1
|
Visible-light-induced controllable α-chlorination of nafimidone derivatives through LMCT excitation of CuCl2. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
2
|
Shen J, Wang Z, Zhang Y, Xu J, Liu X, Shen C, Zhang P. Selective Mono- and Diamination of Ketones in a Combined Copper-Organocatalyst System. Org Lett 2022; 24:3614-3619. [PMID: 35549495 DOI: 10.1021/acs.orglett.2c01140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein, we report a simple and mild protocol for the chemoselective mono- and diamination of ketone using pyrazole as the amine source in a combined copper-organocatalyst system. Various substrates are compatible, providing the corresponding products in moderate to good yields. This strategy gives an efficient and convenient solution for the synthesis of α-pyrazole and α,α-dipyrazole ketone derivatives. The control experiment demonstrates that in situ generated hydrazone is a key intermediate in the transformation.
Collapse
Affiliation(s)
- Jiabin Shen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Zhihao Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Yuru Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Jun Xu
- Department of Chemistry and the N.1 Institute for Health, National University of Singapore, Singapore 117543, Singapore
| | - Xiaogang Liu
- Department of Chemistry and the N.1 Institute for Health, National University of Singapore, Singapore 117543, Singapore
| | - Chao Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| |
Collapse
|
3
|
Rozhon W, Akter S, Fernandez A, Poppenberger B. Inhibitors of Brassinosteroid Biosynthesis and Signal Transduction. Molecules 2019; 24:E4372. [PMID: 31795392 PMCID: PMC6930552 DOI: 10.3390/molecules24234372] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
Chemical inhibitors are invaluable tools for investigating protein function in reverse genetic approaches. Their application bears many advantages over mutant generation and characterization. Inhibitors can overcome functional redundancy, their application is not limited to species for which tools of molecular genetics are available and they can be applied to specific tissues or developmental stages, making them highly convenient for addressing biological questions. The use of inhibitors has helped to elucidate hormone biosynthesis and signaling pathways and here we review compounds that were developed for the plant hormones brassinosteroids (BRs). BRs are steroids that have strong growth-promoting capacities, are crucial for all stages of plant development and participate in adaptive growth processes and stress response reactions. In the last two decades, impressive progress has been made in BR inhibitor development and application, which has been instrumental for studying BR modes of activity and identifying and characterizing key players. Both, inhibitors that target biosynthesis, such as brassinazole, and inhibitors that target signaling, such as bikinin, exist and in a comprehensive overview we summarize knowledge and methodology that enabled their design and key findings of their use. In addition, the potential of BR inhibitors for commercial application in plant production is discussed.
Collapse
Affiliation(s)
- Wilfried Rozhon
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany
| | | | | | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany
| |
Collapse
|
4
|
Jiang K, Asami T. Chemical regulators of plant hormones and their applications in basic research and agriculture*. Biosci Biotechnol Biochem 2018; 82:1265-1300. [DOI: 10.1080/09168451.2018.1462693] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ABSTRACT
Plant hormones are small molecules that play versatile roles in regulating plant growth, development, and responses to the environment. Classic methodologies, including genetics, analytic chemistry, biochemistry, and molecular biology, have contributed to the progress in plant hormone studies. In addition, chemical regulators of plant hormone functions have been important in such studies. Today, synthetic chemicals, including plant growth regulators, are used to study and manipulate biological systems, collectively referred to as chemical biology. Here, we summarize the available chemical regulators and their contributions to plant hormone studies. We also pose questions that remain to be addressed in plant hormone studies and that might be solved with the help of chemical regulators.
Collapse
Affiliation(s)
- Kai Jiang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Liu J, Zhang D, Sun X, Ding T, Lei B, Zhang C. Structure-activity relationship of brassinosteroids and their agricultural practical usages. Steroids 2017; 124:1-17. [PMID: 28502860 DOI: 10.1016/j.steroids.2017.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 04/24/2017] [Accepted: 05/03/2017] [Indexed: 12/26/2022]
Abstract
Brassinosteroids (BRs) control several important agronomic traits, such as strengthening resistance to diverse adversity, improving the quality, and increasing crop yield. Their chemical structures and varieties, specific methods for the evaluation of bioactivities, structure-activity relationships, potential novel compounds, and practical agricultural uses were summarized. The findings allow the examination of brassinosteroids in two important issues: 1) Do the results of different bioevaluation protocols provide similar activities for BRs? and 2) which bioevaluated compounds would proof to have a greater potential for application in agricultural usages?
Collapse
Affiliation(s)
- Jinna Liu
- College of Life Sciences, North West Agriculture and Forestry University, Yangling 712100, China; Yangling Vocational & Technical College, Yangling 712100, China
| | - Di Zhang
- College of Agronomy, Agricultural University of Hebei, Baoding 071000, China
| | - Xiaoyu Sun
- College of Life Sciences, North West Agriculture and Forestry University, Yangling 712100, China
| | - Tingle Ding
- College of Life Sciences, North West Agriculture and Forestry University, Yangling 712100, China
| | - Beilei Lei
- College of Life Sciences, North West Agriculture and Forestry University, Yangling 712100, China
| | - Cunli Zhang
- College of Life Sciences, North West Agriculture and Forestry University, Yangling 712100, China.
| |
Collapse
|
6
|
Experimental and theoretical investigation of new furan and thiophene derivatives containing oxazole, isoxazole, or isothiazole subunits. Struct Chem 2016. [DOI: 10.1007/s11224-016-0863-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Oh K, Matsumoto T, Hoshi T, Yoshizawa Y. In vitro and in vivo evidence for the inhibition of brassinosteroid synthesis by propiconazole through interference with side chain hydroxylation. PLANT SIGNALING & BEHAVIOR 2016; 11:e1158372. [PMID: 26987039 PMCID: PMC4977458 DOI: 10.1080/15592324.2016.1158372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We carried out the biochemical evaluation of the target site of propiconazole in BR biosynthesis. Applying BR biosynthesis intermediates to Arabidopsis seedlings grown in the presence of propiconazole under dark condition, we found that the target site of propiconazole in BR biosynthesis can be identified among the C22 and C23 side chain hydroxylation steps from campestanol to teasterone. Using differential spectra techniques to determine the binding affinity of propiconazole to CYP90D1, which is responsible for C23 hydroxylation of BR, we found that propiconazole induced typical type II binding spectra in response to purified recombinant CYP90D1 and the Kd value was found approximately 0.76 μM.
Collapse
Affiliation(s)
- Keimei Oh
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita, Japan
- Keimei Oh
| | - Tadashi Matsumoto
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita, Japan
- National Agricultural Research Center, National Agriculture and Food Research Organization, Kannondai, Tsukuba, Ibaraki, Japan
| | - Tomoki Hoshi
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita, Japan
| | - Yuko Yoshizawa
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita, Japan
| |
Collapse
|
8
|
Fenarimol, a Pyrimidine-Type Fungicide, Inhibits Brassinosteroid Biosynthesis. Int J Mol Sci 2015; 16:17273-88. [PMID: 26230686 PMCID: PMC4581192 DOI: 10.3390/ijms160817273] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/09/2015] [Accepted: 07/23/2015] [Indexed: 11/17/2022] Open
Abstract
The plant steroid hormone brassinosteroids (BRs) are important signal mediators that regulate broad aspects of plant growth and development. With the discovery of brassinoazole (Brz), the first specific inhibitor of BR biosynthesis, several triazole-type BR biosynthesis inhibitors have been developed. In this article, we report that fenarimol (FM), a pyrimidine-type fungicide, exhibits potent inhibitory activity against BR biosynthesis. FM induces dwarfism and the open cotyledon phenotype of Arabidopsis seedlings in the dark. The IC50 value for FM to inhibit stem elongation of Arabidopsis seedlings grown in the dark was approximately 1.8 ± 0.2 μM. FM-induced dwarfism of Arabidopsis seedlings could be restored by brassinolide (BL) but not by gibberellin (GA). Assessment of the target site of FM in BR biosynthesis by feeding BR biosynthesis intermediates indicated that FM interferes with the side chain hydroxylation of BR biosynthesis from campestanol to teasterone. Determination of the binding affinity of FM to purified recombinant CYP90D1 indicated that FM induced a typical type II binding spectrum with a Kd value of approximately 0.79 μM. Quantitative real-time PCR analysis of the expression level of the BR responsive gene in Arabidopsis seedlings indicated that FM induces the BR deficiency in Arabidopsis.
Collapse
|
9
|
Oh K, Matsumoto T, Yamagami A, Ogawa A, Yamada K, Suzuki R, Sawada T, Fujioka S, Yoshizawa Y, Nakano T. YCZ-18 is a new brassinosteroid biosynthesis inhibitor. PLoS One 2015; 10:e0120812. [PMID: 25793645 PMCID: PMC4368189 DOI: 10.1371/journal.pone.0120812] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 02/05/2015] [Indexed: 01/31/2023] Open
Abstract
Plant hormone brassinosteroids (BRs) are a group of polyhydroxylated steroids that play critical roles in regulating broad aspects of plant growth and development. The structural diversity of BRs is generated by the action of several groups of P450s. Brassinazole is a specific inhibitor of C-22 hydroxylase (CYP90B1) in BR biosynthesis, and the application use of brassinazole has emerged as an effective way of complementing BR-deficient mutants to elucidate the functions of BRs. In this article, we report a new triazole-type BR biosynthesis inhibitor, YCZ-18. Quantitative analysis the endogenous levels of BRs in Arabidopsis indicated that YCZ-18 significantly decreased the BR contents in plant tissues. Assessment of the binding affinity of YCZ-18to purified recombinant CYP90D1 indicated that YCZ-18 induced a typical type II binding spectrum with a Kd value of approximately 0.79 μM. Analysis of the mechanisms underlying the dwarf phenotype associated with YCZ-18 treatment of Arabidopsis indicated that the chemically induced dwarf phenotype was caused by a failure of cell elongation. Moreover, dissecting the effect of YCZ-18 on the induction or down regulation of genes responsive to BRs indicated that YCZ-18 regulated the expression of genes responsible for BRs deficiency in Arabidopsis. These findings indicate that YCZ-18 is a potent BR biosynthesis inhibitor and has a new target site, C23-hydroxylation in BR biosynthesis. Application of YCZ-18 will be a good starting point for further elucidation of the detailed mechanism of BR biosynthesis and its regulation.
Collapse
Affiliation(s)
- Keimei Oh
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita, Japan
- * E-mail:
| | - Tadashi Matsumoto
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita, Japan
| | - Ayumi Yamagami
- Antibiotics laboratory, RIKEN, 2–1 Hirosawa, Wako, Saitama, Japan
| | - Atushi Ogawa
- Department of Bioproduction, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita, Japan
| | - Kazuhiro Yamada
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita, Japan
| | - Ryuichiro Suzuki
- Department of Bioproduction, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita, Japan
| | - Takayuki Sawada
- Biotechnology Research Center, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita, Japan
| | - Shozo Fujioka
- Antibiotics laboratory, RIKEN, 2–1 Hirosawa, Wako, Saitama, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yuko Yoshizawa
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita, Japan
| | - Takeshi Nakano
- Antibiotics laboratory, RIKEN, 2–1 Hirosawa, Wako, Saitama, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| |
Collapse
|
10
|
Dejonghe W, Mishev K, Russinova E. The brassinosteroid chemical toolbox. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:48-55. [PMID: 25282585 DOI: 10.1016/j.pbi.2014.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/29/2014] [Accepted: 09/05/2014] [Indexed: 06/03/2023]
Abstract
Chemical biology approaches have been instrumental in understanding the mode of action of brassinosteroids, a group of plant steroid hormones essential for plant development and growth. The small molecules used for such approaches include inhibitors of biosynthetic enzymes and signaling components. Additionally, recent structural data on the brassinosteroid receptor complex together with its ligand brassinolide, the most active brassinosteroid, and knowledge on its different analogs have given us a better view on the recognition of the hormone and signaling initiation. Moreover, a fluorescently labeled brassinosteroid enabled the visualization of the receptor-ligand pair in the cell. Given the insights obtained, small molecules will continue to provide new opportunities for probing brassinosteroid biosynthesis and for unraveling the dynamic and highly interconnected signaling.
Collapse
Affiliation(s)
- Wim Dejonghe
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Kiril Mishev
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Eugenia Russinova
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
11
|
Schröder F, Lisso J, Obata T, Erban A, Maximova E, Giavalisco P, Kopka J, Fernie AR, Willmitzer L, Müssig C. Consequences of induced brassinosteroid deficiency in Arabidopsis leaves. BMC PLANT BIOLOGY 2014; 14:309. [PMID: 25403461 PMCID: PMC4240805 DOI: 10.1186/s12870-014-0309-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/27/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND The identification of brassinosteroid (BR) deficient and BR insensitive mutants provided conclusive evidence that BR is a potent growth-promoting phytohormone. Arabidopsis mutants are characterized by a compact rosette structure, decreased plant height and reduced root system, delayed development, and reduced fertility. Cell expansion, cell division, and multiple developmental processes depend on BR. The molecular and physiological basis of BR action is diverse. The BR signalling pathway controls the activity of transcription factors, and numerous BR responsive genes have been identified. The analysis of dwarf mutants, however, may to some extent reveal phenotypic changes that are an effect of the altered morphology and physiology. This restriction holds particularly true for the analysis of established organs such as rosette leaves. RESULTS In this study, the mode of BR action was analysed in established leaves by means of two approaches. First, an inhibitor of BR biosynthesis (brassinazole) was applied to 21-day-old wild-type plants. Secondly, BR complementation of BR deficient plants, namely CPD (constitutive photomorphogenic dwarf)-antisense and cbb1 (cabbage1) mutant plants was stopped after 21 days. BR action in established leaves is associated with stimulated cell expansion, an increase in leaf index, starch accumulation, enhanced CO2 release by the tricarboxylic acid cycle, and increased biomass production. Cell number and protein content were barely affected. CONCLUSION Previous analysis of BR promoted growth focused on genomic effects. However, the link between growth and changes in gene expression patterns barely provided clues to the physiological and metabolic basis of growth. Our study analysed comprehensive metabolic data sets of leaves with altered BR levels. The data suggest that BR promoted growth may depend on the increased provision and use of carbohydrates and energy. BR may stimulate both anabolic and catabolic pathways.
Collapse
Affiliation(s)
- Florian Schröder
- />University of Potsdam, c/o Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Janina Lisso
- />University of Potsdam, c/o Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Toshihiro Obata
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alexander Erban
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Eugenia Maximova
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Patrick Giavalisco
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Joachim Kopka
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Lothar Willmitzer
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Carsten Müssig
- />University of Potsdam, c/o Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
12
|
Oh K, Yamada K, Yoshizawa Y. Asymmetric synthesis and effect of absolute stereochemistry of YCZ-2013, a brassinosteroid biosynthesis inhibitor. Bioorg Med Chem Lett 2013; 23:6915-9. [DOI: 10.1016/j.bmcl.2013.09.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/11/2013] [Accepted: 09/21/2013] [Indexed: 11/29/2022]
|
13
|
Matsumoto T, Yamada K, Iwasaki I, Yoshizawa Y, Oh K. New Compounds Induce Brassinosteroid Deficient-like Phenotypes in Rice. PLANTS 2013; 2:521-9. [PMID: 27137391 PMCID: PMC4844384 DOI: 10.3390/plants2030521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/05/2013] [Accepted: 08/08/2013] [Indexed: 11/25/2022]
Abstract
Brassinosteroids (BRs) are steroidal plant hormones with potent plant growth promoting activity. Because BR-deficient mutants of rice exhibit altered plant architecture and important agronomic traits, we conducted a systemic search for specific inhibitors of BR biosynthesis to manipulate the BR levels in plant tissues. Although previous studies have been conducted with BR biosynthesis inhibitors in dicots, little is known regarding the effects of BR biosynthesis inhibition in monocot plants. In this work, we used potent inhibitors of BR biosynthesis in Arabidopsis, and we performed a hydroponic culture of rice seedlings to evaluate the effects of BR biosynthesis inhibition. Among the test compounds, we found that 1-[[2-(4-Chlorophenyl)-4-(phenoxymethyl)-1,3-dioxolan-2-yl]methyl]-1H-1,2,4-triazole (1) is a potent inhibitor that could induce phenotypes in rice seedlings that were similar to those observed in brassinosteroid deficient plants. The IC50 value for the retardation of plant growth in rice seedlings was approximately 1.27 ± 0.43 μM. The IC50 value for reducing the bending angle of the lamina joint was approximately 0.55 ± 0.15 μM.
Collapse
Affiliation(s)
- Tadashi Matsumoto
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, 241-438, Shimoshinjo Nakano, Akita 010-0195, Japan
| | - Kazuhiro Yamada
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, 241-438, Shimoshinjo Nakano, Akita 010-0195, Japan
| | - Ikuko Iwasaki
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, 241-438, Shimoshinjo Nakano, Akita 010-0195, Japan
| | - Yuko Yoshizawa
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, 241-438, Shimoshinjo Nakano, Akita 010-0195, Japan
| | - Keimei Oh
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, 241-438, Shimoshinjo Nakano, Akita 010-0195, Japan.
| |
Collapse
|