 (A/Hong Kong/483/97), respectively. With a dissociation constant (KD) of 6.89 μM, SCT-Asn-betulinic acid exhibited the strongest affinity with the H1N1 protein. Furthermore, with a KD value of 9.10 μM, SCT-Asn-oleanolic acid exhibited the strongest affinity with the H5N1 protein. The conjugates considerably enhanced antiviral activity, which indicates that pentacyclic triterpenes can be used as a ligand to improve the anti-influenza ability of the sialylglycopeptide molecule by acting on the HA protein.
Collapse
Affiliation(s)
| | | | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (M.L.); (X.W.)
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (M.L.); (X.W.)
| |
Collapse
|
16
|
Sarkar B, Jayaraman N. Glycoconjugations of Biomolecules by Chemical Methods. Front Chem 2020; 8:570185. [PMID: 33330359 PMCID: PMC7672192 DOI: 10.3389/fchem.2020.570185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022] Open
Abstract
Bioconjugations under benign aqueous conditions have the most promise to covalently link carbohydrates onto chosen molecular and macromolecular scaffolds. Chemical methodologies relying on C-C and C-heteroatom bond formations are the methods of choice, coupled with the reaction conditions being under aqueous milieu. A number of methods, including metal-mediated, as well as metal-free azide-alkyne cyclo-addition, photocatalyzed thiol-ene reaction, amidation, reductive amination, disulfide bond formation, conjugate addition, nucleophilic addition to vinyl sulfones and vinyl sulfoxides, native chemical ligation, Staudinger ligation, olefin metathesis, and Suzuki-Miyaura cross coupling reactions have been developed, in efforts to conduct glycoconjugation of chosen molecular and biomolecular structures. Within these, many methods require pre-functionalization of the scaffolds, whereas methods that do not require such pre-functionalization continue to be few and far between. The compilation covers synthetic methodology development for carbohydrate conjugation onto biomolecular and biomacromolecular scaffolds. The importance of such glycoconjugations on the functional properties is also covered.
Collapse
Affiliation(s)
- Biswajit Sarkar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
17
|
Farabi K, Manabe Y, Ichikawa H, Miyake S, Tsutsui M, Kabayama K, Yamaji T, Tanaka K, Hung SC, Fukase K. Concise and Reliable Syntheses of Glycodendrimers via Self-Activating Click Chemistry: A Robust Strategy for Mimicking Multivalent Glycan-Pathogen Interactions. J Org Chem 2020; 85:16014-16023. [PMID: 33058668 DOI: 10.1021/acs.joc.0c01547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Individual interactions between glycans and their receptors are usually weak, although these weak interactions can combine to realize a strong interaction (multivalency). Such multivalency plays a crucial role in the recognition of host cells by pathogens. Glycodendrimers are useful materials for the reconstruction of this multivalent interaction. However, the introduction of a large number of glycans to a dendrimer core is fraught with difficulties. We herein synthesized antipathogenic glycodendrimers using the self-activating click chemistry (SACC) method developed by our group. The excellent reactivity of SACC enabled the efficient preparation of sialyl glycan and Gb3 glycan dendrimers, which exhibited strong avidity toward hemagglutinin on influenza virus and Shiga toxin B subunit produced by Escherichia coli, respectively. We demonstrated the usefulness of SACC-based glycodendrimers as antipathogenic compounds.
Collapse
Affiliation(s)
- Kindi Farabi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Hiroaki Ichikawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Shuto Miyake
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Masato Tsutsui
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,School of Materials and Chemical Technology, Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
18
|
Freichel T, Heine V, Laaf D, Mackintosh EE, Sarafova S, Elling L, Snyder NL, Hartmann L. Sequence-Defined Heteromultivalent Precision Glycomacromolecules Bearing Sulfonated/Sulfated Nonglycosidic Moieties Preferentially Bind Galectin-3 and Delay Wound Healing of a Galectin-3 Positive Tumor Cell Line in an In Vitro Wound Scratch Assay. Macromol Biosci 2020; 20:e2000163. [PMID: 32715650 PMCID: PMC9831253 DOI: 10.1002/mabi.202000163] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/28/2020] [Indexed: 01/12/2023]
Abstract
Within this work, a new class of sequence-defined heteromultivalent glycomacromolecules bearing lactose residues and nonglycosidic motifs for probing glycoconjugate recognition in carbohydrate recognition domain (CRD) of galectin-3 is presented. Galectins, a family of β-galactoside-binding proteins, are known to play crucial roles in different signaling pathways involved in tumor biology. Thus, research has focused on the design and synthesis of galectin-targeting ligands for use as diagnostic markers or potential therapeutics. Heteromultivalent precision glycomacromolecules have the potential to serve as ligands for galectins. In this work, multivalency and the introduction of nonglycosidic motifs bearing either neutral, amine, or sulfonated/sulfated groups are used to better understand binding in the galectin-3 CRD. Enzyme-linked immunosorbent assays and surface plasmon resonance studies are performed, revealing a positive impact of the sulfonated/sulfated nonglycosidic motifs on galectin-3 binding but not on galectin-1 binding. Selected compounds are then tested with galectin-3 positive MCF 7 breast cancer cells using an in vitro would scratch assay. Preliminary results demonstrate a differential biological effect on MCF 7 cells with high galectin-3 expression in comparison to an HEK 293 control with low galectin-3 expression, indicating the potential for sulfonated/sulfated heteromultivalent glycomacromolecules to serve as preferential ligands for galectin-3 targeting.
Collapse
Affiliation(s)
- Tanja Freichel
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Viktoria Heine
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, Aachen 52074, Germany
| | - Dominic Laaf
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, Aachen 52074, Germany
| | | | - Sophia Sarafova
- Department of Biology, Davidson College, Box 7188, Davidson, NC 28035, USA
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, Aachen 52074, Germany
| | - Nicole L. Snyder
- Department of Chemistry, Davidson College, Box 7120, Davidson, NC 28035, USA
| | - Laura Hartmann
- Institute of Organic and Macromolecular Chemistry Heinrich-Heine University Düsseldorf Universitätsstraße 1, Düsseldorf 40225, Germany
| |
Collapse
|
19
|
Hoffmann M, Hayes MR, Pietruszka J, Elling L. Synthesis of the Thomsen-Friedenreich-antigen (TF-antigen) and binding of Galectin-3 to TF-antigen presenting neo-glycoproteins. Glycoconj J 2020; 37:457-470. [PMID: 32367478 PMCID: PMC7329766 DOI: 10.1007/s10719-020-09926-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
Abstract
The Thomsen-Friedenreich-antigen, Gal(β1-3)GalNAc(α1-O-Ser/Thr (TF-antigen), is presented on the surface of most human cancer cell types. Its interaction with galectin 1 and galectin 3 leads to tumor cell aggregation and promotes cancer metastasis and T-cell apoptosis in epithelial tissue. To further explore multivalent binding between the TF-antigen and galectin-3, the TF-antigen was enzymatically synthesized in high yields with GalNAc(α1-EG3-azide as the acceptor substrate by use of the glycosynthase BgaC/Glu233Gly. Subsequently, it was coupled to alkynyl-functionalized bovine serum albumin via a copper(I)-catalyzed alkyne-azide cycloaddition. This procedure yielded neo-glycoproteins with tunable glycan multivalency for binding studies. Glycan densities between 2 and 53 glycan residues per protein molecule were obtained by regulated alkynyl-modification of the lysine residues of BSA. The number of coupled glycans was quantified by sodium dodecyl sulfate polyacrylamide gel electrophoresis and a trinitrobenzene sulfonic acid assay. The binding efficiency of the neo-glycoproteins with human galectin-3 and the effect of multivalency was investigated and assessed using an enzyme-linked lectin assay. Immobilized neo-glycoproteins of all modification densities showed binding of Gal-3 with increasing glycan density. However, multivalent glycan presentation did not result in a higher binding affinity. In contrast, inhibition of Gal-3 binding to asialofetuin was effective. The relative inhibitory potency was increased by a factor of 142 for neo-glycoproteins displaying 10 glycans/protein in contrast to highly decorated inhibitors with only 2-fold increase. In summary, the functionality of BSA-based neo-glycoproteins presenting the TF-antigen as multivalent inhibitors for Gal-3 was demonstrated.
Collapse
Affiliation(s)
- Marius Hoffmann
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße. 20, 52074 Aachen, Germany
| | - Marc R. Hayes
- Institute for Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, 52426 Jülich, Germany
| | - Jörg Pietruszka
- Institute for Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, 52426 Jülich, Germany
- Forschungszentrum Jülich, IBG-1: Biotechnology, 52426 Jülich, Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße. 20, 52074 Aachen, Germany
| |
Collapse
|
20
|
Bhatia S, Hilsch M, Cuellar‐Camacho JL, Ludwig K, Nie C, Parshad B, Wallert M, Block S, Lauster D, Böttcher C, Herrmann A, Haag R. Adaptive Flexible Sialylated Nanogels as Highly Potent Influenza A Virus Inhibitors. Angew Chem Int Ed Engl 2020; 59:12417-12422. [PMID: 32441859 PMCID: PMC7384064 DOI: 10.1002/anie.202006145] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 11/13/2022]
Abstract
Flexible multivalent 3D nanosystems that can deform and adapt onto the virus surface via specific ligand-receptor multivalent interactions can efficiently block virus adhesion onto the cell. We here report on the synthesis of a 250 nm sized flexible sialylated nanogel that adapts onto the influenza A virus (IAV) surface via multivalent binding of its sialic acid (SA) residues with hemagglutinin spike proteins on the virus surface. We could demonstrate that the high flexibility of sialylated nanogel improves IAV inhibition by 400 times as compared to a rigid sialylated nanogel in the hemagglutination inhibition assay. The flexible sialylated nanogel efficiently inhibits the influenza A/X31 (H3N2) infection with IC50 values in low picomolar concentrations and also blocks the virus entry into MDCK-II cells.
Collapse
Affiliation(s)
- Sumati Bhatia
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Malte Hilsch
- Institute of Biology & IRI Life SciencesHumboldt-Universität zu BerlinInvalidenstraße 4210115BerlinGermany
| | | | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie, and Core Facility BioSupraMolInstitute of Chemistry and BiochemistryFreie Universität BerlinFabeckstr. 36a14195BerlinGermany
| | - Chuanxiong Nie
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Badri Parshad
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Matthias Wallert
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Stephan Block
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Daniel Lauster
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie, and Core Facility BioSupraMolInstitute of Chemistry and BiochemistryFreie Universität BerlinFabeckstr. 36a14195BerlinGermany
| | - Andreas Herrmann
- Institute of Biology & IRI Life SciencesHumboldt-Universität zu BerlinInvalidenstraße 4210115BerlinGermany
| | - Rainer Haag
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| |
Collapse
|
21
|
Bhatia S, Hilsch M, Cuellar‐Camacho JL, Ludwig K, Nie C, Parshad B, Wallert M, Block S, Lauster D, Böttcher C, Herrmann A, Haag R. Adaptive Flexible Sialylated Nanogels as Highly Potent Influenza A Virus Inhibitors. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sumati Bhatia
- Institute of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Malte Hilsch
- Institute of Biology & IRI Life Sciences Humboldt-Universität zu Berlin Invalidenstraße 42 10115 Berlin Germany
| | | | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie, and Core Facility BioSupraMol Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 36a 14195 Berlin Germany
| | - Chuanxiong Nie
- Institute of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Badri Parshad
- Institute of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Matthias Wallert
- Institute of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Stephan Block
- Institute of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Daniel Lauster
- Institute of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie, and Core Facility BioSupraMol Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 36a 14195 Berlin Germany
| | - Andreas Herrmann
- Institute of Biology & IRI Life Sciences Humboldt-Universität zu Berlin Invalidenstraße 42 10115 Berlin Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| |
Collapse
|
22
|
Lauster D, Klenk S, Ludwig K, Nojoumi S, Behren S, Adam L, Stadtmüller M, Saenger S, Zimmler S, Hönzke K, Yao L, Hoffmann U, Bardua M, Hamann A, Witzenrath M, Sander LE, Wolff T, Hocke AC, Hippenstiel S, De Carlo S, Neudecker J, Osterrieder K, Budisa N, Netz RR, Böttcher C, Liese S, Herrmann A, Hackenberger CPR. Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry. NATURE NANOTECHNOLOGY 2020; 15:373-379. [PMID: 32231271 DOI: 10.1038/s41565-020-0660-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/25/2020] [Indexed: 05/21/2023]
Abstract
Multivalent interactions at biological interfaces occur frequently in nature and mediate recognition and interactions in essential physiological processes such as cell-to-cell adhesion. Multivalency is also a key principle that allows tight binding between pathogens and host cells during the initial stages of infection. One promising approach to prevent infection is the design of synthetic or semisynthetic multivalent binders that interfere with pathogen adhesion1-4. Here, we present a multivalent binder that is based on a spatially defined arrangement of ligands for the viral spike protein haemagglutinin of the influenza A virus. Complementary experimental and theoretical approaches demonstrate that bacteriophage capsids, which carry host cell haemagglutinin ligands in an arrangement matching the geometry of binding sites of the spike protein, can bind to viruses in a defined multivalent mode. These capsids cover the entire virus envelope, thus preventing its binding to the host cell as visualized by cryo-electron tomography. As a consequence, virus infection can be inhibited in vitro, ex vivo and in vivo. Such highly functionalized capsids present an alternative to strategies that target virus entry by spike-inhibiting antibodies5 and peptides6 or that address late steps of the viral replication cycle7.
Collapse
Affiliation(s)
- Daniel Lauster
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Berlin, Germany
- Institut für Biologie, Molekulare Biophysik, IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Simon Klenk
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie und Gerätezentrum BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Saba Nojoumi
- Institut für Chemie, Biokatalyse, Technische Universität Berlin, Berlin, Germany
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Sandra Behren
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lutz Adam
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marlena Stadtmüller
- Robert Koch Institut, FG 17 Influenzaviren und weitere Viren des Respirationstraktes, Berlin, Germany
| | - Sandra Saenger
- Robert Koch Institut, FG 17 Influenzaviren und weitere Viren des Respirationstraktes, Berlin, Germany
| | - Stephanie Zimmler
- Robert Koch Institut, FG 17 Influenzaviren und weitere Viren des Respirationstraktes, Berlin, Germany
| | - Katja Hönzke
- Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité, Universitätsmedizin Berlin, Partner von Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, Berlin, Germany
| | - Ling Yao
- Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité, Universitätsmedizin Berlin, Partner von Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, Berlin, Germany
| | - Ute Hoffmann
- Experimentelle Rheumatologie, Deutsches Rheuma-Forschungszentrum Berlin, ein Leibniz-Institut, Berlin, Germany
| | - Markus Bardua
- Experimentelle Rheumatologie, Deutsches Rheuma-Forschungszentrum Berlin, ein Leibniz-Institut, Berlin, Germany
| | - Alf Hamann
- Experimentelle Rheumatologie, Deutsches Rheuma-Forschungszentrum Berlin, ein Leibniz-Institut, Berlin, Germany
| | - Martin Witzenrath
- Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité, Universitätsmedizin Berlin, Partner von Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, Berlin, Germany
| | - Leif E Sander
- Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité, Universitätsmedizin Berlin, Partner von Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, Berlin, Germany
| | - Thorsten Wolff
- Robert Koch Institut, FG 17 Influenzaviren und weitere Viren des Respirationstraktes, Berlin, Germany
| | - Andreas C Hocke
- Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité, Universitätsmedizin Berlin, Partner von Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, Berlin, Germany
| | - Stefan Hippenstiel
- Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité, Universitätsmedizin Berlin, Partner von Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, Berlin, Germany
| | | | - Jens Neudecker
- Chirurgische Klinik, Campus Mitte/Campus Virchow Klinikum, Charité, Universitätsmedizin Berlin, Partner von Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Berlin, Germany
| | - Klaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Berlin, Germany
| | - Nediljko Budisa
- Institut für Chemie, Biokatalyse, Technische Universität Berlin, Berlin, Germany
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Roland R Netz
- Fachbereich Physik, Theoretische Biophysik und Physik weicher Materie, Freie Universität Berlin, Berlin, Germany
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie und Gerätezentrum BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Susanne Liese
- Fachbereich Physik, Theoretische Biophysik und Physik weicher Materie, Freie Universität Berlin, Berlin, Germany.
- Department of Mathematics, University of Oslo (UiO), Oslo, Norway.
| | - Andreas Herrmann
- Institut für Biologie, Molekulare Biophysik, IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
- Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
23
|
Jiang XN, Dang YF, Gong FL, Guo XL. Role and regulation mechanism of Gal-3 in non-small cell lung cancer and its potential clinical therapeutic significance. Chem Biol Interact 2019; 309:108724. [DOI: 10.1016/j.cbi.2019.108724] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/23/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
|
24
|
Baier M, Rustmeier NH, Harr J, Cyrus N, Reiss GJ, Grafmüller A, Blaum BS, Stehle T, Hartmann L. Divalent Sialylated Precision Glycooligomers Binding to Polyomaviruses and the Effect of Different Linkers. Macromol Biosci 2019; 19:e1800426. [PMID: 30884172 DOI: 10.1002/mabi.201800426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/04/2019] [Indexed: 12/31/2022]
Abstract
Divalent precision glycooligomers terminating in N-acetylneuraminic acid (Neu5Ac) or 3'-sialyllactose (3'-SL) with varying linkers between scaffold and the glycan portions are synthesized via solid phase synthesis for co-crystallization studies with the sialic acid-binding major capsid protein VP1 of human Trichodysplasia spinulosa-associated Polyomavirus. High-resolution crystal structures of complexes demonstrate that the compounds bind to VP1 depending on the favorable combination of carbohydrate ligand and linker. It is found that artificial linkers can replace portions of natural carbohydrate linkers as long as they meet certain requirements such as size or flexibility to optimize contact area between ligand and receptor binding sites. The obtained results will influence the design of future high affinity ligands based on the structures presented here, and they can serve as a blueprint to develop multivalent glycooligomers as inhibitors of viral adhesion.
Collapse
Affiliation(s)
- Mischa Baier
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Nils H Rustmeier
- Interfaculty Institute of Biochemistry, University of Tuebingen, Hoppe-Seyler-Strasse 4, 72076, Tuebingen, Germany
| | - Joachim Harr
- Interfaculty Institute of Biochemistry, University of Tuebingen, Hoppe-Seyler-Strasse 4, 72076, Tuebingen, Germany
| | - Norbert Cyrus
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Guido J Reiss
- Institute of Inorganic and Structural Chemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Andrea Grafmüller
- Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Bärbel S Blaum
- Interfaculty Institute of Biochemistry, University of Tuebingen, Hoppe-Seyler-Strasse 4, 72076, Tuebingen, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tuebingen, Hoppe-Seyler-Strasse 4, 72076, Tuebingen, Germany.,Vanderbilt University School of Medicine, Nashville, Tennessee, 37232, USA
| | - Laura Hartmann
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| |
Collapse
|
25
|
Laaf D, Bojarová P, Elling L, Křen V. Galectin-Carbohydrate Interactions in Biomedicine and Biotechnology. Trends Biotechnol 2018; 37:402-415. [PMID: 30413271 DOI: 10.1016/j.tibtech.2018.10.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/25/2018] [Accepted: 10/02/2018] [Indexed: 12/23/2022]
Abstract
Cellular communication events are mediated by interactions between cell-surface sugars and lectins, which are carbohydrate-binding proteins. Galectins are β-galactosyl-binding lectins that bridge molecules by their sugar moieties, forming a signaling and adhesion network. Severe changes in glycosylation and galectin expression accompany major processes in oncogenesis, cardiovascular disorders, and other pathologies, making galectins attractive therapeutic targets. Here we discuss advanced strategies of chemo-enzymatic carbohydrate synthesis for creating lead glycomimetics and (neo-)glycoconjugates for galectin-1 and -3 targeting in biomedicine and biotechnology. We will describe the challenges and bottlenecks on the route into biomedical and biotechnological practice and present the first clinical candidates. The coming era will see an exciting translation of selective well-defined high-affinity galectin ligands from bench to bedside.
Collapse
Affiliation(s)
- Dominic Laaf
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany; Equally contributing authors
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic; Equally contributing authors
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany.
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic.
| |
Collapse
|
26
|
Bojarová P, Tavares MR, Laaf D, Bumba L, Petrásková L, Konefał R, Bláhová M, Pelantová H, Elling L, Etrych T, Chytil P, Křen V. Biocompatible glyconanomaterials based on HPMA-copolymer for specific targeting of galectin-3. J Nanobiotechnology 2018; 16:73. [PMID: 30236114 PMCID: PMC6146777 DOI: 10.1186/s12951-018-0399-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/11/2018] [Indexed: 01/01/2023] Open
Abstract
Background Galectin-3 (Gal-3) is a promising target in cancer therapy with a high therapeutic potential due to its abundant localization within the tumor tissue and its involvement in tumor development and proliferation. Potential clinical application of Gal-3-targeted inhibitors is often complicated by their insufficient selectivity or low biocompatibility. Nanomaterials based on N-(2-hydroxypropyl)methacrylamide (HPMA) nanocarrier are attractive for in vivo application due to their good water solubility and lack of toxicity and immunogenicity. Their conjugation with tailored carbohydrate ligands can yield specific glyconanomaterials applicable for targeting biomedicinally relevant lectins like Gal-3. Results In the present study we describe the synthesis and the structure-affinity relationship study of novel Gal-3-targeted glyconanomaterials, based on hydrophilic HPMA nanocarriers. HPMA nanocarriers decorated with varying amounts of Gal-3 specific epitope GalNAcβ1,4GlcNAc (LacdiNAc) were analyzed in a competitive ELISA-type assay and their binding kinetics was described by surface plasmon resonance. We showed the impact of various linker types and epitope distribution on the binding affinity to Gal-3. The synthesis of specific functionalized LacdiNAc epitopes was accomplished under the catalysis by mutant β-N-acetylhexosaminidases. The glycans were conjugated to statistic HPMA copolymer precursors through diverse linkers in a defined pattern and density using Cu(I)-catalyzed azide–alkyne cycloaddition. The resulting water-soluble and structurally flexible synthetic glyconanomaterials exhibited affinity to Gal-3 in low μM range. Conclusions The results of this study reveal the relation between the linker structure, glycan distribution and the affinity of the glycopolymer nanomaterial to Gal-3. They pave the way to specific biomedicinal glyconanomaterials that target Gal-3 as a therapeutic goal in cancerogenesis and other disorders. Electronic supplementary material The online version of this article (10.1186/s12951-018-0399-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P Bojarová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| | - M R Tavares
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 16206, Prague 6, Czech Republic
| | - D Laaf
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
| | - L Bumba
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - L Petrásková
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - R Konefał
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 16206, Prague 6, Czech Republic
| | - M Bláhová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 16206, Prague 6, Czech Republic
| | - H Pelantová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - L Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
| | - T Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 16206, Prague 6, Czech Republic
| | - P Chytil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 16206, Prague 6, Czech Republic.
| | - V Křen
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| |
Collapse
|
27
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
28
|
Bojarová P, Křen V. Sugared biomaterial binding lectins: achievements and perspectives. Biomater Sci 2018; 4:1142-60. [PMID: 27075026 DOI: 10.1039/c6bm00088f] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lectins, a distinct group of glycan-binding proteins, play a prominent role in the immune system ranging from pathogen recognition and tuning of inflammation to cell adhesion or cellular signalling. The possibilities of their detailed study expanded along with the rapid development of biomaterials in the last decade. The immense knowledge of all aspects of glycan-lectin interactions both in vitro and in vivo may be efficiently used in bioimaging, targeted drug delivery, diagnostic and analytic biological methods. Practically applicable examples comprise photoluminescence and optical biosensors, ingenious three-dimensional carbohydrate microarrays for high-throughput screening, matrices for magnetic resonance imaging, targeted hyperthermal treatment of cancer tissues, selective inhibitors of bacterial toxins and pathogen-recognising lectin receptors, and many others. This review aims to present an up-to-date systematic overview of glycan-decorated biomaterials promising for interactions with lectins, especially those applicable in biology, biotechnology or medicine. The lectins of interest include galectin-1, -3 and -7 participating in tumour progression, bacterial lectins from Pseudomonas aeruginosa (PA-IL), E. coli (Fim-H) and Clostridium botulinum (HA33) or DC-SIGN, receptors of macrophages and dendritic cells. The spectrum of lectin-binding biomaterials covered herein ranges from glycosylated organic structures, calixarene and fullerene cores over glycopeptides and glycoproteins, functionalised carbohydrate scaffolds of cyclodextrin or chitin to self-assembling glycopolymer clusters, gels, micelles and liposomes. Glyconanoparticles, glycan arrays, and other biomaterials with a solid core are described in detail, including inorganic matrices like hydroxyapatite or stainless steel for bioimplants.
Collapse
Affiliation(s)
- P Bojarová
- Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic.
| | - V Křen
- Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic.
| |
Collapse
|
29
|
Zhang H, Laaf D, Elling L, Pieters RJ. Thiodigalactoside-Bovine Serum Albumin Conjugates as High-Potency Inhibitors of Galectin-3: An Outstanding Example of Multivalent Presentation of Small Molecule Inhibitors. Bioconjug Chem 2018; 29:1266-1275. [PMID: 29474087 PMCID: PMC5909177 DOI: 10.1021/acs.bioconjchem.8b00047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Galectin inhibitors
are urgently needed to understand the mode
of action and druggability of different galectins, but potent and
selective agents still evade researchers. Small-sized inhibitors based
on thiodigalactoside (TDG) have shown their potential while modifications
at their C3 position indicated a strategy to improve selectivity and
potency. Considering the role of galectins as glycoprotein traffic
police, involved in multivalent bridging interactions, we aimed to
create multivalent versions of the potent TDG inhibitors. We herein
present for the first time the multivalent attachment of a TDG derivative
using bovine serum albumin (BSA) as the scaffold. An efficient synthetic
method is presented to obtain a novel type of neoglycosylated proteins
loaded with different numbers of TDG moieties. A polyethylene glycol
(PEG)-spacer is introduced between the TDG and the protein scaffold
maintaining appropriate accessibility for an adequate galectin interaction.
The novel conjugates were evaluated in galectin binding and inhibition
studies in vitro. The conjugate with a moderate density
of 19 conjugated TDGs was identified as one of the most potent multivalent
Gal-3 inhibitors so far, with a clear demonstration of the benefit
of a multivalent ligand presentation. The described method may facilitate
the development of specific galectin inhibitors and their application
in biomedical research.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| | - Dominic Laaf
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering , RWTH Aachen University , Pauwelsstrasse 20 , 52074 Aachen , Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering , RWTH Aachen University , Pauwelsstrasse 20 , 52074 Aachen , Germany
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| |
Collapse
|
30
|
Bumba L, Laaf D, Spiwok V, Elling L, Křen V, Bojarová P. Poly-N-Acetyllactosamine Neo-Glycoproteins as Nanomolar Ligands of Human Galectin-3: Binding Kinetics and Modeling. Int J Mol Sci 2018; 19:ijms19020372. [PMID: 29373511 PMCID: PMC5855594 DOI: 10.3390/ijms19020372] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 01/22/2023] Open
Abstract
Galectin-3 (Gal-3) is recognized as a prognostic marker in several cancer types. Its involvement in tumor development and proliferation makes this lectin a promising target for early cancer diagnosis and anti-cancer therapies. Gal-3 recognizes poly-N-acetyllactosamine (LacNAc)-based carbohydrate motifs of glycoproteins and glycolipids with a high specificity for internal LacNAc epitopes. This study analyzes the mode and kinetics of binding of Gal-3 to a series of multivalent neo-glycoproteins presenting complex poly-LacNAc-based oligosaccharide ligands on a scaffold of bovine serum albumin. These neo-glycoproteins rank among the strongest Gal-3 ligands reported, with Kd reaching sub-nanomolar values as determined by surface plasmon resonance. Significant differences in the binding kinetics were observed within the ligand series, showing the tetrasaccharide capped with N,N'-diacetyllactosamine (LacdiNAc) as the strongest ligand of Gal-3 in this study. A molecular model of the Gal-3 carbohydrate recognition domain with docked oligosaccharide ligands is presented that shows the relations in the binding site at the molecular level. The neo-glycoproteins presented herein may be applied for selective recognition of Gal-3 both on the cell surface and in blood serum.
Collapse
Affiliation(s)
- Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
| | - Dominic Laaf
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany.
| | - Vojtěch Spiwok
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 16628 Prague 6, Czech Republic.
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany.
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
| |
Collapse
|
31
|
Peterson K, Kumar R, Stenström O, Verma P, Verma PR, Håkansson M, Kahl-Knutsson B, Zetterberg F, Leffler H, Akke M, Logan DT, Nilsson UJ. Systematic Tuning of Fluoro-galectin-3 Interactions Provides Thiodigalactoside Derivatives with Single-Digit nM Affinity and High Selectivity. J Med Chem 2018; 61:1164-1175. [PMID: 29284090 DOI: 10.1021/acs.jmedchem.7b01626] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Symmetrical and asymmetrical fluorinated phenyltriazolyl-thiodigalactoside derivatives have been synthesized and evaluated as inhibitors of galectin-1 and galectin-3. Systematic tuning of the phenyltriazolyl-thiodigalactosides' fluoro-interactions with galectin-3 led to the discovery of inhibitors with exceptional affinities (Kd down to 1-2 nM) in symmetrically substituted thiodigalactosides as well as unsurpassed combination of high affinity (Kd 7.5 nM) and selectivity (46-fold) over galectin-1 for asymmetrical thiodigalactosides by carrying one trifluorphenyltriazole and one coumaryl moiety. Studies of the inhibitor-galectin complexes with isothermal titration calorimetry and X-ray crystallography revealed the importance of fluoro-amide interaction for affinity and for selectivity. Finally, the high affinity of the discovered inhibitors required two competitive titration assay tools to be developed: a new high affinity fluorescent probe for competitive fluorescent polarization and a competitive ligand optimal for analyzing high affinity galectin-3 inhibitors with competitive isothermal titration calorimetry.
Collapse
Affiliation(s)
- Kristoffer Peterson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University , Box 124, SE-221 00 Lund, Sweden
| | - Rohit Kumar
- Biochemistry and Structural Biology, Center for Molecular Protein Science, Department of Chemistry, Lund University , Box 124, SE-221 00 Lund, Sweden
| | - Olof Stenström
- Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University , Box 124, SE-221 00 Lund, Sweden
| | - Priya Verma
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University , Box 124, SE-221 00 Lund, Sweden
| | - Prashant R Verma
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University , Box 124, SE-221 00 Lund, Sweden
| | - Maria Håkansson
- SARomics Biostructures AB , Medicon Village, SE-223 63 Lund, Sweden
| | - Barbro Kahl-Knutsson
- Department of Laboratory Medicine, Section MIG, Lund University BMC-C1228b , Klinikgatan 28, 221 84 Lund, Sweden
| | - Fredrik Zetterberg
- Galecto Biotech AB , Sahlgrenska Science Park, Medicinaregatan 8 A, SE-413 46 Gothenburg, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG, Lund University BMC-C1228b , Klinikgatan 28, 221 84 Lund, Sweden
| | - Mikael Akke
- Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University , Box 124, SE-221 00 Lund, Sweden
| | - Derek T Logan
- Biochemistry and Structural Biology, Center for Molecular Protein Science, Department of Chemistry, Lund University , Box 124, SE-221 00 Lund, Sweden.,SARomics Biostructures AB , Medicon Village, SE-223 63 Lund, Sweden
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University , Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
32
|
Meng X, Yang M, Li Y, Li X, Jia T, He H, Yu Q, Guo N, He Y, Yu P, Yang Y. Multivalent neuraminidase hydrolysis resistant triazole-sialoside protein conjugates as influenza-adsorbents. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.10.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Bandlow V, Liese S, Lauster D, Ludwig K, Netz RR, Herrmann A, Seitz O. Spatial Screening of Hemagglutinin on Influenza A Virus Particles: Sialyl-LacNAc Displays on DNA and PEG Scaffolds Reveal the Requirements for Bivalency Enhanced Interactions with Weak Monovalent Binders. J Am Chem Soc 2017; 139:16389-16397. [DOI: 10.1021/jacs.7b09967] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Victor Bandlow
- Institute
of Chemistry, and ‡Institute of Biology, Humboldt-Universität zu Berlin, Berlin 10099, Germany
- Institute of Theoretical Physics, and ∥Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Susanne Liese
- Institute
of Chemistry, and ‡Institute of Biology, Humboldt-Universität zu Berlin, Berlin 10099, Germany
- Institute of Theoretical Physics, and ∥Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Daniel Lauster
- Institute
of Chemistry, and ‡Institute of Biology, Humboldt-Universität zu Berlin, Berlin 10099, Germany
- Institute of Theoretical Physics, and ∥Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Kai Ludwig
- Institute
of Chemistry, and ‡Institute of Biology, Humboldt-Universität zu Berlin, Berlin 10099, Germany
- Institute of Theoretical Physics, and ∥Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Roland R. Netz
- Institute
of Chemistry, and ‡Institute of Biology, Humboldt-Universität zu Berlin, Berlin 10099, Germany
- Institute of Theoretical Physics, and ∥Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Andreas Herrmann
- Institute
of Chemistry, and ‡Institute of Biology, Humboldt-Universität zu Berlin, Berlin 10099, Germany
- Institute of Theoretical Physics, and ∥Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Oliver Seitz
- Institute
of Chemistry, and ‡Institute of Biology, Humboldt-Universität zu Berlin, Berlin 10099, Germany
- Institute of Theoretical Physics, and ∥Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| |
Collapse
|
34
|
Lauster D, Glanz M, Bardua M, Ludwig K, Hellmund M, Hoffmann U, Hamann A, Böttcher C, Haag R, Hackenberger CPR, Herrmann A. Multivalent Peptide-Nanoparticle Conjugates for Influenza-Virus Inhibition. Angew Chem Int Ed Engl 2017; 56:5931-5936. [PMID: 28444849 PMCID: PMC5485077 DOI: 10.1002/anie.201702005] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Indexed: 12/20/2022]
Abstract
To inhibit binding of the influenza A virus to the host cell glycocalyx, we generate multivalent peptide-polymer nanoparticles binding with nanomolar affinity to the virus via its spike protein hemagglutinin. The chosen dendritic polyglycerol scaffolds are highly biocompatible and well suited for a multivalent presentation. We could demonstrate in vitro that by increasing the size of the polymer scaffold and adjusting the peptide density, viral infection is drastically reduced. Such a peptide-polymer conjugate qualified also in an in vivo infection scenario. With this study we introduce the first non-carbohydrate-based, covalently linked, multivalent virus inhibitor in the nano- to picomolar range by ensuring low peptide-ligand density on a larger dendritic scaffold.
Collapse
Affiliation(s)
- Daniel Lauster
- Institut für Biologie, Molekulare BiophysikIRI Life SciencesHumboldt-Universität zu BerlinInvalidenstrasse 4210115BerlinGermany
| | - Maria Glanz
- Leibniz-Institut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse-1013125BerlinGermany
- Humboldt Universität zu BerlinInstitut für ChemieBrook-Taylor-Strasse 212489BerlinGermany
| | - Markus Bardua
- Therapeutische Genregulation und Experimentelle RheumatologieDeutsches Rheuma-Forschungszentrum BerlinCharité 14Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie and Core Facility BioSupraMolInstitut für Chemie und BiochemieFreie Universität BerlinFabeckstrasse 36a14195BerlinGermany
| | - Markus Hellmund
- Institut für Chemie und Biochemie—Organische ChemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Ute Hoffmann
- Therapeutische Genregulation und Experimentelle RheumatologieDeutsches Rheuma-Forschungszentrum BerlinCharité 14Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| | - Alf Hamann
- Therapeutische Genregulation und Experimentelle RheumatologieDeutsches Rheuma-Forschungszentrum BerlinCharité 14Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie and Core Facility BioSupraMolInstitut für Chemie und BiochemieFreie Universität BerlinFabeckstrasse 36a14195BerlinGermany
| | - Rainer Haag
- Institut für Chemie und Biochemie—Organische ChemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Christian P. R. Hackenberger
- Leibniz-Institut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse-1013125BerlinGermany
- Humboldt Universität zu BerlinInstitut für ChemieBrook-Taylor-Strasse 212489BerlinGermany
| | - Andreas Herrmann
- Institut für Biologie, Molekulare BiophysikIRI Life SciencesHumboldt-Universität zu BerlinInvalidenstrasse 4210115BerlinGermany
| |
Collapse
|
35
|
Lauster D, Glanz M, Bardua M, Ludwig K, Hellmund M, Hoffmann U, Hamann A, Böttcher C, Haag R, Hackenberger CPR, Herrmann A. Multivalente Peptid-Nanopartikel-Konjugate zur Hemmung des Influenzavirus. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Daniel Lauster
- Institut für Biologie, Molekulare Biophysik; IRI Life Sciences; Humboldt-Universität zu Berlin; Invalidenstr. 42 10115 Berlin Deutschland
| | - Maria Glanz
- Leibniz-Institut für Molekulare Pharmakologie (FMP); Robert-Rössle-Str. 10 13125 Berlin Deutschland
- Humboldt Universität zu Berlin; Institut für Chemie; Brook-Taylor-Str. 2 12489 Berlin Deutschland
| | - Markus Bardua
- Therapeutische Genregulation und Experimentelle Rheumatologie; Deutsches Rheuma-Forschungszentrum Berlin; Charité 14 Universitätsmedizin Berlin; Charitéplatz 1 10117 Berlin Deutschland
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie und Core Facility BioSupraMol; Institut für Chemie und Biochemie; Freie Universität Berlin; Fabeckstr. 36a 14195 Berlin Deutschland
| | - Markus Hellmund
- Institut für Chemie und Biochemie - Organische Chemie; Freie Universität Berlin; Takustr. 3 14195 Berlin Deutschland
| | - Ute Hoffmann
- Therapeutische Genregulation und Experimentelle Rheumatologie; Deutsches Rheuma-Forschungszentrum Berlin; Charité 14 Universitätsmedizin Berlin; Charitéplatz 1 10117 Berlin Deutschland
| | - Alf Hamann
- Therapeutische Genregulation und Experimentelle Rheumatologie; Deutsches Rheuma-Forschungszentrum Berlin; Charité 14 Universitätsmedizin Berlin; Charitéplatz 1 10117 Berlin Deutschland
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie und Core Facility BioSupraMol; Institut für Chemie und Biochemie; Freie Universität Berlin; Fabeckstr. 36a 14195 Berlin Deutschland
| | - Rainer Haag
- Institut für Chemie und Biochemie - Organische Chemie; Freie Universität Berlin; Takustr. 3 14195 Berlin Deutschland
| | - Christian P. R. Hackenberger
- Leibniz-Institut für Molekulare Pharmakologie (FMP); Robert-Rössle-Str. 10 13125 Berlin Deutschland
- Humboldt Universität zu Berlin; Institut für Chemie; Brook-Taylor-Str. 2 12489 Berlin Deutschland
| | - Andreas Herrmann
- Institut für Biologie, Molekulare Biophysik; IRI Life Sciences; Humboldt-Universität zu Berlin; Invalidenstr. 42 10115 Berlin Deutschland
| |
Collapse
|
36
|
Biotinylated N-Acetyllactosamine- and N,N-Diacetyllactosamine-Based Oligosaccharides as Novel Ligands for Human Galectin-3. Bioengineering (Basel) 2017; 4:bioengineering4020031. [PMID: 28952509 PMCID: PMC5590477 DOI: 10.3390/bioengineering4020031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/28/2017] [Accepted: 03/31/2017] [Indexed: 12/19/2022] Open
Abstract
Galectin inhibitor design is an emerging research field due to the involvement of galectins in cancer. Galectin-3, in particular, plays an important role in tumor progression. To generate inhibitors, modifications of the glycan structure can be introduced. Conjugation of hydrophobic compounds to saccharides has proven to be promising as increased binding of galectin-3 can be observed. In the present study, we report on neo-glycans carrying hydrophobic biotin as novel ligands for human galectin-3. We modified N-acetyllactosamine- and N,N-diacetyllactosamine-based tetrasaccharides at the C6-position of the terminal saccharide unit using selective enzymatic oxidation and subsequent chemical conjugation of biotinamidohexanoic acid hydrazide. These neo-glycans were much better bound by galectin-3 than the unmodified counterparts. High selectivity for galectin-3 over galectin-1 was also proven. We generated multivalent neo-glycoproteins by conjugation of neo-glycans to bovine serum albumin showing high affinity for galectin-3. Compared to non-biotinylated neo-glycoproteins, we achieved high binding levels of galectin-3 with a lesser amount of conjugated neo-glycans. Multivalent ligand presentation of neo-glycoproteins significantly increased the inhibitory potency towards galectin-3 binding to asialofetuin when compared to free monovalent glycans. Our findings show the positive impact of 6-biotinylation of tetrasaccharides on galectin-3 binding, which broadens the recent design approaches for producing high-affinity ligands.
Collapse
|
37
|
Campo VL, Marchiori MF, Rodrigues LC, Dias-Baruffi M. Synthetic glycoconjugates inhibitors of tumor-related galectin-3: an update. Glycoconj J 2016; 33:853-876. [PMID: 27526114 DOI: 10.1007/s10719-016-9721-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/28/2016] [Accepted: 08/02/2016] [Indexed: 01/23/2023]
Abstract
Galectin-3 is associated with the development and malignancy of several types of tumor, mediating important tumor-related functions, such as tumorigenesis, neoplastic transformation, tumor cell survival, angiogenesis, tumor metastasis and regulation of apoptosis. Therefore, synthetic galectin-3 inhibitors are of utmost importance for development of new antitumor therapeutic strategies. In this review we present an updated selection of synthetic glycoconjugates inhibitors of tumor-related galectin-3, properly addressed as monosaccharide- and disaccharide-based inhibitors, and multivalent-based inhibitors, disclosuring relevant methods for their synthesis along with their inhibitory activities towards galectin-3. In general, Cu(I)-assisted 1,3-dipolar azide-alkyne cycloaddition (CuAAC) reactions were predominantly applied for the synthesis of the described inhibitors, which had their inhibitory activities against galectin-3 evaluated by fluorescence polarization, surface plasmon resonance (SPR), hemagglutination, ELISA and cell imaging assays. Overall, the presented synthetic glycoconjugates represent frontline galectin-3 inhibitors, finding important biomedical applications in cancer.
Collapse
Affiliation(s)
- Vanessa Leiria Campo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Av. Café S/N, CEP, Ribeirão Preto, SP, 14040-903, Brazil.
| | - Marcelo Fiori Marchiori
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Av. Café S/N, CEP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Lílian Cataldi Rodrigues
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Av. Café S/N, CEP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Marcelo Dias-Baruffi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Av. Café S/N, CEP, Ribeirão Preto, SP, 14040-903, Brazil
| |
Collapse
|
38
|
Song X, Ju H, Lasanajak Y, Kudelka MR, Smith DF, Cummings RD. Oxidative release of natural glycans for functional glycomics. Nat Methods 2016; 13:528-34. [PMID: 27135973 PMCID: PMC4887297 DOI: 10.1038/nmeth.3861] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/28/2016] [Indexed: 12/13/2022]
Abstract
Glycans have essential roles in biology and the etiology of many diseases. A major hurdle in studying glycans through functional glycomics is the lack of methods to release glycans from diverse types of biological samples. Here we describe an oxidative strategy using household bleach to release all types of free reducing N-glycans and O-glycan-acids from glycoproteins, and glycan nitriles from glycosphingolipids. Released glycans are directly useful in glycomic analyses and can be derivatized fluorescently for functional glycomics. This chemical method overcomes the limitations in glycan generation and promotes archiving and characterization of human and animal glycomes and their functions.
Collapse
Affiliation(s)
- Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hong Ju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yi Lasanajak
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Matthew R Kudelka
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David F Smith
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Giddens JP, Lomino JV, Amin MN, Wang LX. Endo-F3 Glycosynthase Mutants Enable Chemoenzymatic Synthesis of Core-fucosylated Triantennary Complex Type Glycopeptides and Glycoproteins. J Biol Chem 2016; 291:9356-70. [PMID: 26966183 DOI: 10.1074/jbc.m116.721597] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 11/06/2022] Open
Abstract
Chemoenzymatic synthesis is emerging as a promising approach to the synthesis of homogeneous glycopeptides and glycoproteins highly demanded for functional glycomics studies, but its generality relies on the availability of a range of enzymes with high catalytic efficiency and well defined substrate specificity. We describe in this paper the discovery of glycosynthase mutants derived from Elizabethkingia meningoseptica endoglycosidase F3 (Endo-F3) of the GH18 family, which are devoid of the inherent hydrolytic activity but are able to take glycan oxazolines for transglycosylation. Notably, the Endo-F3 D165A and D165Q mutants demonstrated high acceptorsubstrate specificity toward α1,6-fucosyl-GlcNAc-Asn or α1,6-fucosyl-GlcNAc-polypeptide in transglycosylation, enabling a highly convergent synthesis of core-fucosylated, complex CD52 glycopeptide antigen. The Endo-F3 mutants were able to use both bi- and triantennary glycan oxazolines as substrates for transglycosylation, in contrast to previously reported endoglycosidases derived from Endo-S, Endo-M, Endo-D, and Endo-A mutants that could not recognize triantennary N-glycans. Using rituximab as a model system, we have further demonstrated that the Endo-F3 mutants are highly efficient for glycosylation remodeling of monoclonal antibodies to produce homogeneous intact antibody glycoforms. Interestingly, the new triantennary glycan glycoform of antibody showed much higher affinity for galectin-3 than that of the commercial antibody. The Endo-F3 mutants represent the first endoglycosidase-based glycosynthases capable of transferring triantennary complex N-glycans, which would be very useful for glycoprotein synthesis and glycosylation remodeling of antibodies.
Collapse
Affiliation(s)
- John P Giddens
- From the Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and the Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| | - Joseph V Lomino
- From the Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Mohammed N Amin
- From the Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and the Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| | - Lai-Xi Wang
- From the Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and the Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
40
|
Xiao S, Si L, Tian Z, Jiao P, Fan Z, Meng K, Zhou X, Wang H, Xu R, Han X, Fu G, Zhang Y, Zhang L, Zhou D. Pentacyclic triterpenes grafted on CD cores to interfere with influenza virus entry: A dramatic multivalent effect. Biomaterials 2015; 78:74-85. [PMID: 26686050 DOI: 10.1016/j.biomaterials.2015.11.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/20/2015] [Accepted: 11/28/2015] [Indexed: 12/16/2022]
Abstract
Multivalent effect plays an important role in biological processes, particularly in the specific recognition of virus with its host cell during the first step of infection. Here we report the synthesis of multivalent pentacyclic triterpene grafted on cyclodextrin core and potency of against influenza entry activity. Nine star-shaped compounds containing six, seven and eight pentacyclic triterpene pharmacophore on cyclodextrin scaffold were prepared by way of copper-catalyzed azide-alkyl cycloaddition reaction under microwave activation. Some of the multimers exhibited much potent antiviral activity against H1N1 virus (A/WSN/33), even equivalent or superior to oseltamivir. The most active compound 31, a heptavalent oleanolic acid-β-cyclodextrin conjugate, shows an up to 125-fold potency enhancement by its IC50 value over the corresponding monovalent conjugate and oleanolic acid, disclosing a clear multivalent effect. Further studies show that three compounds 31-33 exhibited broad spectrum inhibitory activity against other two human influenza A/JX/312 (H3N2) and A/HN/1222 (H3N2) viruses with the IC50 values at 2.47-14.90 μM. Most importantly, we found that compound 31, one of the best representative conjugate, binds tightly to the viral envelope hemagglutinin with a dissociation constant of KD = 2.08 μM, disrupting the interaction of hemagglutinin with the sialic acid receptor and thus the attachment of viruses to host cells. Our study might establish a strategy for the design of new pharmaceutical agents based on multivalency so as to block influenza virus entry into host cells.
Collapse
Affiliation(s)
- Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Longlong Si
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenyu Tian
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Pingxuan Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zibo Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Kun Meng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoshu Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Han Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Renyang Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xu Han
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ge Fu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yongmin Zhang
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Université Pierre & Marie Curie-Paris 6, 4 place Jussieu, 75005 Paris, France
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
41
|
Dadová J, Vrábel M, Adámik M, Brázdová M, Pohl R, Fojta M, Hocek M. Azidopropylvinylsulfonamide as a New Bifunctional Click Reagent for Bioorthogonal Conjugations: Application for DNA–Protein Cross‐Linking. Chemistry 2015; 21:16091-102. [DOI: 10.1002/chem.201502209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Jitka Dadová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | - Milan Vrábel
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | - Matej Adámik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno (Czech Republic)
| | - Marie Brázdová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno (Czech Republic)
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | - Miroslav Fojta
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno (Czech Republic)
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno (Czech Republic)
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843 Prague 2 (Czech Republic)
| |
Collapse
|
42
|
Santos RLSR, Sanches RNF, de Oliveira Silva D. Spectroscopic studies on interactions of the tetrakis(acetato)chloridodiruthenium(II,III) complex and the Ru2(II,III)-NSAID-derived metallodrugs of ibuprofen and ketoprofen with human serum albumin. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1074684] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | - Denise de Oliveira Silva
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| |
Collapse
|
43
|
Böcker S, Laaf D, Elling L. Galectin Binding to Neo-Glycoproteins: LacDiNAc Conjugated BSA as Ligand for Human Galectin-3. Biomolecules 2015. [PMID: 26213980 PMCID: PMC4598770 DOI: 10.3390/biom5031671] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Carbohydrate-lectin interactions are relatively weak. As they play an important role in biological recognition processes, multivalent glycan ligands are designed to enhance binding affinity and inhibitory potency. We here report on novel neo-glycoproteins based on bovine serum albumin as scaffold for multivalent presentation of ligands for galectins. We prepared two kinds of tetrasaccharides (N-acetyllactosamine and N,N-diacetyllactosamine terminated) by multi-step chemo-enzymatic synthesis utilizing recombinant glycosyltransferases. Subsequent conjugation of these glycans to lysine groups of bovine serum albumin via squaric acid diethyl ester yielded a set of 22 different neo-glycoproteins with tuned ligand density. The neo-glycoproteins were analyzed by biochemical and chromatographic methods proving various modification degrees. The neo-glycoproteins were used for binding and inhibition studies with human galectin-3 showing high affinity. Binding strength and inhibition potency are closely related to modification density and show binding enhancement by multivalent ligand presentation. At galectin-3 concentrations comparable to serum levels of cancer patients, we detect the highest avidities. Selectivity of N,N-diacetyllactosamine terminated structures towards galectin-3 in comparison to galectin-1 is demonstrated. Moreover, we also see strong inhibitory potency of our scaffolds towards galectin-3 binding. These novel neo-glycoproteins may therefore serve as selective and strong galectin-3 ligands in cancer related biomedical research.
Collapse
Affiliation(s)
- Sophia Böcker
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany.
| | - Dominic Laaf
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany.
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany.
| |
Collapse
|
44
|
Šimonová A, Kupper CE, Böcker S, Müller A, Hofbauerová K, Pelantová H, Elling L, Křen V, Bojarová P. Chemo-enzymatic synthesis of LacdiNAc dimers of varying length as novel galectin ligands. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.12.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|