1
|
Bento C, Katz M, Santos MMM, Afonso CAM. Striving for Uniformity: A Review on Advances and Challenges To Achieve Uniform Polyethylene Glycol. Org Process Res Dev 2024; 28:860-890. [PMID: 38660381 PMCID: PMC11036406 DOI: 10.1021/acs.oprd.3c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/26/2024]
Abstract
Poly(ethylene glycol) (PEG) is the polymer of choice in drug delivery systems due to its biocompatibility and hydrophilicity. For over 20 years, this polymer has been widely used in the drug delivery of small drugs, proteins, oligonucleotides, and liposomes, improving the stability and pharmacokinetics of many drugs. However, despite the extensive clinical experience with PEG, concerns have emerged related to its use. These include hypersensitivity, purity, and nonbiodegradability. Moreover, conventional PEG is a mixture of polymers that can complicate drug synthesis and purification leading to unwanted immunogenic reactions. Studies have shown that uniform PEGylated drugs may be more effective than conventional PEGylated drugs as they can overcome issues related to molecular heterogeneity and immunogenicity. This has led to significant research efforts to develop synthetic procedures to produce uniform PEGs (monodisperse PEGs). As a result, iterative step-by-step controlled synthesis methods have been created over time and have shown promising results. Nonetheless, these procedures have presented numerous challenges due to their iterative nature and the requirement for multiple purification steps, resulting in increased costs and time consumption. Despite these challenges, the synthetic procedures went through several improvements. This review summarizes and discusses recent advances in the synthesis of uniform PEGs and its derivatives with a focus on overall yields, scalability, and purity of the polymers. Additionally, the available characterization methods for assessing polymer monodispersity are discussed as well as uniform PEG applications, side effects, and possible alternative polymers that can overcome the drawbacks.
Collapse
Affiliation(s)
- Cláudia Bento
- Hovione
Farmaciência S.A., Estrada do Paço do Lumiar, Campus do Lumiar, Edifício
R, 1649-038 Lisboa, Portugal
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Marianna Katz
- Hovione
Farmaciência S.A., Estrada do Paço do Lumiar, Campus do Lumiar, Edifício
R, 1649-038 Lisboa, Portugal
| | - Maria M. M. Santos
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Carlos A. M. Afonso
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
2
|
Kumari A, Kaur A, Aggarwal G. The emerging potential of siRNA nanotherapeutics in treatment of arthritis. Asian J Pharm Sci 2023; 18:100845. [PMID: 37881798 PMCID: PMC10594572 DOI: 10.1016/j.ajps.2023.100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/14/2023] [Accepted: 08/12/2023] [Indexed: 10/27/2023] Open
Abstract
RNA interference (RNAi) using small interfering RNA (siRNA) has shown potential as a therapeutic option for the treatment of arthritis by silencing specific genes. However, siRNA delivery faces several challenges, including stability, targeting, off-target effects, endosomal escape, immune response activation, intravascular degradation, and renal clearance. A variety of nanotherapeutics like lipidic nanoparticles, liposomes, polymeric nanoparticles, and solid lipid nanoparticles have been developed to improve siRNA cellular uptake, protect it from degradation, and enhance its therapeutic efficacy. Researchers are also investigating chemical modifications and bioconjugation to reduce its immunogenicity. This review discusses the potential of siRNA nanotherapeutics as a therapeutic option for various immune-mediated diseases, including rheumatoid arthritis, osteoarthritis, etc. siRNA nanotherapeutics have shown an upsurge of interest and the future looks promising for such interdisciplinary approach-based modalities that combine the principles of molecular biology, nanotechnology, and formulation sciences.
Collapse
Affiliation(s)
- Anjali Kumari
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Amanpreet Kaur
- Centre for Advanced Formulation Technology, Delhi Pharmaceutical Sciences and Research, New Delhi 110017, India
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Geeta Aggarwal
- Centre for Advanced Formulation Technology, Delhi Pharmaceutical Sciences and Research, New Delhi 110017, India
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| |
Collapse
|
3
|
Godinho BMDC, Knox EG, Hildebrand S, Gilbert JW, Echeverria D, Kennedy Z, Haraszti RA, Ferguson CM, Coles AH, Biscans A, Caiazzi J, Alterman JF, Hassler MR, Khvorova A. PK-modifying anchors significantly alter clearance kinetics, tissue distribution, and efficacy of therapeutics siRNAs. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:116-132. [PMID: 35795486 PMCID: PMC9240963 DOI: 10.1016/j.omtn.2022.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/05/2022] [Indexed: 11/21/2022]
Abstract
Effective systemic delivery of small interfering RNAs (siRNAs) to tissues other than liver remains a challenge. siRNAs are small (∼15 kDa) and therefore rapidly cleared by the kidneys, resulting in limited blood residence times and tissue exposure. Current strategies to improve the unfavorable pharmacokinetic (PK) properties of siRNAs rely on enhancing binding to serum proteins through extensive phosphorothioate modifications or by conjugation of targeting ligands. Here, we describe an alternative strategy for enhancing blood and tissue PK based on dynamic modulation of the overall size of the siRNA. We engineered a high-affinity universal oligonucleotide anchor conjugated to a high-molecular-weight moiety, which binds to the 3' end of the guide strand of an asymmetric siRNA. Data showed a strong correlation between the size of the PK-modifying anchor and clearance kinetics. Large 40-kDa PK-modifying anchors reduced renal clearance by ∼23-fold and improved tissue exposure area under the curve (AUC) by ∼26-fold, resulting in increased extrahepatic tissue retention (∼3- to 5-fold). Furthermore, PK-modifying oligonucleotide anchors allowed for straightforward and versatile modulation of blood residence times and biodistribution of a panel of chemically distinct ligands. The effects were more pronounced for conjugates with low lipophilicity (e.g., N-Acetylgalactosamine [GalNAc]), where significant improvement in uptake by hepatocytes and dose-dependent silencing in the liver was observed.
Collapse
Affiliation(s)
- Bruno M D C Godinho
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Emily G Knox
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Samuel Hildebrand
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - James W Gilbert
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zachary Kennedy
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Reka A Haraszti
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Chantal M Ferguson
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew H Coles
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jillian Caiazzi
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Julia F Alterman
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Matthew R Hassler
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
4
|
Pengnam S, Plianwong S, Yingyongnarongkul BE, Patrojanasophon P, Opanasopit P. Delivery of small interfering RNAs by nanovesicles for cancer therapy. Drug Metab Pharmacokinet 2021; 42:100425. [PMID: 34954489 DOI: 10.1016/j.dmpk.2021.100425] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022]
Abstract
Small interfering ribonucleic acids (siRNAs) are originally recognized as an intermediate of the RNA interference (RNAi) pathway. They can inhibit or silence various cellular pathways by knocking down specific messenger RNA molecules. In cancer cells, siRNAs can suppress the expression of several multidrug-resistant genes, leading to the increased deposition of chemotherapeutic drugs at the tumor site. siRNA therapy can be used to selectively increase apoptosis of cancer cells or activate an immune response to the cancer. However, delivering siRNAs to the targeted location is the main limitation in achieving safe and effective delivery of siRNAs. This review highlights some representative examples of nonviral delivery systems, especially nanovesicles such as exosomes, liposomes, and niosomes. Nanovesicles can improve the delivery of siRNAs by increasing their intracellular delivery, and they have demonstrated excellent potential for cancer therapy. This review focuses on recent discoveries of siRNA targets for cancer therapy and the use of siRNAs to successfully silence these targets. In addition, this review summarizes the recent progress in designing nanovesicles (liposomes or niosomes) for siRNA delivery to cancer cells and the effects of a combination of anticancer drugs and siRNA therapy in cancer therapy.
Collapse
Affiliation(s)
- Supusson Pengnam
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | | | - Boon-Ek Yingyongnarongkul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
5
|
Ruseska I, Fresacher K, Petschacher C, Zimmer A. Use of Protamine in Nanopharmaceuticals-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1508. [PMID: 34200384 PMCID: PMC8230241 DOI: 10.3390/nano11061508] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022]
Abstract
Macromolecular biomolecules are currently dethroning classical small molecule therapeutics because of their improved targeting and delivery properties. Protamine-a small polycationic peptide-represents a promising candidate. In nature, it binds and protects DNA against degradation during spermatogenesis due to electrostatic interactions between the negatively charged DNA-phosphate backbone and the positively charged protamine. Researchers are mimicking this technique to develop innovative nanopharmaceutical drug delivery systems, incorporating protamine as a carrier for biologically active components such as DNA or RNA. The first part of this review highlights ongoing investigations in the field of protamine-associated nanotechnology, discussing the self-assembling manufacturing process and nanoparticle engineering. Immune-modulating properties of protamine are those that lead to the second key part, which is protamine in novel vaccine technologies. Protamine-based RNA delivery systems in vaccines (some belong to the new class of mRNA-vaccines) against infectious disease and their use in cancer treatment are reviewed, and we provide an update on the current state of latest developments with protamine as pharmaceutical excipient for vaccines.
Collapse
Affiliation(s)
| | | | | | - Andreas Zimmer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Universitätsplatz 1, 8010 Graz, Austria; (I.R.); (K.F.); (C.P.)
| |
Collapse
|
6
|
Qiu Y, Clarke M, Wan LTL, Lo JCK, Mason AJ, Lam JKW. Optimization of PEGylated KL4 Peptide for siRNA Delivery with Improved Pulmonary Tolerance. Mol Pharm 2021; 18:2218-2232. [PMID: 34014665 DOI: 10.1021/acs.molpharmaceut.0c01242] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pulmonary delivery of small interfering RNA (siRNA) is a promising therapeutic strategy for treating various respiratory diseases but an effective carrier for the delivery of siRNA into the cells of the lungs and a robust gene-silencing effect is still lacking. Previously, we reported that the KL4 peptide, a synthetic cationic peptide with a repeating KLLLL sequence, can mediate effective siRNA transfection in lung epithelial cells but its high hydrophobic leucine content, and hence poor water solubility, limits its application as a delivery vector. Here, we show that the covalent attachment of monodisperse poly(ethylene glycol) (PEG) improves the solubility of KL4 and the uptake of its complex with siRNA into lung epithelial cells, such that very robust silencing is produced. All PEGylated KL4 peptides, with PEG length varying between 6 and 24 monomers, could bind and form nanosized complexes with siRNA, but the interaction between siRNA and peptides became weaker as the PEG chain length increased. All PEGylated KL4 peptides exhibited satisfactory siRNA transfection efficiency on three human lung epithelial cell lines, including A549 cells, Calu-3 cells, and BEAS-2B cells. The PEG12KL4 peptide, which contains 12 monomers of PEG, was optimal for siRNA delivery and also demonstrated a low risk of inflammatory response and toxicity in vivo following pulmonary administration.
Collapse
Affiliation(s)
- Yingshan Qiu
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR
| | - Maria Clarke
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Leon T L Wan
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR
| | - Jason C K Lo
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR
| | - A James Mason
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Jenny K W Lam
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR
| |
Collapse
|
7
|
Abstract
Cell-Penetrating Peptides (CPP) are valuable tools capable of crossing the plasma membrane to deliver therapeutic cargo inside cells. Small interfering RNAs (siRNA) are double-stranded RNA molecules capable of silencing the expression of a specific protein triggering the RNA interference (RNAi) pathway, but they are unable to cross the plasma membrane and have a short half-life in the bloodstream. In this overview, we assessed the many different approaches used and developed in the last two decades to deliver siRNA through the plasma membrane through different CPPs sorted according to three different loading strategies: covalent conjugation, complex formation, and CPP-decorated (functionalized) nanocomplexes. Each of these strategies has pros and cons, but it appears the latter two are the most commonly reported and emerging as the most promising strategies due to their simplicity of synthesis, use, and versatility. Recent progress with siRNA delivered by CPPs seems to focus on targeted delivery to reduce side effects and amount of drugs used, and it appears to be among the most promising use for CPPs in future clinical applications.
Collapse
|
8
|
Sajid MI, Moazzam M, Kato S, Yeseom Cho K, Tiwari RK. Overcoming Barriers for siRNA Therapeutics: From Bench to Bedside. Pharmaceuticals (Basel) 2020; 13:E294. [PMID: 33036435 PMCID: PMC7600125 DOI: 10.3390/ph13100294] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
The RNA interference (RNAi) pathway possesses immense potential in silencing any gene in human cells. Small interfering RNA (siRNA) can efficiently trigger RNAi silencing of specific genes. FDA Approval of siRNA therapeutics in recent years garnered a new hope in siRNA therapeutics. However, their therapeutic use is limited by several challenges. siRNAs, being negatively charged, are membrane-impermeable and highly unstable in the systemic circulation. In this review, we have comprehensively discussed the extracellular barriers, including enzymatic degradation of siRNAs by serum endonucleases and RNAases, rapid renal clearance, membrane impermeability, and activation of the immune system. Besides, we have thoroughly described the intracellular barriers such as endosomal trap and off-target effects of siRNAs. Moreover, we have reported most of the strategies and techniques in overcoming these barriers, followed by critical comments in translating these molecules from bench to bedside.
Collapse
Affiliation(s)
- Muhammad Imran Sajid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan;
| | - Muhammad Moazzam
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan;
| | - Shun Kato
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
| | - Kayley Yeseom Cho
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
| |
Collapse
|
9
|
Rudra A, Li J, Shakur R, Bhagchandani S, Langer R. Trends in Therapeutic Conjugates: Bench to Clinic. Bioconjug Chem 2020; 31:462-473. [PMID: 31990184 DOI: 10.1021/acs.bioconjchem.9b00828] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, therapeutic conjugates have attracted considerable attention as a new class of drug due to their unique pharmacological properties, especially from the pharmaceutical community. Their molecular structure tunability, improved targeting specificity, and therapeutic efficacy have been demonstrated in a wide range of research and clinical applications. In this topical review, we summarize selected recent advances in bioconjugation strategies for the development of therapeutic conjugates, their emerging application in clinical settings, as well as perspectives on the direction of future research.
Collapse
Affiliation(s)
- Arnab Rudra
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Junwei Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rameen Shakur
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sachin Bhagchandani
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Chemical modulation of siRNA lipophilicity for efficient delivery. J Control Release 2019; 307:98-107. [DOI: 10.1016/j.jconrel.2019.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 11/19/2022]
|
11
|
Covalent Fluorophore Labeling of Oligonucleotides and Generation of Other Oligonucleotide Bioconjugates. Methods Mol Biol 2019; 1943:61-72. [PMID: 30838609 DOI: 10.1007/978-1-4939-9092-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Oligonucleotide conjugates have already reached considerable importance in life science research and oligonucleotide drug development. Since the preparation of oligonucleotide conjugates depends critically on the chemical nature of the used ligand and linker, there is no general and universal procedure. Here, we present a detailed, quick, and facile protocol for attaching fluorescent dyes or cross-linkers of variable chemical stability to oligonucleotides at 3'- or 5'-aminoalkyl handles. Purification and removal of educts and side-products and structural verification by gel electrophoresis and mass spectrometry are presented. Aspects for adapting this protocol for other reaction sites at the oligonucleotide are discussed. We highlight important issues for generating oligonucleotide conjugates with other molecules, including peptide, proteins, and small molecules for receptor-targeting applications. The methodology is suitable for oligonucleotides with various modifications, including stabilized antisense, siRNAs, and miRNAs.
Collapse
|
12
|
Current Aspects of siRNA Bioconjugate for In Vitro and In Vivo Delivery. Molecules 2019; 24:molecules24122211. [PMID: 31200490 PMCID: PMC6631009 DOI: 10.3390/molecules24122211] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/03/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023] Open
Abstract
Studies on siRNA delivery have seen intense growth in the past decades since siRNA has emerged as a new class of gene therapeutics for the treatment of various diseases. siRNA bioconjugate, as one of the major delivery strategies, offers the potential to enhance and broaden pharmacological properties of siRNA, while minimizing the heterogeneity and stability-correlated toxicology. This review summarizes the recent developments of siRNA bioconjugate, including the conjugation with antibody, peptide, aptamer, small chemical, lipidoid, cell-penetrating peptide polymer, and nanoparticle. These siRNA bioconjugate, either administrated alone or formulated with other agents, could significantly improve pharmacokinetic behavior, enhance the biological half-life, and increase the targetability while maintaining sufficient gene silencing activity, with a concomitant improvement of the therapeutic outcomes and diminishment of adverse effects. This review emphasizes the delivery application of these siRNA bioconjugates, especially the conjugation strategy that control the integrity, stability and release of siRNA bioconjugates. The limitations conferred by these conjugation strategies have also been covered.
Collapse
|
13
|
Malhotra M, Gooding M, Evans JC, O'Driscoll D, Darcy R, O'Driscoll CM. Cyclodextrin-siRNA conjugates as versatile gene silencing agents. Eur J Pharm Sci 2017; 114:30-37. [PMID: 29191522 DOI: 10.1016/j.ejps.2017.11.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/26/2017] [Accepted: 11/26/2017] [Indexed: 10/18/2022]
Abstract
Functional siRNAs (luciferase and PLK1) have been conjugated to β-cyclodextrin and the ability of the conjugates to retain gene knockdown activity has been assessed by delivery to cancer cell lines using various formulations. Initially two formulations used complexation with polycations, namely Lipofectamine 2000 and an amphiphilic polycationic cyclodextrin. Gene knockdown results for human glioblastoma cells (U87) and prostate cancer cells (PC3, DU145) showed that conjugation to the cyclodextrin did not reduce gene silencing by the RNA. A third mode of delivery involved formation of targeted nanoparticles in which the conjugate was first complexed with adamantyl-PEG-ligands (targeting ligand RVG peptide or dianisamide) by adamantyl inclusion in the cyclodextrin cavities of the conjugates, followed by charge neutralisation with the cationic polymer chitosan. Enhanced knockdown was achieved by these ligand-targeted formulations. In summary, while this study illustrated the gene silencing efficacy of a simple cyclodextrin-siRNA conjugate it is envisaged that future studies will explore the use of conjugates with a modified cyclodextrin which would be self-delivering. Detailed data such as stability, lysosomal escape etc. will then be reported for each conjugate, since this will be appropriate for conjugates which are intended to exploit, rather than merely demonstrate, the concept. The present paper was intended to demonstrate the viability and generality of this novel concept.
Collapse
Affiliation(s)
- Meenakshi Malhotra
- Pharmacodelivery group, School of Pharmacy, University College Cork, Cork, Ireland; Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matt Gooding
- Pharmacodelivery group, School of Pharmacy, University College Cork, Cork, Ireland
| | - James C Evans
- Pharmacodelivery group, School of Pharmacy, University College Cork, Cork, Ireland; Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Daniel O'Driscoll
- Alimentary Pharmabiotic Centre, Microbiome Institute, University College Cork, Ireland
| | - Raphael Darcy
- Pharmacodelivery group, School of Pharmacy, University College Cork, Cork, Ireland
| | | |
Collapse
|
14
|
Selvam C, Mutisya D, Prakash S, Ranganna K, Thilagavathi R. Therapeutic potential of chemically modified siRNA: Recent trends. Chem Biol Drug Des 2017; 90:665-678. [PMID: 28378934 DOI: 10.1111/cbdd.12993] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 12/17/2022]
Abstract
Small interfering RNAs (siRNAs) are one of the valuable tools to investigate the functions of genes and are also used for gene silencing. It has a wide scope in drug discovery through in vivo target validation. siRNA therapeutics are not optimal drug-like molecules due to poor bioavailability and immunogenic and off-target effects. To overcome the challenges associated with siRNA therapeutics, identification of appropriate chemical modifications that improves the stability, specificity and potency of siRNA is essential. This review focuses on the various chemical modifications and their implications in siRNA therapy.
Collapse
Affiliation(s)
- Chelliah Selvam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Daniel Mutisya
- Department of Science and Mathematics, Albany State University, Albany, GA, USA
| | - Sandhya Prakash
- Department of Biotechnology, Faculty of Engineering, Karpagam University, Coimbatore, India
| | - Kasturi Ranganna
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Ramasamy Thilagavathi
- Department of Biotechnology, Faculty of Engineering, Karpagam University, Coimbatore, India
| |
Collapse
|
15
|
Baumann V, Lorenzer C, Thell M, Winkler AM, Winkler J. RNAi-Mediated Knockdown of Protein Expression. Methods Mol Biol 2017; 1654:351-360. [PMID: 28986804 DOI: 10.1007/978-1-4939-7231-9_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
RNA interference is an essential method for studying genomic functions of single genes by loss-of-function experiments. Short interfering siRNAs are efficiently transfected into cultured cells to enable RISC-mediated mRNA cleavage and inhibition of translation in a sequence-specific manner. RNAi enables knockdown of single genes and screening for specific cellular processes or outcomes. In this chapter, we describe a detailed universal protocol for lipoplex-mediated siRNA transfection for cell cultures and cell lysis for subsequent RNA or protein analysis. The experimental procedure is described for verification of knockdown and includes cell lysis for mRNA or protein quantification. Important aspects for specific gene silencing and potential pitfalls are discussed.
Collapse
Affiliation(s)
- Volker Baumann
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Cornelia Lorenzer
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Michael Thell
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Anna-Maria Winkler
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Johannes Winkler
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, 1090, Vienna, Austria.
- Department of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
16
|
Fokina AA, Chelobanov BP, Fujii M, Stetsenko DA. Delivery of therapeutic RNA-cleaving oligodeoxyribonucleotides (deoxyribozymes): from cell culture studies to clinical trials. Expert Opin Drug Deliv 2016; 14:1077-1089. [PMID: 27892730 DOI: 10.1080/17425247.2017.1266326] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Development of efficient in vivo delivery systems remains a major challenge en route to clinical application of antisense technology, including RNA-cleaving molecules such as deoxyribozymes (DNAzymes). The mechanisms of oligonucleotide uptake and trafficking are clearly dependent on cell type and the type of oligonucleotide analogue. It appears likely that each particular disease target would pose its own specific requirements for a delivery method. Areas covered. In this review we will discuss the available options for DNAzyme delivery in vitro and in vivo, outline various exogenous and endogenous strategies that have been, or are still being, developed and ascertain their applicability with emphasis on those methods that are currently being used in clinical trials. Expert opinion. The available information suggests that a practical system for in vivo delivery has to be biodegradable, as to minimize concerns over long-term toxicity, it should not accumulate in the organism. Extracellular vesicles may offer the most organic way for drug delivery especially as they can be fused with artificial liposomes to produce hybrid nanoparticles. Chemical modification of DNAzymes holds great potential to apply oligonucleotide analogs that would not only be resistant to nuclease digestion, but also able to penetrate cells without external delivery agents.
Collapse
Affiliation(s)
- Alesya A Fokina
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk , Russia
| | - Boris P Chelobanov
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk , Russia
| | - Masayuki Fujii
- b Department of Biological & Environmental Chemistry , Kindai University , Iizuka, Fukuoka , Japan
| | - Dmitry A Stetsenko
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk , Russia
| |
Collapse
|
17
|
Gooding M, Malhotra M, Evans JC, Darcy R, O'Driscoll CM. Oligonucleotide conjugates - Candidates for gene silencing therapeutics. Eur J Pharm Biopharm 2016; 107:321-40. [PMID: 27521696 DOI: 10.1016/j.ejpb.2016.07.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 11/18/2022]
Abstract
The potential therapeutic and diagnostic applications of oligonucleotides (ONs) have attracted great attention in recent years. The capability of ONs to selectively inhibit target genes through antisense and RNA interference mechanisms, without causing un-intended sideeffects has led them to be investigated for various biomedical applications, especially for the treatment of viral diseases and cancer. In recent years, many researchers have focused on enhancing the stability and target specificity of ONs by encapsulating/complexing them with polymers or lipid chains to formulate nanoparticles/nanocomplexes/micelles. Also, chemical modification of nucleic acids has emerged as an alternative to impart stability to ONs against nucleases and other degrading enzymes and proteins found in blood. In addition to chemically modifying the nucleic acids directly, another strategy that has emerged, involves conjugating polymers/peptide/aptamers/antibodies/proteins, preferably to the sense strand (3'end) of siRNAs. Conjugation to the siRNA not only enhances the stability and targeting specificity of the siRNA, but also allows for the development of self-administering siRNA formulations, with a much smaller size than what is usually observed for nanoparticle (∼200nm). This review concentrates mainly on approaches and studies involving ON-conjugates for biomedical applications.
Collapse
Affiliation(s)
- Matt Gooding
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Meenakshi Malhotra
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - James C Evans
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Raphael Darcy
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | | |
Collapse
|
18
|
Fragment-based solid-phase assembly of oligonucleotide conjugates with peptide and polyethylene glycol ligands. Eur J Med Chem 2016; 121:132-142. [PMID: 27236069 DOI: 10.1016/j.ejmech.2016.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/25/2016] [Accepted: 05/01/2016] [Indexed: 12/26/2022]
Abstract
Ligand conjugation to oligonucleotides is an attractive strategy for enhancing the therapeutic potential of antisense and siRNA agents by inferring properties such as improved cellular uptake or better pharmacokinetic properties. Disulfide linkages enable dissociation of ligands and oligonucleotides in reducing environments found in endosomal compartments after cellular uptake. Solution-phase fragment coupling procedures for producing oligonucleotide conjugates are often tedious, produce moderate yields and reaction byproducts are frequently difficult to remove. We have developed an improved method for solid-phase coupling of ligands to oligonucleotides via disulfides directly after solid-phase synthesis. A 2'-thiol introduced using a modified nucleotide building block was orthogonally deprotected on the controlled pore glass solid support with N-butylphosphine. Oligolysine peptides and a short monodisperse ethylene glycol chain were successfully coupled to the deprotected thiol. Cleavage from the resin and full removal of oligonucleotide protection groups were achieved using methanolic ammonia. After standard desalting, and without further purification, homogenous conjugates were obtained as demonstrated by HPLC, gel electrophoresis, and mass spectrometry. The attachment of both amphiphilic and cationic ligands proves the versatility of the conjugation procedure. An antisense oligonucleotide conjugate with hexalysine showed pronounced gene silencing in a cell culture tumor model in the absence of a transfection reagent and the corresponding ethylene glycol conjugate resulted in down regulation of the target gene to nearly 50% after naked application.
Collapse
|
19
|
Therapeutic oligonucleotides with polyethylene glycol modifications. Future Med Chem 2015; 7:1721-31. [PMID: 26465713 DOI: 10.4155/fmc.15.94] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the field of oligonucleotide drugs, the attachment of PEG is a well-established strategy to prevent enzymatic degradation and avoid renal elimination. Pegaptanib and other oligonucleotides in clinical development utilize the attachment of linear or branched high molecular weight PEG chains for increase of accumulation and duration of the effect after local or systemic application. The length of PEG chains is decisive for the pharmacokinetic and pharmacodynamic effects. Longer chains increase circulation times, but generally decrease gene-silencing efficiencies for antisense and siRNA agents and binding affinities for aptamers. Shorter chains are less efficient in preventing renal filtration, but have also less impact on the gene-silencing machinery and binding kinetics.
Collapse
|
20
|
Lin EW, Maynard HD. Grafting from Small Interfering Ribonucleic Acid (siRNA) as an Alternative Synthesis Route to siRNA–Polymer Conjugates. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- En-Wei Lin
- Department of Chemistry & Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Heather D. Maynard
- Department of Chemistry & Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
21
|
Lorenzer C, Dirin M, Winkler AM, Baumann V, Winkler J. Going beyond the liver: progress and challenges of targeted delivery of siRNA therapeutics. J Control Release 2015; 203:1-15. [PMID: 25660205 DOI: 10.1016/j.jconrel.2015.02.003] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 12/25/2022]
Abstract
Therapeutic gene silencing promises significant progress in pharmacotherapy, including considerable expansion of the druggable target space and the possibility for treating orphan diseases. Technological hurdles have complicated the efficient use of therapeutic oligonucleotides, and siRNA agents suffer particularly from insufficient pharmacokinetic properties and poor cellular uptake. Intense development and evolution of delivery systems have resulted in efficient uptake predominantly in liver tissue, in which practically all nanoparticulate and liposomal delivery systems show the highest accumulation. The most efficacious strategies include liposomes and bioconjugations with N-acetylgalactosamine. Both are in early clinical evaluation stages for treatment of liver-associated diseases. Approaches for achieving knockdown in other tissues and tumors have been proven to be more complicated. Selective targeting to tumors may be enabled through careful modulation of physical properties, such as particle size, or by taking advantage of specific targeting ligands. Significant barriers stand between sufficient accumulation in other organs, including endothelial barriers, cellular membranes, and the endosome. The brain, which is shielded by the blood-brain barrier, is of particular interest to facilitate efficient oligonucleotide therapy of neurological diseases. Transcytosis of the blood-brain barrier through receptor-specific docking is investigated to increase accumulation in the central nervous system. In this review, the current clinical status of siRNA therapeutics is summarized, as well as innovative and promising preclinical concepts employing tissue- and tumor-targeted ligands. The requirements and the respective advantages and drawbacks of bioconjugates and ligand-decorated lipid or polymeric particles are discussed.
Collapse
Affiliation(s)
- Cornelia Lorenzer
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, 1090 Vienna, Austria
| | - Mehrdad Dirin
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, 1090 Vienna, Austria
| | - Anna-Maria Winkler
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, 1090 Vienna, Austria
| | - Volker Baumann
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, 1090 Vienna, Austria
| | - Johannes Winkler
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, 1090 Vienna, Austria.
| |
Collapse
|
22
|
Shokrzadeh N, Winkler AM, Dirin M, Winkler J. Oligonucleotides conjugated with short chemically defined polyethylene glycol chains are efficient antisense agents. Bioorg Med Chem Lett 2014; 24:5758-5761. [PMID: 25453815 PMCID: PMC4263527 DOI: 10.1016/j.bmcl.2014.10.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/08/2014] [Accepted: 10/14/2014] [Indexed: 12/31/2022]
Abstract
Ligand conjugation is an attractive approach to rationally modify the poor pharmacokinetic behavior and cellular uptake properties of antisense oligonucleotides. Polyethylene glycol (PEG) attachment is a method to increase solubility of oligonucleotides and prevent the rapid elimination, thus increasing tissue distribution. On the other hand, the attachment of long PEG chains negatively influences the pharmacodynamic effect by reducing the hybridization efficiency. We examined the use of short PEG ligands on the in vitro effect of antisense agents. Circular dichroism showed that the tethering of PEG12-chains to phosphodiester and phosphorothioate oligonucleotides had no influence on their secondary structure and did not reduce the affinity to the counter strand. In an in vitro tumor model, a luciferase reporter assay indicated unchanged gene silencing activity compared to unmodified compounds, and even slightly superior target down regulation was found after treatment with a phosphorothioate modified conjugate.
Collapse
Affiliation(s)
- Nasrin Shokrzadeh
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, 1090 Vienna, Austria
| | - Anna-Maria Winkler
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, 1090 Vienna, Austria
| | - Mehrdad Dirin
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, 1090 Vienna, Austria
| | - Johannes Winkler
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, 1090 Vienna, Austria.
| |
Collapse
|
23
|
Gene therapy and imaging in preclinical and clinical oncology: recent developments in therapy and theranostics. Ther Deliv 2014; 5:1275-96. [DOI: 10.4155/tde.14.87] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the case of disseminated cancer, current treatment options reach their limit. Gene theranostics emerge as an innovative route in the treatment and diagnosis of cancer and might pave the way towards development of an efficacious treatment of currently incurable cancer. Various gene vectors have been developed to realize tumor-specific nucleic acid delivery and are considered crucial for the successful application of cancer gene therapy. By adding reporter genes and imaging agents, these systems gain an additional diagnostic function, thereby advancing the theranostic paradigm into cancer gene therapy. Numerous preclinical studies have demonstrated the feasibility of combined tumor gene therapy and diagnostic imaging, and clinical trials in human and veterinary oncology have been executed with partly encouraging results.
Collapse
|