1
|
Joy MN, Kovalev IS, Shabunina OV, Santra S, Zyryanov GV. Facile One-Pot Conversion of (poly)phenols to Diverse (hetero)aryl Compounds by Suzuki Coupling Reaction: A Modified Approach for the Synthesis of Coumarin- and Equol-Based Compounds as Potential Antioxidants. Antioxidants (Basel) 2024; 13:1198. [PMID: 39456452 PMCID: PMC11504026 DOI: 10.3390/antiox13101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
A series of 16 (hetero)aryl compounds based on coumarin and equol has been efficiently synthesized by exploring the palladium-catalyzed Suzuki cross-coupling reactions. Polyphenol based on coumarin (4-methyl-7-hydroxy coumarin) was initially converted to corresponding coumarin imidazylate and then subjected to Suzuki coupling reaction with 4-methoxyphenylboronic acid to obtain the coupled product. This modified approach was later developed into a one-pot methodology by directly reacting the polyphenol with 1,1-sulfonyldiimidazole (SDI) and boronic acid in situ to obtain the Suzuki coupled product in one step. Moreover, an array of (poly)phenols based on coumarin and equol were later converted to diverse (hetero)aryl compounds by this optimized step-economic protocol. The synthesized compounds were then subjected to the screening of their potential antioxidant activities by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. In our investigation, the compounds 4ah, 4eh, 4gh and 4hh exhibited promising antioxidant potential when compared to the reference standard, butylated hydroxytoluene (BHT). Structure activity relationship (SAR) studies revealed the importance of the presence of electron-donating substituents in enhancing the antioxidant activity of the synthesized compounds.
Collapse
Affiliation(s)
- Muthipeedika Nibin Joy
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira Street, Yekaterinburg 620002, Russia; (I.S.K.); (O.V.S.); (S.S.); (G.V.Z.)
| | - Igor S. Kovalev
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira Street, Yekaterinburg 620002, Russia; (I.S.K.); (O.V.S.); (S.S.); (G.V.Z.)
| | - Olga V. Shabunina
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira Street, Yekaterinburg 620002, Russia; (I.S.K.); (O.V.S.); (S.S.); (G.V.Z.)
| | - Sougata Santra
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira Street, Yekaterinburg 620002, Russia; (I.S.K.); (O.V.S.); (S.S.); (G.V.Z.)
| | - Grigory V. Zyryanov
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira Street, Yekaterinburg 620002, Russia; (I.S.K.); (O.V.S.); (S.S.); (G.V.Z.)
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, Yekaterinburg 620219, Russia
| |
Collapse
|
2
|
Agarwal U, Verma S, Tonk RK. Chromenone: An emerging scaffold in anti-Alzheimer drug discovery. Bioorg Med Chem Lett 2024; 111:129912. [PMID: 39089526 DOI: 10.1016/j.bmcl.2024.129912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Alzheimer's disease (AD) presents a growing global health concern. In recent decades, natural and synthetic chromenone have emerged as promising drug candidates due to their multi-target potential. Natural chromenone, quercetin, scopoletin, esculetin, coumestrol, umbelliferone, bergapten, and methoxsalen (xanthotoxin), and synthetic chromenone hybrids comprising structures like acridine, 4-aminophenyl, 3-arylcoumarins, quinoline, 1,3,4-oxadiazole, 1,2,3-triazole, and tacrine, have been explored for their potential to combat AD. Key reactions used for synthesis of chromenone hybrids include Perkin and Pechmann condensation. The activity of chromenone hybrids has been reported against several drug targets, including AChE, BuChE, BACE-1, and MAO-A/B. This review comprehensively explores natural, semisynthetic, and synthetic chromenone, elucidating their synthetic routes, possible mode of action/drug targets and structure-activity relationships (SAR). The acquired knowledge provides valuable insights for the development of new chromenone hybrids against AD.
Collapse
Affiliation(s)
- Uma Agarwal
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi 110017, India
| | - Saroj Verma
- Pharmaceutical Chemistry Division, School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram 122103, India.
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi 110017, India.
| |
Collapse
|
3
|
Abd El-Haleem A, Ammar U, Masci D, El-Ansary S, Abdel Rahman D, Abou-Elazm F, El-Dydamony N. Discovery of Benzopyrone-Based Candidates as Potential Antimicrobial and Photochemotherapeutic Agents through Inhibition of DNA Gyrase Enzyme B: Design, Synthesis, In Vitro and In Silico Evaluation. Pharmaceuticals (Basel) 2024; 17:1197. [PMID: 39338359 PMCID: PMC11434840 DOI: 10.3390/ph17091197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial DNA gyrase is considered one of the validated targets for antibacterial drug discovery. Benzopyrones have been reported as promising derivatives that inhibit bacterial DNA gyrase B through competitive binding into the ATP binding site of the B subunit. In this study, we designed and synthesized twenty-two benzopyrone-based derivatives with different chemical features to assess their antimicrobial and photosensitizing activities. The antimicrobial activity was evaluated against B. subtilis, S. aureus, E. coli, and C. albicans. Compounds 6a and 6b (rigid tetracyclic-based derivatives), 7a-7f (flexible-linker containing benzopyrones), and 8a-8f (rigid tricyclic-based compounds) exhibited promising results against B. subtilis, S. aureus, and E. coli strains. Additionally, these compounds demonstrated photosensitizing activities against the B. subtilis strain. Both in silico molecular docking and in vitro DNA gyrase supercoiling inhibitory assays were performed to study their potential mechanisms of action. Compounds 8a-8f exhibited the most favorable binding interactions, engaging with key regions within the ATP binding site of the DNA gyrase B domain. Moreover, compound 8d displayed the most potent IC50 value (0.76 μM) compared to reference compounds (novobiocin = 0.41 μM and ciprofloxacin = 2.72 μM). These results establish a foundation for structure-based optimization targeting DNA gyrase inhibition with antibacterial activity.
Collapse
Affiliation(s)
- Akram Abd El-Haleem
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Al-Motamayez District, 6th of October City P.O. Box 77, Egypt; (S.E.-A.); (N.E.-D.)
| | - Usama Ammar
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, 9 Sighthill Court, Edinburgh EH11 4BN, UK
| | - Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Sohair El-Ansary
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Al-Motamayez District, 6th of October City P.O. Box 77, Egypt; (S.E.-A.); (N.E.-D.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Doaa Abdel Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Fatma Abou-Elazm
- Department of Microbiology and Immunology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Al-Motamayez District, 6th of October City P.O. Box 77, Egypt;
| | - Nehad El-Dydamony
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Al-Motamayez District, 6th of October City P.O. Box 77, Egypt; (S.E.-A.); (N.E.-D.)
| |
Collapse
|
4
|
Ma S, Yan T, Chen Y, Li G. Chemical composition and bioactivity variability of two-step extracts derived from traditional and "QiNan" agarwood (Aquilaria spp.). Fitoterapia 2024; 176:106012. [PMID: 38744381 DOI: 10.1016/j.fitote.2024.106012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/16/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
One of the primary applications for agarwood lies in the extracts, instead, there are obvious differences in the demands for agarwood components with different application fields. To obtain the rough separation and clarify each part's activity, four extracts of essential oil, hydrolat, extractum, and ethanol precipitation from traditional agarwood (TraA) and "Qinan" agarwood (QinA) were obtained by steam-solvent multistage extraction and ethanol precipitation. We investigated the chemistry and biological activity of multistage extracts using gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography (HPLC), and in vitro activity testing. The results demonstrated that two kinds of agarwood essential oils contained mainly sesquiterpenoids, yet the sesquiterpene species were remarkably diverse in two kinds of agarwood essential oils. Then, the TraA and QinA hydrolat, all predominantly aromatic and sesquiterpene, but with differences from the essential oil ingredients. Additionally, the extractum chiefly contained chromones and the ethanol precipitation method worked well to separate the impurities in the TraA extract, however, it was ineffective for the QinA extract. Ultimately, essential oils and extractums all have antioxidant properties, with extractums outperforming essential oils. Moreover, both extractums and essential oils exhibited excellent broad-spectrum antimicrobial activity and anti-inflammatory activity. The findings pointed to the feasibility of separating the primary components from TraA and QinA using a multi-stage extraction technique, providing a scientific basis for the efficient utilization of all components of agarwood, as well as the functional product development and differentiated utilization of extract products in incense, fragrance, perfume, and daily chemicals.
Collapse
Affiliation(s)
- Sheng Ma
- Institute of Wood Industry, Chinese Academy of Forestry Sciences, Beijing 100091, China
| | - Tingting Yan
- Institute of Wood Industry, Chinese Academy of Forestry Sciences, Beijing 100091, China
| | - Yuan Chen
- Institute of Wood Industry, Chinese Academy of Forestry Sciences, Beijing 100091, China.
| | - Gaiyun Li
- Institute of Wood Industry, Chinese Academy of Forestry Sciences, Beijing 100091, China
| |
Collapse
|
5
|
Pereira AR, Campos AS, Matos MJ, Maistro EL. Study of the DNA damage and cell death in human peripheral blood mononuclear and HepG2/C3A cells exposed to the synthetic 3-(3-hydroxyphenyl)-7-hydroxycoumarin. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:33-46. [PMID: 37886814 DOI: 10.1080/15287394.2023.2274331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Hydroxycoumarins are an important source of biologically active compounds. Previous studies have shown that the number and position of the hydroxyl substituents in the scaffold play an important role for the observed biological activity. In the present study, 3-(3-hydroxyphenyl)-7-hydroxycoumarin was synthesized, and potential cytogenotoxic effects determined in human HepG2/C3A cells displaying phase 1 and phase 2 enzymes (metabolizing cell ability) and compared to human peripheral blood mononuclear cells (PBMC) without xenobiotics metabolizing capacity. Cell viability was determined with concentrations between 0.01 and 10 µg/ml of 3-(3-hydroxyphenyl)-7-hydroxycoumarin using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) and trypan blue tests. Genotoxicity was determined utilizing the comet assay, and the clastogenic/aneugenic potential employing the micronucleus (MN) test. The results of the in vitro cytotoxicity assays showed a significant decrease in cell viability of PBMC following exposure to 10 µg/ml concentration of the studied compound after 48 and 72 hr. Comet assay observations noted significant DNA damage in PBMC after 4 hr treatment. No marked cytogenotoxic effects were found in HepG2/C3A cells. No chromosomal mutations were observed in both cell lines. It is important to note that 3-(3-hydroxyphenyl)-7-hydroxycoumarin may exert beneficial pharmacological actions at the low micromolar range and with half-life less than 24 hr. Therefore, the results obtained encourage the continuation of studies on this new molecule for medicinal purposes, but its potential toxicity at higher concentrations and longer exposure times needs to be investigated in further studies.
Collapse
Affiliation(s)
- André Rogerio Pereira
- Faculty of Philosophy and Sciences, Speech and Hearing Therapy Department, São Paulo State University - UNESP, Marília, SP, Brazil
| | - Ashley Silva Campos
- Faculty of Philosophy and Sciences, Speech and Hearing Therapy Department, São Paulo State University - UNESP, Marília, SP, Brazil
| | - Maria João Matos
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, España
| | - Edson Luis Maistro
- Faculty of Philosophy and Sciences, Speech and Hearing Therapy Department, São Paulo State University - UNESP, Marília, SP, Brazil
| |
Collapse
|
6
|
Kaur P, Rangra NK. Recent Advancements and SAR Studies of Synthetic Coumarins as MAO-B Inhibitors: An Updated Review. Mini Rev Med Chem 2024; 24:1834-1846. [PMID: 38778598 DOI: 10.2174/0113895575290599240503080025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The oxidative deamination of a wide range of endogenous and exogenous amines is catalyzed by a family of enzymes known as monoamine oxidases (MAOs), which are reliant on flavin-adenine dinucleotides. Numerous neurological conditions, such as Parkinson's disease (PD) and Alzheimer's disease (AD), are significantly correlated with changes in the amounts of biogenic amines in the brain caused by MAO. Hydrogen peroxide, reactive oxygen species, and ammonia, among other toxic consequences of this oxidative breakdown, can harm brain cells' mitochondria and cause oxidative damage. OBJECTIVE The prime objective of this review article was to highlight and conclude the recent advancements in structure-activity relationships of synthetic derivatives of coumarins for MAO-B inhibition, published in the last five years' research articles. METHODS The literature (between 2019 and 2023) was searched from platforms like Science Direct, Google Scholar, PubMed, etc. After going through the literature, we have found a number of coumarin derivatives being synthesized by researchers for the inhibition of MAO-B for the management of diseases associated with the enzyme such as Alzheimer's Disease and Parkinson's Disease. The effect of these coumarin derivatives on the enzyme depends on the substitutions associated with the structure. The structure-activity relationships of the synthetic coumarin derivatives that are popular nowadays have been described and summarized in the current study. RESULTS The results revealed the updated review on SAR studies of synthetic coumarins as MAO-B inhibitors, specifically for Alzheimer's Disease and Parkinson's Disease. The patents reported on coumarin derivatives as MAO-B inhibitors were also highlighted. CONCLUSION Recently, coumarins, a large class of chemicals with both natural and synthetic sources, have drawn a lot of attention because of the vast range of biological actions they have that are linked to neurological problems. Numerous studies have demonstrated that chemically produced and naturally occurring coumarin analogs both exhibited strong MAO-B inhibitory action. Coumarins bind to MAO-B reversibly thereby preventing the breakdown of neurotransmitters like dopamine leading to the inhibition of the enzyme A number of MAO-B blockers have been proven to be efficient therapies for treating neurological diseases like Alzheimer's Disease and Parkinson's Disease. To combat these illnesses, there is still an urgent need to find effective treatment compounds.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Naresh Kumar Rangra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, 174103, India
| |
Collapse
|
7
|
Lv Y, Zheng Z, Liu R, Guo J, Zhang C, Xie Y. Monoamine oxidase B inhibitors based on natural privileged scaffolds: A review of systematically structural modification. Int J Biol Macromol 2023; 251:126158. [PMID: 37549764 DOI: 10.1016/j.ijbiomac.2023.126158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Monoamine oxidase is a flavin enzyme that catalyzes the oxidation of monoamine neurotransmitters in the brain. Various toxic by-products, aldehydes and hydrogen peroxide produced during the catalytic process, can cause oxidative stress and neuronal cell death. Overexpression of MAO-B and insufficient dopamine concentration are recognized as pathological factors in neurodegenerative diseases (NDs) including Parkinson's disease (PD) and Alzheimer's disease (AD). Therefore, the inhibition of MAO-B is an attractive target for the treatment of NDs. Despite significant efforts, few selective and reversible MAO-B inhibitors have been clinically approved. Natural products have emerged as valuable sources of lead compounds in drug discovery. Compounds such as chromone, coumarin, chalcone, caffeine, and aurone, present in natural structures, are considered as privileged scaffolds in the synthesis of MAO-B inhibitors. In this review, we summarized the structure-activity relationship (SAR) of MAO-B inhibitors based on the naturally privileged scaffolds over the past 20 years. Additionally, we proposed a balanced discussion on the advantages and limitations of natural scaffold-based MAO-B inhibitors with providing a future perspective in drug development.
Collapse
Affiliation(s)
- Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhiyuan Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Renzheng Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, China.
| |
Collapse
|
8
|
Castanha APM, Almeida-Terassi LM, Guardado-Yordi E, Matos MJ, Maistro EL. Cytogenotoxicity assessment of 3-(3,4-dihydroxyphenyl)-7,8-dihydroxycoumarin on HepG2/C3A cells and leukocytes. J Appl Toxicol 2023; 43:323-334. [PMID: 36000810 DOI: 10.1002/jat.4384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 01/17/2023]
Abstract
3-(3,4-Dihydroxyphenyl)-7,8-dihydroxycoumarin is a newly synthesized coumarin derivative with a potent antioxidant effect. The aim of the present study is to investigate the safety of this compound, determining the in vitro cytotoxic and genotoxic in human peripheral blood mononuclear cells (PBMC) and in HepG2/C3A cells. Cell viability has been investigated by the trypan blue staining test and MTT assay and the genotoxicity by the comet assay and micronucleus test, using concentrations between 0.01 and 10 μg/ml. The compound proved to be noncytotoxic in both cell lines, at all tested concentrations, protecting the cells from the DNA damage. In addition, this molecule does not show clastogenic/aneugenic effects when performing the micronucleus test with cytokinesis blockade. Based on the obtained data, and the conditions of the experiments, we can conclude that the 3-(3,4-dihydroxyphenyl)-7,8-dihydroxycoumarin is a safe molecule up to a concentration of 10 μg/ml, which encourages further studies aiming to explore its potential as a drug candidate.
Collapse
Affiliation(s)
| | | | | | - Maria João Matos
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain.,CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Edson Luis Maistro
- Marilia Medical School, FAMEMA, Marilia, Brazil.,Faculty of Philosophy and Sciences, Speech and Hearing Therapy Department, São Paulo State University-UNESP, Marília, Brazil
| |
Collapse
|
9
|
Sun Y, Fu M, Bian M, Zhu Q. Recent progress on small molecular temperature-sensitive fluorescent probes. Biotechnol Bioeng 2023; 120:7-21. [PMID: 36200389 DOI: 10.1002/bit.28250] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
Abstract
Temperature is an important biophysical parameter that is closely related with the metabolic activity in living cells. Therefore, the detection of intracellular temperature changes is crucial for exploring temperature-related biological processes. Fluorescence probe is an ideal tool for observing temperature changes in cells, which has many advantages, such as high sensitivity, good selectivity, and noninvasive, and thus aroused the great interest of researchers. In this paper, we summarize the recent progress of organic small molecule temperature-sensitive fluorescence probes in recent years was reviewed. Particularly, we describe the common response mode to the temperature and the practical applications of the probe in living cells and even animal models. Moreover, an outlook regarding temperature detection in clinical applications is discussed. The temperature-sensitive fluorescent probe is a "black box" to many researchers. This review aims to open a window on the prospect of the noninvasive in vivo detection of temperature which is helpful to deeper understand this rich research area.
Collapse
Affiliation(s)
- Yue Sun
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Manlin Fu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Mianli Bian
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
10
|
Pozo-Martínez J, Vázquez-Rodríguez S, Olea-Azar C, Moncada-Basualto M. Evaluation of ORAC methodologies in determination of antioxidant capacity of binary combinations of quercetin and 3-(3,4,5-trihydroxybenzoyl) coumarin derivatives. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
11
|
Kumar B, Dwivedi AR, Arora T, Raj K, Prashar V, Kumar V, Singh S, Prakash J, Kumar V. Design, Synthesis, and Pharmacological Evaluation of N-Propargylated Diphenylpyrimidines as Multitarget Directed Ligands for the Treatment of Alzheimer's Disease. ACS Chem Neurosci 2022; 13:2122-2139. [PMID: 35797244 DOI: 10.1021/acschemneuro.2c00132] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Alzheimer's disease (AD), a multifactorial complex neural disorder, is categorized with progressive memory loss and cognitive impairment as main clinical features. The multitarget directed ligand (MTDL) strategy is explored for the treatment of multifactorial diseases such as cancer and AD. Herein, we report the synthesis and screening of 24 N-propargyl-substituted diphenylpyrimidine derivatives as MTDLs against acetylcholine/butyrylcholine esterases and monoamine oxidase enzymes. In this series, VP1 showed the most potent MAO-B inhibitory activity with an IC50 value of 0.04 ± 0.002 μM. VP15 with an IC50 value of 0.04 ± 0.003 μM and a selectivity index of 626 (over BuChE) displayed the most potent AChE inhibitory activity in this series. In the reactive oxygen species (ROS) inhibition studies, VP1 reduced intercellular ROS levels in SH-SY5Y cells by 36%. This series of compounds also exhibited potent neuroprotective potential against 6-hydroxydopamine-induced neuronal damage in SH-SY5Y cells with up to 90% recovery. In the in vivo studies in the rats, the hydrochloride salt of VP15 was orally administered and found to cross the blood-brain barrier and reach the target site. VP15·HCl significantly attenuated the spatial memory impairment and improved the cognitive deficits in the mice. This series of compounds were found to be irreversible inhibitors and showed no cytotoxicity against neuronal cells. In in silico studies, the compounds attained thermodynamically stable orientation with complete occupancy at the active site of the receptors. Thus, N-propargyl-substituted diphenylpyrimidines displayed drug-like characteristics and have the potential to be developed as MTDLs for the effective treatment of AD.
Collapse
Affiliation(s)
- Bhupinder Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151401, India.,Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Ashish Ranjan Dwivedi
- Laboratory of Organic and Medicinal Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Tania Arora
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Khadga Raj
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Vikash Prashar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Vijay Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Jyoti Prakash
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Vinod Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab 151401, India
| |
Collapse
|
12
|
Kou X, Hu C, Shi X, Li X, Yang A, Shen R. A multifunctional metal regulator as the potential theranostic agent: Design, synthesis, anti-AD activities and metallic ion sensing properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121110. [PMID: 35276472 DOI: 10.1016/j.saa.2022.121110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Although there is no cure for Alzheimer's disease (AD) due to its complex pathogenesis, early detection and treatment can help delay the development of the disease. So, it is necessary to develop multifunctional metal regulators that can integrate the therapeutics and diagnostics effect against AD. In this work, N-(anthracene-9-ylmethylene)benzohydrazide (probe 1), a fluorescent probe with imine and carbonyl as chelating sites was designed and synthesized. Results showed that 1 had good activities related to AD, such as regulation of metal homeostasis, inhibition of β-amyloid (Aβ) aggregation and scavenging of reactive oxygen species. The selectivity experiment showed that probe 1 had a good recognition effect on Cu2+. Fluorescence imaging assay also indicated that probe 1 had a good fluorescence imaging effect on Cu2+ in living cells. Furthermore, probe 1 had showed no cytotoxicity and good BBB permeability. These results indicated that probe 1 had potential diagnostic and therapeutic capabilities, and can be used as the multifunctional theranostic agent for AD.
Collapse
Affiliation(s)
- Xiaodi Kou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Chengting Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xuli Shi
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xingying Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Aihong Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Rui Shen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
13
|
Zhang Q, Miao YH, Liu T, Yun YL, Sun XY, Yang T, Sun J. Natural source, bioactivity and synthesis of 3-Arylcoumarin derivatives. J Enzyme Inhib Med Chem 2022; 37:1023-1042. [PMID: 35438580 PMCID: PMC9037183 DOI: 10.1080/14756366.2022.2058499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
3-arylcoumarins with different pharmacological properties widely exist in a variety of natural plants. The extensive research on 3-arylcoumarins was attributed to its therapeutic and relatively easy isolation. Therefore, 3-arylcoumarins can be recognised as useful structures for the design of novel compounds with potential pharmacological interest, particularly in the fields of anti-inflammatory, anti-cancer, antioxidant, Monoamine oxidase (MAO) enzyme inhibition, etc. The current review highlights the biological activities, design, and chemical synthetic methods of 3-arylcoumarins derivatives as well as their important natural product sources.
Collapse
Affiliation(s)
- Qiang Zhang
- Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yu-Hang Miao
- Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Teng Liu
- Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yin-Ling Yun
- Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiao-Ya Sun
- Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tao Yang
- Department of Thoracic and Cardiovascular Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, Chongqing, China
| | - Jie Sun
- Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
14
|
Synthesis and study of the trypanocidal activity of catechol-containing 3-arylcoumarins, inclusion in β-cyclodextrin complexes and combination with benznidazole. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
15
|
Matos MJ, Uriarte E, Santana L. 3-Phenylcoumarins as a Privileged Scaffold in Medicinal Chemistry: The Landmarks of the Past Decade. Molecules 2021; 26:6755. [PMID: 34771164 PMCID: PMC8587835 DOI: 10.3390/molecules26216755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/27/2022] Open
Abstract
3-Phenylcoumarins are a family of heterocyclic molecules that are widely used in both organic and medicinal chemistry. In this overview, research on this scaffold, since 2010, is included and discussed, focusing on aspects related to its natural origin, synthetic procedures and pharmacological applications. This review paper is based on the most relevant literature related to the role of 3-phenylcoumarins in the design of new drug candidates. The references presented in this review have been collected from multiple electronic databases, including SciFinder, Pubmed and Mendeley.
Collapse
Affiliation(s)
- Maria J Matos
- Centro de Investigação em Química da Universidade do Porto (CIQUP), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Lourdes Santana
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
16
|
Husain A, Balushi K A, Akhtar MJ, Khan SA. Coumarin linked heterocyclic hybrids: A promising approach to develop multi target drugs for Alzheimer's disease. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Pilaquinga F, Morey J, Fernandez L, Espinoza-Montero P, Moncada-Basualto M, Pozo-Martinez J, Olea-Azar C, Bosch R, Meneses L, Debut A, Piña MDLN. Determination of Antioxidant Activity by Oxygen Radical Absorbance Capacity (ORAC-FL), Cellular Antioxidant Activity (CAA), Electrochemical and Microbiological Analyses of Silver Nanoparticles Using the Aqueous Leaf Extract of Solanum mammosum L. Int J Nanomedicine 2021; 16:5879-5894. [PMID: 34471354 PMCID: PMC8405165 DOI: 10.2147/ijn.s302935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/30/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The importance of studying polyphenolic compounds as natural antioxidants has encouraged the search for new methods of analysis that are quick and simple. The synthesis of silver nanoparticles (AgNPs) using plant extracts has been presented as an alternative to determine the total polyphenolic content and its antioxidant activity. METHODS In this study, aqueous leaf extract of Solanum mammosum, a species of plant endemic to South America, was used to produce AgNPs. The technique of oxygen radical absorption capacity using fluorescein (ORAC-FL) was used to measure antioxidant activity. The oxidation of the 2´,7´-dichlorodihydrofluorescein diacetate (DCFH2-DA) as fluorescent probe was used to measure cellular antioxidant activity (CAA). Electrochemical behavior was also examined using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). Total polyphenolic content (TPH) was analyzed using the Folin-Ciocalteu method, and the major polyphenolic compound was analyzed by high performance liquid chromatography with diode array detector (HPLC/DAD). Finally, a microbial analysis was conducted using Escherichia coli and Bacillus sp. RESULTS The average size of nanoparticles was 5.2 ± 2.3 nm measured by high-resolution transmission electron microscopy (HR-TEM). The antioxidant activity measured by ORAC-FL in the extract and nanoparticles were 3944 ± 112 and 637.5 ± 14.8 µM ET/g of sample, respectively. Cellular antioxidant activity was 14.7 ± 0.2 for the aqueous extract and 12.5 ± 0.2 for the nanoparticles. The electrochemical index (EI) was 402 μA/V for the extract and 324 μA/V for the nanoparticles. Total polyphenolic content was 826.6 ± 20.9 and 139.7 ± 20.9 mg EGA/100 g of sample. Gallic acid was the main polyphenolic compound present in the leaf extract. Microbiological analysis revealed that although leaf extract was not toxic for Escherichia coli and Bacillus sp., minor toxic activity for AgNPs was detected for both strains. CONCLUSION It is concluded that the aqueous extract of the leaves of S. mammosum contains nontoxic antioxidant compounds capable of producing AgNPs. The methods using AgNPs can be used as a fast analytical tool to monitor the presence of water-soluble polyphenolic compounds from plant origin. Analysis and detection of new antioxidants from plant extracts may be potentially applicable in biomedicine.
Collapse
Affiliation(s)
- Fernanda Pilaquinga
- School of Chemical Sciences, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Department of Chemistry, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Jeroni Morey
- Department of Chemistry, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Lenys Fernandez
- School of Chemical Sciences, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | | | - Josue Pozo-Martinez
- Department of Inorganic and Analytical Chemistry, University of Chile, Santiago, Chile
| | - Claudio Olea-Azar
- Department of Inorganic and Analytical Chemistry, University of Chile, Santiago, Chile
| | - Rafael Bosch
- Environmental Microbiology, IMEDEA (CSIC-UIB), and Microbiology, Department of Biology, University of Balearic Islands, Palma de Mallorca, Spain
| | - Lorena Meneses
- School of Chemical Sciences, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | | |
Collapse
|
18
|
Coumarins as Tool Compounds to Aid the Discovery of Selective Function Modulators of Steroid Hormone Binding Proteins. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26175142. [PMID: 34500576 PMCID: PMC8433903 DOI: 10.3390/molecules26175142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022]
Abstract
Steroid hormones play an essential role in a wide variety of actions in the body, such as in metabolism, inflammation, initiating and maintaining sexual differentiation and reproduction, immune functions, and stress response. Androgen, aromatase, and sulfatase pathway enzymes and nuclear receptors are responsible for steroid biosynthesis and sensing steroid hormones. Changes in steroid homeostasis are associated with many endocrine diseases. Thus, the discovery and development of novel drug candidates require a detailed understanding of the small molecule structure–activity relationship with enzymes and receptors participating in steroid hormone synthesis, signaling, and metabolism. Here, we show that simple coumarin derivatives can be employed to build cost-efficiently a set of molecules that derive essential features that enable easy discovery of selective and high-affinity molecules to target proteins. In addition, these compounds are also potent tool molecules to study the metabolism of any small molecule.
Collapse
|
19
|
Clathrolides A–B: previously undescribed macrocylic lactones from marine demosponge Clathria (Thalysias) vulpina (Lamarck, 1814) as potential antihypertensive leads attenuating angiotensin converting enzyme. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02743-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Salgado F, Moncada-Basualto M, Pozo-Martinez J, Liempi A, Kemmerling U, Maya JD, Jaque P, Borges F, Uriarte E, Matos MJ, Olea-Azar C. Chemical and biological analysis of 4-acyloxy-3-nitrocoumarins as trypanocidal agents. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
21
|
Chakraborty K, Francis P. Clathriolide from marine demosponge Clathria (Thalysias) vulpina (Lamarck, 1814): previously undescribed macrocylic lactone with attenuating potential against angiotensin converting enzyme. Nat Prod Res 2021; 36:3786-3795. [PMID: 33618562 DOI: 10.1080/14786419.2021.1887177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Angiotensin-I converting enzyme catalyses the rate-determined step of the conversion of angiotensin-I to angiotensin-II that narrows the blood vessels, and angiotensin-I converting enzyme inhibitors were recognised as important medications for hypertension-related diseases. Chemical investigation of angiotensin-I converting enzyme inhibitors from marine demospongiae Clathria (Thalysias) vulpina (family Microcionidae), resulted in a previously undescribed 22-membered macrocyclic lactone derivative, named as clathriolide. The studied compound showed potential angiotensin converting enzyme attenuation property (IC50 0.41 mM), which was comparable with the standard captopril (IC50 0.36 mM). Clathriolide revealed significantly greater antioxidant potentials against free radical species (IC50 < 1 mM) in comparison with the standard α-tocopherol (IC50 > 1.5 mM). Superior electronic characteristics (topological polar surface area > 100) coupled with relatively smaller binding energy and docking score of clathriolide with the aminoacyl residues of angiotensin-I converting enzyme (-11.5 and -12.2 kcal/mol, respectively) described its potential inhibitory property against angiotensin-I converting enzyme.
Collapse
Affiliation(s)
| | - Prima Francis
- Central Marine Fisheries Research Institute, Cochin, Kerala, India.,Department of Chemistry, Mangalore University, Mangalagangothri, Karnataka, India
| |
Collapse
|
22
|
Mellado M, Mella J, González C, Viña D, Uriarte E, Matos MJ. 3-Arylcoumarins as highly potent and selective monoamine oxidase B inhibitors: Which chemical features matter? Bioorg Chem 2020; 101:103964. [DOI: 10.1016/j.bioorg.2020.103964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/02/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022]
|
23
|
|
24
|
Discovery and optimization of 3-thiophenylcoumarins as novel agents against Parkinson's disease: Synthesis, in vitro and in vivo studies. Bioorg Chem 2020; 101:103986. [PMID: 32569895 DOI: 10.1016/j.bioorg.2020.103986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/15/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
Monoamine oxidase B (MAO-B) inhibitors are still receiving great attention as promising therapeutic agents for central nervous system disorders. This study explores, for the first time, the potential of 3-thiophenylcoumarins as in vitro and in vivo agents against Parkinsońs disease. Twelve compounds were synthesized via Perkin-Oglialoro reaction, and in vitro evaluation of six hydroxylated molecules was performed. MAO-A and MAO-B inhibition, DPPH scavenging and inhibition of ROS formation, neurotoxicity on motor cortex neurons and neuroprotection against H2O2, were studied. In vivo effect on locomotor activity using the open field test was also evaluated for the best candidate [3-(4'-bromothiophen-2'-yl)-7-hydroxycoumarin, 5], a potent, selective and reversible MAO-B inhibitor (IC50 = 140 nM). This compound proved to have a slightly better in vivo profile than selegiline, one of the currently treatments for Parkinson's disease, in reserpinized mice pretreated with levodopa and benserazide. Results suggested that, comparing positions 7 and 8, substitution at position 7 of the coumarin scaffold is better for the enzymatic inhibition. However, the presence of a catechol at positions 7 and 8 exponentially increases the antioxidant potential and the neuroprotective properties. Finally, all the molecules present good theoretical physicochemical properties that make them excellent candidates for the optimization of a lead compound.
Collapse
|
25
|
Francisco CS, Javarini CL, de S Barcelos I, Morais PAB, de Paula H, de S Borges W, Neto ÁC, Lacerda V. Synthesis of Coumarin Derivatives as Versatile Scaffolds for GSK-3β Enzyme Inhibition. Curr Top Med Chem 2020; 20:153-160. [PMID: 31648640 DOI: 10.2174/1568026619666191019105349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glycogen synthase kinase-3 (GSK-3) is involved in the phosphorylation and inactivation of glycogen synthase. GSK-3 inhibitors have been associated with a variety of diseases, including Alzheimer´s disease (AD), diabetes type II, neurologic disorders, and cancer. The inhibition of GSK-3β isoforms is likely to represent an effective strategy against AD. OBJECTIVE The present work aimed to design and synthesize coumarin derivatives to explore their potential as GSK-3β kinase inhibitors. METHODS The through different synthetic methods were used to prepare coumarin derivatives. The GSK-3β activity was measured through the ADP-Glo™ Kinase Assay, which quantifies the kinasedependent enzymatic production of ADP from ATP, using a coupled-luminescence-based reaction. A docking study was performed by using the crystallographic structure of the staurosporine/GSK-3β complex [Protein Data Bank (PDB) code: 1Q3D]. RESULTS The eleven coumarin derivatives were obtained and evaluated as potential GSK-3β inhibitors. Additionally, in silico studies were performed. The results revealed that the compounds 5c, 5d, and 6b inhibited GSK-3β enzymatic activity by 38.97-49.62% at 1 mM. The other coumarin derivatives were tested at 1 mM, 1 µM, and 1 nM concentrations and were shown to be inhibitor candidates, with significant IC50 (1.224-6.875 µM) values, except for compound 7c (IC50 = 10.809 µM). Docking simulations showed polar interactions between compound 5b and Lys85 and Ser203, clarifying the mechanism of the most potent activity. CONCLUSION The coumarin derivatives 3a and 5b, developed in this study, showed remarkable activity as GSK-3β inhibitors.
Collapse
Affiliation(s)
- Carla S Francisco
- Centro de Ciencias Exatas, Universidade Federal do Espirito Santo, 29075-910 Vitoria - ES, Brazil
| | - Clara L Javarini
- Centro de Ciencias Exatas, Universidade Federal do Espirito Santo, 29075-910 Vitoria - ES, Brazil
| | | | - Pedro A B Morais
- Centro de Ciencias Exatas, Naturais e da Saude, Universidade Federal do Espirito Santo, 29500-000 Alegre - ES, Brazil
| | - Heberth de Paula
- Centro de Ciencias Exatas, Naturais e da Saude, Universidade Federal do Espirito Santo, 29500-000 Alegre - ES, Brazil
| | - Warley de S Borges
- Centro de Ciencias Exatas, Universidade Federal do Espirito Santo, 29075-910 Vitoria - ES, Brazil
| | - Álvaro Cunha Neto
- Centro de Ciencias Exatas, Universidade Federal do Espirito Santo, 29075-910 Vitoria - ES, Brazil
| | - Valdemar Lacerda
- Centro de Ciencias Exatas, Universidade Federal do Espirito Santo, 29075-910 Vitoria - ES, Brazil
| |
Collapse
|
26
|
Matos MJ, Vilar S, Vazquez-Rodriguez S, Kachler S, Klotz KN, Buccioni M, Delogu G, Santana L, Uriarte E, Borges F. Structure-Based Optimization of Coumarin hA 3 Adenosine Receptor Antagonists. J Med Chem 2019; 63:2577-2587. [PMID: 31738058 DOI: 10.1021/acs.jmedchem.9b01572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adenosine receptors participate in many physiological functions. Molecules that may selectively interact with one of the receptors are favorable multifunctional chemical entities to treat or decelerate the evolution of different diseases. 3-Arylcoumarins have already been studied as neuroprotective agents by our group. Here, differently 8-substituted 3-arylcoumarins are complementarily studied as ligands of adenosine receptors, performing radioligand binding assays. Among the synthesized compounds, selective A3 receptor antagonists were found. 3-(4-Bromophenyl)-8-hydroxycoumarin (compound 4) displayed the highest potency and selectivity as A3 receptor antagonist (Ki = 258 nM). An analysis of its X-ray diffraction provided detailed information on its structure. Further evaluation of a selected series of compounds indicated that it is the nature and position of the substituents that determine their activity and selectivity. Theoretical modeling calculations corroborate and explain the experimental data, suggesting this novel scaffold can be involved in the generation of candidates as multitarget drugs.
Collapse
Affiliation(s)
- Maria João Matos
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Santiago Vilar
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Saleta Vazquez-Rodriguez
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Sonja Kachler
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Karl-Norbert Klotz
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Michela Buccioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino, Italy
| | - Giovanna Delogu
- Department of Life Sciences and Environment-Section of Pharmaceutical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Lourdes Santana
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eugenio Uriarte
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, 7500912 Santiago, Chile
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
27
|
Yang J, Zhang P, Hu Y, Liu T, Sun J, Wang X. Synthesis and biological evaluation of 3-arylcoumarins as potential anti-Alzheimer's disease agents. J Enzyme Inhib Med Chem 2019; 34:651-656. [PMID: 30746966 PMCID: PMC6374920 DOI: 10.1080/14756366.2019.1574297] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Alzheimer's disease, a neurodegenerative illness, has the extremely complex pathogenesis. Accumulating evidence indicates there is a close relationship between several enzymes and Alzheimer's disease. Various substituted 3-arylcoumarin derivatives were synthesised, and their in vitro activity, including cholinesterase inhibitory activity, monoamine oxidase inhibitory activity, and antioxidant activity were investigated. Most of the compounds exhibited high activity; therefore 3-arylcoumarin compounds have the potential as drug candidates for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jie Yang
- a School of Medicine and Life Sciences , University of Jinan-Shandong Academy of Medical Sciences , Jinan , China.,b Institute of MateriaMedica , Shandong Academy of Medical Sciences , Jinan , China.,c Key Laboratory for Biotech-Drugs Ministry of Health , Jinan , China.,d Key Laboratory for Rare & Uncommon Diseases of Shandong Province , Jinan , China
| | - Pingping Zhang
- a School of Medicine and Life Sciences , University of Jinan-Shandong Academy of Medical Sciences , Jinan , China.,b Institute of MateriaMedica , Shandong Academy of Medical Sciences , Jinan , China.,c Key Laboratory for Biotech-Drugs Ministry of Health , Jinan , China.,d Key Laboratory for Rare & Uncommon Diseases of Shandong Province , Jinan , China
| | - Yuheng Hu
- a School of Medicine and Life Sciences , University of Jinan-Shandong Academy of Medical Sciences , Jinan , China.,b Institute of MateriaMedica , Shandong Academy of Medical Sciences , Jinan , China.,c Key Laboratory for Biotech-Drugs Ministry of Health , Jinan , China.,d Key Laboratory for Rare & Uncommon Diseases of Shandong Province , Jinan , China
| | - Teng Liu
- a School of Medicine and Life Sciences , University of Jinan-Shandong Academy of Medical Sciences , Jinan , China.,b Institute of MateriaMedica , Shandong Academy of Medical Sciences , Jinan , China.,c Key Laboratory for Biotech-Drugs Ministry of Health , Jinan , China.,d Key Laboratory for Rare & Uncommon Diseases of Shandong Province , Jinan , China
| | - Jie Sun
- a School of Medicine and Life Sciences , University of Jinan-Shandong Academy of Medical Sciences , Jinan , China.,b Institute of MateriaMedica , Shandong Academy of Medical Sciences , Jinan , China.,c Key Laboratory for Biotech-Drugs Ministry of Health , Jinan , China.,d Key Laboratory for Rare & Uncommon Diseases of Shandong Province , Jinan , China
| | - Xiaojing Wang
- a School of Medicine and Life Sciences , University of Jinan-Shandong Academy of Medical Sciences , Jinan , China.,b Institute of MateriaMedica , Shandong Academy of Medical Sciences , Jinan , China.,c Key Laboratory for Biotech-Drugs Ministry of Health , Jinan , China.,d Key Laboratory for Rare & Uncommon Diseases of Shandong Province , Jinan , China
| |
Collapse
|
28
|
Kumari B, Chauhan K, Trivedi J, Jaiswal V, Kanwar SS, Pokharel YR. Benzothiazole-Based-Bioconjugates with Improved Antimicrobial, Anticancer and Antioxidant Potential. ChemistrySelect 2018. [DOI: 10.1002/slct.201801936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Bhawana Kumari
- School of Chemistry; Shoolini University, Solan; HP-173229 India
| | - Kalpana Chauhan
- School of Chemistry; Shoolini University, Solan; HP-173229 India
| | - Jalpa Trivedi
- Department of Science & Humanities; Indus University, Ahmedabad, Gujarat; India
| | - Varun Jaiswal
- School of Bioinformatics; Shoolini University; Solan 173229 India
| | | | - Yuba Raj Pokharel
- Faculty of Life Science and Biotechnology; South Asian University; New Delhi-110021 India
| |
Collapse
|
29
|
Tanabe G, Tsutsui N, Shibatani K, Marumoto S, Ishikawa F, Ninomiya K, Muraoka O, Morikawa T. Total syntheses of the aromatase inhibitors, mammeasins C and D, from Thai medicinal plant Mammea siamensis. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Bistrović A, Stipaničev N, Opačak-Bernardi T, Jukić M, Martinez S, Glavaš-Obrovac L, Raić-Malić S. Synthesis of 4-aryl-1,2,3-triazolyl appended natural coumarin-related compounds with antiproliferative and radical scavenging activities and intracellular ROS production modification. NEW J CHEM 2017. [DOI: 10.1039/c7nj01469d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diverse natural coumarin-based compounds linked to aryl via a 1,2,3-triazole spacer with antiproliferative activity against K562 cells, radical scavenging activity and a decrease of ROS production were provided.
Collapse
Affiliation(s)
- A. Bistrović
- Department of Organic Chemistry
- Faculty of Chemical Engineering and Technology
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - N. Stipaničev
- Department of Organic Chemistry
- Faculty of Chemical Engineering and Technology
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - T. Opačak-Bernardi
- Department of Medical Chemistry
- Biochemistry and Clinical Chemistry
- Faculty of Medicine
- Josip Juraj Strossmayer University of Osijek
- HR-31000 Osijek
| | - M. Jukić
- Department of Medical Chemistry
- Biochemistry and Clinical Chemistry
- Faculty of Medicine
- Josip Juraj Strossmayer University of Osijek
- HR-31000 Osijek
| | - S. Martinez
- Department of Electrochemistry
- Faculty of Chemical Engineering and Technology
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Lj. Glavaš-Obrovac
- Department of Medical Chemistry
- Biochemistry and Clinical Chemistry
- Faculty of Medicine
- Josip Juraj Strossmayer University of Osijek
- HR-31000 Osijek
| | - S. Raić-Malić
- Department of Organic Chemistry
- Faculty of Chemical Engineering and Technology
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| |
Collapse
|
31
|
Robledo-O'Ryan N, Matos MJ, Vazquez-Rodriguez S, Santana L, Uriarte E, Moncada-Basualto M, Mura F, Lapier M, Maya JD, Olea-Azar C. Synthesis, antioxidant and antichagasic properties of a selected series of hydroxy-3-arylcoumarins. Bioorg Med Chem 2016; 25:621-632. [PMID: 27908757 DOI: 10.1016/j.bmc.2016.11.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/30/2016] [Accepted: 11/17/2016] [Indexed: 01/13/2023]
Abstract
Oxidative stress is involved in several parasitic diseases such as Chagas. Agents able to selectively modulate biochemical processes involved in the disease represent promising multifunctional agents for the delay or abolishment of the progression of this pathology. In the current work, differently substituted hydroxy-3-arylcoumarins are described, exerting both antioxidant and trypanocidal activity. Among the compounds synthesized, compound 8 showed the most interesting profile, presenting a moderate scavenging ability for peroxyl radicals (ORAC-FL=2.23) and a high degree of selectivity towards epimastigotes stage of the parasite T. cruzi (IC50=1.31μM), higher than Nifurtimox (drug currently used for treatment of Chagas disease). Interestingly, the current study revealed that small structural changes in the hydroxy-3-arylcoumarin core allow modulating both activities, suggesting that this scaffold has desirable properties for the development of promising classes of antichagasic compounds.
Collapse
Affiliation(s)
- Natalia Robledo-O'Ryan
- Free Radical and Antioxidants Laboratory, Inorganic and Analytical Department, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Sergio Livingstone Polhammer 1007, Independencia, Santiago, Chile
| | - Maria João Matos
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Saleta Vazquez-Rodriguez
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Lourdes Santana
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Eugenio Uriarte
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mauricio Moncada-Basualto
- Free Radical and Antioxidants Laboratory, Inorganic and Analytical Department, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Sergio Livingstone Polhammer 1007, Independencia, Santiago, Chile; Department of Environmental Sciences, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Francisco Mura
- Free Radical and Antioxidants Laboratory, Inorganic and Analytical Department, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Sergio Livingstone Polhammer 1007, Independencia, Santiago, Chile
| | - Michel Lapier
- Department of Molecular Pharmacology and Clinical, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan Diego Maya
- Department of Molecular Pharmacology and Clinical, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Claudio Olea-Azar
- Free Radical and Antioxidants Laboratory, Inorganic and Analytical Department, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Sergio Livingstone Polhammer 1007, Independencia, Santiago, Chile.
| |
Collapse
|
32
|
|
33
|
Muñoz A, Fonseca A, Matos MJ, Uriarte E, Santana L, Borges F, Figueroa R, Olea Azar C. Evaluation of Antioxidant and Antitrypanosomal Properties of a Selected Series of Synthetic 3-Carboxamidocoumarins. ChemistrySelect 2016. [DOI: 10.1002/slct.201601336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Andrea Muñoz
- Free Radical and Antioxidants Laboratory, Inorganic and Analytical Department; Faculty of Chemical and Pharmaceutical Sciences, University of Chile; Sergio Livingstone Polhammer 1007, Independencia Santiago Chile
| | - André Fonseca
- CIQUP/Departament of Chemistry and Biochemistry, Faculty of Sciences; University of Porto; 4169-007 Porto Portugal
- Department of Organic Chemistry, Faculty of Pharmacy; University of Santiago de Compostela; 15806 Santiago de Compostela Spain
| | - Maria J. Matos
- CIQUP/Departament of Chemistry and Biochemistry, Faculty of Sciences; University of Porto; 4169-007 Porto Portugal
- Department of Organic Chemistry, Faculty of Pharmacy; University of Santiago de Compostela; 15806 Santiago de Compostela Spain
| | - Eugenio Uriarte
- Department of Organic Chemistry, Faculty of Pharmacy; University of Santiago de Compostela; 15806 Santiago de Compostela Spain
| | - Lourdes Santana
- Department of Organic Chemistry, Faculty of Pharmacy; University of Santiago de Compostela; 15806 Santiago de Compostela Spain
| | - Fernanda Borges
- CIQUP/Departament of Chemistry and Biochemistry, Faculty of Sciences; University of Porto; 4169-007 Porto Portugal
| | - Roberto Figueroa
- Free Radical and Antioxidants Laboratory, Inorganic and Analytical Department; Faculty of Chemical and Pharmaceutical Sciences, University of Chile; Sergio Livingstone Polhammer 1007, Independencia Santiago Chile
| | - Claudio Olea Azar
- Free Radical and Antioxidants Laboratory, Inorganic and Analytical Department; Faculty of Chemical and Pharmaceutical Sciences, University of Chile; Sergio Livingstone Polhammer 1007, Independencia Santiago Chile
| |
Collapse
|
34
|
Efficient Catalyst One-Pot Synthesis of 7-(Aryl)-10,10-dimethyl-10,11-dihydrochromeno[4,3-b]chromene-6,8(7H,9H)-dione Derivatives Complemented by Antibacterial Activity. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5891703. [PMID: 27563671 PMCID: PMC4983404 DOI: 10.1155/2016/5891703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/04/2016] [Indexed: 11/17/2022]
Abstract
The problem of bacteria resistance to many known agents has inspired scientists and researchers to discover novel efficient antibacterial drugs. Three rapid, clean, and highly efficient methods were developed for one-pot synthesis of 7-(aryl)-10,10-dimethyl-10,11-dihydrochromeno[4,3-b]chromene-6,8(7H,9H)-dione derivatives. Three components are condensed in the synthesis, 4-hydroxycoumarin, 5,5-dimethyl-1,3-cyclohexanedione, and aromatic aldehydes, using tetrabutylammonium bromide (TBAB), diammonium hydrogen phosphate (DAHP), or ferric chloride (FeCl3), respectively. Each method has different reaction mechanisms according to the catalyst. The present methods have advantages, including one-pot synthesis, excellent yields, short reaction times, and easy isolation of product. All catalysts utilized in our study could be reused several times without losing their catalytic efficiency. All synthesized compounds were fully characterized and evaluated for their antibacterial activity.
Collapse
|
35
|
Mechanism and superoxide scavenging activity of hydroxy substituted tetraphenylporphyrins via coulometric approach. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.04.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Al-Majedy YK, Al-Amiery AA, Kadhum AAH, Mohamad AB. Antioxidant Activities of 4-Methylumbelliferone Derivatives. PLoS One 2016; 11:e0156625. [PMID: 27243231 PMCID: PMC4887010 DOI: 10.1371/journal.pone.0156625] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/17/2016] [Indexed: 01/17/2023] Open
Abstract
The synthesis of derivatives of 4-Methylumbelliferone (4-MUs), which are structurally interesting antioxidants, was performed in this study. The modification of 4-Methylumbelliferone (4-MU) by different reaction steps was performed to yield the target compounds, the 4-MUs. The 4-MUs were characterized by different spectroscopic techniques (Fourier transform infrared; FT-IR and Nuclear magnetic resonance; NMR) and micro-elemental analysis (CHNS). The in vitro antioxidant activity of the 4-MUs was evaluated in terms of their free radical scavenging activities against 2,2-diphenyl-1-picrylhydrazyl (DPPH), Nitric oxide radical scavenging activity assay, chelating activity and their (FRAP) ferric-reducing antioxidant power, which were compared with a standard antioxidant. Our results reveal that the 4-MUs exhibit excellent radical scavenging activities. The antioxidant mechanisms of the 4-MUs were also studied. Density Function Theory (DFT)-based quantum chemical studies were performed with the basis set at 3-21G. Molecular models of the synthesized compounds were studied to understand the antioxidant activity. The electron levels, namely HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital), for these synthesized antioxidants were also studied.
Collapse
Affiliation(s)
- Yasameen K. Al-Majedy
- Department of Chemical and Process Engineering, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43000, Malaysia
| | - Ahmed A. Al-Amiery
- Department of Chemical and Process Engineering, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43000, Malaysia
- * E-mail:
| | - Abdul Amir H. Kadhum
- Department of Chemical and Process Engineering, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43000, Malaysia
| | - Abu Bakar Mohamad
- Fuel Cell Institute, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43000, Malaysia
| |
Collapse
|
37
|
Mazzone G, Galano A, Alvarez-Idaboy JR, Russo N. Coumarin-Chalcone Hybrids as Peroxyl Radical Scavengers: Kinetics and Mechanisms. J Chem Inf Model 2016; 56:662-70. [PMID: 26998844 DOI: 10.1021/acs.jcim.6b00006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The primary antioxidant activity of coumarin-chalcone hybrids has been investigated using the density functional and the conventional transition state theories. Their peroxyl radical scavenging ability was studied in solvents of different polarity and taking into account different reaction mechanisms. It was found that the activity of the hybrids increases with the polarity of the environment and the number of phenolic sites. In addition, their peroxyl radical scavenging activity is larger than those of the corresponding nonhybrid coumarin and chalcone molecules. This finding is in line with previous experimental evidence. All the investigated molecules were found to react faster than Trolox with (•)OOH, regardless of the polarity of the environment. The role of deprotonation on the overall activity of the studied compounds was assessed. The rate constants and branching ratios for the reactions of all the studied compounds with (•)OOH are reported for the first time.
Collapse
Affiliation(s)
- Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria , I-87036 Arcavacata di Rende, Italy
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, C. P. 09340 México, D. F. México
| | - Juan R Alvarez-Idaboy
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México , México DF 04510, México
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria , I-87036 Arcavacata di Rende, Italy
| |
Collapse
|
38
|
Danis O, Demir S, Gunduz C, Alparslan MM, Altun S, Yuce-Dursun B. Synthesis of selected 3- and 4-arylcoumarin derivatives and evaluation as potent antioxidants. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2445-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Matos MJ, Rodríguez-Enríquez F, Borges F, Santana L, Uriarte E, Estrada M, Rodríguez-Franco MI, Laguna R, Viña D. 3-Amidocoumarins as Potential Multifunctional Agents against Neurodegenerative Diseases. ChemMedChem 2015; 10:2071-9. [PMID: 26493007 DOI: 10.1002/cmdc.201500408] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/13/2015] [Indexed: 01/23/2023]
Abstract
Monoamine oxidase (MAO) generates reactive oxygen species (ROS), which cause neuronal cell death, causing neurodegeneration. Agents that are able to concurrently inhibit MAO and scavenge free radicals represent promising multifunctional neuroprotective agents that could be used to delay or slow the progression of neurodegenerative diseases. In this work, variously substituted 3-amidocoumarins are described that exert neuroprotection in vitro against hydrogen peroxide in rat cortical neurons, as well as antioxidant activity in a 1,1-diphenyl-2-picrylhydrazyl (DPPH⋅) radical scavenging assay. Selective and reversible inhibitors of the MAO-B isoform were identified. Interestingly, in the case of the 3-benzamidocoumarins, substitution at position 4 with a hydroxy group abolishes MAO-B activity, but the compounds remain active in the neuroprotection model. Further evaluation of 3-heteroarylamide derivatives indicates that it is the nature of the heterocycle that determines the neuroprotective effects. Evaluation in a parallel artificial membrane permeability assay (PAMPA) highlighted the need to further improve the blood-brain barrier permeability of this compound class. However, the compounds described herein adhere to Lipinski's rule of five, suggesting that this novel scaffold has desirable properties for the development of potential drug candidates.
Collapse
Affiliation(s)
- Maria João Matos
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.
| | - Fernanda Rodríguez-Enríquez
- Departamento de Farmacología, CIMUS, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Fernanda Borges
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.
| | - Lourdes Santana
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Martín Estrada
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006, Madrid, Spain
| | - María Isabel Rodríguez-Franco
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006, Madrid, Spain
| | - Reyes Laguna
- Departamento de Farmacología, CIMUS, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Dolores Viña
- Departamento de Farmacología, CIMUS, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
40
|
RAZZAGHI-ASL NIMA, SHAHABIPOUR SARA, EBADI AHMAD, BAGHERI AZAM. Quantum chemical analysis of potential anti-Parkinson agents. J CHEM SCI 2015. [DOI: 10.1007/s12039-015-0889-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
41
|
Farina R, Pisani L, Catto M, Nicolotti O, Gadaleta D, Denora N, Soto-Otero R, Mendez-Alvarez E, Passos CS, Muncipinto G, Altomare CD, Nurisso A, Carrupt PA, Carotti A. Structure-Based Design and Optimization of Multitarget-Directed 2H-Chromen-2-one Derivatives as Potent Inhibitors of Monoamine Oxidase B and Cholinesterases. J Med Chem 2015; 58:5561-78. [DOI: 10.1021/acs.jmedchem.5b00599] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Roberta Farina
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| | - Leonardo Pisani
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| | - Marco Catto
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| | - Orazio Nicolotti
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| | - Domenico Gadaleta
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| | - Nunzio Denora
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| | - Ramon Soto-Otero
- Grupo
de Neuroquimica, Departamento de Bioquimica y Biologia Molecular,
Facultad de Medicina, Universidad de Santiago de Compostela, San Francisco
I, E-15782, Santiago
de Compostela, Spain
| | - Estefania Mendez-Alvarez
- Grupo
de Neuroquimica, Departamento de Bioquimica y Biologia Molecular,
Facultad de Medicina, Universidad de Santiago de Compostela, San Francisco
I, E-15782, Santiago
de Compostela, Spain
| | - Carolina S. Passos
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest Ansermet 30, CH-1211, Geneva 4, Switzerland
| | - Giovanni Muncipinto
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| | - Cosimo D. Altomare
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| | - Alessandra Nurisso
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest Ansermet 30, CH-1211, Geneva 4, Switzerland
| | - Pierre-Alain Carrupt
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest Ansermet 30, CH-1211, Geneva 4, Switzerland
| | - Angelo Carotti
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| |
Collapse
|
42
|
Matos MJ, Mura F, Vazquez-Rodriguez S, Borges F, Santana L, Uriarte E, Olea-Azar C. Study of coumarin-resveratrol hybrids as potent antioxidant compounds. Molecules 2015; 20:3290-308. [PMID: 25690290 PMCID: PMC6272433 DOI: 10.3390/molecules20023290] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/20/2022] Open
Abstract
In the present work we synthesized a selected series of hydroxylated 3-phenylcoumarins 5–8, with the aim of evaluating in detail their antioxidant properties. From an in depth study of the antioxidant capacity data (ORAC-FL, ESR, CV and ROS inhibition) it was concluded that these derivatives are very good antioxidants, with very interesting profiles in all the performed assays. The study of the effect of the number and position of the hydroxyl groups on the antioxidant activity was the principal aim of this study. In particular, 7-hydroxy-3-(3'-hydroxy)phenylcoumarin (8) proved to be the most active and effective antioxidant of the selected series in four of the performed assays (ORAC-FL = 11.8, capacity of scavenging hydroxyl radicals = 54%, Trolox index = 2.33 and AI30 index = 0.18). However, the presence of two hydroxyl groups on this molecule did not increase greatly the activity profile. Theoretical evaluation of ADME properties of all the derivatives was also carried out. All the compounds can act as potential candidates for preventing or minimizing the free radical overproduction in oxidative-stress related diseases. These preliminary findings encourage us to perform a future structural optimization of this family of compounds.
Collapse
Affiliation(s)
- Maria J Matos
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Francisco Mura
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233 Santiago, Chile.
| | - Saleta Vazquez-Rodriguez
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Fernanda Borges
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
| | - Lourdes Santana
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Claudio Olea-Azar
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233 Santiago, Chile.
| |
Collapse
|
43
|
Roubinet B, Chevalier A, Renard PY, Romieu A. A Synthetic Route to 3-(Heteroaryl)-7-hydroxycoumarins Designed for Biosensing Applications. European J Org Chem 2014. [DOI: 10.1002/ejoc.201403215] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Mura F, Silva T, Castro C, Borges F, Zuñiga MC, Morales J, Olea-Azar C. New insights into the antioxidant activity of hydroxycinnamic and hydroxybenzoic systems: spectroscopic, electrochemistry, and cellular studies. Free Radic Res 2014; 48:1473-84. [PMID: 25236566 DOI: 10.3109/10715762.2014.965702] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A series hydroxycinnamic and gallic acids and their derivatives were studied with the aim of evaluating their in vitro antioxidant properties both in homogeneous and in cellular systems. It was concluded from the oxygen radical absorbance capacity-fluorescein (ORAC-FL), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and cyclic voltammetry data that some compounds exhibit remarkable antioxidant properties. In general, in homogeneous media (DPPH assay), galloyl-based cinnamic and benzoic systems (compounds 7-11) were the most active, exhibiting the lowest oxidation potentials in both dimethyl sulfoxide (DMSO) and phosphate buffer. Yet, p-coumaric acid and its derivatives (compounds 1-3) disclosed the highest scavenging activity toward peroxyl radicals (ORAC-FL assay). Interesting structure-property- activity relationships between ORAC-FL, or DPPH radical, and redox potentials have been attained, showing that the latter parameter can be a valuable antioxidant measure. It was evidenced that redox potentials are related to the structural features of cinnamic and benzoic systems and that their activities are also dependent on the radical generated in the assay. Electron spin resonance data of the phenoxyl radicals generated both in DMSO and phosphate buffer support the assumption that radical stability is related to the type of phenolic system. Galloyl-based cinnamic and benzoic ester-type systems (compounds 9 and 11) were the most active and effective compounds in cell-based assays (51.13 ± 1.27% and 54.90 ± 3.65%, respectively). In cellular systems, hydroxycinnamic and hydroxybenzoic systems operate based on their intrinsic antioxidant outline and lipophilic properties, so the balance between these two properties is considered of the utmost importance to ensure their performance in the prevention or minimization of the effects due to free radical overproduction.
Collapse
Affiliation(s)
- F Mura
- Department of Inorganic and Analytical Chemistry, Laboratory of Free Radicals and Antioxidants, Faculty of Chemical and Pharmaceutical Sciences, University of Chile , Santiago de Chile , Chile
| | | | | | | | | | | | | |
Collapse
|
45
|
Sashidhara KV, Modukuri RK, Jadiya P, Rao KB, Sharma T, Haque R, Singh DK, Banerjee D, Siddiqi MI, Nazir A. Discovery of 3-Arylcoumarin-tetracyclic Tacrine Hybrids as Multifunctional Agents against Parkinson's Disease. ACS Med Chem Lett 2014; 5:1099-103. [PMID: 25313319 DOI: 10.1021/ml500222g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/20/2014] [Indexed: 12/27/2022] Open
Abstract
A series of multifunctional directed 3-arylcoumarin-tetracyclic tacrine derivatives was designed and synthesized for the treatment of Parkinson's disease (PD). A number of derivatives (18, 19, 20, 21, and 24) demonstrated significant reduction of aggregation of "human" alpha-synuclein (α-synuclein) protein, expressing on transgenic Caenorhabditis elegans (C. elegans) model NL5901. Moreover, compounds 16, 18, and 24 also exhibited good antioxidant properties and significantly increased the dopamine (DA) content in N2 and NL5901 strains of C. elegans. Interestingly, the protective efficacy of these hybrids seems to be mediated via activation of longevity promoting transcription factor DAF-16. In addition, molecular modeling studies have evidenced the exquisite interaction of most active compounds 18 and 24 with α-synuclein protein. Taken together, the data indicate that the derivatives may be useful leads against aging and age associated PD.
Collapse
Affiliation(s)
- Koneni V. Sashidhara
- Medicinal and Process Chemistry Division, ‡Laboratory of Functional Genomics
and Molecular Toxicology, and §Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow 226031, India
| | - Ram K. Modukuri
- Medicinal and Process Chemistry Division, ‡Laboratory of Functional Genomics
and Molecular Toxicology, and §Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow 226031, India
| | - Pooja Jadiya
- Medicinal and Process Chemistry Division, ‡Laboratory of Functional Genomics
and Molecular Toxicology, and §Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow 226031, India
| | - K. Bhaskara Rao
- Medicinal and Process Chemistry Division, ‡Laboratory of Functional Genomics
and Molecular Toxicology, and §Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow 226031, India
| | - Tanuj Sharma
- Medicinal and Process Chemistry Division, ‡Laboratory of Functional Genomics
and Molecular Toxicology, and §Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow 226031, India
| | - Rizwanul Haque
- Medicinal and Process Chemistry Division, ‡Laboratory of Functional Genomics
and Molecular Toxicology, and §Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow 226031, India
| | - Deependra Kumar Singh
- Medicinal and Process Chemistry Division, ‡Laboratory of Functional Genomics
and Molecular Toxicology, and §Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow 226031, India
| | - Dibyendu Banerjee
- Medicinal and Process Chemistry Division, ‡Laboratory of Functional Genomics
and Molecular Toxicology, and §Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow 226031, India
| | - Mohammad Imran Siddiqi
- Medicinal and Process Chemistry Division, ‡Laboratory of Functional Genomics
and Molecular Toxicology, and §Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow 226031, India
| | - Aamir Nazir
- Medicinal and Process Chemistry Division, ‡Laboratory of Functional Genomics
and Molecular Toxicology, and §Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow 226031, India
| |
Collapse
|
46
|
Kuzmin SM, Chulovskaya SA, Parfenyuk VI. Substituent position influence on the electrochemical properties and antioxidant activity of tetra(aminophenyl)porphyrins. J PORPHYR PHTHALOCYA 2014. [DOI: 10.1142/s108842461450031x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Free radicals and reactive oxygen species (ROS) are important intermediate products in physiological processes. In the healthy cell, they are generated and regulated by enzymes and low molecular weight antioxidants. Overproduction of ROS leads to a large list of diseases, so the determination of antioxidant activity of perspective natural and synthetic compounds is necessary for drugs development. In this paper cyclic voltammetry (CV) method was applied to the electrochemical and superoxide scavenging properties of 5,10,15,20-tetrakis(4′-aminophenyl)porphyrin ( H 2 T (p- NH 2 Ph ) P ) and 5,10,15,20-tetrakis(3′-aminophenyl)porphyrin ( H 2 T (m- NH 2 Ph ) P ) investigation. It is shown that the studied porphyrins have very similar electrochemical behavior and slight effect on the quantity of superoxide produced during first CV cycle therefore the estimation of superoxide scavenging properties may be performed by the [Formula: see text] oxidation peak current monitoring. The antioxidant properties of porphyrins were estimated in terms of binding constants. The strong effect of NH 2 group position on the superoxide scavenging activity are shown: the H 2 T (p- NH 2 Ph ) P (kb = 12.7 × 102 mol-1) demonstrates the significant superoxide scavenging activities whereas H 2 T (m- NH 2 Ph ) P (kb = 0.83 × 102 mol-1) — negligible. The most probable mechanism of superoxide scavenges explaining the observed differences are the H -atoms transfer due to N – H bond breaking in the aminophenyl substituent.
Collapse
Affiliation(s)
- Sergey M. Kuzmin
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo 153045, Russia
| | - Svetlana A. Chulovskaya
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo 153045, Russia
| | - Vladimir I. Parfenyuk
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo 153045, Russia
| |
Collapse
|
47
|
Synthesis and evaluation of antioxidant and trypanocidal properties of a selected series of coumarin derivatives. Future Med Chem 2014; 5:1911-22. [PMID: 24175743 DOI: 10.4155/fmc.13.147] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This article describes the preparation and characterization of a selected series of coumarin derivatives with the aim of evaluating their antioxidant properties and their activity against Trypanosoma cruzi, the parasite responsible for Chagas disease. All the derivatives demonstrated moderate trypanocidal activity in the epimastigote and trypomastigote stages (clone Dm28c), with Compound 3 presenting the highest trypanocidal activity of the entire series, displaying higher activity than nifurtimox, which was used as a reference compound. In addition to the trypanocidal activity, this compound proved to have a very interesting antioxidant profile, as well as no cytotoxicity. These preliminary findings encouraged the authors to study the future structural optimization of this scaffold.
Collapse
|
48
|
Veselinović JB, Veselinović AM, Vitnik ŽJ, Vitnik VD, Nikolić GM. Antioxidant properties of selected 4-phenyl hydroxycoumarins: Integrated in vitro and computational studies. Chem Biol Interact 2014; 214:49-56. [DOI: 10.1016/j.cbi.2014.02.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/17/2014] [Accepted: 02/22/2014] [Indexed: 01/23/2023]
|
49
|
Synthesis of 3-Arylcoumarins by FeCL3-Promoted Cyclization of orto-Methoxy-Substituted (E)-2,3-Diphenylpropenoic Acids or their Methyl Esters. Chem Heterocycl Compd (N Y) 2014. [DOI: 10.1007/s10593-014-1442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Svinyarov I, Bogdanov MG. One-pot synthesis and radical scavenging activity of novel polyhydroxylated 3-arylcoumarins. Eur J Med Chem 2014; 78:198-206. [PMID: 24681984 DOI: 10.1016/j.ejmech.2014.03.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/14/2014] [Accepted: 03/16/2014] [Indexed: 12/20/2022]
Abstract
An unexpected domino rearrangement brought about the development of a novel one-pot procedure for synthesis of coumarins. This protocol allowed the gram-scale synthesis of a variety of polyhydroxylated derivatives 3a-p, from readily available starting materials at a low cost. Based on two proven intermediates, a probable mechanism consisting of boron tribromide induced demethylation/lactone ring opening/elimination/isomerization/lactone ring closure reaction sequence of in situ formed 3-aryl-3,4-dihydroisocoumarin-4-carboxylic acids was deduced. Compared to the common methods, used for the synthesis of coumarins, the proposed herein possesses great advantages, such as mild conditions, good yields for short reaction time, simple work-up procedure and easy isolation of the final products. The structure of the newly synthesized compounds 3a-p was established by spectroscopic methods ((1)H NMR, (13)C NMR, IR, MS and HRMS) and their radical scavenging activity was evaluated in vitro against 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH). The results obtained show that compounds 3g-p posses higher radical scavenging activity (3.16 ≤ SC50 [μM] ≤ 6.82) than well-known antioxidants such as trolox, protocatechuic acid, caffeic acid and gallic acid (SC50 [μM] = 9.34, 8.83, 9.48, 5.33, respectively), which is a precondition for promising antioxidant activity of these compounds to be expected.
Collapse
Affiliation(s)
- Ivan Svinyarov
- Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Ohridski", 1, James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Milen G Bogdanov
- Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Ohridski", 1, James Bourchier Blvd., 1164 Sofia, Bulgaria.
| |
Collapse
|