1
|
Sonawane S, Všianský V, Brázdil M. MicroRNA-mediated regulation of neurotransmitter receptors in epilepsy: A systematic review. Epilepsy Behav 2024; 158:109912. [PMID: 38924965 DOI: 10.1016/j.yebeh.2024.109912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Pathogenesis of epilepsy involves dysregulation of the neurotransmitter system contributing to hyper-excitability of neuronal cells. MicroRNA (miRNAs) are small non-coding RNAs known to play a crucial role in post-transcriptional regulation of gene expression. METHODS The present review was prepared following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, employing a comprehensive search strategy to identify and extract data from published research articles. Keywords suchas epilepsy, micro RNA (micro RNAs, miRNA, miRNAs, miR), neurotransmitters (specific names), and neurotransmitter receptors (specific names) were used to construct the query. RESULTS A total of 724 articles were identified using the keywords epilepsy, microRNA along with select neurotransmitter and neurotransmitter receptor names. After exclusions, the final selection consisted of 17 studies, most of which centered on glutamate and gamma-aminobutyric acid (GABA) receptors. Singular studies also investigated miRNAs affecting cholinergic, purinergic, and glycine receptors. CONCLUSION This review offers a concise overview of the current knowledge on miRNA-mediated regulation of neurotransmitter receptors in epilepsy and highlights their potential for future clinical application.
Collapse
Affiliation(s)
- Shivani Sonawane
- Brno Epilepsy Center, 1st Department of Neurology, Faculty of Medicine, Masaryk University and St. Annés University Hospital, Brno, Czech Republic; Behavioural and Social Neuroscience Research Group, CEITEC - Central European Institute of Technology Masaryk University, Brno, Czech Republic
| | - Vít Všianský
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Member of the ERN EpiCARE, Brno, Czech Republic
| | - Milan Brázdil
- Brno Epilepsy Center, 1st Department of Neurology, Faculty of Medicine, Masaryk University and St. Annés University Hospital, Brno, Czech Republic; Behavioural and Social Neuroscience Research Group, CEITEC - Central European Institute of Technology Masaryk University, Brno, Czech Republic.
| |
Collapse
|
2
|
Üstündağ H, Kara A, Doğanay S, Kurt N, Erbaş E, Kalindemirtaş FD, Kariper İA. Molecular mechanisms of resveratrol and its silver nanoparticle conjugate in addressing sepsis-induced lung injury. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6249-6261. [PMID: 38546748 PMCID: PMC11329585 DOI: 10.1007/s00210-024-03058-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/18/2024] [Indexed: 08/18/2024]
Abstract
Sepsis is a life-threatening condition characterized by a systemic inflammatory response to infection. Despite extensive research on its pathophysiology, effective therapeutic approaches remain a challenge. This study investigated the potential of resveratrol (RV) and silver nanoparticle-enhanced resveratrol (AgNP-RV) as treatments for sepsis-induced lung injury using a rat model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). The study focused on evaluating changes in oxidative status (TAS, TOS, and OSI) and the expression of inflammatory and apoptotic markers (IL-1β, TNF-α, P2X7R, TLR4, Caspase-3, and Bcl-2) in lung tissue. Both RV and AgNP-RV demonstrated potential in mitigating oxidative stress, inflammation, and apoptosis, with AgNP-RV exhibiting greater efficacy than RV alone (p < 0.05). These findings were corroborated by histopathological analyses, which revealed reduced tissue damage in the RV- and AgNP-RV-treated groups. Our study highlights the therapeutic potential of RV and, particularly, AgNP-RV in combating sepsis-induced oxidative stress, inflammation, and apoptosis. It also underscores the promise of nanoparticle technology in enhancing therapeutic outcomes. However, further investigations are warranted to fully understand the mechanisms of action, especially concerning the role of the P2X7 receptor in the observed effects. Nonetheless, our research suggests that RV and AgNP-RV hold promise as novel strategies for sepsis management.
Collapse
Affiliation(s)
- Hilal Üstündağ
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, 2400, Türkiye.
| | - Adem Kara
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Türkiye
| | - Songül Doğanay
- Department of Physiology, Faculty of Medicine, Sakarya University, Sakarya, Türkiye
| | - Nezahat Kurt
- Department of Biochemistry, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Elif Erbaş
- Department of Veterinary Histology and Embryology, Faculty of Veterinary Medicine, Veterinary Medicine Basic Sciences, Erzurum, Türkiye
| | | | - İshak Afşin Kariper
- Department of Science Education, Education Faculty, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
3
|
Huang ACW, Shih HC, Shyu BC. The P2X7 Hypothesis of Central Post-Stroke Pain. Int J Mol Sci 2024; 25:6577. [PMID: 38928280 PMCID: PMC11204365 DOI: 10.3390/ijms25126577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The present study examined how P2X7 receptor knockout (KO) modulates central post-stroke pain (CPSP) induced by lesions of the ventrobasal complex (VBC) of the thalamus in behaviors, molecular levels, and electrical recording tests. Following the experimental procedure, the wild-type and P2X7 receptor KO mice were injected with 10 mU/0.2 μL type IV collagenase in the VBC of the thalamus to induce an animal model of stroke-like thalamic hemorrhage. Behavioral data showed that the CPSP group induced thermal and mechanical pain. The P2X7 receptor KO group showed reduced thermal and mechanical pain responses compared to the CPSP group. Molecular assessments revealed that the CPSP group had lower expression of NeuN and KCC2 and higher expression of GFAP, IBA1, and BDNF. The P2X7 KO group showed lower expression of GFAP, IBA1, and BDNF but nonsignificant differences in KCC2 expression than the CPSP group. The expression of NKCC1, GABAa receptor, and TrkB did not differ significantly between the control, CPSP, and P2X7 receptor KO groups. Muscimol, a GABAa agonist, application increased multiunit numbers for monitoring many neurons and [Cl-] outflux in the cytosol in the CPSP group, while P2X7 receptor KO reduced multiunit activity and increased [Cl-] influx compared to the CPSP group. P2X4 receptor expression was significantly decreased in the 100 kDa but not the 50 kDa site in the P2X7 receptor KO group. Altogether, the P2X7 hypothesis of CPSP was proposed, wherein P2X7 receptor KO altered the CPSP pain responses, numbers of astrocytes and microglia, CSD amplitude of the anterior cingulate cortex and the medial dorsal thalamus, BDNF expression, [Cl-] influx, and P2X4 expression in 100 kDa with P2X7 receptors. The present findings have implications for the clinical treatment of CPSP symptoms.
Collapse
Affiliation(s)
| | - Hsi-Chien Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan;
| | - Bai Chuang Shyu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan;
| |
Collapse
|
4
|
Vera Castro MF, Assmann CE, Reichert KP, Coppetti PM, Stefanello N, da Silva AD, Mostardeiro VB, de Jesus LB, da Silveira MV, Schirmann AA, Fracasso M, Maciel RM, Morsch VMM, Schetinger MRC. Vitamin D3 mitigates type 2 diabetes induced by a high carbohydrate-high fat diet in rats: Role of the purinergic system. J Nutr Biochem 2024; 127:109602. [PMID: 38373509 DOI: 10.1016/j.jnutbio.2024.109602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
This study evaluated the effect of vitamin D3 (VIT D3) supplementation on the enzymatic activities and density of ectonucleoside triphosphate diphosphohydrolase (E-NTPDase), ecto-5-nucleotidase (E-5'-NT), adenosine deaminase (ADA), as well as the density of P2 × 7R, P2Y12R, A1R, A2AR receptors, IL-1β, and oxidative parameters in type 2 diabetic rats. Forty male Wistar rats were fed a high carbohydrate-high fat diet (HCHFD) and received an intraperitoneal injection containing a single dose of streptozotocin (STZ, 35 mg/kg). Animals were divided into four groups: 1) control; 2) control/VIT D3 12 µg/kg; 3) diabetic; and 4) diabetic/VIT D3 12 µg/kg. Results show that VIT D3 reduced blood glucose, ATP hydrolysis, ADA activity, P2Y12R density (platelets), as well as ATP, ADP, and AMP hydrolysis and ADA activity (synaptosomes). Moreover, VIT D3 increased insulin levels and AMP hydrolysis (platelets) and improved antioxidant defense. Therefore, we suggest that VIT D3 treatment modulates hyperglycemia-induced changes via purinergic enzymes and receptor expression, consequently attenuating insulin homeostasis dysregulation in the diabetic state.
Collapse
Affiliation(s)
- Milagros Fanny Vera Castro
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil.
| | - Charles Elias Assmann
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Karine Paula Reichert
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Priscila Marquezan Coppetti
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Naiara Stefanello
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Aniélen Dutra da Silva
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Vitor Bastianello Mostardeiro
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Loren Borba de Jesus
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Marcylene Vieira da Silveira
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Adriel Antonio Schirmann
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Mateus Fracasso
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Roberto Marinho Maciel
- Department of Pathology, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Vera Maria Melchiors Morsch
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil.
| |
Collapse
|
5
|
Wang X, Yu Q, Bai X, Li X, Sun Y, Peng X, Zhao R. The role of the purinergic ligand-gated ion channel 7 receptor in common digestive system cancers. Eur J Cancer Prev 2024; 33:271-281. [PMID: 37942897 DOI: 10.1097/cej.0000000000000851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The incidence of digestive malignancies has increased in recent years, including colorectal cancer (CRC), hepatocellular carcinoma (HCC) and pancreatic cancer. Advanced stages of these cancers are prone to metastasis, which seriously reduce the standard of living of patients and lead to decline in the survival rate of patients. So far there are no good specific drugs to stop this phenomenon. It is very important and urgent to find new biomarkers and therapeutic targets. Purinergic ligand-gated ion channel 7 receptor (P2X7R) is ATP-gated and nonselective ion channel receptor involved in many inflammatory processes and cancer progression. P2X7R is present in many cancer cells and promotes or inhibits cancer development through signal transduction. Studies have presented that P2X7R plays a role in the proliferation and migration of digestive system cancers, such as CRC, HCC and pancreatic cancer. Therefore, P2X7R may serve as a biomarker or therapeutic target for digestive system cancers. This paper describes the structure and function of P2X7R, and mainly reviews the research progress on the role of P2X7R in CRC, HCC and pancreatic cancer.
Collapse
Affiliation(s)
- Xin Wang
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Qingqing Yu
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Xue Bai
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Xinyu Li
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Yanli Sun
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Xiaoxiang Peng
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Ronglan Zhao
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
6
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
7
|
Machado FA, Souza RF, Figliuolo VR, Coutinho-Silva R, Castelucci P. Effects of experimental ulcerative colitis on myenteric neurons in P2X7-knockout mice. Histochem Cell Biol 2023; 160:321-339. [PMID: 37306742 DOI: 10.1007/s00418-023-02208-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the distal colon myenteric plexus and enteric glial cells (EGCs) in P2X7 receptor-deficient (P2X7-/-) animals after the induction of experimental ulcerative colitis. 2,4,6-Trinitrobenzene sulfonic acid (TNBS) was injected into the distal colon of C57BL/6 (WT) and P2X7 receptor gene-deficient (P2X7-/-, KO) animals. Distal colon tissues in the WT and KO groups were analyzed 24 h and 4 days after administration. The tissues were analyzed by double immunofluorescence of the P2X7 receptor with neuronal nitric oxide synthase (nNOS)-immunoreactive (ir), choline acetyltransferase (ChAT)-ir, and PGP9.5 (pan neuronal)-ir, and their morphology was assessed by histology. The quantitative analysis revealed 13.9% and 7.1% decreases in the number of P2X7 receptor-immunoreactive (ir) per ganglion in the 24 h-WT/colitis and 4 day-WT/colitis groups, respectively. No reduction in the number of nNOS-ir, choline ChAT-ir, and PGP9.5-ir neurons per ganglion was observed in the 4 day-KO/colitis group. In addition, a reduction of 19.3% in the number of GFAP (glial fibrillary acidic protein)-expressing cells per ganglion was found in the 24 h-WT/colitis group, and a 19% increase in the number of these cells was detected in the 4 day-WT/colitis group. No profile area changes in neurons were observed in the 24 h-WT and 24 h-KO groups. The 4 day-WT/colitis and 4 day-KO/colitis groups showed increases in the profile neuronal areas of nNOS, ChAT, and PGP9.5. The histological analysis showed hyperemia, edema, or cellular infiltration in the 24 h-WT/colitis and 4 day-WT/colitis groups. Edema was observed in the 4 day-KO/colitis group, which showed no histological changes compared with the 24 h-KO/colitis group. We concluded that ulcerative colitis differentially affected the neuronal classes in the WT and KO animals, demonstrating the potential participation and neuroprotective effect of the P2X7 receptor in enteric neurons in inflammatory bowel disease.
Collapse
Affiliation(s)
- Felipe Alexandre Machado
- Department of Anatomy, Institute Biomedical and Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil
| | - Roberta Figueiroa Souza
- Department of Anatomy, Institute Biomedical and Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil
| | | | | | - Patricia Castelucci
- Department of Anatomy, Institute Biomedical and Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil.
| |
Collapse
|
8
|
Yin Y, Wei L, Caseley EA, Lopez‐Charcas O, Wei Y, Li D, Muench SP, Roger S, Wang L, Jiang L. Leveraging the ATP-P2X7 receptor signalling axis to alleviate traumatic CNS damage and related complications. Med Res Rev 2023; 43:1346-1373. [PMID: 36924449 PMCID: PMC10947395 DOI: 10.1002/med.21952] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 11/11/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
The P2X7 receptor is an exceptional member of the P2X purinergic receptor family, with its activation requiring high concentrations of extracellular adenosine 5'-triphosphate (ATP) that are often associated with tissue damage and inflammation. In the central nervous system (CNS), it is highly expressed in glial cells, particularly in microglia. In this review, we discuss the role and mechanisms of the P2X7 receptor in mediating neuroinflammation and other pathogenic events in a variety of traumatic CNS damage conditions, which lead to loss of neurological and cognitive functions. We raise the perspective on the steady progress in developing CNS-penetrant P2X7 receptor-specific antagonists that leverage the ATP-P2X7 receptor signaling axis as a potential therapeutic strategy to alleviate traumatic CNS damage and related complications.
Collapse
Affiliation(s)
- Yaling Yin
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
| | - Linyu Wei
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
| | - Emily A. Caseley
- Faculty of Biological Sciences, School of Biomedical SciencesUniversity of LeedsLeedsUK
| | - Osbaldo Lopez‐Charcas
- EA4245, Transplantation, Immunology and Inflammation, Faculty of MedicineUniversity of ToursToursFrance
| | - Yingjuan Wei
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
| | - Dongliang Li
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
- Sanquan College of Xinxiang Medical UniversityXinxiangChina
| | - Steve P. Muench
- Faculty of Biological Sciences, School of Biomedical SciencesUniversity of LeedsLeedsUK
| | - Sebastian Roger
- EA4245, Transplantation, Immunology and Inflammation, Faculty of MedicineUniversity of ToursToursFrance
| | - Lu Wang
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
| | - Lin‐Hua Jiang
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
- Faculty of Biological Sciences, School of Biomedical SciencesUniversity of LeedsLeedsUK
| |
Collapse
|
9
|
Pacheco PAF, Faria JV, Silva AC, von Ranke NL, Silva RC, Rodrigues CR, da Rocha DR, Faria RX. In silico and pharmacological study of N,S-acetal juglone derivatives as inhibitors of the P2X7 receptor-promoted in vitro and in vivo inflammatory response. Biomed Pharmacother 2023; 162:114608. [PMID: 37003033 DOI: 10.1016/j.biopha.2023.114608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/01/2023] Open
Abstract
Purinergic receptors are transmembrane proteins responsive to extracellular nucleotides and are expressed by several cell types throughout the human body. Among all identified subtypes, the P2×7 receptor has emerged as a relevant target for the treatment of inflammatory disease. Several clinical trials have been conducted to evaluate the effectiveness of P2×7R antagonists. However, to date, no selective antagonist has reached clinical use. In this work, we report the pharmacological evaluation of eleven N, S-acetal juglone derivatives as P2×7R inhibitors. Using in vitro assays and in vivo experimental models, we identified one derivative with promising inhibitory activity and low toxicity. Our in silico studies indicate that the 1,4-naphthoquinone moiety might be a valuable molecular scaffold for the development of novel P2×7R antagonists, as suggested by our previous studies.
Collapse
|
10
|
Mei C, Pan C, Xu L, Miao M, Lu Q, Yu Y, Lin P, Wu W, Ni F, Gao Y, Xu Y, Xu J, Chen X. Trimethoxyflavanone relieves Paclitaxel-induced neuropathic pain via inhibiting expression and activation of P2X7 and production of CGRP in mice. Neuropharmacology 2023; 236:109584. [PMID: 37225085 DOI: 10.1016/j.neuropharm.2023.109584] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/26/2023]
Abstract
Paclitaxel (PTX) is an anticancer drug used to treat solid tumors, but one of its common adverse effects is chemotherapy-induced peripheral neuropathy (CIPN). Currently, there is limited understanding of neuropathic pain associated with CIPN and effective treatment strategies are inadequate. Previous studies report the analgesic actions of Naringenin, a dihydroflavonoid compound, in pain. Here we observed that the anti-nociceptive action of a Naringenin derivative, Trimethoxyflavanone (Y3), was superior to Naringenin in PTX-induced pain (PIP). An intrathecal injection of Y3 (1 μg) reversed the mechanical and thermal thresholds of PIP and suppressed the PTX-induced hyper-excitability of dorsal root ganglion (DRG) neurons. PTX enhanced the expression of ionotropic purinergic receptor P2X7 (P2X7) in satellite glial cells (SGCs) and neurons in DRGs. The molecular docking simulation predicts possible interactions between Y3 and P2X7. Y3 reduced the PTX-enhanced P2X7 expression in DRGs. Electrophysiological recordings revealed that Y3 directly inhibited P2X7-mediated currents in DRG neurons of PTX-treated mice, suggesting that Y3 suppressed both expression and function of P2X7 in DRGs post-PTX administration. Y3 also reduced the production of calcitonin gene-related peptide (CGRP) in DRGs and at the spinal dorsal horn. Additionally, Y3 suppressed the PTX-enhanced infiltration of Iba1-positive macrophage-like cells in DRGs and overactivation of spinal astrocytes and microglia. Therefore, our results indicate that Y3 attenuates PIP via inhibiting P2X7 function, CGRP production, DRG neuron sensitization, and abnormal spinal glial activation. Our study implies that Y3 could be a promising drug candidate against CIPN-associated pain and neurotoxicity.
Collapse
Affiliation(s)
- Changqing Mei
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Chen Pan
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Linbin Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Mengmeng Miao
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Qichen Lu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yang Yu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Pengyu Lin
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Wenwei Wu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Feng Ni
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China; LeadArt Technologies Ltd., Ningbo, 315201, China
| | - Yinping Gao
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yuhao Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jia Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Xiaowei Chen
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
11
|
Zou Y, Yang R, Li L, Xu X, Liang S. Purinergic signaling: a potential therapeutic target for depression and chronic pain. Purinergic Signal 2023; 19:163-172. [PMID: 34338957 PMCID: PMC9984625 DOI: 10.1007/s11302-021-09801-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022] Open
Abstract
The comorbid mechanism of depression and chronic pain has been a research hotspot in recent years. Until now, the role of purinergic signals in the comorbid mechanism of depression and chronic pain has not been fully understood. This review mainly summarizes the research results published in PubMed during the past 5 years and concludes that purinergic signaling is a potential therapeutic target for comorbid depression and chronic pain, and the purinergic receptors A1, A2A, P2X3, P2X4, and P2X7and P2Y6, P2Y1, and P2Y12 may be important factors. The main potential pathways are as follows: A1 receptor-related G protein-dependent activation of introverted K+ channels (GIRKs), A2A receptor-related effects on the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and MAPK/nuclear factor-κB (NF-κB) pathways, P2X3 receptor-related effects on dorsal root ganglia (DRG) excitability, P2X4 receptor-related effects on proinflammatory cytokines and inflammasome activation, P2X7 receptor-related effects on ion channels, the NLRP3 inflammasome and brain-derived neurotrophic factor (BDNF), and P2Y receptor-related effects on the phospholipase C (PLC)/inositol triphosphate (IP3)/Ca2+ signaling pathway. We hope that the conclusions of this review will provide key ideas for future research on the role of purinergic signaling in the comorbid mechanism of depression and chronic pain.
Collapse
Affiliation(s)
- Yuting Zou
- First Clinical Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Runan Yang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lin Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Xiumei Xu
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China. .,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
12
|
Wang JN, Fan H, Song JT. Targeting purinergic receptors to attenuate inflammation of dry eye. Purinergic Signal 2023; 19:199-206. [PMID: 35218451 PMCID: PMC9984584 DOI: 10.1007/s11302-022-09851-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/04/2022] [Indexed: 11/28/2022] Open
Abstract
Inflammation is one of the potential factors to cause the damage of ocular surface in dry eye disease (DED). Increasing evidence indicated that purinergic A1, A2A, A3, P2X4, P2X7, P2Y1, P2Y2, and P2Y4 receptors play an important role in the regulation of inflammation in DED: A1 adenosine receptor (A1R) is a systemic pro-inflammatory factor; A2AR is involved in the activation of the MAPK/NF-kB pathway; A3R combined with inhibition of adenylate cyclase and regulation of the mitogen-activated protein kinase (MAPK) pathway leads to regulation of transcription; P2X4 promotes receptor-associated activation of pro-inflammatory cytokines and inflammatory vesicles; P2X7 promotes inflammasome activation and release of pro-inflammatory cytokines IL-1β and IL-18; P2Y receptors affect the phospholipase C(PLC)/IP3/Ca2+ signaling pathway and mucin secretion. These suggested that purinergic receptors would be promising targets to control the inflammation of DED in the future.
Collapse
Affiliation(s)
- Jia-Ning Wang
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hua Fan
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian-Tao Song
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
13
|
Tang Y, Qiao C, Li Q, Zhu X, Zhao R, Peng X. Research Progress in the Relationship Between P2X7R and Cervical Cancer. Reprod Sci 2023; 30:823-834. [PMID: 35799022 DOI: 10.1007/s43032-022-01022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022]
Abstract
Cervical cancer is one of the most common and serious tumors in women. Finding new biomarkers and therapeutic targets plays an important role in the diagnosis, prognosis, and treatment of cervical cancer. Purinergic ligand-gated ion channel 7 receptor (P2X7R) is a purine ligand cation channel, activated by adenosine triphosphate (ATP). Studies have shown that P2X7R plays an important role in a variety of diseases and cancers. More and more studies have shown that P2X7R is also closely related to cervical cancer; therefore, the role of P2X7R in the development of cervical cancer deserves further discussion. The expression level of P2X7R in uterine epithelial cancer tissues was lower than that of the corresponding normal tissues. P2X7R plays an important role in the apoptotic process of cervical cancer through various mechanisms of action, and both antagonists and agonists of P2X7R can inhibit the proliferation of cervical cancer cells, while P2X7R is involved in the antitumor effect of Atr-I on cervical cancer cells. This review evaluates the current role of P2X7R in cervical cancer in order to develop more specific therapies for cervical cancer. In conclusion, P2X7R may become a biomarker for cervical cancer screening, and even a new target for clinical treatment of cervical cancer.
Collapse
Affiliation(s)
- Yiqing Tang
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Cuicui Qiao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Qianqian Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Xiaodi Zhu
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Ronglan Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
| | - Xiaoxiang Peng
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
14
|
Yang R, Shi L, Si H, Hu Z, Zou L, Li L, Xu X, Schmalzing G, Nie H, Li G, Liu S, Liang S, Xu C. Gallic Acid Improves Comorbid Chronic Pain and Depression Behaviors by Inhibiting P2X7 Receptor-Mediated Ferroptosis in the Spinal Cord of Rats. ACS Chem Neurosci 2023; 14:667-676. [PMID: 36719132 DOI: 10.1021/acschemneuro.2c00532] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ferroptosis is an inflammatory programmed cell death process that is dependent on iron deposition and lipid peroxidation. The P2X7 receptor not only is involved in the pain process but also is closely related to the onset of depression. Gallic acid (3,4,5-trihydroxybenzoic acid), which is naturally found in a variety of plants, exhibits anti-inflammatory, antioxidant, and analgesic effects. This study established a rat model with the comorbidity of chronic constrictive injury (CCI) plus chronic unpredictable mild stress (CUMS) to explore the role and mechanism of gallic acid in the treatment of pain and depression comorbidity. Our experimental results showed that pain and depression-like behaviors were more obvious in the chronic constriction injury (CCI) plus chronic unpredictable mild stimulation (CUMS) group than they were in the sham operation group, and the P2X7-reactive oxygen species (ROS) signaling pathway was activated. The tissue iron concentration was increased, and mitochondrial damage was observed in the CCI plus CUMS group. These results were alleviated with gallic acid treatment. Therefore, we speculate that gallic acid inhibits the ferroptosis of the spinal microglia by regulating the P2X7-ROS signaling pathway and relieves the behavioral changes in rats with comorbid pain and depression.
Collapse
Affiliation(s)
- Runan Yang
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| | - Liran Shi
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,The People's Hospital of Jiawang of Xuzhou, Xuzhou, Jiangsu 221011, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| | - Han Si
- Nursing College, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Zihui Hu
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| | - Lifang Zou
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Clinical Research Center for Hematologic Disease of Jiangxi Province, Nanchang, Jiangxi 330006, P. R. China
| | - Lin Li
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| | - Xiumei Xu
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| | - Günther Schmalzing
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen 52062, Germany
| | - Hong Nie
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Guilin Li
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| | - Shuangmei Liu
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| | - Changshui Xu
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| |
Collapse
|
15
|
Pacheco PAF, Gonzaga DTG, von Ranke NL, Rodrigues CR, da Rocha DR, da Silva FDC, Ferreira VF, Faria RX. Synthesis, Biological Evaluation and Molecular Modeling Studies of Naphthoquinone Sulfonamides and Sulfonate Ester Derivatives as P2X7 Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020590. [PMID: 36677652 PMCID: PMC9866630 DOI: 10.3390/molecules28020590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023]
Abstract
ATP acts in the extracellular environment as an important signal, activating a family of receptors called purinergic receptors. In recent years, interest in the potential therapeutics of purinergic components, including agonists and antagonists of receptors, has increased. Currently, many observations have indicated that ATP acts as an important mediator of inflammatory responses and, when found in high concentrations in the extracellular space, is related to the activation of the P2X7 purinergic receptor. In this sense, the search for new inhibitors for this receptor has attracted a great deal of attention in recent years. Sulfonamide derivatives have been reported to be potent inhibitors of P2X receptors. In this study, ten naphthoquinone sulfonamide derivatives and five naphthoquinone sulfonate ester derivatives were tested for their inhibitory activity on the P2X7 receptor expressed in peritoneal macrophages. Some compounds showed promising results, displaying IC50 values lower than that of A740003. Molecular docking and dynamic studies also indicated that the active compounds bind to an allosteric site on P2X7R. The binding free energy indicates that sulfonamides have an affinity for the P2X7 receptor similar to A740003. Therefore, the compounds studied herein present potential P2X7R inhibition.
Collapse
Affiliation(s)
| | - Daniel Tadeu Gomes Gonzaga
- Departament of Pharmacy, West Zone Campus, State University of Rio de Janeiro, Rio de Janeiro 23070-200, Brazil
| | - Natalia Lidmar von Ranke
- Department of Pharmaceuticals and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
| | - Carlos Rangel Rodrigues
- Department of Pharmaceuticals and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
| | - David Rodrigues da Rocha
- Department of Organic Chemistry, Institute of Chemistry, Federal Fluminense University, Niterói 24020-141, Brazil
| | | | - Vitor Francisco Ferreira
- Department of Organic Chemistry, Institute of Chemistry, Federal Fluminense University, Niterói 24020-141, Brazil
| | - Robson Xavier Faria
- Evaluation and Promotion of the Ambiental Health Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
- Postgraduate Program in Sciences and Biotechnology, Institute of Biology, Federal Fluminense University, Niterói 24210-130, Brazil
- Correspondence:
| |
Collapse
|
16
|
Qiao C, Tang Y, Li Q, Zhu X, Peng X, Zhao R. ATP-gated P2X7 receptor as a potential target for prostate cancer. Hum Cell 2022; 35:1346-1354. [PMID: 35657562 DOI: 10.1007/s13577-022-00729-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/18/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer is the most common malignancy of the male genitourinary system and is one of the leading causes of male cancer death. The P2X7 receptor is an important member of purine receptor family. It is a gated ion channel with adenosine triphosphate (ATP) as the ligand, which exists in a variety of immune tissues and cells and can be involved in tumorigenesis and tumor progression. Studies have shown that the P2X7 receptor is abnormally expressed in prostate cancer, and is related to the level of prostate-specific antigen, P2X7 receptor may be an early biomarker of prostate cancer. The P2X7 receptor is essential in the occurrence and development of prostate cancer. The P2X7 receptor mainly affects the invasion and metastasis of prostate cancer cells through epithelial mesenchymal transition/invasion-related genes and the PI3K/AKT and ERK1/2 signaling pathways. The P2X7 receptor could be a promising therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Cuicui Qiao
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Yiqing Tang
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Qianqian Li
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xiaodi Zhu
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xiaoxiang Peng
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Ronglan Zhao
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China.
| |
Collapse
|
17
|
Chernenko AY, Baydikova VA, Astakhov AV, Minyaev ME, Chernyshev VM. Nickel-Catalyzed N-Arylation of C-Amino-1,2,4-triazoles with Arylboronic Acids. DOKLADY CHEMISTRY 2022. [DOI: 10.1134/s0012500822700057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Astakhov AV, Chernenko AY, Kutyrev VV, Ranny GS, Minyaev ME, Chernyshev VM, Ananikov VP. Selective Buchwald–Hartwig arylation of C-amino-1,2,4-triazoles and other coordinating aminoheterocycles enabled by bulky NHC ligands and TPEDO activator. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01832b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A facile method for selective N-(hetero)arylation of coordinating 3(5)-amino-1,2,4-triazoles under Pd/NHC catalysis using TPEDO as a new efficient Pd(ii) to Pd(0) reductant has been developed.
Collapse
Affiliation(s)
- Alexander V. Astakhov
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Andrey Yu. Chernenko
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Vadim V. Kutyrev
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Gleb S. Ranny
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Mikhail E. Minyaev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Victor M. Chernyshev
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Valentine P. Ananikov
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
19
|
Magalhães HIR, Castelucci P. Enteric nervous system and inflammatory bowel diseases: Correlated impacts and therapeutic approaches through the P2X7 receptor. World J Gastroenterol 2021; 27:7909-7924. [PMID: 35046620 PMCID: PMC8678817 DOI: 10.3748/wjg.v27.i46.7909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/19/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
The enteric nervous system (ENS) consists of thousands of small ganglia arranged in the submucosal and myenteric plexuses, which can be negatively affected by Crohn's disease and ulcerative colitis - inflammatory bowel diseases (IBDs). IBDs are complex and multifactorial disorders characterized by chronic and recurrent inflammation of the intestine, and the symptoms of IBDs may include abdominal pain, diarrhea, rectal bleeding, and weight loss. The P2X7 receptor has become a promising therapeutic target for IBDs, especially owing to its wide expression and, in the case of other purinergic receptors, in both human and model animal enteric cells. However, little is known about the actual involvement between the activation of the P2X7 receptor and the cascade of subsequent events and how all these activities associated with chemical signals interfere with the functionality of the affected or treated intestine. In this review, an integrated view is provided, correlating the structural organization of the ENS and the effects of IBDs, focusing on cellular constituents and how therapeutic approaches through the P2X7 receptor can assist in both protection from damage and tissue preservation.
Collapse
Affiliation(s)
| | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 08000-000, Brazil
| |
Collapse
|
20
|
Li Y, Chen J, Bolinger AA, Chen H, Liu Z, Cong Y, Brasier AR, Pinchuk IV, Tian B, Zhou J. Target-Based Small Molecule Drug Discovery Towards Novel Therapeutics for Inflammatory Bowel Diseases. Inflamm Bowel Dis 2021; 27:S38-S62. [PMID: 34791293 DOI: 10.1093/ibd/izab190] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), is a class of severe and chronic diseases of the gastrointestinal (GI) tract with recurrent symptoms and significant morbidity. Long-term persistence of chronic inflammation in IBD is a major contributing factor to neoplastic transformation and the development of colitis-associated colorectal cancer. Conversely, persistence of transmural inflammation in CD is associated with formation of fibrosing strictures, resulting in substantial morbidity. The recent introduction of biological response modifiers as IBD therapies, such as antibodies neutralizing tumor necrosis factor (TNF)-α, have replaced nonselective anti-inflammatory corticosteroids in disease management. However, a large proportion (~40%) of patients with the treatment of anti-TNF-α antibodies are discontinued or withdrawn from therapy because of (1) primary nonresponse, (2) secondary loss of response, (3) opportunistic infection, or (4) onset of cancer. Therefore, the development of novel and effective therapeutics targeting specific signaling pathways in the pathogenesis of IBD is urgently needed. In this comprehensive review, we summarize the recent advances in drug discovery of new small molecules in preclinical or clinical development for treating IBD that target biologically relevant pathways in mucosal inflammation. These include intracellular enzymes (Janus kinases, receptor interacting protein, phosphodiesterase 4, IκB kinase), integrins, G protein-coupled receptors (S1P, CCR9, CXCR4, CB2) and inflammasome mediators (NLRP3), etc. We will also discuss emerging evidence of a distinct mechanism of action, bromodomain-containing protein 4, an epigenetic regulator of pathways involved in the activation, communication, and trafficking of immune cells. We highlight their chemotypes, mode of actions, structure-activity relationships, characterizations, and their in vitro/in vivo activities and therapeutic potential. The perspectives on the relevant challenges, new opportunities, and future directions in this field are also discussed.
Collapse
Affiliation(s)
- Yi Li
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jianping Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew A Bolinger
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Haiying Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Zhiqing Liu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Allan R Brasier
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin, Madison, WI, USA
| | - Irina V Pinchuk
- Department of Medicine, Penn State Health Milton S. Hershey Medical Center, PA, USA
| | - Bing Tian
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
21
|
Zhao Y, Chen X, He C, Gao G, Chen Z, Du J. Discovery of bilirubin as novel P2X7R antagonist with anti-tumor activity. Bioorg Med Chem Lett 2021; 51:128361. [PMID: 34543755 DOI: 10.1016/j.bmcl.2021.128361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 01/04/2023]
Abstract
As a unique ligand gated ion channel in the P2-receptor family, P2X7R is highly expressed in various tumors. The activated P2X7R facilitates tumor growth and metastasis. Hypoxia, inflammation and necrosis in the tumor microenvironment (TME) cause a large amount of adenosine triphosphate (ATP) accumulated in the TME. High concentration of ATP can abnormally activate P2X7R, which induces pore formation and further facilitates the Ca2+ ion influx and non-specific substance intake. Therefore, inhibition of P2X7R activation can be applied as a potential anti-tumor therapy strategy. However, there is currently no FDA approved drugs for this target for anti-tumor treatment. In this study, we identified bilirubin as novel P2X7R antagonist by using structure based virtual screening combined with cell based assays. Molecular docking studies indicated that bilirubin probably interacted with P2X7R by forming hydrogen-π interactions with residues V173, E174 and K311. The compound bilirubin inhibited the P2X7R gated EB intake by cancer cells. Meanwhile, bilirubin was capable to inhibit the cell proliferation and migration of P2X7R expressed HT29 cells. The phosphorylation of mTOR, STAT3 and GSK3β were significantly decreased when bilirubin was present. Finally, in vivo experiment exhibited the anti-tumor effect of bilirubin in the MC38 bearing mice model, but did not show tissue damage in different organs. In conclusion, bilirubin was identified as a novel P2X7R antagonist and it may have potential for anti-cancer treatment, although various functions of the molecule should be considered.
Collapse
Affiliation(s)
- Yunshuo Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaotong Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chuanjie He
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guanfei Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jiangfeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
22
|
Zhao Y, Chen X, Lyu S, Ding Z, Wu Y, Gao Y, Du J. Identification of novel P2X7R antagonists by using structure-based virtual screening and cell-based assays. Chem Biol Drug Des 2021; 98:192-205. [PMID: 33993620 DOI: 10.1111/cbdd.13867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022]
Abstract
In the tumor microenvironment, inflammation and necrosis cause the accumulations of ATP extracellularly, and high concentrations of ATP can activate P2X7 receptors (P2X7R), which leads to the influx of Na+ , K+ , or Ca2+ into cells and trigger the downstream signaling pathways. P2X7R is a relatively unique ligand-gated ion channel, which is over-expressed in most tumor cells. The activated P2X7R facilitates the tumor growth, invasion, and metastasis. Inhibition of the P2X7R activation can be applied as a potential anti-tumor therapy strategy. There are currently no anti-tumor agents against P2X7R, though several P2X7R antagonists for indications such as anti-inflammatory and anti-depression were reported. In this study, we combined homology modeling (HM), virtual screening, and EB intake assay to characterize the structural features of P2X7R and identify several novel antagonists, which were chemically different from any other known P2X7R antagonists. The identified antagonists could effectively prevent the pore opening of P2X7R with IC50 values ranging from 29.14 to 35.34 μM. HM model showed the area between ATP-binding pocket, and allosteric sides were hydrophobic and suitable for small molecule interaction. Molecular docking indicated a universal binding mode, of which residues R294 and K311 were used as hydrogen bond donors to participate in antagonist interactions. The binding mode can potentially be utilized for inhibitor optimization for increased affinity, and the identified antagonists can be further tested for anti-cancer activity or may serve as chemical agents to study P2X7R related functions.
Collapse
Affiliation(s)
- Yunshuo Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaotong Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Sifan Lyu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhe Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiangfeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Herb-partitioned moxibustion alleviates colonic inflammation in Crohn's disease rats by inhibiting hyperactivation of the NLRP3 inflammasome via regulation of the P2X7R-Pannexin-1 signaling pathway. PLoS One 2021; 16:e0252334. [PMID: 34043726 PMCID: PMC8158928 DOI: 10.1371/journal.pone.0252334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/12/2021] [Indexed: 01/12/2023] Open
Abstract
Crohn's disease is a chronic inflammatory bowel disease and the NLRP3 inflammasome plays an important role in Crohn's disease. Previous studies have shown that Herb-partitioned moxibustion treating (at Qihai (CV 6) and Tianshu (ST 25)) prevented the excessive activation of the NLRP3 inflammasome and repaired damaged colonic mucosa in Crohn's disease. However, the mechanism by which Herb-partitioned moxibustion (at CV 6 and ST 25) regulates NLRP3 remains unclear. In this study, we treated Crohn's disease rats with herb-partitioned moxibustion (at CV 6 and ST 25) to investigate the mechanism by which Herb-partitioned moxibustion regulates the colonic NLRP3 inflammasome by observing colon length, the colon macroscopic damage indexes, and the expression of ATP, P2X7R, Pannexin-1, NF-κBp65, NLRP3, ASC, caspase-1, IL-1β and IL-18 in the colon in Crohn's disease. Here, this study shows that herb-partitioned moxibustion (at CV 6 and ST 25) can reduce colon macroscopic damage indexes and colon histopathological scores, alleviate colon shortening and block the abnormal activation of the NLRP3 inflammasome by inhibiting the ATP content and the expression of P2X7R, Pannexin-1 and NF-κBp65, thereby reducing the release of the downstream inflammatory cytokine IL-1β and ultimately suppressing colonic inflammation in Crohn's disease rats. This study for the first time identifies the mechanism by which herb-partitioned moxibustion (at CV 6 and ST 25) may inhibit the abnormal activation of the NLRP3 inflammasome by inhibiting the P2X7R-Pannexin-1 signaling pathway in Crohn's disease rats.
Collapse
|
24
|
Territo PR, Zarrinmayeh H. P2X 7 Receptors in Neurodegeneration: Potential Therapeutic Applications From Basic to Clinical Approaches. Front Cell Neurosci 2021; 15:617036. [PMID: 33889073 PMCID: PMC8055960 DOI: 10.3389/fncel.2021.617036] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/02/2021] [Indexed: 12/27/2022] Open
Abstract
Purinergic receptors play important roles in central nervous system (CNS), where the bulk of these receptors are implicated in neuroinflammatory responses and regulation of cellular function of neurons, microglial and astrocytes. Within the P2X receptor family, P2X7 receptor is generally known for its inactivity in normal conditions and activation by moderately high concentrations (>100 μM) of extracellular adenosine 5′-triphosphate (ATP) released from injured cells as a result of brain injury or pathological conditions. Activation of P2X7R contributes to the activation and proliferation of microglia and directly contribute to neurodegeneration by provoking microglia-mediated neuronal death, glutamate-mediated excitotoxicity, and NLRP3 inflammasome activation that results in initiation, maturity and release of the pro-inflammatory cytokines and generation of reactive oxygen and nitrogen species. These components of the inflammatory response play important roles in many neural pathologies and neurodegeneration disorders. In CNS, expression of P2X7R on microglia, astrocytes, and oligodendrocytes are upregulated under neuroinflammatory conditions. Several in vivo studies have demonstrated beneficial effects of the P2X7 receptor antagonists in animal model systems of neurodegenerative diseases. A number of specific and selective P2X7 receptor antagonists have been developed, but only few of them have shown efficient brain permeability. Finding potent and selective P2X7 receptor inhibitors which are also CNS penetrable and display acceptable pharmacokinetics (PK) has presented challenges for both academic researchers and pharmaceutical companies. In this review, we discuss the role of P2X7 receptor function in neurodegenerative diseases, the pharmacological inhibition of the receptor, and PET radiopharmaceuticals which permit non-invasive monitoring of the P2X7 receptor contribution to neuroinflammation associated with neurodegeneration.
Collapse
Affiliation(s)
- Paul R Territo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hamideh Zarrinmayeh
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
25
|
Castro MFV, Stefanello N, Assmann CE, Baldissarelli J, Bagatini MD, da Silva AD, da Costa P, Borba L, da Cruz IBM, Morsch VM, Schetinger MRC. Modulatory effects of caffeic acid on purinergic and cholinergic systems and oxi-inflammatory parameters of streptozotocin-induced diabetic rats. Life Sci 2021; 277:119421. [PMID: 33785337 DOI: 10.1016/j.lfs.2021.119421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by a chronic hyperglycemia state, increased oxidative stress parameters, and inflammatory processes. AIMS To evaluate the effect of caffeic acid (CA) on ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) and adenosine deaminase (ADA) enzymatic activity and expression of the A2A receptor of the purinergic system, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymatic activity and expression of the α7nAChR receptor of the cholinergic system as well as inflammatory and oxidative parameters in diabetic rats. METHODS Diabetes was induced by a single dose intraperitoneally of streptozotocin (STZ, 55 mg/kg). Animals were divided into six groups (n = 10): control/oil; control/CA 10 mg/kg; control/CA 50 mg/kg; diabetic/oil; diabetic/CA 10 mg/kg; and diabetic/CA 50 mg/kg treated for thirty days by gavage. RESULTS CA treatment reduced ATP and ADP hydrolysis (lymphocytes) and ATP levels (serum), and reversed the increase in ADA and AChE (lymphocytes), BuChE (serum), and myeloperoxidase (MPO, plasma) activities in diabetic rats. CA treatment did not attenuate the increase in IL-1β and IL-6 gene expression (lymphocytes) in the diabetic state; however, it increased IL-10 and A2A gene expression, regardless of the animals' condition (healthy or diabetic), and α7nAChR gene expression. Additionally, CA attenuated the increase in oxidative stress markers and reversed the decrease in antioxidant parameters of diabetic animals. CONCLUSION Overall, our findings indicated that CA treatment positively modulated purinergic and cholinergic enzyme activities and receptor expression, and improved oxi-inflammatory parameters, thus suggesting that this phenolic acid could improve redox homeostasis dysregulation and purinergic and cholinergic signaling in the diabetic state.
Collapse
Affiliation(s)
- Milagros Fanny Vera Castro
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil.
| | - Naiara Stefanello
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Charles Elias Assmann
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Jucimara Baldissarelli
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Margarete Dulce Bagatini
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Aniélen Dutra da Silva
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Pauline da Costa
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Loren Borba
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Ivana Beatrice Mânica da Cruz
- Post-Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Vera Maria Morsch
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
26
|
T Pournara D, Durner A, Kritsi E, Papakostas A, Zoumpoulakis P, Nicke A, Koufaki M. Design, Synthesis, and in vitro Evaluation of P2X7 Antagonists. ChemMedChem 2020; 15:2530-2543. [PMID: 32964578 DOI: 10.1002/cmdc.202000303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/09/2020] [Indexed: 01/03/2023]
Abstract
The P2X7 receptor is a promising target for the treatment of various diseases due to its significant role in inflammation and immune cell signaling. This work describes the design, synthesis, and in vitro evaluation of a series of novel derivatives bearing diverse scaffolds as potent P2X7 antagonists. Our approach was based on structural modifications of reported (adamantan-1-yl)methylbenzamides able to inhibit the receptor activation. The adamantane moieties and the amide bond were replaced, and the replacements were evaluated by a ligand-based pharmacophore model. The antagonistic potency of the synthesized analogues was assessed by two-electrode voltage clamp experiments, using Xenopus laevis oocytes that express the human P2X7 receptor. SAR studies suggested that the replacement of the adamantane ring by an aryl-cyclohexyl moiety afforded the most potent antagonists against the activation of the P2X7 cation channel, with analogue 2-chloro-N-[1-(3-(nitrooxymethyl)phenyl)cyclohexyl)methyl]benzamide (56) exhibiting the best potency with an IC50 value of 0.39 μM.
Collapse
Affiliation(s)
- Dimitra T Pournara
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635, Athens, Greece) E-mail: mailto
| | - Anna Durner
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Nußbaumstr. 26, 80336, München, Germany
| | - Eftichia Kritsi
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635, Athens, Greece) E-mail: mailto
| | - Alexios Papakostas
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635, Athens, Greece) E-mail: mailto
| | - Panagiotis Zoumpoulakis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635, Athens, Greece) E-mail: mailto
| | - Annette Nicke
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Nußbaumstr. 26, 80336, München, Germany
| | - Maria Koufaki
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635, Athens, Greece) E-mail: mailto
| |
Collapse
|
27
|
dos Anjos F, Simões JLB, Assmann CE, Carvalho FB, Bagatini MD. Potential Therapeutic Role of Purinergic Receptors in Cardiovascular Disease Mediated by SARS-CoV-2. J Immunol Res 2020; 2020:8632048. [PMID: 33299899 PMCID: PMC7709498 DOI: 10.1155/2020/8632048] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Novel coronavirus disease 2019 (COVID-19) causes pulmonary and cardiovascular disorders and has become a worldwide emergency. Myocardial injury can be caused by direct or indirect damage, particularly mediated by a cytokine storm, a disordered immune response that can cause myocarditis, abnormal coagulation, arrhythmia, acute coronary syndrome, and myocardial infarction. The present review focuses on the mechanisms of this viral infection, cardiac biomarkers, consequences, and the possible therapeutic role of purinergic and adenosinergic signalling systems. In particular, we focus on the interaction of the extracellular nucleotide adenosine triphosphate (ATP) with its receptors P2X1, P2X4, P2X7, P2Y1, and P2Y2 and of adenosine (Ado) with A2A and A3 receptors, as well as their roles in host immune responses. We suggest that receptors of purinergic signalling could be ideal candidates for pharmacological targeting to protect against myocardial injury caused by a cytokine storm in COVID-19, in order to reduce systemic inflammatory damage to cells and tissues, preventing the progression of the disease by modulating the immune response and improving patient quality of life.
Collapse
Affiliation(s)
- Fernanda dos Anjos
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | | | - Charles Elias Assmann
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Margarete Dulce Bagatini
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| |
Collapse
|
28
|
Fan X, Ma W, Zhang Y, Zhang L. P2X7 Receptor (P2X7R) of Microglia Mediates Neuroinflammation by Regulating (NOD)-Like Receptor Protein 3 (NLRP3) Inflammasome-Dependent Inflammation After Spinal Cord Injury. Med Sci Monit 2020; 26:e925491. [PMID: 32952148 PMCID: PMC7518010 DOI: 10.12659/msm.925491] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Microglia participate in mediating neuroinflammation in which P2X7R triggered by adenosine triphosphate has a critical effect after spinal cord injury. However, how the P2X7R of microglia regulate neuroinflammation after spinal cord injury is still unclear. The aim of this study was to explore the mechanism by which the P2X7 receptor of microglia regulates neuroinflammation after spinal cord injury in NLRP3 inflammasome-dependent inflammation. Material/Methods Sixt rats were divided into 5 groups: a sham group, a model group, a BzATP group, an A-438079 group, and a BzATP+CY-09 group. Rats in the sham group were only subjected to laminectomy and rats in the other groups were subjected to spinal cord injury followed by treatment with physiological saline, BzATP, A-438079, and BzATP following CY-09, separately. Real-time polymerase chain reaction, Western blot, immunofluorescence staining, and enzyme-linked immunosorbent assay were used to analyze the scientific hypothesis. Results (i) P2X7R of microglia was upregulated and downregulated by BzATP, and A-438079 was upregulated after spinal cord injury. (ii) Upregulation of P2X7R on microglia is coincident with increase of neuroinflammation after spinal cord injury. (iii) P2X7R of microglia participates in spinal cord-mediated neuroinflammation via regulating NLRP3 inflammasome-dependent inflammation. Conclusions P2X7R of microglia in spinal cord mediates neuroinflammation by regulating NLRP3 inflammasome-dependent inflammation after spinal cord injury.
Collapse
Affiliation(s)
- Xiao Fan
- Qingdao Municipal Hospital, Qingdao, Shandong, China (mainland).,Fujian Universities and Colleges Engineering Research Center of Marine Biopharmaceutical Resources, Xiamen, Fujian, China (mainland)
| | - Wei Ma
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Yingyu Zhang
- Qingdao Municipal Hospital, Qingdao, Shandong, China (mainland)
| | - Li Zhang
- Fujian Universities and Colleges Engineering Research Center of Marine Biopharmaceutical Resources, Xiamen, Fujian, China (mainland).,Xiamen Medical College, Xiamen, Fujian, China (mainland)
| |
Collapse
|
29
|
de Luna Martins D, Borges AA, E Silva NADA, Faria JV, Hoelz LVB, de Souza HVCM, Bello ML, Boechat N, Ferreira VF, Faria RX. P2X7 receptor inhibition by 2-amino-3-aryl-1,4-naphthoquinones. Bioorg Chem 2020; 104:104278. [PMID: 33010623 DOI: 10.1016/j.bioorg.2020.104278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022]
Abstract
Extracellular ATP activates purinergic receptors such as P2X7, cationic channels for Ca2+, K+, and Na+. There is robust evidence of the involvement of these receptors in the immune response, so P2X7 receptors (P2X7R) are considered a potential therapeutic target for the development of anti-inflammatory drugs. Although there are many studies of the anti-inflammatory properties of naphthoquinones, these molecules have not yet been explored as P2X7 antagonists. In previous work, our group prepared 3-substituted (halogen or aryl) 2-hydroxy-1,4-naphthoquinones and studied their action on P2X7R. In this paper, eight 2-amino-3-aryl-1,4-naphthoquinones were evaluated to identify the inhibitory activity on P2X7R and the toxicological profile. Three analogues (AD-4CN, AD-4Me, and AD-4F) exhibited reduced toxicity for mammalian cells with CC50 values higher than 500 µM. These three 3-substituted 2-amino-1,4-naphthoquinones inhibited murine P2X7R (mP2X7R) in vitro. However, the analogues AD-4CN and AD-4Me showed low selectivity index values. AD-4F inhibited both mP2X7R and human P2X7R (hP2X7R) with IC50 values of 0.123 and 0.93 µM, respectively. Additionally, this analogue exhibited higher potency than BBG at inhibiting the ATP-induced release of IL-1β in vitro. Carrageenan-induced paw edema in vivo was reversed for AD-4F with an ID50 value of 11.51 ng/kg. Although AD-4F was less potent than previous 3-substituted (halogen or aryl) 2-hydroxy-1,4-naphthoquinones such as AN-04in vitro, this 3-substituted 2-amino-1,4-naphthoquinone revealed higher potency in vivo to reduce the edematogenic response. In silico analysis suggests that the binding site of the novel 2-amino-3-aryl-1,4-naphthoquinone derivatives, including all the tautomeric forms, is located in the pore area of the hP2X7R model. Based on these results, we considered AD-4F to be a satisfactory P2X7R inhibitor. AD-4F might be used as a scaffold structure to design a novel series of inhibitors with potential inhibitory activity on murine (mP2X7R) and human (hP2X7R) P2X7 receptors.
Collapse
Affiliation(s)
- Daniela de Luna Martins
- Research Group on Catalysis and Synthesis (CSI), Universidade Federal Fluminense, Laboratório 413, Instituto de Química, Campus do Valonguinho, Centro, Niterói, RJ 24020-141, Brazil. https://www.facebook.com/LabCSI/
| | - Adriel Alves Borges
- Research Group on Catalysis and Synthesis (CSI), Universidade Federal Fluminense, Laboratório 413, Instituto de Química, Campus do Valonguinho, Centro, Niterói, RJ 24020-141, Brazil
| | - Nayane A do A E Silva
- Research Group on Catalysis and Synthesis (CSI), Universidade Federal Fluminense, Laboratório 413, Instituto de Química, Campus do Valonguinho, Centro, Niterói, RJ 24020-141, Brazil
| | - Juliana Vieira Faria
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Toxoplasmose e outras protozooses, Avenida Brasil 4365, Manguinhos CEP 21045-900, Rio de Janeiro, RJ, Brazil
| | - Lucas Villas Bôas Hoelz
- Laboratorio de Sintese de Farmacos - LASFAR, Farmanguinhos - Fiocruz, Fundacao Oswaldo Cruz, Rua Sizenando Nabuco, 100 - Manguinhos, Rio de Janeiro, RJ 21041-250, Brazil
| | - Hellen Valério Chaves Moura de Souza
- Laboratorio de Sintese de Farmacos - LASFAR, Farmanguinhos - Fiocruz, Fundacao Oswaldo Cruz, Rua Sizenando Nabuco, 100 - Manguinhos, Rio de Janeiro, RJ 21041-250, Brazil
| | - Murilo Lamim Bello
- Laboratório de Planejamento Farmacêutico e Simulação Computacional, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Nubia Boechat
- Laboratorio de Sintese de Farmacos - LASFAR, Farmanguinhos - Fiocruz, Fundacao Oswaldo Cruz, Rua Sizenando Nabuco, 100 - Manguinhos, Rio de Janeiro, RJ 21041-250, Brazil
| | - Vitor Francisco Ferreira
- Departamento de Tecnologia Farmacêutica, Universidade Federal Fluminense, Faculdade de Farmácia, R. Dr Mario Vianna, 523 - Santa Rosa, Niterói, RJ 24241-002, Brazil
| | - Robson Xavier Faria
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Toxoplasmose e outras protozooses, Avenida Brasil 4365, Manguinhos CEP 21045-900, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
30
|
The P2X7 purinergic receptor: a potential therapeutic target for lung cancer. J Cancer Res Clin Oncol 2020; 146:2731-2741. [PMID: 32892231 DOI: 10.1007/s00432-020-03379-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Purinergic P2X7 receptor (P2X7R) is a gated ion channel for which adenosine triphosphate (ATP) is a ligand. Activated P2X7R is widely expressed in a variety of immune cells and tissues and is involved in a variety of physiological and pathological processes. Studies have confirmed that P2X7R is involved in the regulation of tumor cell growth, stimulating cell proliferation or inducing apoptosis. Recent studies have found that P2X7R is abnormally expressed in lung cancer and is closely related to the carcinogenesis and development of lung cancer. In this paper, we comprehensively describe the structure, function, and genetic polymorphisms of P2X7R. In particular, the role and therapeutic potential of P2X7R in lung cancer are discussed to provide new targets and new strategies for the treatment and prognosis of clinical lung cancer. METHODS The relevant literature on P2X7R and lung cancer from PubMed databases is reviewed in this article. RESULTS P2X7R regulates the function of lung cancer cells by activating multiple intracellular signaling pathways (such as the JNK, Rho, HMGB1 and EMT pathways), thereby affecting cell survival, growth, invasion, and metastasis and patient prognosis. Targeting P2X7R with inhibitors effectively suppresses the growth and metastasis of lung cancer cells. CONCLUSION In summary, P2X7R is expected to become a potential target for the treatment of lung cancer, and more clinical research is needed in the future to explore the effectiveness of P2X7R antagonists as treatments.
Collapse
|
31
|
Lara R, Adinolfi E, Harwood CA, Philpott M, Barden JA, Di Virgilio F, McNulty S. P2X7 in Cancer: From Molecular Mechanisms to Therapeutics. Front Pharmacol 2020; 11:793. [PMID: 32581786 PMCID: PMC7287489 DOI: 10.3389/fphar.2020.00793] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
P2X7 is a transmembrane receptor expressed in multiple cell types including neurons, dendritic cells, macrophages, monocytes, B and T cells where it can drive a wide range of physiological responses from pain transduction to immune response. Upon activation by its main ligand, extracellular ATP, P2X7 can form a nonselective channel for cations to enter the cell. Prolonged activation of P2X7, via high levels of extracellular ATP over an extended time period can lead to the formation of a macropore, leading to depolarization of the plasma membrane and ultimately to cell death. Thus, dependent on its activation state, P2X7 can either drive cell survival and proliferation, or induce cell death. In cancer, P2X7 has been shown to have a broad range of functions, including playing key roles in the development and spread of tumor cells. It is therefore unsurprising that P2X7 has been reported to be upregulated in several malignancies. Critically, ATP is present at high extracellular concentrations in the tumor microenvironment (TME) compared to levels observed in normal tissues. These high levels of ATP should present a survival challenge for cancer cells, potentially leading to constitutive receptor activation, prolonged macropore formation and ultimately to cell death. Therefore, to deliver the proven advantages for P2X7 in driving tumor survival and metastatic potential, the P2X7 macropore must be tightly controlled while retaining other functions. Studies have shown that commonly expressed P2X7 splice variants, distinct SNPs and post-translational receptor modifications can impair the capacity of P2X7 to open the macropore. These receptor modifications and potentially others may ultimately protect cancer cells from the negative consequences associated with constitutive activation of P2X7. Significantly, the effects of both P2X7 agonists and antagonists in preclinical tumor models of cancer demonstrate the potential for agents modifying P2X7 function, to provide innovative cancer therapies. This review summarizes recent advances in understanding of the structure and functions of P2X7 and how these impact P2X7 roles in cancer progression. We also review potential therapeutic approaches directed against P2X7.
Collapse
Affiliation(s)
- Romain Lara
- Biosceptre (UK) Limited, Cambridge, United Kingdom
| | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mike Philpott
- Centre for Cutaneous Research, Blizard Institute, Bart's & The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
32
|
Tian M, Abdelrahman A, Baqi Y, Fuentes E, Azazna D, Spanier C, Densborn S, Hinz S, Schmid R, Müller CE. Discovery and Structure Relationships of Salicylanilide Derivatives as Potent, Non-acidic P2X1 Receptor Antagonists. J Med Chem 2020; 63:6164-6178. [PMID: 32345019 DOI: 10.1021/acs.jmedchem.0c00435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antagonists for the ATP-gated ion channel receptor P2X1 have potential as antithrombotics and for treating hyperactive bladder and inflammation. In this study, salicylanilide derivatives were synthesized based on a screening hit. P2X1 antagonistic potency was assessed in 1321N1 astrocytoma cells stably transfected with the human P2X1 receptor by measuring inhibition of the ATP-induced calcium influx. Structure-activity relationships were analyzed, and selectivity versus other P2X receptor subtypes was assessed. The most potent compounds, N-[3,5-bis(trifluoromethyl)phenyl]-5-chloro-2-hydroxybenzamide (1, IC50 0.0192 μM) and N-[3,5-bis(trifluoromethyl)phenyl]-4-chloro-2-hydroxybenzamide (14, IC50 0.0231 μM), displayed >500-fold selectivity versus P2X2 and P2X3, and 10-fold selectivity versus P2X4 and P2X7 receptors, and inhibited collagen-induced platelet aggregation. They behaved as negative allosteric modulators, and molecular modeling studies suggested an extracellular binding site. Besides selective P2X1 antagonists, compounds with ancillary P2X4 and/or P2X7 receptor inhibition were discovered. These compounds represent the first potent, non-acidic, allosteric P2X1 receptor antagonists reported to date.
Collapse
Affiliation(s)
- Maoqun Tian
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Aliaa Abdelrahman
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Younis Baqi
- Department of Chemistry, Faculty of Science, Sultan Qaboos University, P.O. Box 36, 123 Muscat, Oman
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, 3460000 Talca, Chile
| | - Djamil Azazna
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Claudia Spanier
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Sabrina Densborn
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Sonja Hinz
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, U.K.,Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, U.K
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
33
|
Hiller NDJ, do Amaral e Silva NA, Tavares TA, Faria RX, Eberlin MN, de Luna Martins D. Arylboronic Acids and their Myriad of Applications Beyond Organic Synthesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Noemi de Jesus Hiller
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Nayane Abreu do Amaral e Silva
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Thais Apolinário Tavares
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Robson Xavier Faria
- Laboratório de Toxoplasmose e outras Protozooses; Instituto Oswaldo Cruz, Fiocruz; Av. Brasil, 4365 Manguinhos Rio de Janeiro RJ 21040-360 Brasil
| | - Marcos Nogueira Eberlin
- Mackenzie Presbyterian University; School of Engineering; Rua da Consolação, 930 SP 01302-907 São Paulo Brasil
| | - Daniela de Luna Martins
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| |
Collapse
|
34
|
Ni CM, Sun HP, Xu X, Ling BY, Jin H, Zhang YQ, Zhao ZQ, Cao H, Xu L. Spinal P2X7R contributes to streptozotocin-induced mechanical allodynia in mice. J Zhejiang Univ Sci B 2020; 21:155-165. [PMID: 32115912 DOI: 10.1631/jzus.b1900456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Painful diabetic neuropathy (PDN) is a diabetes mellitus complication. Unfortunately, the mechanisms underlying PDN are still poorly understood. Adenosine triphosphate (ATP)-gated P2X7 receptor (P2X7R) plays a pivotal role in non-diabetic neuropathic pain, but little is known about its effects on streptozotocin (STZ)-induced peripheral neuropathy. Here, we explored whether spinal cord P2X7R was correlated with the generation of mechanical allodynia (MA) in STZ-induced type 1 diabetic neuropathy in mice. MA was assessed by measuring paw withdrawal thresholds and western blotting. Immunohistochemistry was applied to analyze the protein expression levels and localization of P2X7R. STZ-induced mice expressed increased P2X7R in the dorsal horn of the lumbar spinal cord during MA. Mice injected intrathecally with a selective antagonist of P2X7R and P2X7R knockout (KO) mice both presented attenuated progression of MA. Double-immunofluorescent labeling demonstrated that P2X7R-positive cells were mostly co-expressed with Iba1 (a microglia marker). Our results suggest that P2X7R plays an important role in the development of MA and could be used as a cellular target for treating PDN.
Collapse
Affiliation(s)
- Cheng-Ming Ni
- Department of Endocrinology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - He-Ping Sun
- Department of Endocrinology, the Affiliated Kunshan First People's Hospital of Jiangsu University, Kunshan 215300, China
| | - Xiang Xu
- Department of Endocrinology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Bing-Yu Ling
- Department of Emergency, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou 225001, China
| | - Hui Jin
- Department of Endocrinology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Yu-Qiu Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Zhi-Qi Zhao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Hong Cao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Lan Xu
- Department of Endocrinology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| |
Collapse
|
35
|
Li M, Luo S, Zhang Y, Jia L, Yang C, Peng X, Zhao R. Production, characterization, and application of a monoclonal antibody specific for the extracellular domain of human P2X7R. Appl Microbiol Biotechnol 2020; 104:2017-2028. [PMID: 31930453 DOI: 10.1007/s00253-019-10340-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/14/2019] [Accepted: 12/27/2019] [Indexed: 12/17/2022]
Abstract
This paper focuses on the production of a high-affinity monoclonal antibody (mAb) that can efficiently detect and block purinergic ligand-gated ion channel 7 receptor (P2X7R). To achieve this goal, the extracellular domain of human P2X7R, P2X7R-ECD, was used as an immunogen for BALB/c mice, inducing them to produce spleen lymphocytes that were subsequently fused with myeloma cells. Screening of the resultant hybridoma clones resulted in the selection of one stable positive clone that produced a qualified mAb, named 4B3A4. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis demonstrated that the purity of the purified 4B3A4 mAb was above 85%, with prominent bands corresponding to molecular weights of 55 kDa (heavy chain) and 25 kDa (light chain), and the BCA assay showed that the concentration of the purified 4B3A4 mAb was 0.3 mg/mL. Western blot analysis revealed that the 4B3A4 mAb could specifically recognize and bind both P2X7R-ECD and the full-length P2X7R protein. Laser scanning confocal microscopy (LSCM) revealed that the 4B3A4 mAb specifically bound to P2X7R on the membrane of human peripheral blood mononuclear cells (PBMCs). P2X7R expression was significantly different between healthy individuals and people with certain cancers as determined by flow cytometry (FCM). In addition, the 4B3A4 mAb significantly reduced ATP-stimulated Ca2+ entry and YO-PRO-1 uptake, which indicated that the 4B3A4 mAb effectively blocked P2X7R activity. These data indicate that the 4B3A4 mAb can be further used as not only an antibody to detect cell surface P2X7R but also as a therapeutic antibody to target P2X7R-related signaling pathways.
Collapse
Affiliation(s)
- Mingxuan Li
- Department of Laboratory Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Shuping Luo
- Department of Laboratory Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yunfang Zhang
- Department of Laboratory Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Lina Jia
- Department of Laboratory Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Chuanyu Yang
- Department of Blood Transfusion, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Xiaoxiang Peng
- Department of Laboratory Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Ronglan Zhao
- Department of Laboratory Medicine, Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
36
|
Homerin G, Jawhara S, Dezitter X, Baudelet D, Dufrénoy P, Rigo B, Millet R, Furman C, Ragé G, Lipka E, Farce A, Renault N, Sendid B, Charlet R, Leroy J, Phanithavong M, Richeval C, Wiart JF, Allorge D, Adriouch S, Vouret-Craviari V, Ghinet A. Pyroglutamide-Based P2X7 Receptor Antagonists Targeting Inflammatory Bowel Disease. J Med Chem 2019; 63:2074-2094. [PMID: 31525963 DOI: 10.1021/acs.jmedchem.9b00584] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This report deals with the design, the synthesis, and the pharmacological evaluation of pyroglutamide-based P2X7 antagonists. A dozen were shown to possess improved properties, among which inhibition of YO-PRO-1/TO-PRO-3 uptake and IL1β release upon BzATP activation of the receptor and dampening signs of DSS-induced colitis on mice, in comparison with reference antagonist GSK1370319A. Docking study and biological evaluation of synthesized compounds has highlighted new SAR, and low toxicity profiles of pyroglutamides herein described are clues for the finding of a usable h-P2X7 antagonist drug. Such a drug would raise the hope for a cure to many P2X7-dependent pathologies, including inflammatory, neurological, and immune diseases.
Collapse
Affiliation(s)
- Germain Homerin
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France.,Yncréa Hauts-de-France, UCLille, Laboratoire de Pharmacochimie, Hautes Etudes d'Ingénieur (HEI), 13 rue de Toul, F-59046 Lille, France
| | - Samir Jawhara
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France
| | - Xavier Dezitter
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France.,Institut de Chimie Pharmaceutique Albert Lespagnol, IFR114, 3 rue du Pr Laguesse, F-59006 Lille, France
| | - Davy Baudelet
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France.,Yncréa Hauts-de-France, UCLille, Laboratoire de Pharmacochimie, Hautes Etudes d'Ingénieur (HEI), 13 rue de Toul, F-59046 Lille, France
| | - Pierrick Dufrénoy
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France.,Yncréa Hauts-de-France, UCLille, Laboratoire de Pharmacochimie, Hautes Etudes d'Ingénieur (HEI), 13 rue de Toul, F-59046 Lille, France
| | - Benoît Rigo
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France.,Yncréa Hauts-de-France, UCLille, Laboratoire de Pharmacochimie, Hautes Etudes d'Ingénieur (HEI), 13 rue de Toul, F-59046 Lille, France
| | - Régis Millet
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France.,Institut de Chimie Pharmaceutique Albert Lespagnol, IFR114, 3 rue du Pr Laguesse, F-59006 Lille, France
| | - Christophe Furman
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France.,Institut de Chimie Pharmaceutique Albert Lespagnol, IFR114, 3 rue du Pr Laguesse, F-59006 Lille, France
| | - Guillaume Ragé
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France.,Institut de Chimie Pharmaceutique Albert Lespagnol, IFR114, 3 rue du Pr Laguesse, F-59006 Lille, France
| | - Emmanuelle Lipka
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France.,Laboratoire de Chimie Analytique, Faculté des Sciences Pharmaceutiques et Biologiques de Lille, F-59006 Lille Cedex, France
| | - Amaury Farce
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France.,Institut de Chimie Pharmaceutique Albert Lespagnol, IFR114, 3 rue du Pr Laguesse, F-59006 Lille, France
| | - Nicolas Renault
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France.,Institut de Chimie Pharmaceutique Albert Lespagnol, IFR114, 3 rue du Pr Laguesse, F-59006 Lille, France
| | - Boualem Sendid
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France
| | - Rogatien Charlet
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France
| | - Jordan Leroy
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France
| | - Mélodie Phanithavong
- Laboratoire de Toxicologie & Génopathies, CHRU de Lille, Centre de Biologie Pathologie, Blvd du Pr. J. Leclercq, CS 70001, F-59037 Lille, France
| | - Camille Richeval
- Laboratoire de Toxicologie & Génopathies, CHRU de Lille, Centre de Biologie Pathologie, Blvd du Pr. J. Leclercq, CS 70001, F-59037 Lille, France
| | - Jean-François Wiart
- Laboratoire de Toxicologie & Génopathies, CHRU de Lille, Centre de Biologie Pathologie, Blvd du Pr. J. Leclercq, CS 70001, F-59037 Lille, France
| | - Delphine Allorge
- Laboratoire de Toxicologie & Génopathies, CHRU de Lille, Centre de Biologie Pathologie, Blvd du Pr. J. Leclercq, CS 70001, F-59037 Lille, France
| | - Sahil Adriouch
- INSERM U905, F-76183 Rouen, France.,Institute for Research and Innovation in Biomedicine, Normandie University, F-76183 Rouen, France
| | - Valérie Vouret-Craviari
- Institute for Research on Cancer and Aging (IRCAN), F-06100 Nice, France.,University of Nice Cote d'Azur (UCA), F-06100 Nice, France
| | - Alina Ghinet
- CHRU de Lille, Faculté de Médecine-Pôle Recherche, Inserm U995, LIRIC, Université de Lille, Place Verdun, F-59045 Lille Cedex, France.,Yncréa Hauts-de-France, UCLille, Laboratoire de Pharmacochimie, Hautes Etudes d'Ingénieur (HEI), 13 rue de Toul, F-59046 Lille, France.,Faculty of Chemistry, "Al. I. Cuza" University of Iasi, Blvd Carol I, nr. 11, 700506 Iasi, Romania
| |
Collapse
|
37
|
Identification of rs11615992 as a novel regulatory SNP for human P2RX7 by allele-specific expression. Mol Genet Genomics 2019; 295:23-30. [PMID: 31410611 DOI: 10.1007/s00438-019-01598-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
P2RX7 (purinergic receptor P2X 7) is an important membrane ion channel and involved in multiple physiological processes. One non-synonymous SNP on P2RX7, rs3751143, had been proven to reduce ion channel function and further associated with multiple diseases. However, it was still unclear whether there were other cis-regulatory elements for P2RX7, which might further contribute to related diseases. Allele-specific expression (ASE) is a robust and sensitive approach to identify the potential functional region in human genome. In the current study, we measured ASE on rs3751143 in lung tissues and observed a consistent excess of A allele over C (P = 0.001), which indicated that SNP(s) in linkage disequilibrium (LD) could regulate P2RX7 expression. By analyzing the 1000 genomes project data for Chinese, one SNP locating ~ 5 kb away and downstream of P2RX7, rs11615992, was disclosed to be in strong LD with rs3751143. The dual-luciferase assay confirmed that rs11615992 could alter target gene expression in lung cell line. Through chromosome conformation capture, it was verified that the region surrounding rs11615992 could interact with P2RX7 promoter and effect as an enhancer. By chromatin immunoprecipitation, the related transcription factor POU2F1 (POU class 2 homeobox 1) was recognized to bind the region spanning rs11615992. Our work identified a novel long-distance cis-regulatory SNP for P2RX7, which might contribute to multiple diseases.
Collapse
|
38
|
Faria RX, de Jesus Hiller N, Salles JP, Resende JALC, Diogo RT, von Ranke NL, Bello ML, Rodrigues CR, Castro HC, de Luna Martins D. Arylboronic acids inhibit P2X7 receptor function and the acute inflammatory response. J Bioenerg Biomembr 2019; 51:277-290. [PMID: 31256283 DOI: 10.1007/s10863-019-09802-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/26/2019] [Indexed: 02/08/2023]
Abstract
The P2X7 receptor (P2X7R) is an ion channel which is activated by interactions with the extracellular ATP molecules. The molecular complex P2X7R/ATP induces conformational changes in the protein subunits, opening a pore in the ion channel macromolecular structure. Currently, the P2X7R has been studied as a potential therapeutic target of anti-inflammatory drugs. Based on this, a series of eight boronic acids (NO) analogs were evaluated on the biologic effect of this pharmacophoric group on the human and murine P2X7R. The boronic acids derivatives NO-01 and NO-12 inhibited in vitro human and murine P2X7R function. These analogs compounds showed effect better than compound BBG and similar to inhibitor A740003 for inhibiting dye uptake, in vitro IL-1β release and ATP-induced paw edema in vivo. In both, in vitro and in vivo assays the compound NO-01 showed to be the hit compound in the present series of the arylboronic acids analogs. The molecular docking suggests that the NO derivatives bind into the upper body domain of the P2X7 pore and that the main intermolecular interaction with the two most active NO derivatives occur with the residues Phe 95, 103 and 293 by hydrophobic interactions and with Leu97, Gln98 and Ser101 by hydrogen bonds.. These results indicate that the boronic acid derivative NO-01 shows the lead compound characteristics to be used as a scaffold structure to the development of new P2X7R inhibitors with anti-inflammatory action.
Collapse
Affiliation(s)
- Robson Xavier Faria
- Laboratory of Toxoplasmosis and Other Protozoans, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Pavilion 108, room 32, CEP, Rio de Janeiro, Fiocruz, 21045-900, Brazil. .,Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Noemi de Jesus Hiller
- Research Group on Catalysis and Synthesis, Laboratory 413, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Juliana Pimenta Salles
- Laboratory of Toxoplasmosis and Other Protozoans, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Pavilion 108, room 32, CEP, Rio de Janeiro, Fiocruz, 21045-900, Brazil
| | | | - Roberta Tosta Diogo
- Laboratory of Toxoplasmosis and Other Protozoans, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Pavilion 108, room 32, CEP, Rio de Janeiro, Fiocruz, 21045-900, Brazil.,Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Natalia Lidmar von Ranke
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.,Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Murilo Lamim Bello
- Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carlos Rangel Rodrigues
- Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Helena Carla Castro
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Daniela de Luna Martins
- Research Group on Catalysis and Synthesis, Laboratory 413, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| |
Collapse
|
39
|
Cao F, Hu LQ, Yao SR, Hu Y, Wang DG, Fan YG, Pan GX, Tao SS, Zhang Q, Pan HF, Wu GC. P2X7 receptor: A potential therapeutic target for autoimmune diseases. Autoimmun Rev 2019; 18:767-777. [PMID: 31181327 DOI: 10.1016/j.autrev.2019.06.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022]
Abstract
P2X7 receptor (P2X7R), a distinct ligand-gated ion channel, is a member of purinergic type 2 receptor family with ubiquitous expression in human body. Previous studies have revealed a pivotal role of P2X7R in innate and adaptive immunity. Once activated, it will meditate some vital cascaded responses including the assembly of nucleotide-binding domain (NOD) like receptor protein 3 (NLRP3) inflammasome, non-classical secretion of IL-1β, modulation of cytokine-independent pathways in inflammation such as P2X7R- transglutaminase-2 (TG2) and P2X7R-cathepsin pathway, activation and regulation of T cells, etc. In fact, above responses have been identified to be involved in the development of autoimmunity, specifically, the NLRP3 inflammasome could promote inflammation in massive autoimmune diseases and TG2, as well as cathepsin may contribute to joint destruction and degeneration in inflammatory arthritis. Recently, numerous evidences further suggested the significance of P2X7R in the pathogenesis of autoimmune diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), inflammatory bowel disease (IBD), multiple sclerosis (MS), etc. In this review, we will succinctly discuss the biological characteristics and summarize the recent progress of the involvement of P2X7R in the development and pathogenesis of autoimmune diseases, as well as its clinical implications and therapeutic potential.
Collapse
Affiliation(s)
- Fan Cao
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Li-Qin Hu
- School of Nursing, Anhui Medical University, 15 Feicui Road, Hefei, Anhui, China
| | - Shu-Ran Yao
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Yan Hu
- School of Nursing, Anhui Medical University, 15 Feicui Road, Hefei, Anhui, China
| | - De-Guang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, Anhui, China
| | - Yin-Guang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Gui-Xia Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Sha-Sha Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Qin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Guo-Cui Wu
- School of Nursing, Anhui Medical University, 15 Feicui Road, Hefei, Anhui, China.
| |
Collapse
|
40
|
Abstract
Inflammatory bowel disease is a chronic nonspecific inflammatory disease of the intestine. Its pathogenesis is not yet fully understood. It may be related to heredity, environmental triggers, infection, immune dysfunction and other factors. Purinergic receptor (P2X7R) ligand-gated ion channel is closely related to inflammation and widely expressed in intestinal cells. Previous studies have shown that ATP/P2X7R signal is involved in the pathogenesis of intestinal inflammation, but its specific mechanism needs further study. This article reviews the research progress of P2X7 receptor in inflammatory bowel disease.
Collapse
Affiliation(s)
- Yajun Liu
- a Department of Gastroenterology , Xiangya Hospital, Central South University , Changsha , China
| | - Xiaowei Liu
- a Department of Gastroenterology , Xiangya Hospital, Central South University , Changsha , China
| |
Collapse
|
41
|
Lin J, Liu F, Zhang YY, Song N, Liu MK, Fang XY, Liao DQ, Zhou C, Wang H, Shen JF. P2Y 14 receptor is functionally expressed in satellite glial cells and mediates interleukin-1β and chemokine CCL2 secretion. J Cell Physiol 2019; 234:21199-21210. [PMID: 31032956 DOI: 10.1002/jcp.28726] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 02/05/2023]
Abstract
Satellite glial cells (SGCs) activation in the trigeminal ganglia (TG) is critical in various abnormal orofacial sensation in nerve injury and inflammatory conditions. SGCs express several subtypes of P2 purinergic receptors contributing to the initiation and maintenance of neuropathic pain. The P2Y14 receptor, a G-protein-coupled receptor activated by uridine diphosphate (UDP)-glucose and other UDP sugars, mediates various physiologic events such as immune, inflammation, and pain. However, the expression, distribution, and function of P2Y14 receptor in SGCs remains largely unexplored. Our study reported the expression and functional identification of P2Y14 receptor in SGCs. SGCs were isolated from TG of rat, and the P2Y14 receptor expression was examined using immunofluorescence technique. Cell proliferation and viability were examined via cell counting kit-8 experiment. Immunofluorescence demonstrated the presence of P2Y14 receptor in SGCs. Immunofluorescence and western blot showed that UDP-glucose treatment upregulated glial fibrillary acid protein, a common marker for glial activation. Extracellular UDP-glucose enhanced the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, which were both abolished by the P2Y14 receptor inhibitor (PPTN). Furthermore, quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay demonstrated that extracellular UDP-glucose significantly enhanced interleukin-1β (IL-1β) and chemokine CCL2 (CCL2) release, which was abolished by PPTN and significantly decreased by inhibitors of MEK/ERK (U0126) and p38 (SB202190). Our findings directly proved the functional presence of P2Y14 receptor in SGCs. It was also verified that P2Y14 receptor activation was involved in activating SGCs, phosphorylating MAPKs, and promoting the secretion of IL-1β and CCL2 via ERK and p38 pathway.
Collapse
Affiliation(s)
- Jiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meng-Ke Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin-Yi Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Da-Qing Liao
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Chi X, Song S, Cai H, Chen J, Qi Y. Associations of P2X7 Polymorphisms with the Odds of Tuberculosis: A Meta-Analysis. Int Arch Allergy Immunol 2019; 179:74-80. [PMID: 30970345 DOI: 10.1159/000494728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/22/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recently, the roles of purinergic receptor P2X ligand-gated ion channel 7 (P2X7) polymorphisms in tuberculosis (TB) were analyzed by some pilot studies, but the results of these studies were inconsistent. We performed this study to better assess the relationship between P2X7 polymorphisms and the odds of TB. METHODS Eligible studies were searched in PubMed, MEDLINE, and Embase. Odds ratios and 95% confidence intervals were calculated. RESULTS A total of 21 studies were included for analyses. Significant associations with the odds of TB were detected for rs3751143 polymorphism in dominant (p = 0.01), recessive (p < 0.0001), additive (p = 0.0002), and allele models (p < 0.0001) in overall analyses. Further subgroup analyses based on the ethnicity of participants revealed that the rs1718119 polymorphism is significantly associated with the odds of TB in Asians and the rs3751143 polymorphism with the odds of TB in Caucasians. CONCLUSION Our findings indicate that rs1718119 polymorphism may serve as a potential biological marker of TB in Asians and the rs3751143 polymorphism as a potential biological marker of TB in Caucasians.
Collapse
Affiliation(s)
- Xu Chi
- Department of International Medicine, Xi'an Chest Hospital, Xi'an, China
| | - Shuanbao Song
- Department of International Medicine, Xi'an Chest Hospital, Xi'an, China
| | - Huafeng Cai
- Department of International Medicine, Xi'an Chest Hospital, Xi'an, China
| | - Juan Chen
- Department of International Medicine, Xi'an Chest Hospital, Xi'an, China
| | - Yun Qi
- Department of International Medicine, Xi'an Chest Hospital, Xi'an, China,
| |
Collapse
|
43
|
Scarpellino G, Genova T, Munaron L. Purinergic P2X7 Receptor: A Cation Channel Sensitive to Tumor Microenvironment. Recent Pat Anticancer Drug Discov 2019; 14:32-38. [DOI: 10.2174/1574892814666190116122256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
Background: Purinergic signalling is involved in several physiological and pathophysiological processes. P2X7 Receptor (P2X7R) is a calcium-permeable ion channel that is gaining interest as a potential therapeutic target for the treatment of different diseases including inflammation, pain, psychiatric disorders and cancer. P2X7R is ubiquitously expressed and sensitive to high ATP levels, usually found in tumor microenvironment. P2X7R regulates several cell functions, from migration to cell death, but its selective contribution to tumor progression remains controversial.Objective:Current review was conducted to check involvement of P2X7R use in cancer treatment.Methods:We review the most recent patents focused on the use of P2X7R in the treatment of cancer.Results:P2X7R is an intriguing purinergic receptor that plays different roles in tumor progression.Conclusion:Powerful strategies able to selectively interfere with its expression and function should reveal helpful in the development of new anti-cancer therapies.
Collapse
Affiliation(s)
- Giorgia Scarpellino
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Tullio Genova
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
44
|
Sebastián-Serrano Á, de Diego-García L, di Lauro C, Bianchi C, Díaz-Hernández M. Nucleotides regulate the common molecular mechanisms that underlie neurodegenerative diseases; Therapeutic implications. Brain Res Bull 2019; 151:84-91. [PMID: 30721769 DOI: 10.1016/j.brainresbull.2019.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023]
Abstract
Neurodegenerative diseases (ND) are a heterogeneous group of neurological disorders characterized by a progressive loss of neuronal function which results in neuronal death. Although a specific toxic factor has been identified for each ND, all of them share common pathological molecular mechanisms favouring the disease development. In the final stages of ND, patients become unable to take care of themselves and decline to a total functional incapacitation that leads to their death. Some of the main factors which contribute to the disease progression include proteasomal dysfunction, neuroinflammation, synaptic alterations, protein aggregation, and oxidative stress. Over recent years, evidence has been accumulated to suggest that purinergic signaling plays a key role in the aforementioned molecular pathways. In this review, we revise the implications of the purinergic signaling in the common molecular mechanism underlying the ND. In particular, we focus on the role of the purinergic receptors P2X7, P2Y2 and the ectoenzyme tissue-nonspecific alkaline phosphatase (TNAP).
Collapse
Affiliation(s)
- Álvaro Sebastián-Serrano
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Laura de Diego-García
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Caterina di Lauro
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Carolina Bianchi
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Miguel Díaz-Hernández
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain.
| |
Collapse
|
45
|
Patel RR, Khom S, Steinman MQ, Varodayan FP, Kiosses WB, Hedges DM, Vlkolinsky R, Nadav T, Polis I, Bajo M, Roberts AJ, Roberto M. IL-1β expression is increased and regulates GABA transmission following chronic ethanol in mouse central amygdala. Brain Behav Immun 2019; 75:208-219. [PMID: 30791967 PMCID: PMC6383367 DOI: 10.1016/j.bbi.2018.10.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/09/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022] Open
Abstract
The interleukin-1 system (IL-1) is a prominent pro-inflammatory pathway responsible for the initiation and regulation of immune responses. Human genetic and preclinical studies suggest a critical role for IL-1β signaling in ethanol drinking and dependence, but little is known about the effects of chronic ethanol on the IL-1 system in addiction-related brain regions such as the central amygdala (CeA). In this study, we generated naïve, non-dependent (Non-Dep) and dependent (Dep) male mice using a paradigm of chronic-intermittent ethanol vapor exposure interspersed with two-bottle choice to examine 1) the expression of IL-1β, 2) the role of the IL-1 system on GABAergic transmission, and 3) the potential interaction with the acute effects of ethanol in the CeA. Immunohistochemistry with confocal microscopy was used to assess expression of IL-1β in microglia and neurons in the CeA, and whole-cell patch clamp recordings were obtained from CeA neurons to measure the effects of IL-1β (50 ng/ml) or the endogenous IL-1 receptor antagonist (IL-1ra; 100 ng/ml) on action potential-dependent spontaneous inhibitory postsynaptic currents (sIPSCs). Overall, we found that IL-1β expression is significantly increased in microglia and neurons of Dep compared to Non-Dep and naïve mice, IL-1β and IL-1ra bi-directionally modulate GABA transmission through both pre- and postsynaptic mechanisms in all three groups, and IL-1β and IL-1ra do not alter the facilitation of GABA release induced by acute ethanol. These data suggest that while ethanol dependence induces a neuroimmune response in the CeA, as indicated by increased IL-1β expression, this does not significantly alter the neuromodulatory role of IL-1β on synaptic transmission.
Collapse
Affiliation(s)
- Reesha R Patel
- The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Sophia Khom
- The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Michael Q Steinman
- The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Florence P Varodayan
- The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - William B Kiosses
- The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - David M Hedges
- The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Roman Vlkolinsky
- The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Tali Nadav
- The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Ilham Polis
- The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Michal Bajo
- The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Amanda J Roberts
- The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Marisa Roberto
- The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
46
|
ATP/P2X7 receptor signaling as a potential anti-inflammatory target of natural polyphenols. PLoS One 2018; 13:e0204229. [PMID: 30248132 PMCID: PMC6152980 DOI: 10.1371/journal.pone.0204229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 09/05/2018] [Indexed: 12/13/2022] Open
Abstract
Innate immune cells, such as macrophages, respond to pathogen-associated molecular patterns, such as a lipopolysaccharide (LPS), to secrete various inflammatory mediators. Recent studies have suggested that damage-associated molecular patterns (DAMPs), released extracellularly from damaged or immune cells, also play a role in the activation of inflammatory responses. In this study, to prevent excess inflammation, we focused on DAMPs-mediated signaling that promotes LPS-stimulated inflammatory responses, especially adenosine 5’-triphosphate (ATP)-triggered signaling through the ionotropic purinergic receptor 7 (P2X7R), as a potential new anti-inflammatory target of natural polyphenols. We focused on the phenomenon that ATP accelerates the production of inflammatory mediators, such as nitric oxide, in LPS-stimulated J774.1 mouse macrophages. Using an siRNA-mediated knockdown and specific antagonist, it was found that the ATP-induced enhanced inflammatory responses were mediated through P2X7R. We then screened 42 polyphenols for inhibiting the ATP/P2X7R-induced calcium influx, and found that several polyphenols exhibited significant inhibitory effects. Especially, a flavonoid baicalein significantly inhibited ATP-induced inflammation, including interleukin-1β secretion, through inhibition of the ATP/P2X7R signaling. These findings suggest that ATP/P2X7R signaling plays an important role in excess inflammatory responses and could be a potential anti-inflammatory target of natural polyphenolic compounds.
Collapse
|
47
|
Young CNJ, Górecki DC. P2RX7 Purinoceptor as a Therapeutic Target-The Second Coming? Front Chem 2018; 6:248. [PMID: 30003075 PMCID: PMC6032550 DOI: 10.3389/fchem.2018.00248] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/08/2018] [Indexed: 12/22/2022] Open
Abstract
The P2RX7 receptor is a unique member of a family of extracellular ATP (eATP)-gated ion channels expressed in immune cells, where its activation triggers the inflammatory cascade. Therefore, P2RX7 has been long investigated as a target in the treatment of infectious and inflammatory diseases. Subsequently, P2RX7 signaling has been documented in other physiological and pathological processes including pain, CNS and psychiatric disorders and cancer. As a result, a range of P2RX7 antagonists have been developed and trialed. Interestingly, the recent crystallization of mammalian and chicken receptors revealed that most widely-used antagonists may bind a unique allosteric site. The availability of crystal structures allows rational design of improved antagonists and modeling of binding sites of the known or presumed inhibitors. However, several unanswered questions limit the cogent development of P2RX7 therapies. Firstly, this receptor functions as an ion channel, but its chronic stimulation by high eATP causes opening of the non-selective large pore (LP), which can trigger cell death. Not only the molecular mechanism of LP opening is still not fully understood but its function(s) are also unclear. Furthermore, how can tumor cells take advantage of P2RX7 for growth and spread and yet survive overexpression of potentially cytotoxic LP in the eATP-rich environment? The recent discovery of the feedback loop, wherein the LP-evoked release of active MMP-2 triggers the receptor cleavage, provided one explanation. Another mechanism might be that of cancer cells expressing a structurally altered P2RX7 receptor, devoid of the LP function. Exploiting such mechanisms should lead to the development of new, less toxic anticancer treatments. Notably, targeted inhibition of P2RX7 is crucial as its global blockade reduces the immune and inflammatory responses, which have important anti-tumor effects in some types of malignancies. Therefore, another novel approach is the synthesis of tissue/cell specific P2RX7 antagonists. Progress has been aided by the development of p2rx7 knockout mice and new conditional knock-in and knock-out models are being created. In this review, we seek to summarize the recent advances in our understanding of molecular mechanisms of receptor activation and inhibition, which cause its re-emergence as an important therapeutic target. We also highlight the key difficulties affecting this development.
Collapse
Affiliation(s)
- Chris N. J. Young
- Molecular Medicine Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
- Faculty of Health and Life Sciences, The School of Allied Health Sciences, De Montfort University, Leicester, United Kingdom
| | - Dariusz C. Górecki
- Molecular Medicine Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
- The General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| |
Collapse
|
48
|
Wu B, Ma Y, Yi Z, Liu S, Rao S, Zou L, Wang S, Xue Y, Jia T, Zhao S, Shi L, Li L, Yuan H, Liang S. Resveratrol-decreased hyperalgesia mediated by the P2X 7 receptor in gp120-treated rats. Mol Pain 2018; 13:1744806917707667. [PMID: 28554250 PMCID: PMC5453631 DOI: 10.1177/1744806917707667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Chronic pain is a common symptom in human immunodeficiency virus (HIV)-1 infection/acquired immunodeficiency syndrome patients. The literature shows that the HIV envelope glycoprotein 120 (gp120) can directly cause hyperalgesia by stimulating primary sensory afferent nerves. The P2X7 receptor in the dorsal root ganglia (DRG) is closely related to neuropathic and inflammatory pain. In this study, we aimed to explore the effect of resveratrol (RES) on gp120-induced neuropathic pain that is mediated by the P2X7 receptor in the rat DRG. Results Mechanical hyperalgesia in rats treated with gp120 was increased compared with that in the sham group. The P2X7 expression levels in rats treated with gp120 were higher than those in the sham group. Co-localization of the P2X7 receptor and glial fibrillary acidic protein (GFAP, a marker of satellite glial cells [SGCs]) in the DRG SGCs of the gp120 group exhibited more intense staining than that of the sham group. RES decreased the mechanical hyperalgesia and P2X7 expression levels in gp120 treatment rats. Co-localization of the P2X7 receptor and GFAP in the gp120+ RES group was significantly decreased compared to the gp120 group. RES decreased the IL-1β and TNF-α receptor (R) expression levels and ERK1/2 phosphorylation levels as well as increased IL-10 expression in the DRG of gp120-treated rats. Whole cell clamping demonstrated that RES significantly inhibited adenosine triphosphate-activated currents in HEK293 cells that were transfected with the P2X7 plasmid. Conclusions RES relieved mechanical hyperalgesia in gp120-treated rats by inhibiting the P2X7 receptor.
Collapse
Affiliation(s)
- Bing Wu
- 1 Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yucheng Ma
- 2 Queen Mary School, Medical College of Nanchang University Nanchang, Jiangxi, People's Republic of China
| | - Zhihua Yi
- 1 Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shuangmei Liu
- 1 Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shenqiang Rao
- 1 Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Lifang Zou
- 1 Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shouyu Wang
- 1 Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yun Xue
- 1 Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Tianyu Jia
- 1 Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shanhong Zhao
- 1 Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Liran Shi
- 1 Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Lin Li
- 1 Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Huilong Yuan
- 1 Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shangdong Liang
- 1 Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
49
|
Wei L, Syed Mortadza SA, Yan J, Zhang L, Wang L, Yin Y, Li C, Chalon S, Emond P, Belzung C, Li D, Lu C, Roger S, Jiang LH. ATP-activated P2X7 receptor in the pathophysiology of mood disorders and as an emerging target for the development of novel antidepressant therapeutics. Neurosci Biobehav Rev 2018; 87:192-205. [PMID: 29453990 DOI: 10.1016/j.neubiorev.2018.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/01/2018] [Accepted: 02/08/2018] [Indexed: 12/11/2022]
Abstract
Mood disorders are a group of psychiatric conditions that represent leading global disease burdens. Increasing evidence from clinical and preclinical studies supports that innate immune system dysfunction plays an important part in the pathophysiology of mood disorders. P2X7 receptor, belonging to the ligand-gated ion channel P2X subfamily of purinergic P2 receptors for extracellular ATP, is highly expressed in immune cells including microglia in the central nervous system (CNS) and has a vital role in mediating innate immune response. The P2X7 receptor is also important in neuron-glia signalling in the CNS. The gene encoding human P2X7 receptor is located in a locus of susceptibility to mood disorders. In this review, we will discuss the recent progress in understanding the role of the P2X7 receptor in the pathogenesis and development of mood disorders and in discovering CNS-penetrable P2X7 antagonists for potential uses in in vivo imaging to monitor brain inflammation and antidepressant therapeutics.
Collapse
Affiliation(s)
- Linyu Wei
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom
| | - Sharifah A Syed Mortadza
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom; Faculty of Medicine and Health Science, University Putra Malaysia, Selangor, Malaysia
| | - Jing Yan
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China
| | - Libin Zhang
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China
| | - Lu Wang
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China
| | - Yaling Yin
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China
| | - Chaokun Li
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China
| | - Sylvie Chalon
- Inserm UMR 1253, iBrain, Université de Tours, Tours, France
| | - Patrick Emond
- Inserm UMR 1253, iBrain, Université de Tours, Tours, France; CHRU de Tours, Service de Médecine Nucléaire In Vitro, Tours, France
| | | | - Dongliang Li
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China; Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, China
| | - Chengbiao Lu
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China; Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, China
| | - Sebastien Roger
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université de Tours, France; Institut Universitaire de France, Paris Cedex 05, France
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom; Institut Universitaire de France, Paris Cedex 05, France.
| |
Collapse
|
50
|
Burnstock G, Knight GE. The potential of P2X7 receptors as a therapeutic target, including inflammation and tumour progression. Purinergic Signal 2018; 14:1-18. [PMID: 29164451 PMCID: PMC5842154 DOI: 10.1007/s11302-017-9593-0] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/01/2017] [Indexed: 12/22/2022] Open
Abstract
Seven P2X ion channel nucleotide receptor subtypes have been cloned and characterised. P2X7 receptors (P2X7R) are unusual in that there are extra amino acids in the intracellular C terminus. Low concentrations of ATP open cation channels sometimes leading to cell proliferation, whereas high concentrations of ATP open large pores that release inflammatory cytokines and can lead to apoptotic cell death. Since many diseases involve inflammation and immune responses, and the P2X7R regulates inflammation, there has been recent interest in the pathophysiological roles of P2X7R and the potential of P2X7R antagonists to treat a variety of diseases. These include neurodegenerative diseases, psychiatric disorders, epilepsy and a number of diseases of peripheral organs, including the cardiovascular, airways, kidney, liver, bladder, skin and musculoskeletal. The potential of P2X7R drugs to treat tumour progression is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK.
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia.
- Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia.
| | - Gillian E Knight
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK
| |
Collapse
|