1
|
Chauveau F, Winkeler A, Chalon S, Boutin H, Becker G. PET imaging of neuroinflammation: any credible alternatives to TSPO yet? Mol Psychiatry 2024:10.1038/s41380-024-02656-9. [PMID: 38997465 DOI: 10.1038/s41380-024-02656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Over the last decades, the role of neuroinflammation in neuropsychiatric conditions has attracted an exponentially growing interest. A key driver for this trend was the ability to image brain inflammation in vivo using PET radioligands targeting the Translocator Protein 18 kDa (TSPO), which is known to be expressed in activated microglia and astrocytes upon inflammatory events as well as constitutively in endothelial cells. TSPO is a mitochondrial protein that is expressed mostly by microglial cells upon activation but is also expressed by astrocytes in some conditions and constitutively by endothelial cells. Therefore, our current understanding of neuroinflammation dynamics is hampered by the lack of alternative targets available for PET imaging. We performed a systematic search and review on radiotracers developed for neuroinflammation PET imaging apart from TSPO. The following targets of interest were identified through literature screening (including previous narrative reviews): P2Y12R, P2X7R, CSF1R, COX (microglial targets), MAO-B, I2BS (astrocytic targets), CB2R & S1PRs (not specific of a single cell type). We determined the level of development and provided a scoping review for each target. Strikingly, astrocytic biomarker MAO-B has progressed in clinical investigations the furthest, while few radiotracers (notably targeting S1P1Rs, CSF1R) are being implemented in clinical investigations. Other targets such as CB2R and P2X7R have proven disappointing in clinical studies (e.g. poor signal, lack of changes in disease conditions, etc.). While astrocytic targets are promising, development of new biomarkers and tracers specific for microglial activation has proven challenging.
Collapse
Affiliation(s)
- Fabien Chauveau
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
| | - Alexandra Winkeler
- Université Paris-Saclay, Inserm, CNRS, CEA, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France
| | - Sylvie Chalon
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France
| | - Hervé Boutin
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France.
| | - Guillaume Becker
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| |
Collapse
|
2
|
Prasad VP, Wagner S, Keul P, Hermann S, Levkau B, Schäfers M, Haufe G. Synthesis, radiosynthesis and biochemical evaluation of fluorinated analogues of sphingosine-1-phosphate receptor 3 specific antagonists using PET. Bioorg Med Chem 2024; 104:117697. [PMID: 38599005 DOI: 10.1016/j.bmc.2024.117697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/21/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Sphingosine-1-phosphate and its receptors (S1PRs) are involved in several diseases such as auto immunity, inflammation and cardiovascular disorders. The S1P analogue fingolimod (Gilenya®) is currently in use for the treatment of relapsing multiple sclerosis. S1PRs are also promising targets for clinical molecular imaging in vivo. The organ distribution of individual S1PRs can be potentially achieved by using S1PR subtype-specific (radiolabeled) chemical probes. Here, we report our efforts on synthesis and in vivo potency determination of new ligands for the S1P receptor 3 (S1P3) based on the S1P3 antagonist TY-52156 and in validation of a potential imaging tracer in vivo using Positron Emission Tomography (PET) after 18F-labelling. A p-fluorophenyl derivative exhibited excellent S1P3 antagonist activity in vitro, good serum stability, and medium lipophilicity. In vivo biodistribution experiments using 18F-PET exhibited significant uptake in the myocardium suggesting potential applications in cardiac imaging.
Collapse
Affiliation(s)
- Vysakh Puspha Prasad
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany; NRW Graduate School of Chemistry, University of Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Stefan Wagner
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Petra Keul
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), University of Münster, Multiscale Imaging Centre, Röntgenstraße 16, 48149 Münster, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany; European Institute for Molecular Imaging (EIMI), University of Münster, Multiscale Imaging Centre, Röntgenstraße 16, 48149 Münster, Germany; Cells-in-Motion Interfaculty Centre, University of Münster, Röntgenstraße 16, 48149 Münster, Germany
| | - Günter Haufe
- Organic Chemistry Institute, University of Münster, Corrensstraße 40, 48149 Münster, Germany; NRW Graduate School of Chemistry, University of Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany; European Institute for Molecular Imaging (EIMI), University of Münster, Multiscale Imaging Centre, Röntgenstraße 16, 48149 Münster, Germany; Cells-in-Motion Interfaculty Centre, University of Münster, Röntgenstraße 16, 48149 Münster, Germany.
| |
Collapse
|
3
|
Systematic Review: Targeted Molecular Imaging of Angiogenesis and Its Mediators in Rheumatoid Arthritis. Int J Mol Sci 2022; 23:ijms23137071. [PMID: 35806074 PMCID: PMC9267012 DOI: 10.3390/ijms23137071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022] Open
Abstract
Extensive angiogenesis is a characteristic feature in the synovial tissue of rheumatoid arthritis (RA) from a very early stage of the disease onward and constitutes a crucial event for the development of the proliferative synovium. This process is markedly intensified in patients with prolonged disease duration, high disease activity, disease severity, and significant inflammatory cell infiltration. Angiogenesis is therefore an interesting target for the development of new therapeutic approaches as well as disease monitoring strategies in RA. To this end, nuclear imaging modalities represent valuable non-invasive tools that can selectively target molecular markers of angiogenesis and accurately and quantitatively track molecular changes in multiple joints simultaneously. This systematic review summarizes the imaging markers used for single photon emission computed tomography (SPECT) and/or positron emission tomography (PET) approaches, targeting pathways and mediators involved in synovial neo-angiogenesis in RA.
Collapse
|
4
|
Qiu L, Jiang H, Yu Y, Gu J, Wang J, Zhao H, Huang T, Gropler RJ, Klein RS, Perlmutter JS, Tu Z. Radiosynthesis and evaluation of a fluorine-18 radiotracer [ 18F]FS1P1 for imaging sphingosine-1-phosphate receptor 1. Org Biomol Chem 2022; 20:1041-1052. [PMID: 35029272 PMCID: PMC8970350 DOI: 10.1039/d1ob02225c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Assessment of sphingosine-1-phosphate receptor 1 (S1PR1) expression could be a unique tool to determine the neuroinflammatory status for central nervous system (CNS) disorders. Our preclinical results indicate that PET imaging with [11C]CS1P1 radiotracer can quantitatively measure S1PR1 expression changes in different animal models of inflammatory diseases. Here we developed a multiple step F-18 labeling strategy to synthesize the radiotracer [18F]FS1P1, sharing the same structure with [11C]CS1P1. We explored a wide range of reaction conditions for the nucleophilic radiofluorination starting with the key ortho-nitrobenzaldehyde precursor 10. The tertiary amine additive TMEDA proved crucial to achieve high radiochemical yield of ortho-[18F]fluorobenzaldehyde [18F]12 starting with a small amount of precursor. Based on [18F]12, a further four-step modification was applied in one-pot to generate the target radiotracer [18F]FS1P1 with 30-50% radiochemical yield, >95% chemical and radiochemical purity, and a high molar activity (37-166.5 GBq μmol-1, decay corrected to end of synthesis, EOS). Subsequently, tissue distribution of [18F]FS1P1 in rats showed a high brain uptake (ID% g-1) of 0.48 ± 0.06 at 5 min, and bone uptake of 0.27 ± 0.03, 0.11 ± 0.02 at 5, and 120 min respectively, suggesting no in vivo defluorination. MicroPET studies showed [18F]FS1P1 has high macaque brain uptake with a standard uptake value (SUV) of ∼2.3 at 120 min. Radiometabolite analysis of macaque plasma samples indicated that [18F]FS1P1 has good metabolic stability, and no major radiometabolite confounded PET measurements of S1PR1 in nonhuman primate brain. Overall, [18F]FS1P1 is a promising F-18 S1PR1 radiotracer worthy of further clinical investigation for human use.
Collapse
Affiliation(s)
- Lin Qiu
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | - Hao Jiang
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | - Yanbo Yu
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | - Jiwei Gu
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | - Jinzhi Wang
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | - Haiyang Zhao
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | - Tianyu Huang
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | - Robert J Gropler
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | - Robyn S Klein
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
- Departments of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joel S Perlmutter
- Departments of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Physical Therapy and Occupational Therapy, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| |
Collapse
|
5
|
Chen Z, Haider A, Chen J, Xiao Z, Gobbi L, Honer M, Grether U, Arnold SE, Josephson L, Liang SH. The Repertoire of Small-Molecule PET Probes for Neuroinflammation Imaging: Challenges and Opportunities beyond TSPO. J Med Chem 2021; 64:17656-17689. [PMID: 34905377 PMCID: PMC9094091 DOI: 10.1021/acs.jmedchem.1c01571] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuroinflammation is an adaptive response of the central nervous system to diverse potentially injurious stimuli, which is closely associated with neurodegeneration and typically characterized by activation of microglia and astrocytes. As a noninvasive and translational molecular imaging tool, positron emission tomography (PET) could provide a better understanding of neuroinflammation and its role in neurodegenerative diseases. Ligands to translator protein (TSPO), a putative marker of neuroinflammation, have been the most commonly studied in this context, but they suffer from serious limitations. Herein we present a repertoire of different structural chemotypes and novel PET ligand design for classical and emerging neuroinflammatory targets beyond TSPO. We believe that this Perspective will support multidisciplinary collaborations in academic and industrial institutions working on neuroinflammation and facilitate the progress of neuroinflammation PET probe development for clinical use.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Zhiwei Xiao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Luca Gobbi
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Michael Honer
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Steven E. Arnold
- Department of Neurology and the Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| |
Collapse
|
6
|
Mann G, Satish G, Sulkshane P, Mandal S, Glickman MH, Brik A. Synthesis and delivery of a stable phosphorylated ubiquitin probe to study ubiquitin conjugation in mitophagy. Chem Commun (Camb) 2021; 57:9438-9441. [PMID: 34528945 PMCID: PMC8445162 DOI: 10.1039/d1cc04045f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022]
Abstract
Protein post-translational modifications are involved in essentially all aspects of cellular signaling. Their dynamic nature and the difficulties in installing them using enzymatic approaches limits their direct study in human cells. Reported herein is the first synthesis, delivery and cellular study of a stable phosphoubiquitin probe. Our results compare Parkin's substrate preference during mitophagy via direct visualization of a phosphorylated ubiquitin probe in the cellular environment.
Collapse
Affiliation(s)
- Guy Mann
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa, 3200008, Israel.
| | - Gandhesiri Satish
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa, 3200008, Israel.
| | - Prasad Sulkshane
- Faculty of Biology, Technion-Israel Institute of Technology Haifa, 3200008, Israel.
| | - Shaswati Mandal
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa, 3200008, Israel.
| | - Michael H Glickman
- Faculty of Biology, Technion-Israel Institute of Technology Haifa, 3200008, Israel.
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa, 3200008, Israel.
| |
Collapse
|
7
|
Ye M, Gai Y, Ji H, Jiang Y, Qiao P, Wang W, Zhang Y, Xia X, Lan X. A Novel Radioimmune 99mTc-Labeled Tracer for Imaging Sphingosine 1-Phosphate Receptor 1 in Tumor Xenografts: An In Vitro and In Vivo Study. Front Immunol 2021; 12:660842. [PMID: 34484174 PMCID: PMC8416251 DOI: 10.3389/fimmu.2021.660842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a phospholipid that regulates pleiotropic biological activities and exerts extracellular functions by binding to five specific G-protein-coupled receptors, S1P receptors (S1PR) 1-5. When activated by S1P, S1PR promote the proliferation and invasion of tumor cells by inducing the formation of new blood vessels. We developed and assessed a new monoclonal antibody imaging probe 99mTc-HYNIC-S1PR1mAb, to explore the feasibility of targeting the S1PR1 in vitro and in vivo. S1PR1mAb was prepared and followed by technetium-99m labeling with succinimidyl 6-hydraziniumnicotinate hydrochloride. Cell uptake and blocking studies were performed to investigate the binding specificity of 99mTc-HYNIC-S1PR1mAb in vitro. 99mTc-HYNIC-S1P1mAb was also tested in vivo in mice xenografted with SK-HEP-1 (high-expression of S1PR1) and MCF-7 (low-expression of S1PR1) using single-photon emission-computed tomography (SPECT). Ex vivo gamma counting of tissues from tumor-bearing mice was used to evaluate 99mTc-HYNIC-S1PR1mAb biodistribution. The biodistribution study results showed significantly higher uptake in SK-HEP-1 tumors than in MCF-7 tumors (P < 0.001). Reduced uptake of 99mTc-HYNIC-S1PR1mAb in SK-HEP-1 was observed in tumor-bearing nude mice pretreated with fingolimod, which binds competitively to the receptors, especially S1PR1. 99mTc-HYNIC-S1PR1mAb can be synthesized and specifically targeted to S1PR1 in vitro and in vivo, allowing S1PR1 expression assessment with SPECT imaging.
Collapse
Affiliation(s)
- Min Ye
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Hao Ji
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yaqun Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Pengxin Qiao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenxia Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
8
|
Mélin L, Abdullayev S, Fnaiche A, Vu V, González Suárez N, Zeng H, Szewczyk MM, Li F, Senisterra G, Allali-Hassani A, Chau I, Dong A, Woo S, Annabi B, Halabelian L, LaPlante SR, Vedadi M, Barsyte-Lovejoy D, Santhakumar V, Gagnon A. Development of LM98, a Small-Molecule TEAD Inhibitor Derived from Flufenamic Acid. ChemMedChem 2021; 16:2982-3002. [PMID: 34164919 DOI: 10.1002/cmdc.202100432] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 12/19/2022]
Abstract
The YAP-TEAD transcriptional complex is responsible for the expression of genes that regulate cancer cell growth and proliferation. Dysregulation of the Hippo pathway due to overexpression of TEAD has been reported in a wide range of cancers. Inhibition of TEAD represses the expression of associated genes, demonstrating the value of this transcription factor for the development of novel anti-cancer therapies. We report herein the design, synthesis and biological evaluation of LM98, a flufenamic acid analogue. LM98 shows strong affinity to TEAD, inhibits its autopalmitoylation and reduces the YAP-TEAD transcriptional activity. Binding of LM98 to TEAD was supported by 19 F-NMR studies while co-crystallization experiments confirmed that LM98 is anchored within the palmitic acid pocket of TEAD. LM98 reduces the expression of CTGF and Cyr61, inhibits MDA-MB-231 breast cancer cell migration and arrests cell cycling in the S phase during cell division.
Collapse
Affiliation(s)
- Léa Mélin
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Shuay Abdullayev
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Ahmed Fnaiche
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Victoria Vu
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Narjara González Suárez
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Guillermo Senisterra
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Abdellah Allali-Hassani
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Simon Woo
- INRS-Centre Armand Frappier Santé Biotechnologie, Université du Québec, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Borhane Annabi
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Steven R LaPlante
- INRS-Centre Armand Frappier Santé Biotechnologie, Université du Québec, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1 A8, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1 A8, Canada
| | - Vijayaratnam Santhakumar
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Alexandre Gagnon
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| |
Collapse
|
9
|
Daubit IM, Wolf J, Metzler-Nolte N. Rhodium(I) and Iridium(I) N-Heterocyclic carbene complexes of imidazolium functionalized amino acids and peptides. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2019.121096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Panigrahi K, Fei X, Kitamura M, Berkowitz DB. Rapid Entry into Biologically Relevant α,α-Difluoroalkylphosphonates Bearing Allyl Protection-Deblocking under Ru(II)/(IV)-Catalysis. Org Lett 2019; 21:9846-9851. [PMID: 31789041 DOI: 10.1021/acs.orglett.9b03707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A convenient synthetic route to α,α-difluoroalkylphosphonates is described. Structurally diverse aldehydes are condensed with LiF2CP(O)(OCH2CH═CH2)2. The resultant alcohols are captured as the pentafluorophenyl thionocarbonates and efficiently deoxygenated with HSnBu3, BEt3, and O2, and then smoothly deblocked with CpRu(IV)(π-allyl)quinoline-2-carboxylate (1-2 mol %) in methanol as an allyl cation scavenger. These mild deprotection conditions provide access to free α,α-difluoroalkylphosphonates in nearly quantitative yield. This methodology is used to rapidly construct new bis-α,α-difluoroalkyl phosphonate inhibitors of PTPIB (protein phosphotyrosine phosphatase-1B).
Collapse
Affiliation(s)
- Kaushik Panigrahi
- Department of Chemistry , University of Nebraska , Lincoln , Nebraska 68588-0304 , United States
| | - Xiang Fei
- Department of Chemistry , University of Nebraska , Lincoln , Nebraska 68588-0304 , United States
| | - Masato Kitamura
- Graduate School of Pharmaceutical Sciences , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8602 , Japan
| | - David B Berkowitz
- Department of Chemistry , University of Nebraska , Lincoln , Nebraska 68588-0304 , United States
| |
Collapse
|
11
|
Bauckneht M, Capitanio S, Raffa S, Roccatagliata L, Pardini M, Lapucci C, Marini C, Sambuceti G, Inglese M, Gallo P, Cecchin D, Nobili F, Morbelli S. Molecular imaging of multiple sclerosis: from the clinical demand to novel radiotracers. EJNMMI Radiopharm Chem 2019; 4:6. [PMID: 31659498 PMCID: PMC6453990 DOI: 10.1186/s41181-019-0058-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
Background Brain PET imaging with different tracers is mainly clinically used in the field of neurodegenerative diseases and brain tumors. In recent years, the potential usefulness of PET has also gained attention in the field of MS. In fact, MS is a complex disease and several processes can be selected as a target for PET imaging. The use of PET with several different tracers has been mainly evaluated in the research setting to investigate disease pathophysiology (i.e. phenotypes, monitoring of progression) or to explore its use a surrogate end-point in clinical trials. Results We have reviewed PET imaging studies in MS in humans and animal models. Tracers have been grouped according to their pathophysiological targets (ie. tracers for myelin kinetic, neuroinflammation, and neurodegeneration). The emerging clinical indication for brain PET imaging in the differential diagnosis of suspected tumefactive demyelinated plaques as well as the clinical potential provided by PET images in view of the recent introduction of PET/MR technology are also addressed. Conclusion While several preclinical and fewer clinical studies have shown results, full-scale clinical development programs are needed to translate molecular imaging technologies into a clinical reality that could ideally fit into current precision medicine perspectives.
Collapse
Affiliation(s)
- Matteo Bauckneht
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy.
| | - Selene Capitanio
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Stefano Raffa
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
| | - Luca Roccatagliata
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy.,Neuroradiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Pardini
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy.,Clinica Neurologica, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Caterina Lapucci
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Cecilia Marini
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy.,CNR Institute of Molecular Bioimaging and Physiology, Milan, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
| | - Matilde Inglese
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy.,Clinica Neurologica, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Paolo Gallo
- Multiple Sclerosis Centre of the Veneto Region, Department of Neurosciences DNS, University of Padua, Padua, Italy
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine-DIMED, Padova University Hospital, Padua, Italy.,Padua Neuroscience Center, University of Padua, Padua, Italy
| | - Flavio Nobili
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy.,Clinica Neurologica, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Silvia Morbelli
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
| |
Collapse
|
12
|
Tupec M, Buček A, Janoušek V, Vogel H, Prchalová D, Kindl J, Pavlíčková T, Wenzelová P, Jahn U, Valterová I, Pichová I. Expansion of the fatty acyl reductase gene family shaped pheromone communication in Hymenoptera. eLife 2019; 8:e39231. [PMID: 30714899 PMCID: PMC6361591 DOI: 10.7554/elife.39231] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022] Open
Abstract
Fatty acyl reductases (FARs) are involved in the biosynthesis of fatty alcohols that serve a range of biological roles. Insects typically harbor numerous FAR gene family members. While some FARs are involved in pheromone biosynthesis, the biological significance of the large number of FARs in insect genomes remains unclear. Using bumble bee (Bombini) FAR expression analysis and functional characterization, hymenopteran FAR gene tree reconstruction, and inspection of transposable elements (TEs) in the genomic environment of FARs, we uncovered a massive expansion of the FAR gene family in Hymenoptera, presumably facilitated by TEs. The expansion occurred in the common ancestor of bumble bees and stingless bees (Meliponini). We found that bumble bee FARs from the expanded FAR-A ortholog group contribute to the species-specific pheromone composition. Our results indicate that expansion and functional diversification of the FAR gene family played a key role in the evolution of pheromone communication in Hymenoptera.
Collapse
Affiliation(s)
- Michal Tupec
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
- Department of Biochemistry, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Aleš Buček
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
- Okinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Václav Janoušek
- Department of Zoology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Heiko Vogel
- Department of EntomologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Darina Prchalová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Jiří Kindl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Tereza Pavlíčková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Petra Wenzelová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Irena Valterová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
13
|
Liu H, Jin H, Han J, Yue X, Yang H, Zayed MA, Gropler RJ, Tu Z. Upregulated Sphingosine 1-Phosphate Receptor 1 Expression in Human and Murine Atherosclerotic Plaques. Mol Imaging Biol 2019; 20:448-456. [PMID: 29134505 DOI: 10.1007/s11307-017-1141-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Dysregulation of sphingosine 1-phosphate receptor 1 (S1PR1) signaling contributes to inflammation-related pathophysiological changes in cardiovascular diseases including atherosclerosis (AS). S1PR1-targeting compounds significantly reduce lesion size in murine models of AS. Therefore, characterization of S1PR1 expression in vitro and in vivo in atherosclerotic plaque could enable mechanistic studies and inform S1PR1 targeted therapies. PROCEDURES H&E staining and immunostaining studies were performed on variably diseased human femoral endarterectomy plaque specimens, as well as mouse aortic sections from ApoE-/- mice maintained on a high-fat diet (AS mice). In vitro autoradiography study in human femoral plaques was used to confirm the tracer specificity. Micro positron emission tomography (PET) and ex vivo autoradiography studies were conducted in AS mice and their controls using a S1PR1-specific radioligand [11C]TZ3321 for in vivo and ex vivo quantification of S1PR1 expression in mouse aortic plaques. RESULTS Increased S1PR1 expression was observed in areas of human femoral endarterectomy plaque specimens with foam cell accumulation compared with control tissue; in vitro autoradiography study indicated that SEW2781, a S1PR1 compound was able to reduce the uptake of [11C]TZ3321 by 56 %. S1PR1 levels were also upregulated in AS mouse aortic plaques. MicroPET data showed the aorta-to-blood tracer uptake ratio in AS mice was approximately 20 % higher than that in controls. Autoradiographic study also revealed elevated tracer accumulation in AS mouse aorta. CONCLUSIONS Upregulated S1PR1 expression in human and mouse atherosclerotic plaques was successfully identified by immunostaining and radioligand-based methods. This data demonstrates that [11C]TZ3321 PET provides great promise in imaging S1PR1 expression in atherosclerotic plaques.
Collapse
Affiliation(s)
- Hui Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hongjun Jin
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Junbin Han
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xuyi Yue
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hao Yang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Mohamed A Zayed
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Robert J Gropler
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
14
|
Franco Machado J, Silva RD, Melo R, G Correia JD. Less Exploited GPCRs in Precision Medicine: Targets for Molecular Imaging and Theranostics. Molecules 2018; 24:E49. [PMID: 30583594 PMCID: PMC6337414 DOI: 10.3390/molecules24010049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 12/18/2022] Open
Abstract
Precision medicine relies on individually tailored therapeutic intervention taking into account individual variability. It is strongly dependent on the availability of target-specific drugs and/or imaging agents that recognize molecular targets and patient-specific disease mechanisms. The most sensitive molecular imaging modalities, Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET), rely on the interaction between an imaging radioprobe and a target. Moreover, the use of target-specific molecular tools for both diagnostics and therapy, theranostic agents, represent an established methodology in nuclear medicine that is assuming an increasingly important role in precision medicine. The design of innovative imaging and/or theranostic agents is key for further accomplishments in the field. G-protein-coupled receptors (GPCRs), apart from being highly relevant drug targets, have also been largely exploited as molecular targets for non-invasive imaging and/or systemic radiotherapy of various diseases. Herein, we will discuss recent efforts towards the development of innovative imaging and/or theranostic agents targeting selected emergent GPCRs, namely the Frizzled receptor (FZD), Ghrelin receptor (GHSR-1a), G protein-coupled estrogen receptor (GPER), and Sphingosine-1-phosphate receptor (S1PR). The pharmacological and clinical relevance will be highlighted, giving particular attention to the studies on the synthesis and characterization of targeted molecular imaging agents, biological evaluation, and potential clinical applications in oncology and non-oncology diseases. Whenever relevant, supporting computational studies will be also discussed.
Collapse
Affiliation(s)
- João Franco Machado
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Rúben D Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
| | - Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
- Center for Neuroscience and Cell Biology; Rua Larga, Faculdade de Medicina, Polo I, 1ºandar, Universidade de Coimbra, 3004-504 Coimbra, Portugal.
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
| |
Collapse
|
15
|
Luo Z, Han J, Liu H, Rosenberg AJ, Chen DL, Gropler RJ, Perlmutter JS, Tu Z. Syntheses and in vitro biological evaluation of S1PR1 ligands and PET studies of four F-18 labeled radiotracers in the brain of nonhuman primates. Org Biomol Chem 2018; 16:9171-9184. [PMID: 30462126 PMCID: PMC6561338 DOI: 10.1039/c8ob02609b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A series of seventeen hydroxyl-containing sphingosine 1-phosphate receptor 1 (S1PR1) ligands were designed and synthesized. Their in vitro binding potencies were determined using [32P]S1P competitive binding assays. Compounds 10a, 17a, 17b, and 24 exhibited high S1PR1 binding potencies with IC50 values ranging from 3.9 to 15.4 nM and also displayed high selectivity for S1PR1 over other S1P receptor subtypes (IC50 > 1000 nM for S1PR2-5). The most potent compounds 10a, 17a, 17b, and 24 were subsequently radiolabeled with F-18 in high yields and purities. MicroPET studies in cynomolgus macaque showed that [18F]10a, [18F]17a, and [18F]17b but not [18F]24 crossed the blood brain barrier and had high initial brain uptake. Further validation of [18F]10a, [18F]17a, and [18F]17b in preclinical models of neuroinflammation is warranted to identify a suitable PET radioligand to quantify S1PR1 expression in vivo as a metric of an inflammatory response.
Collapse
Affiliation(s)
- Zonghua Luo
- Department of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, St Louis, Missouri 63110, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Luo Z, Rosenberg AJ, Liu H, Han J, Tu Z. Syntheses and in vitro evaluation of new S1PR1 compounds and initial evaluation of a lead F-18 radiotracer in rodents. Eur J Med Chem 2018; 150:796-808. [PMID: 29604582 PMCID: PMC5908474 DOI: 10.1016/j.ejmech.2018.03.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/27/2018] [Accepted: 03/12/2018] [Indexed: 12/15/2022]
Abstract
Thirteen new sphingosine-1-phosphate receptor 1 (S1PR1) ligands were designed and synthesized by replacing azetidine-3-carboxylic acid moiety of compound 4 with new polar groups. The in vitro binding potency of these new analogs toward S1PR1 was determined. Out of 13 new compounds, four compounds 9a, 10c, 12b, and 16b displayed high S1PR1 binding potency with IC50 values of 13.2 ± 3.2, 14.7 ± 1.7, 9.7 ± 1.6, and 6.3 ± 1.3 nM, respectively; further binding studies of these four ligands toward S1PR2-5 suggested they are highly selective for S1PR1 over other S1PRs. The radiosynthesis of the lead radiotracer [18F]12b was achieved with good radiochemical yield (∼14.1%), high radiochemical purity (>98%), and good specific activity (∼54.1 GBq/μmol, decay corrected to the end of synthesis, EOS). Ex vivo autoradiography and initial biodistribution studies in rodents were performed, suggesting that [18F]12b was able to penetrate the blood-brain barrier (BBB) with high brain uptake (0.71% ID/g at 60 min post-injection) and no defluorination was observed. In vitro autoradiography study in brain slices of lipopolysaccharides (LPS)-induced neuroinflammation mice indicated that SEW2871, a specific S1PR1 ligand was able to reduce the uptake of [18F]12b, suggesting [18F]12b has S1PR1 specific binding. These initial results suggested that [18F]12b has potential to be an F-18 labeled radiotracer for imaging S1PR1 in the brain of the animal in vivo.
Collapse
Affiliation(s)
- Zonghua Luo
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Adam J Rosenberg
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hui Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Junbin Han
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
17
|
Narayanaswami V, Dahl K, Bernard-Gauthier V, Josephson L, Cumming P, Vasdev N. Emerging PET Radiotracers and Targets for Imaging of Neuroinflammation in Neurodegenerative Diseases: Outlook Beyond TSPO. Mol Imaging 2018; 17:1536012118792317. [PMID: 30203712 PMCID: PMC6134492 DOI: 10.1177/1536012118792317] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/31/2018] [Accepted: 07/09/2018] [Indexed: 11/16/2022] Open
Abstract
The dynamic and multicellular processes of neuroinflammation are mediated by the nonneuronal cells of the central nervous system, which include astrocytes and the brain's resident macrophages, microglia. Although initiation of an inflammatory response may be beneficial in response to injury of the nervous system, chronic or maladaptive neuroinflammation can have harmful outcomes in many neurological diseases. An acute neuroinflammatory response is protective when activated neuroglia facilitate tissue repair by releasing anti-inflammatory cytokines and neurotrophic factors. On the other hand, chronic neuroglial activation is a major pathological mechanism in neurodegenerative diseases, likely contributing to neuronal dysfunction, injury, and disease progression. Therefore, the development of specific and sensitive probes for positron emission tomography (PET) studies of neuroinflammation is attracting immense scientific and clinical interest. An early phase of this research emphasized PET studies of the prototypical imaging biomarker of glial activation, translocator protein-18 kDa (TSPO), which presents difficulties for quantitation and lacks absolute cellular specificity. Many alternate molecular targets present themselves for PET imaging of neuroinflammation in vivo, including enzymes, intracellular signaling molecules as well as ionotropic, G-protein coupled, and immunoglobulin receptors. We now review the lead structures in radiotracer development for PET studies of neuroinflammation targets for neurodegenerative diseases extending beyond TSPO, including glycogen synthase kinase 3, monoamine oxidase-B, reactive oxygen species, imidazoline-2 binding sites, cyclooxygenase, the phospholipase A2/arachidonic acid pathway, sphingosine-1-phosphate receptor-1, cannabinoid-2 receptor, the chemokine receptor CX3CR1, purinergic receptors: P2X7 and P2Y12, the receptor for advanced glycation end products, Mer tyrosine kinase, and triggering receptor expressed on myeloid cells-1. We provide a brief overview of the cellular expression and function of these targets, noting their selectivity for astrocytes and/or microglia, and highlight the classes of PET radiotracers that have been investigated in early-stage preclinical or clinical research studies of neuroinflammation.
Collapse
Affiliation(s)
- Vidya Narayanaswami
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth Dahl
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Vadim Bernard-Gauthier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Paul Cumming
- School of Psychology and Counselling and IHBI, Queensland University of Technology, Brisbane, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Cooper A, Singh S, Hook S, Tyndall JDA, Vernall AJ. Chemical Tools for Studying Lipid-Binding Class A G Protein-Coupled Receptors. Pharmacol Rev 2017; 69:316-353. [PMID: 28655732 DOI: 10.1124/pr.116.013243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/15/2017] [Indexed: 12/16/2022] Open
Abstract
Cannabinoid, free fatty acid, lysophosphatidic acid, sphingosine 1-phosphate, prostanoid, leukotriene, bile acid, and platelet-activating factor receptor families are class A G protein-coupled receptors with endogenous lipid ligands. Pharmacological tools are crucial for studying these receptors and addressing the many unanswered questions surrounding expression of these receptors in normal and diseased tissues. An inherent challenge for developing tools for these lipid receptors is balancing the often lipophilic requirements of the receptor-binding pharmacophore with favorable physicochemical properties to optimize highly specific binding. In this study, we review the radioligands, fluorescent ligands, covalent ligands, and antibodies that have been used to study these lipid-binding receptors. For each tool type, the characteristics and design rationale along with in vitro and in vivo applications are detailed.
Collapse
Affiliation(s)
- Anna Cooper
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Sameek Singh
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Sarah Hook
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
19
|
Liu H, Jin H, Yue X, Luo Z, Liu C, Rosenberg AJ, Tu Z. PET Imaging Study of S1PR1 Expression in a Rat Model of Multiple Sclerosis. Mol Imaging Biol 2017; 18:724-32. [PMID: 26975859 DOI: 10.1007/s11307-016-0944-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE Upregulation of sphingosine-1-phosphate receptor 1 (S1PR1) expression in multiple sclerosis (MS) lesions is associated with neuroinflammatory response. This study investigated the correlation between neuroinflammation and S1PR1 expression in the spinal cord of an experimental autoimmune encephalomyelitis (EAE) rat model of MS, using the S1PR1 positron emission tomography (PET) radiotracer [(11)C]TZ3321. PROCEDURES MicroPET imaging studies of [(11)C]TZ3321 were performed to measure uptake of [(11)C]TZ3321 in the spinal cord of EAE rats. Immunohistochemical staining was performed to confirm the overexpression of S1PR1 and other inflammatory biomarkers. RESULTS MicroPET imaging demonstrated a 20-30 % increase in [(11)C]TZ3321 uptake in the lumbar spinal cord of EAE rats versus sham controls at 35-60 min post injection. The increased uptake of [(11)C]TZ3321 was correlated with the overexpression of S1PR1 in the lumbar spinal cord of EAE rats that was confirmed by immunohistochemical staining. Upregulated S1PR1 expression was associated with glial cell activation and immune cell infiltration. CONCLUSIONS MicroPET imaging modality with a specific radioligand [(11)C]TZ3321 is able to assess the expression of S1PR1 in EAE rat lumbar spinal cord. This may provide a new approach to the assessment of neuroinflammatory response in MS and other inflammatory diseases.
Collapse
Affiliation(s)
- Hui Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hongjun Jin
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xuyi Yue
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Zonghua Luo
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chunling Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Adam J Rosenberg
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
20
|
Facile synthesis of Fmoc-protected phosphonate pSer mimetic and its application in assembling a substrate peptide of 14-3-3 ζ. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Jin H, Yang H, Liu H, Zhang Y, Zhang X, Rosenberg AJ, Liu Y, Lapi SE, Tu Z. A promising carbon-11-labeled sphingosine-1-phosphate receptor 1-specific PET tracer for imaging vascular injury. J Nucl Cardiol 2017; 24:558-570. [PMID: 26843200 DOI: 10.1007/s12350-015-0391-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 12/04/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND Sphingosine-1-phosphate receptor 1 (S1PR1) is highly expressed in vascular smooth muscle cells from intimal lesions. PET imaging using S1PR1 as a biomarker would increase our understanding of its role in vascular pathologies including in-stent restenosis. METHODS The S1PR1 compound TZ3321 was synthesized for in vitro characterization and labeled with Carbon-11 for in vivo studies. The biodistribution of [11C]TZ3321 was evaluated in normal mice; microPET and immunohistochemistry (IHC) studies were performed using a murine femoral artery wire-injury model of restenosis. RESULTS The high potency of TZ3321 for S1PR1 (IC 50 = 2.13 ± 1.63 nM), and high selectivity (>1000 nM) for S1PR1 over S1PR2 and S1PR3 were confirmed. Biodistribution data revealed prolonged retention of [11C]TZ3321 in S1PR1-enriched tissues. MicroPET imaging of [11C]TZ3321 showed higher uptake in the wire-injured arteries of ApoE-/- mice than in injured arteries of wild-type mice (SUV 0.40 ± 0.06 vs 0.28 ± 0.04, n = 6, P < .001); FDG-PET showed no difference (SUV 0.98 ± 0.04 vs 0.94 ± 0.01, n = 6, P > .05). Post-PET autoradiography showed >4-fold higher [11C]TZ3321 retention in the injured artery of ApoE-/- mice than in wild-type mice. Subsequent IHC staining confirmed higher expression of S1PR1 in the neointima of the injured artery of ApoE-/- mice than in wild-type mice. CONCLUSIONS This preliminary study supports the potential use of PET for quantification of the S1PR1 expression as a biomarker of neointimal hyperplasia.
Collapse
Affiliation(s)
- Hongjun Jin
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Boulevard, St. Louis, MO, 63110, USA
| | - Hao Yang
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Boulevard, St. Louis, MO, 63110, USA
| | - Hui Liu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Boulevard, St. Louis, MO, 63110, USA
| | - Yunxiao Zhang
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Boulevard, St. Louis, MO, 63110, USA
| | - Xiang Zhang
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Boulevard, St. Louis, MO, 63110, USA
| | - Adam J Rosenberg
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Boulevard, St. Louis, MO, 63110, USA
| | - Yongjian Liu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Boulevard, St. Louis, MO, 63110, USA
| | - Suzanne E Lapi
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Boulevard, St. Louis, MO, 63110, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Boulevard, St. Louis, MO, 63110, USA.
| |
Collapse
|
22
|
Rosenberg AJ, Liu H, Jin H, Yue X, Riley S, Brown SJ, Tu Z. Design, Synthesis, and In Vitro and In Vivo Evaluation of an (18)F-Labeled Sphingosine 1-Phosphate Receptor 1 (S1P1) PET Tracer. J Med Chem 2016; 59:6201-20. [PMID: 27280499 PMCID: PMC5091660 DOI: 10.1021/acs.jmedchem.6b00390] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sphingosine 1-phosphate receptor 1 (S1P1) plays a pivotal signaling role in inflammatory response; because S1P1 modulation has been identified as a therapeutic target for various diseases, a PET tracer for S1P1 would be a useful tool. Fourteen fluorine-containing analogues of S1P ligands were synthesized and their in vitro binding potency measured; four had high potency and selectivity for S1P1 (S1P1 IC50 < 10 nM, >100-fold selectivity for S1P1 over S1P2 and S1P3). The most potent ligand, 28c (IC50 = 2.63 nM for S1P1) was (18)F-labeled and evaluated in a mouse model of LPS-induced acute liver injury to determine its S1P1-binding specificity. The results from biodistribution, autoradiography, and microPET imaging showed higher [(18)F]28c accumulation in the liver of LPS-treated mice than controls. Increased expression of S1P1 in the LPS model was confirmed by immunohistochemical analysis (IHC). These data suggest that [(18)F]28c is a S1P1 PET tracer with high potential for imaging S1P1 in vivo.
Collapse
Affiliation(s)
- Adam J. Rosenberg
- Department of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, St. Louis, Missouri 63110, United States
| | - Hui Liu
- Department of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, St. Louis, Missouri 63110, United States
| | - Hongjun Jin
- Department of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, St. Louis, Missouri 63110, United States
| | - Xuyi Yue
- Department of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, St. Louis, Missouri 63110, United States
| | - Sean Riley
- The Scripps Research Institute Molecular Screening Center, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Steven J. Brown
- The Scripps Research Institute Molecular Screening Center, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, St. Louis, Missouri 63110, United States
| |
Collapse
|
23
|
Rosenberg AJ, Liu H, Tu Z. A practical process for the preparation of [(32)P]S1P and binding assay for S1P receptor ligands. Appl Radiat Isot 2015; 102:5-9. [PMID: 25931137 DOI: 10.1016/j.apradiso.2015.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/17/2015] [Accepted: 04/15/2015] [Indexed: 10/23/2022]
Abstract
Sphingosine-1-phosphate receptors (S1PRs) are important regulators of vascular permeability, inflammation, angiogenesis and vascular maturation. Identifying a specific S1PR PET radioligand is imperative, but it is hindered by the complexity and variability of current for binding affinity measurement procedures. Herein, we report a streamlined protocol for radiosynthesis of [(32)P]S1P with good radiochemical yield (36-50%) and high radiochemical purity (>99%). We also report a reproducible procedure for determining the binding affinity for compounds targeting S1PRs in vitro.
Collapse
Affiliation(s)
- Adam J Rosenberg
- Department of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, St. Louis, MO 63110, USA
| | - Hui Liu
- Department of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, St. Louis, MO 63110, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, St. Louis, MO 63110, USA.
| |
Collapse
|
24
|
Shaikh RS, Schilson SS, Wagner S, Hermann S, Keul P, Levkau B, Schäfers M, Haufe G. Synthesis and evaluation of fluorinated fingolimod (FTY720) analogues for sphingosine-1-phosphate receptor molecular imaging by positron emission tomography. J Med Chem 2015; 58:3471-84. [PMID: 25826109 DOI: 10.1021/jm502021d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a lysophospholipid that evokes a variety of biological responses via stimulation of a set of cognate G-protein coupled receptors (GPCRs): S1P1-S1P5. S1P and its receptors (S1PRs) play important roles in the immune, cardiovascular, and central nervous systems and have also been implicated in carcinogenesis. Recently, the S1P analogue Fingolimod (FTY720) has been approved for the treatment of patients with relapsing multiple sclerosis. This work presents the synthesis of various fluorinated structural analogues of FTY720, their in vitro and in vivo biological testing, and their development and application as [(18)F]radiotracers for the study of S1PR biodistribution and imaging in mice using small-animal positron emission tomography (PET).
Collapse
Affiliation(s)
- Rizwan S Shaikh
- †Organisch-Chemisches Institut and International NRW Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, D-48149 Münster, Germany.,‡NRW Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, D-48149 Münster, Germany
| | - Stefanie S Schilson
- †Organisch-Chemisches Institut and International NRW Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, D-48149 Münster, Germany
| | - Stefan Wagner
- §Klinik für Nuklearmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, D-48149 Münster, Germany
| | | | - Petra Keul
- #Institute of Pathophysiology, Westdeutsches Herz- und Gefäßzentrum, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, D-45122 Essen, Germany
| | - Bodo Levkau
- #Institute of Pathophysiology, Westdeutsches Herz- und Gefäßzentrum, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, D-45122 Essen, Germany
| | - Michael Schäfers
- §Klinik für Nuklearmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, D-48149 Münster, Germany
| | - Günter Haufe
- †Organisch-Chemisches Institut and International NRW Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, D-48149 Münster, Germany
| |
Collapse
|
25
|
Schilson SS, Keul P, Shaikh RS, Schäfers M, Levkau B, Haufe G. Synthesis of new ligands for targeting the S1P1 receptor. Bioorg Med Chem 2015; 23:1011-26. [DOI: 10.1016/j.bmc.2015.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/07/2015] [Accepted: 01/07/2015] [Indexed: 11/25/2022]
|
26
|
Kogami M, Koketsu M. An efficient method for the synthesis of selenium modified nucleosides: its application in the synthesis of Se-adenosyl-l-selenomethionine (SeAM). Org Biomol Chem 2015; 13:9405-17. [DOI: 10.1039/c5ob01316j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A versatile method for the synthesis of 5′-selenium modified nucleosides has been explored on the basis of a 2-(trimethylsilyl)ethyl (TSE) selenyl group.
Collapse
Affiliation(s)
- Masakazu Kogami
- Department of Chemistry and Biomolecular Science
- Faculty of Engineering
- Gifu University
- Gifu 501-1193
- Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science
- Faculty of Engineering
- Gifu University
- Gifu 501-1193
- Japan
| |
Collapse
|