1
|
Isigkeit L, Schallmayer E, Busch R, Brunello L, Menge A, Elson L, Müller S, Knapp S, Stolz A, Marschner JA, Merk D. Chemogenomics for NR1 nuclear hormone receptors. Nat Commun 2024; 15:5201. [PMID: 38890295 PMCID: PMC11189487 DOI: 10.1038/s41467-024-49493-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Nuclear receptors (NRs) regulate transcription in response to ligand binding and NR modulation allows pharmacological control of gene expression. Although some NRs are relevant as drug targets, the NR1 family, which comprises 19 NRs binding to hormones, vitamins, and lipid metabolites, has only been partially explored from a translational perspective. To enable systematic target identification and validation for this protein family in phenotypic settings, we present an NR1 chemogenomic (CG) compound set optimized for complementary activity/selectivity profiles and chemical diversity. Based on broad profiling of candidates for specificity, toxicity, and off-target liabilities, sixty-nine comprehensively annotated NR1 agonists, antagonists and inverse agonists covering all members of the NR1 family and meeting potency and selectivity standards are included in the final NR1 CG set. Proof-of-concept application of this set reveals effects of NR1 members in autophagy, neuroinflammation and cancer cell death, and confirms the suitability of the set for target identification and validation.
Collapse
Affiliation(s)
- Laura Isigkeit
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt, Germany
| | - Espen Schallmayer
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt, Germany
| | - Romy Busch
- Ludwig-Maximilians-Universität (LMU) München, Department of Pharmacy, Munich, Germany
| | - Lorene Brunello
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry 2, Goethe University Frankfurt, Frankfurt, Germany
| | - Amelie Menge
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry 2, Goethe University Frankfurt, Frankfurt, Germany
| | - Lewis Elson
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry 2, Goethe University Frankfurt, Frankfurt, Germany
| | - Susanne Müller
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry 2, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefan Knapp
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry 2, Goethe University Frankfurt, Frankfurt, Germany
| | - Alexandra Stolz
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry 2, Goethe University Frankfurt, Frankfurt, Germany
| | - Julian A Marschner
- Ludwig-Maximilians-Universität (LMU) München, Department of Pharmacy, Munich, Germany
| | - Daniel Merk
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt, Germany.
- Ludwig-Maximilians-Universität (LMU) München, Department of Pharmacy, Munich, Germany.
| |
Collapse
|
2
|
Gohda K, Iguchi Y, Masuda A, Fujimori K, Yamashita Y, Teno N. Design and identification of a new farnesoid X receptor (FXR) partial agonist by computational structure-activity relationship analysis: Ligand-induced H8 helix fluctuation in the ligand-binding domain of FXR may lead to partial agonism. Bioorg Med Chem Lett 2021; 41:128026. [PMID: 33839252 DOI: 10.1016/j.bmcl.2021.128026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022]
Abstract
Farnesoid X receptor (FXR) controls gene-expression relevant to various diseases including nonalcoholic steatohepatitis and has become a drug target to regulate metabolic aberrations. However, some side effects of FXR agonists reported in clinical development such as an increase in blood cholesterol levels incentivize the development of partial agonists to minimize side effects. In this study, to identify a new partial agonist, we analyzed the computational structure-activity relationship (SAR) of FXR agonists previously developed in our laboratories using molecular dynamics simulations. SAR analysis showed that fluctuations in the H8 helix, by ligand binding, of the ligand-binding domain (LBD) of FXR may influence agonistic activity. Based on this observation, 6 was newly designed as a partial agonist and synthesized. As a result of biological evaluations, 6 showed weak agonistic activity (40.0% relative agonistic activity to the full-agonist GW4064) and a potent EC50 value (55.5 nM). The successful identification of the new potent partial agonist 6 suggested that helix fluctuation in the LBD induced by ligands could be one way to develop partial agonists.
Collapse
Affiliation(s)
- Keigo Gohda
- Computer-aided Molecular Modeling Research Center, Kansai (CAMM-Kansai), 3-32-302, Tsuto-Otsuka, Nishinomiya 663-8241, Japan.
| | - Yusuke Iguchi
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan
| | - Arisa Masuda
- Graduate School of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan
| | - Ko Fujimori
- Department of Pathobiochemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yukiko Yamashita
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan
| | - Naoki Teno
- Graduate School of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan; Faculty of Clinical Nutrition, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan
| |
Collapse
|
3
|
Ishigami-Yuasa M, Kagechika H. Chemical Screening of Nuclear Receptor Modulators. Int J Mol Sci 2020; 21:E5512. [PMID: 32752136 PMCID: PMC7432305 DOI: 10.3390/ijms21155512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Nuclear receptors are ligand-inducible transcriptional factors that control multiple biological phenomena, including proliferation, differentiation, reproduction, metabolism, and the maintenance of homeostasis. Members of the nuclear receptor superfamily have marked structural and functional similarities, and their domain functionalities and regulatory mechanisms have been well studied. Various modulators of nuclear receptors, including agonists and antagonists, have been developed as tools for elucidating nuclear receptor functions and also as drug candidates or lead compounds. Many assay systems are currently available to evaluate the modulation of nuclear receptor functions, and are useful as screening tools in the discovery and development of new modulators. In this review, we cover the chemical screening methods for nuclear receptor modulators, focusing on assay methods and chemical libraries for screening. We include some recent examples of the discovery of nuclear receptor modulators.
Collapse
Affiliation(s)
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan;
| |
Collapse
|
4
|
N1-Substituted benzimidazole scaffold for farnesoid X receptor (FXR) agonists accompanying prominent selectivity against vitamin D receptor (VDR). Bioorg Med Chem 2020; 28:115512. [DOI: 10.1016/j.bmc.2020.115512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
|
5
|
Zhang L, Peterson TE, Lu VM, Parney IF, Daniels DJ. Antitumor activity of novel pyrazole-based small molecular inhibitors of the STAT3 pathway in patient derived high grade glioma cells. PLoS One 2019; 14:e0220569. [PMID: 31361777 PMCID: PMC6667205 DOI: 10.1371/journal.pone.0220569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Abnormal activation of signal transducer and activator of transcription 3 (STAT3) transcription factor has been observed in many human cancers with roles in tumor initiation, progression, drug resistance, angiogenesis and immunosuppression. STAT3 is constitutively activated in a variety of cancers including adult high grade gliomas (aHGGs) such as glioblastoma (GBM), and pediatric high grade gliomas (pHGG). Inhibiting STAT3 is a promising target-specific chemotherapeutic strategy for tumors with aberrant STAT3 signaling. Here we investigated the antitumor effects of novel pyrazole-based STAT3 pathway inhibitors named MNS1 (Mayo Neurosurgery 1) in both pediatric and adult HGG tumor cells. MNS1 compounds selectively decreased cell viability and proliferation in patient-derived HGG cells with minimal toxicity on normal human astrocytes. These inhibitors selectively blocked IL-6-induced STAT3 phosphorylation and nuclear localization of pSTAT3 without affecting other signaling molecules including Akt, STAT1, JAK2 or ERK1/2 phosphorylation. Functional analysis showed that MNS1 compounds induced apoptosis and decrease tumor migration. The anti-tumor effects extended into a murine pHGG (diffuse intrinsic pontine glioma) patient derived xenograft, and systemic toxicity was not evident during dose escalation in mice. These results support further development of STAT3 inhibitors for both pediatric and adult HGG.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States of America
| | - Timothy E. Peterson
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States of America
| | - Victor M. Lu
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States of America
| | - Ian F. Parney
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States of America
| | - David J. Daniels
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States of America
- * E-mail:
| |
Collapse
|
6
|
van de Wiel SMW, Bijsmans ITGW, van Mil SWC, van de Graaf SFJ. Identification of FDA-approved drugs targeting the Farnesoid X Receptor. Sci Rep 2019; 9:2193. [PMID: 30778102 PMCID: PMC6379390 DOI: 10.1038/s41598-019-38668-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/21/2018] [Indexed: 12/25/2022] Open
Abstract
The farnesoid X receptor (FXR) belongs to the nuclear receptor family and is activated by bile acids. Multiple, chemically rather diverse, FXR agonists have been developed and several of these compounds are currently tested in clinical trials for NAFLD and cholestasis. Here, we investigated possible FXR-agonism or antagonism of existing FDA/EMA-approved drugs. By using our recently developed FRET-sensor, containing the ligand binding domain of FXR (FXR-LBD), 1280 FDA-approved drugs were screened for their ability to activate FXR in living cells using flow cytometry. Fifteen compounds induced the sensor for more than twenty percent above background. Real-time confocal microscopy confirmed that avermectin B1a, gliquidone, nicardipine, bepridil and triclosan activated the FRET sensor within two minutes. These compounds, including fluticasone, increased mRNA expression of FXR target genes OSTα and OSTβ in Huh7 cells, and in most cases also of MRP2, SHP and FGF19. Finally, avermectin B1a, gliquidone, nicardipine and bepridil significantly increased IBABP promoter activity in a luciferase reporter assay in a dose-dependent manner. In conclusion, six FDA/EMA-approved drugs currently used in the clinical practice exhibit moderate agonistic FXR activity. This may on the one hand explain (undesired) side-effects, but on the other hand may form an opportunity for polypharmacology.
Collapse
Affiliation(s)
- Sandra M W van de Wiel
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ingrid T G W Bijsmans
- Center for Molecular Medicine, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Saskia W C van Mil
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Center for Molecular Medicine, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Nanduri R, Kalra R, Bhagyaraj E, Chacko AP, Ahuja N, Tiwari D, Kumar S, Jain M, Parkesh R, Gupta P. AutophagySMDB: a curated database of small molecules that modulate protein targets regulating autophagy. Autophagy 2019; 15:1280-1295. [PMID: 30669929 DOI: 10.1080/15548627.2019.1571717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Macroautophagy/autophagy is a complex self-degradative mechanism responsible for clearance of non functional organelles and proteins. A range of factors influences the autophagic process, and disruptions in autophagy-related mechanisms lead to disease states, and further exacerbation of disease. Despite in-depth research into autophagy and its role in pathophysiological processes, the resources available to use it for therapeutic purposes are currently lacking. Herein we report the Autophagy Small Molecule Database (AutophagySMDB; http://www.autophagysmdb.org/ ) of small molecules and their cognate protein targets that modulate autophagy. Presently, AutophagySMDB enlists ~10,000 small molecules which regulate 71 target proteins. All entries are comprised of information such as EC50 (half maximal effective concentration), IC50 (half maximal inhibitory concentration), Kd (dissociation constant) and Ki (inhibition constant), IUPAC name, canonical SMILE, structure, molecular weight, QSAR (quantitative structure activity relationship) properties such as hydrogen donor and acceptor count, aromatic rings and XlogP. AutophagySMDB is an exhaustive, cross-platform, manually curated database, where either the cognate targets for small molecule or small molecules for a target can be searched. This database is provided with different search options including text search, advanced search and structure search. Various computational tools such as tree tool, cataloging tools, and clustering tools have also been implemented for advanced analysis. Data and the tools provided in this database helps to identify common or unique scaffolds for designing novel drugs or to improve the existing ones for autophagy small molecule therapeutics. The approach to multitarget drug discovery by identifying common scaffolds has been illustrated with experimental validation. Abbreviations: AMPK: AMP-activated protein kinase; ATG: autophagy related; AutophagySMDB: autophagy small molecule database; BCL2: BCL2, apoptosis regulator; BECN1: beclin 1; CAPN: calpain; MTOR: mechanistic target of rapamycin kinase; PPARG: peroxisome proliferator activated receptor gamma; SMILES: simplified molecular input line entry system; SQSTM1: sequestosome 1; STAT3: signal transducer and activator of transcription.
Collapse
Affiliation(s)
- Ravikanth Nanduri
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Rashi Kalra
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Ella Bhagyaraj
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Anuja P Chacko
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Nancy Ahuja
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Drishti Tiwari
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Sumit Kumar
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Monika Jain
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Raman Parkesh
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Pawan Gupta
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| |
Collapse
|
8
|
Wei Y, Lu Y, Zhu Y, Zheng W, Guo F, Yao B, Xu S, Wang Y, Jin L, Li Y. Structural basis for the hepatoprotective effects of antihypertensive 1,4-dihydropyridine drugs. Biochim Biophys Acta Gen Subj 2018; 1862:2261-2270. [PMID: 30048741 DOI: 10.1016/j.bbagen.2018.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND The 1,4-dihydropyridines (DHPs) are one of the most frequently prescribed classes of antihypertensive monotherapeutic agents worldwide. In addition to treating hypertension, DHPs also exert other beneficial effects, including hepatoprotective effects. However, the mechanism underlying the hepatoprotection remains unclear. METHODS Biochemical AlphaScreen and cell-based reporter assays were employed to detect the activities of DHPs towards FXR. A crystallographic analysis was adopted to study the binding modes of four DHPs in complex with FXR. Acetaminophen (APAP)-treated wild-type and FXR knockout mice were used to investigate the functional dependence of the effects of the selected DHPs on FXR. RESULTS A series of DHPs were uncovered as FXR ligands with different activities for FXR, suggesting FXR might serve as an alternative drug target for DHPs. The structural analysis illustrated the specific three-blade propeller binding modes of four DHPs to FXR and explained the detailed mechanisms by which DHPs bind to and are recognized by FXR. The results in mice demonstrated that cilnidipine protected the liver from APAP-induced injury in an FXR-dependent manner. CONCLUSIONS This study reports the crystal structures of FXR in complex with four DHPs, and confirms that DHPs exert hepatoprotection by targeting FXR. GENERAL SIGNIFICANCE Our research not only reveals valuable insight for the design and development of next-generation Ca2+ blocker drugs to provide safer and more effective treatments for cardiovascular disorders but also provides a novel and safe structural template for the development of drugs targeting FXR. Moreover, DHPs might be potentially repurposed to treat FXR-mediated diseases other than hypertension.
Collapse
Affiliation(s)
- Yijuan Wei
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian 361005, China
| | - Yi Lu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian 361005, China
| | - Yanlin Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian 361005, China
| | - Weili Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian 361005, China
| | - Fusheng Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian 361005, China
| | - Benqiang Yao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian 361005, China
| | - Shuangshuang Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian 361005, China
| | - Yumeng Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian 361005, China
| | - Lihua Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian 361005, China.
| | - Yong Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
9
|
Nian SY, Wang GP, Jiang ZL, Xiao Y, Huang MH, Zhou YH, Tan XD. Synthesis and biological evaluation of novel SIPI-7623 derivatives as farnesoid X receptor (FXR) antagonists. Mol Divers 2018; 23:19-33. [PMID: 29974364 DOI: 10.1007/s11030-018-9843-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
Most of reported steroidal FXR antagonists are restricted due to low potency. We described the design and synthesis of novel nonsteroidal scaffold SIPI-7623 derivatives as FXR antagonists. The most potent compound A-11 (IC50 = 7.8 ± 1.1 μM) showed better activity compared to SIPI-7623 (IC50 = 40.8 ± 1.7 μM) and guggulsterone (IC50 = 45.9 ± 1.1 μM). Docking of A-11 in FXR's ligand-binding domain was also studied.
Collapse
Affiliation(s)
- Si-Yun Nian
- Department of Clinical Pharmacy, Taizhou Hospital of Zhejiang Province, Xi Men Street No. 150, Linhai, 317000, Zhejiang Province, China.,Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China.,Aurisco Pharmaceutical (Yangzhou) Co., Ltd., Yangzhou, 225100, China
| | - Guo-Ping Wang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China.,Aurisco Pharmaceutical (Yangzhou) Co., Ltd., Yangzhou, 225100, China
| | - Zheng-Li Jiang
- Department of Clinical Pharmacy, Taizhou Hospital of Zhejiang Province, Xi Men Street No. 150, Linhai, 317000, Zhejiang Province, China
| | - Ying Xiao
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Mo-Han Huang
- College of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Yi-Huan Zhou
- College of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Xiang-Duan Tan
- College of Pharmacy, Guilin Medical University, Guilin, 541004, China.
| |
Collapse
|
10
|
Diouf B, Lin W, Goktug A, Grace CRR, Waddell MB, Bao J, Shao Y, Heath RJ, Zheng JJ, Shelat AA, Relling MV, Chen T, Evans WE. Alteration of RNA Splicing by Small-Molecule Inhibitors of the Interaction between NHP2L1 and U4. SLAS DISCOVERY 2017; 23:164-173. [PMID: 28985478 DOI: 10.1177/2472555217735035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Splicing is an important eukaryotic mechanism for expanding the transcriptome and proteome, influencing a number of biological processes. Understanding its regulation and identifying small molecules that modulate this process remain a challenge. We developed an assay based on time-resolved fluorescence resonance energy transfer (TR-FRET) to detect the interaction between the protein NHP2L1 and U4 RNA, which are two key components of the spliceosome. We used this assay to identify small molecules that interfere with this interaction in a high-throughput screening (HTS) campaign. Topotecan and other camptothecin derivatives were among the top hits. We confirmed that topotecan disrupts the interaction between NHP2L1 and U4 by binding to U4 and inhibits RNA splicing. Our data reveal new functions of known drugs that could facilitate the development of therapeutic strategies to modify splicing and alter gene function.
Collapse
Affiliation(s)
- Barthelemy Diouf
- 1 Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.,2 Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenwei Lin
- 3 Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Asli Goktug
- 3 Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christy R R Grace
- 4 Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Brett Waddell
- 5 Molecular Interaction Analysis Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ju Bao
- 1 Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.,2 Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Youming Shao
- 6 Protein Production Facility, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Richard J Heath
- 6 Protein Production Facility, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jie J Zheng
- 7 Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Anang A Shelat
- 3 Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mary V Relling
- 1 Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.,2 Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Taosheng Chen
- 3 Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William E Evans
- 1 Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.,2 Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
11
|
Hsu CW, Hsieh JH, Huang R, Pijnenburg D, Khuc T, Hamm J, Zhao J, Lynch C, van Beuningen R, Chang X, Houtman R, Xia M. Differential modulation of FXR activity by chlorophacinone and ivermectin analogs. Toxicol Appl Pharmacol 2016; 313:138-148. [PMID: 27773686 DOI: 10.1016/j.taap.2016.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/10/2016] [Accepted: 10/18/2016] [Indexed: 02/02/2023]
Abstract
Chemicals that alter normal function of farnesoid X receptor (FXR) have been shown to affect the homeostasis of bile acids, glucose, and lipids. Several structural classes of environmental chemicals and drugs that modulated FXR transactivation were previously identified by quantitative high-throughput screening (qHTS) of the Tox21 10K chemical collection. In the present study, we validated the FXR antagonist activity of selected structural classes, including avermectin anthelmintics, dihydropyridine calcium channel blockers, 1,3-indandione rodenticides, and pyrethroid pesticides, using in vitro assay and quantitative structural-activity relationship (QSAR) analysis approaches. (Z)-Guggulsterone, chlorophacinone, ivermectin, and their analogs were profiled for their ability to alter CDCA-mediated FXR binding using a panel of 154 coregulator motifs and to induce or inhibit transactivation and coactivator recruitment activities of constitutive androstane receptor (CAR), liver X receptor alpha (LXRα), or pregnane X receptor (PXR). Our results showed that chlorophacinone and ivermectin had distinct modes of action (MOA) in modulating FXR-coregulator interactions and compound selectivity against the four aforementioned functionally-relevant nuclear receptors. These findings collectively provide mechanistic insights regarding compound activities against FXR and possible explanations for in vivo toxicological observations of chlorophacinone, ivermectin, and their analogs.
Collapse
Affiliation(s)
- Chia-Wen Hsu
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Jui-Hua Hsieh
- National Toxicology Program, National Institutes of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Ruili Huang
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Dirk Pijnenburg
- PamGene International B.V., Wolvenhoek 10, 5211 HH 's-Hertogenbosch, The Netherlands
| | - Thai Khuc
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Jon Hamm
- Integrated Laboratory System, Inc., Morrisville, NC, USA
| | - Jinghua Zhao
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Caitlin Lynch
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Rinie van Beuningen
- PamGene International B.V., Wolvenhoek 10, 5211 HH 's-Hertogenbosch, The Netherlands
| | - Xiaoqing Chang
- Integrated Laboratory System, Inc., Morrisville, NC, USA
| | - René Houtman
- PamGene International B.V., Wolvenhoek 10, 5211 HH 's-Hertogenbosch, The Netherlands
| | - Menghang Xia
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Yu DD, Andrali SS, Li H, Lin M, Huang W, Forman BM. Novel FXR (farnesoid X receptor) modulators: Potential therapies for cholesterol gallstone disease. Bioorg Med Chem 2016; 24:3986-3993. [PMID: 27372840 DOI: 10.1016/j.bmc.2016.06.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/16/2016] [Accepted: 06/18/2016] [Indexed: 11/24/2022]
Abstract
Metabolic disorders such as diabetes are known risk factors for developing cholesterol gallstone disease (CGD). Cholesterol gallstone disease is one of the most prevalent digestive diseases, leading to considerable financial and social burden worldwide. Ursodeoxycholic acid (UDCA) is the only bile acid drug approved by FDA for the non-surgical treatment of gallstones. However, the molecular link between UDCA and CGD is unclear. Previous data suggest that the farnesoid X receptor (FXR), a bile acid nuclear receptor, may protect against the development of CGD. In studies aimed at identifying the role of FXR, we recently identify a novel chemical tool, 6EUDCA (6-αethyl-ursodeoxycholic acid), a synthetic derivative of UDCA, for studying FXR. We found that 6EUDCA binds FXR stronger than UDCA in a TR-FRET binding assay. This result was supported by computational docking models that suggest 6EUDCA forms a more extensive hydrogen bound network with FXR. Interestingly, neither compound could activate FXR target genes in human nor mouse liver cells, suggesting UDCA and 6EUDCA activate non-genomic signals in an FXR-dependent manner. Overall these studies may lead to the identification of a novel mechanism by which bile acids regulate cell function, and 6EUDCA may be an effective targeted CGD therapeutic.
Collapse
Affiliation(s)
- Donna D Yu
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Sreenath S Andrali
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Hongzhi Li
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Min Lin
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Wendong Huang
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Barry M Forman
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
13
|
Hsu CWA, Zhao J, Xia M. Transactivation and Coactivator Recruitment Assays for Measuring Farnesoid X Receptor Activity. Methods Mol Biol 2016; 1473:43-53. [PMID: 27518622 DOI: 10.1007/978-1-4939-6346-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The farnesoid X receptor (FXR) is a nuclear receptor responsible for homeostasis of bile acids, lipids, and glucose. Compounds that alter endogenous FXR signaling can be used as therapeutic candidates or identified as potentially hazardous compounds depending on exposure doses and health states. Therefore, there is an increasing need for high-throughput screening assays of FXR activity to profile large numbers of environmental chemicals and drugs. This chapter describes a workflow of FXR modulator identification and characterization. To identify compounds that modulate FXR transactivation at the cellular level, we first screen compounds from the Tox21 10 K compound library in an FXR-driven beta-lactamase reporter gene assay multiplexed with a cell viability assay in the same well of the 1536-well plates. The selected compounds are then tested biochemically for their ability to modulate FXR-coactivator binding interactions using a time-resolved fluorescence resonance energy transfer (TR-FRET) coactivator assay. The assay results from the workflow can be used to prioritize compounds for more extensive investigations.
Collapse
Affiliation(s)
- Chia-Wen Amy Hsu
- National Center for Advancing Translational Sciences, National Institutes of Health, Building C, MSC: 3375, 9800 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Jinghua Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health, Building C, MSC: 3375, 9800 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Building C, MSC: 3375, 9800 Medical Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
Mazuy C, Helleboid A, Staels B, Lefebvre P. Nuclear bile acid signaling through the farnesoid X receptor. Cell Mol Life Sci 2015; 72:1631-50. [PMID: 25511198 PMCID: PMC11113650 DOI: 10.1007/s00018-014-1805-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 12/16/2022]
Abstract
Bile acids (BAs) are amphipathic molecules produced from cholesterol by the liver. Expelled from the gallbladder upon meal ingestion, BAs serve as fat solubilizers in the intestine. BAs are reabsorbed in the ileum and return via the portal vein to the liver where, together with nutrients, they provide signals to coordinate metabolic responses. BAs act on energy and metabolic homeostasis through the activation of membrane and nuclear receptors, among which the nuclear receptor farnesoid X receptor (FXR) is an important regulator of several metabolic pathways. Highly expressed in the liver and the small intestine, FXR contributes to BA effects on metabolism, inflammation and cell cycle control. The pharmacological modulation of its activity has emerged as a potential therapeutic strategy for liver and metabolic diseases. This review highlights recent advances regarding the mechanisms by which the BA sensor FXR contributes to global signaling effects of BAs, and how FXR activity may be regulated by nutrient-sensitive signaling pathways.
Collapse
Affiliation(s)
- Claire Mazuy
- European Genomic Institute for Diabetes (EGID), 59000 Lille, France
- INSERM UMR1011-Bâtiment J&K, 59000 Lille, France
- University Lille 2, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| | - Audrey Helleboid
- European Genomic Institute for Diabetes (EGID), 59000 Lille, France
- INSERM UMR1011-Bâtiment J&K, 59000 Lille, France
- University Lille 2, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| | - Bart Staels
- European Genomic Institute for Diabetes (EGID), 59000 Lille, France
- INSERM UMR1011-Bâtiment J&K, 59000 Lille, France
- University Lille 2, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| | - Philippe Lefebvre
- European Genomic Institute for Diabetes (EGID), 59000 Lille, France
- INSERM UMR1011-Bâtiment J&K, 59000 Lille, France
- University Lille 2, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| |
Collapse
|
15
|
Cherian MT, Lin W, Wu J, Chen T. CINPA1 is an inhibitor of constitutive androstane receptor that does not activate pregnane X receptor. Mol Pharmacol 2015; 87:878-89. [PMID: 25762023 PMCID: PMC4407736 DOI: 10.1124/mol.115.097782] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/11/2015] [Indexed: 11/22/2022] Open
Abstract
Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug resistance. CAR inhibitors, in combination with existing chemotherapeutics, could therefore be used to attenuate multidrug resistance in cancers. Interestingly, all previously reported CAR inverse-agonists are also activators of PXR, rendering them mechanistically counterproductive in tissues where both these xenobiotic receptors are present and active. We used a directed high-throughput screening approach, followed by subsequent mechanistic studies, to identify novel, potent, and specific small-molecule CAR inhibitors that do not activate PXR. We describe here one such inhibitor, CINPA1 (CAR inhibitor not PXR activator 1), capable of reducing CAR-mediated transcription with an IC50 of ∼70 nM. CINPA1 1) is a specific xenobiotic receptor inhibitor and has no cytotoxic effects up to 30 µM; 2) inhibits CAR-mediated gene expression in primary human hepatocytes, where CAR is endogenously expressed; 3) does not alter the protein levels or subcellular localization of CAR; 4) increases corepressor and reduces coactivator interaction with the CAR ligand-binding domain in mammalian two-hybrid assays; and 5) disrupts CAR binding to the promoter regions of target genes in chromatin immunoprecipitation assays. CINPA1 could be used as a novel molecular tool for understanding CAR function.
Collapse
Affiliation(s)
- Milu T Cherian
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
16
|
Hsu CW, Zhao J, Huang R, Hsieh JH, Hamm J, Chang X, Houck K, Xia M. Quantitative high-throughput profiling of environmental chemicals and drugs that modulate farnesoid X receptor. Sci Rep 2014; 4:6437. [PMID: 25257666 PMCID: PMC4894417 DOI: 10.1038/srep06437] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/29/2014] [Indexed: 02/07/2023] Open
Abstract
The farnesoid X receptor (FXR) regulates the homeostasis of bile acids, lipids, and glucose. Because endogenous chemicals bind and activate FXR, it is important to examine which xenobiotic compounds would disrupt normal receptor function. We used a cell-based human FXR β-lactamase (Bla) reporter gene assay to profile the Tox21 10K compound collection of environmental chemicals and drugs. Structure-activity relationships of FXR-active compounds revealed by this screening were then compared against the androgen receptor, estrogen receptor α, peroxisome proliferator-activated receptors δ and γ, and the vitamin D receptor. We identified several FXR-active structural classes including anthracyclines, benzimidazoles, dihydropyridines, pyrethroids, retinoic acids, and vinca alkaloids. Microtubule inhibitors potently decreased FXR reporter gene activity. Pyrethroids specifically antagonized FXR transactivation. Anthracyclines affected reporter activity in all tested assays, suggesting non-specific activity. These results provide important information to prioritize chemicals for further investigation, and suggest possible modes of action of compounds in FXR signaling.
Collapse
Affiliation(s)
- Chia-Wen Hsu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD
| | - Jinghua Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD
| | - Jui-Hua Hsieh
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Jon Hamm
- Integrated Laboratory Systems, Inc., Morrisville, NC
| | | | - Keith Houck
- U.S. Environmental Protection Agency, Research Triangle Park, NC
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD
| |
Collapse
|
17
|
Yu DD, Lin W, Forman BM, Chen T. Identification of trisubstituted-pyrazol carboxamide analogs as novel and potent antagonists of farnesoid X receptor. Bioorg Med Chem 2014; 22:2919-38. [PMID: 24775917 DOI: 10.1016/j.bmc.2014.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/29/2014] [Accepted: 04/07/2014] [Indexed: 12/11/2022]
Abstract
Farnesoid X receptor (FXR, NRIH4) plays a major role in the control of cholesterol metabolism. This suggests that antagonizing the transcriptional activity of FXR is a potential means to treat cholestasis and related metabolic disorders. Here we describe the synthesis, biological evaluation, and structure-activity relationship (SAR) studies of trisubstituted-pyrazol carboxamides as novel and potent FXR antagonists. One of these novel FXR antagonists, 4j has an IC50 of 7.5 nM in an FXR binding assay and 468.5 nM in a cell-based FXR antagonistic assay. Compound 4j has no detectable FXR agonistic activity or cytotoxicity. Notably, 4j is the most potent FXR antagonist identified to date; it has a promising in vitro profile and could serve as an excellent chemical tool to elucidate the biological function of FXR.
Collapse
Affiliation(s)
- Donna D Yu
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Wenwei Lin
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Barry M Forman
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Taosheng Chen
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
18
|
Merk D, Steinhilber D, Schubert-Zsilavecz M. Characterizing ligands for farnesoid X receptor – availablein vitrotest systems for farnesoid X receptor modulator development. Expert Opin Drug Discov 2013; 9:27-37. [DOI: 10.1517/17460441.2014.860129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|