1
|
Mishra VK, Khanna A, Tiwari G, Tyagi R, Sagar R. Recent developments on the synthesis of biologically active glycohybrids. Bioorg Chem 2024; 145:107172. [PMID: 38340475 DOI: 10.1016/j.bioorg.2024.107172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The exploration of hybridization emerges as a potent tool in advancing drug discovery research, with a significant emphasis on carbohydrate-containing hybrid scaffolds. Evidence indicates that linking carbohydrate molecules to privileged bioactive scaffolds enhances the bioactivity of drug molecules. This synergy results in a diverse range of activities, making carbohydrate scaffolds pivotal for synthesizing compound libraries with significant functional and structural diversity. Beyond their synthesis utility, these scaffolds offer applications in screening bioactive molecules, presenting alternative avenues for drug development. This comprehensive review spanning 2015 to 2023 focuses on synthesized glycohybrid molecules, revealing their bioactivity in areas such as anti-microbial, anti-cancer, anti-diabetic, anti-inflammatory activities, enzyme inhibition and pesticides. Numerous novel glycohybrids surpass positive control drugs in biological activity. This focused study not only highlights the diverse bioactivities of glycohybrids but also underscores their promising role in innovative drug development strategies.
Collapse
Affiliation(s)
- Vinay Kumar Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005
| | - Ashish Khanna
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005
| | - Ghanshyam Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, 110067 New Delhi
| | - Ram Sagar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005; Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, 110067 New Delhi.
| |
Collapse
|
2
|
Sofi FA, Tabassum N. Natural product inspired leads in the discovery of anticancer agents: an update. J Biomol Struct Dyn 2023; 41:8605-8628. [PMID: 36255181 DOI: 10.1080/07391102.2022.2134212] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/03/2022] [Indexed: 10/24/2022]
Abstract
Natural products have emerged as major leads for the discovery and development of new anti-cancer drugs. The plant-derived anti-cancer drugs account for approximately 60% and the quest for new anti-cancer agents is in progress. Anti-cancer leads have been isolated from plants, animals, marine organisms, and microorganisms from time immemorial. The process of semisynthetic modifications of the parent lead has led to the generation of new anti-cancer agents with improved therapeutic efficacy and minimal side effects. The various chemo-informatics tools, bioinformatics, high-throughput screening, and combinatorial synthesis are able to deliver the new natural product lead molecules. Plant-derived anticancer agents in either late preclinical development or early clinical trials include taxol, vincristine, vinblastine, topotecan, irinotecan, etoposide, paclitaxel, and docetaxel. Similarly, anti-cancer agents from microbial sources include dactinomycin, bleomycin, mitomycin C, and doxorubicin. In this review, we highlighted the importance of natural products leads in the discovery and development of novel anti-cancer agents. The semisynthetic modifications of the parent lead to the new anti-cancer agent are also presented. Further, the leads in the preclinical settings with the potential to become effective anticancer agents are also reviewed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Firdoos Ahmad Sofi
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| |
Collapse
|
3
|
Wang Y, Shen XJ, Su FW, Xie YR, Wang LX, Zhang N, Wu YL, Niu Y, Zhang DY, Zi CT, Wang XJ, Sheng J. Novel Perbutyrylated Glucose Derivatives of (-)-Epigallocatechin-3-Gallate Inhibit Cancer Cells Proliferation by Decreasing Phosphorylation of the EGFR: Synthesis, Cytotoxicity, and Molecular Docking. Molecules 2021; 26:4361. [PMID: 34299635 PMCID: PMC8306927 DOI: 10.3390/molecules26144361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/03/2021] [Accepted: 07/14/2021] [Indexed: 01/10/2023] Open
Abstract
Lung cancer is one of the most commonly occurring cancer mortality worldwide. The epidermal growth factor receptor (EGFR) plays an important role in cellular functions and has become the new promising target. Natural products and their derivatives with various structures, unique biological activities, and specific selectivity have served as lead compounds for EGFR. D-glucose and EGCG were used as starting materials. A series of glucoside derivatives of EGCG (7-12) were synthesized and evaluated for their in vitro anticancer activity against five human cancer cell lines, including HL-60, SMMC-7721, A-549, MCF-7, and SW480. In addition, we investigated the structure-activity relationship and physicochemical property-activity relationship of EGCG derivatives. Compounds 11 and 12 showed better growth inhibition than others in four cancer cell lines (HL-60, SMMC-7721, A-549, and MCF), with IC50 values in the range of 22.90-37.87 μM. Compounds 11 and 12 decreased phosphorylation of EGFR and downstream signaling protein, which also have more hydrophobic interactions than EGCG by docking study. The most active compounds 11 and 12, both having perbutyrylated glucose residue, we found that perbutyrylation of the glucose residue leads to increased cytotoxic activity and suggested that their potential as anticancer agents for further development.
Collapse
Affiliation(s)
- Ya Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (Y.-R.X.); (L.-X.W.); (N.Z.); (Y.-L.W.); (Y.N.); (D.-Y.Z.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xiao-Jing Shen
- Party Committee of Organ, Yunnan Agricultural University, Kunming 650201, China;
| | - Fa-Wu Su
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China;
| | - Yin-Rong Xie
- Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (Y.-R.X.); (L.-X.W.); (N.Z.); (Y.-L.W.); (Y.N.); (D.-Y.Z.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Li-Xia Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (Y.-R.X.); (L.-X.W.); (N.Z.); (Y.-L.W.); (Y.N.); (D.-Y.Z.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Ning Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (Y.-R.X.); (L.-X.W.); (N.Z.); (Y.-L.W.); (Y.N.); (D.-Y.Z.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yi-Long Wu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (Y.-R.X.); (L.-X.W.); (N.Z.); (Y.-L.W.); (Y.N.); (D.-Y.Z.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yun Niu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (Y.-R.X.); (L.-X.W.); (N.Z.); (Y.-L.W.); (Y.N.); (D.-Y.Z.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dong-Ying Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (Y.-R.X.); (L.-X.W.); (N.Z.); (Y.-L.W.); (Y.N.); (D.-Y.Z.)
| | - Cheng-Ting Zi
- Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (Y.-R.X.); (L.-X.W.); (N.Z.); (Y.-L.W.); (Y.N.); (D.-Y.Z.)
| | - Xuan-Jun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (Y.-R.X.); (L.-X.W.); (N.Z.); (Y.-L.W.); (Y.N.); (D.-Y.Z.)
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming 650201, China; (Y.W.); (Y.-R.X.); (L.-X.W.); (N.Z.); (Y.-L.W.); (Y.N.); (D.-Y.Z.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
4
|
Tremblay T, St-Gelais J, Houde M, Giguère D. Polyfluoroglycoside Synthesis via Simple Alkylation of an Anomeric Hydroxyl Group: Access to Fluoroetoposide Analogues. J Org Chem 2021; 86:4812-4824. [DOI: 10.1021/acs.joc.0c02841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Thomas Tremblay
- Département de Chimie, Université Laval, PROTEO, 1045 av. De la Médecine, Québec City, QC, Canada G1 V 0A6
| | - Jacob St-Gelais
- Département de Chimie, Université Laval, PROTEO, 1045 av. De la Médecine, Québec City, QC, Canada G1 V 0A6
| | - Maxime Houde
- Département de Chimie, Université Laval, PROTEO, 1045 av. De la Médecine, Québec City, QC, Canada G1 V 0A6
| | - Denis Giguère
- Département de Chimie, Université Laval, PROTEO, 1045 av. De la Médecine, Québec City, QC, Canada G1 V 0A6
| |
Collapse
|
5
|
Lu Y, Zhu L, Cai R, Li Y, Zhao Y. 2, 4, 5-Trideoxyhexopyranosides Derivatives of 4'- Demethylepipodophyllotoxin: De novo Synthesis and Anticancer Activity. Med Chem 2020; 18:130-139. [PMID: 33222676 DOI: 10.2174/1573406416666201120102250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/26/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Podophyllotoxin is a natural lignan which possesses anticancer and antiviral activities. Etoposide and teniposide are semisynthetic glycoside derivatives of podophyllotoxin and are increasingly used in cancer medicine. OBJECTIVE The present work was aimed to design and synthesize a series of 2, 4, 5-trideoxyhexopyranosides derivatives of 4'-demethylepipodophyllotoxin as novel anticancer agents. METHODS A divergent de novo synthesis of 2, 4, 5-trideoxyhexopyranosides derivatives of 4'-demethylepipodophyllotoxin has been established via palladium-catalyzed glycosylation. The abilities of synthesized glycosides to inhibit the growth of A549, HepG2, SH-SY5Y, KB/VCR and HeLa cancer cells were investigated by MTT assay. Flow cytometric analysis of cell cycle with propidium iodide DNA staining was employed to observe the effect of compound 5b on cancer cell cycle. RESULTS Twelve D and L monosaccharides derivatives 5a-5l have been efficiently synthesized in three steps from various pyranone building blocks employing de novo glycosylation strategy. D-monosaccharide 5b showed highest cytotoxicity on five cancer cell lines with the IC50 values from 0.9 to 6.7 mM. It caused HepG2 cycle arrest at G2/M phase in a concentration-dependent manner. CONCLUSION The present work leads to the development of novel 2, 4, 5-trideoxyhexopyranosides derivatives of 4'- demethylepipodophyllotoxin. The biological results suggested that the replacement of the glucosyl moiety of etoposide with 2, 4, 5-trideoxyhexopyranosyl is favorable to their cytotoxicity. D-monosaccharide 5b caused HepG2 cycle arrest at G2/M phase in a concentration-dependent manner.
Collapse
Affiliation(s)
- Yapeng Lu
- School of Pharmacy, Nantong University, Nantong 226001. China
| | - Li Zhu
- School of Pharmacy, Nantong University, Nantong 226001. China
| | - Rui Cai
- School of Pharmacy, Nantong University, Nantong 226001. China
| | - Yu Li
- School of Pharmacy, Nantong University, Nantong 226001. China
| | - Yu Zhao
- School of Pharmacy, Nantong University, Nantong 226001. China
| |
Collapse
|
6
|
Recent advances of podophyllotoxin/epipodophyllotoxin hybrids in anticancer activity, mode of action, and structure-activity relationship: An update (2010-2020). Eur J Med Chem 2020; 208:112830. [PMID: 32992133 DOI: 10.1016/j.ejmech.2020.112830] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/05/2020] [Accepted: 09/06/2020] [Indexed: 02/08/2023]
Abstract
Podophyllotoxins and epipodophyllotoxins, possess excellent activity against both drug-sensitive and drug-resistant even multidrug-resistant cancer cells via inhibition of tubulin polymerization. Several podophyllotoxin/epipodophyllotoxin derivatives such as etoposide and teniposide have already been applied for cancer therapy, revealing their potential as putative anticancer drugs. Hybridization of podophyllotoxin/epipodophyllotoxin moiety with other anticancer pharmacophores is a promising strategy to develop novel drug candidates so as to overcome drug resistance and improve the specificity, and numerous of podophyllotoxin/epipodophyllotoxin hybrids exhibit excellent in vitro antiproliferative and in vivo anticancer potency. This review emphasizes the recent development of podophyllotoxin/epipodophyllotoxin hybrids with potential application for cancer therapy covering articles published between 2010 and 2020. The mechanisms of action, the critical aspects of design as well as structure-activity relationships were also summarized.
Collapse
|
7
|
Jia KZ, Zhu LW, Qu X, Li S, Shen Y, Qi Q, Zhang Y, Li YZ, Tang YJ. Enzymatic O-Glycosylation of Etoposide Aglycone by Exploration of the Substrate Promiscuity for Glycosyltransferases. ACS Synth Biol 2019; 8:2718-2725. [PMID: 31774653 DOI: 10.1021/acssynbio.9b00318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The 4-O-β-d-glucopyranoside of DMEP ((-)-4'-desmethylepipodophyllotoxin) (GDMEP), a natural product from Podophyllum hexandrum, is the direct precursor to the topoisomerase inhibitor etoposide, used in dozens of chemotherapy regimens for various malignancies. The biosynthesis pathway for DMEP has been completed, while the enzyme for biosynthesizing GDMEP is still unclear. Here, we report the enzymatic O-glycosylation of DMEP with 53% conversion by exploring the substrate promiscuity and entrances of glycosyltransferases. Notably, we found 6 essential amino acid residues surrounding the putative substrate entrances exposed to the protein surface in UGT78D2, CsUGT78D2, and CsUGT78D2-like, and these residues may determine substrate specificity and high O-glycosylation activity toward DMEP. Our results provide an effective route for one-step synthesis of GDMEP. Identification of the key residues and entrances of glycosyltransferases will promote precise identification of glycosyltransferase biocatalysts for novel substrates and provide a rational basis for glycosyltransferase engineering.
Collapse
Affiliation(s)
- Kai-Zhi Jia
- Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Li-Wen Zhu
- Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuemao Shen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ya-Jie Tang
- Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
8
|
Divergent de novo synthesis of 2,4,5-trideoxyhexopyranosides derivatives of podophyllotoxin as anticancer agents. Future Med Chem 2019; 11:3015-3027. [DOI: 10.4155/fmc-2018-0593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: Identification of new anticancer glycosidic derivatives of podophyllotoxin. Methods: 14 podophyllotoxin D- and L-monosaccharides have been synthesized in three steps employing de novo glycosylation strategy, and their abilities to inhibit the growth of HeLa, HepG2, MCF-7, A549 and MDA-MB-231 cancer cells were investigated by MTT assay. Molecular docking study of compound 5j with tubulin was performed. Immunofluorescence was applied for detecting the inhibitory effect of 5j on tubulin polymerization. Results & conclusion: Most of synthesized compounds showed strong cytotoxicity activity against five cancer cell lines. Compound 5j possessed the highest cytotoxicity with the IC50 values from 41.6 to 95.2 nM, and could concentration-dependently inhibit polymerization of the microtubule cytoskeleton of MCF-7 cells. Molecular docking disclosed that sugar moiety-dedicated hydrogen bond endowed 5j a higher binding affinity for tubulin.
Collapse
|
9
|
Zi CT, Yang L, Kong QH, Li HM, Yang XZ, Ding ZT, Jiang ZH, Hu JM, Zhou J. Glucoside Derivatives Of Podophyllotoxin: Synthesis, Physicochemical Properties, And Cytotoxicity. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3683-3692. [PMID: 31695335 PMCID: PMC6815755 DOI: 10.2147/dddt.s215895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/08/2019] [Indexed: 01/19/2023]
Abstract
Background Widespread concern of the side effects and the broad-spectrum anticancer property of podophyllotoxin as an antitumor agent highlight the need for the development of new podophyllotoxin derivatives. Although some per-butyrylated glucosides of podophyllotoxin and 4β-triazolyl-podophyllotoxin glycosides show good anticancer activity, the per-acetylated/free of podophyllotoxin glucosides and their per-acetylated are not well studied. Methods A few glucoside derivatives of PPT were synthesized and evaluated for their in vitro cytotoxic activities against five human cancer cell lines, HL-60 (leukemia), SMMC-7721 (hepatoma), A-549 (lung cancer), MCF-7 (breast cancer), and SW480 (colon cancer), as well as the normal human pulmonary epithelial cell line (BEAS-2B). In addition, we investigated the structure–activity relationship and the physicochemical property–anticancer activity relationship of these compounds. Results Compound 6b shows the highest cytotoxic potency against all five cancer cell lines tested, with IC50 values ranging from 3.27±0.21 to 11.37±0.52 μM. We have also found that 6b displays higher selectivity than the etoposide except in the case of HL-60 cell line. The active compounds possess similar physicochemical properties: MSA > 900, %PSA < 20, ClogP > 2, MW > 700 Da, and RB > 10. Conclusion We synthesized several glucoside derivatives of PPT and tested their cytotoxicity. Among them, compound 6b showed the highest cytotoxicity. Further studies including selectivity of active compounds have shown that the selectivity indexes of 6b are much greater than the etoposide except in the case of HL-60 cell line. The active compounds possessed similar physicochemical properties. This study indicates that active glucoside analogs of podophyllotoxin have potential as lead compounds for developing novel anticancer agents.
Collapse
Affiliation(s)
- Cheng-Ting Zi
- Key Laboratory of Pu-Er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming, 650201, People's Republic of China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Liu Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Qing-Hua Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Hong-Mei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Xing-Zhi Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Zhong-Tao Ding
- Key Laboratory of Medicinal Chemistry for Nature Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Zi-Hua Jiang
- Department of Chemistry, Lakehead University, Thunder Bay ON P7B 5E1, Canada
| | - Jiang-Miao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Jun Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| |
Collapse
|
10
|
Zi CT, Yang L, Zhang BL, Li Y, Ding ZT, Jiang ZH, Hu JM, Zhou J. Synthesis and Cytotoxicities of Novel Podophyllotoxin Xyloside Derivatives. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19860668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Novel podophyllotoxin xyloside derivatives 8 to 11 were synthesized and evaluated for their cytotoxicities against a panel of 5 human cancer cell lines (HL-60, SMMC-7721, A-549, MCF-7, SW480) using [3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays. These derivatives showed good to moderate activities, with compound 9 having an IC50 value of 4.42 μM against the A-549 cell line. Overall, compound 9 might be a promising candidate for further development.
Collapse
Affiliation(s)
- Cheng-Ting Zi
- Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, China
| | - Liu Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, China
| | - Bang-Lei Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming, China
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, China
| | - Zhong-Tao Ding
- Key Laboratory of Medicinal Chemistry for Nature Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Zi-Hua Jiang
- Department of Chemistry, Lakehead University, Thunder Bay, Canada
| | - Jiang-Miao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, China
| | - Jun Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, China
| |
Collapse
|
11
|
Zi CT, Gao YS, Yang L, Feng SY, Huang Y, Sun L, Jin Y, Xu FQ, Dong FW, Li Y, Ding ZT, Zhou J, Jiang ZH, Yuan ST, Hu JM. Design, Synthesis, and Biological Evaluation of Novel Biotinylated Podophyllotoxin Derivatives as Potential Antitumor Agents. Front Chem 2019; 7:434. [PMID: 31281809 PMCID: PMC6596340 DOI: 10.3389/fchem.2019.00434] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/28/2019] [Indexed: 11/24/2022] Open
Abstract
Podophyllotoxin has long been used as an active substance for cytotoxic activity. Fourteen novel biotinylated podophyllotoxin derivatives were designed, synthesized, and evaluated for cytotoxic activity for this study. The synthesized compounds were evaluated for cytotoxic activity in the following human cancer cell lines, SW480, MCF-7, A-549, SMMC-7721, and HL-60 by MTT assay. Most of them exhibited potent cytotoxic effects and compound 15 showed the highest cytotoxic activity among the five cancer cell lines tested, having its IC50 values in the range of 0.13 to 0.84 μM. Apoptosis analysis revealed that compound 15 caused obvious induction of cell apoptosis. Compound 15 significantly down-regulated the expression level of the marker proteins (caspase-3 and PARP) in H1299 and H1975 cells, activated the transcription of IRE1α, increased the expression of GRP78 and XBP-1s, and finally induced apoptosis of H1299 cells. In vivo studies showed that 15 at a dose of 20 mg/kg suppressed tumor growth of S180 cell xenografts in icr mice significantly. Further molecular docking studies suggested that compound 15 could bind well with the ATPase domain of Topoisomerase-II. These data suggest that compound 15 is a promising agent for cancer therapy deserving further research.
Collapse
Affiliation(s)
- Cheng-Ting Zi
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Pu-er Tea Science, College of Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Chemistry for Nature Resource, School of Chemical Science and Technology, Ministry of Education, Yunnan University, Kunming, China
| | - Ying-Sheng Gao
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Liu Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shu-Yun Feng
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Yue Huang
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Nature Resource, School of Chemical Science and Technology, Ministry of Education, Yunnan University, Kunming, China
| | - Feng-Qing Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Fa-Wu Dong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zhong-Tao Ding
- Key Laboratory of Medicinal Chemistry for Nature Resource, School of Chemical Science and Technology, Ministry of Education, Yunnan University, Kunming, China
| | - Jun Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zi-Hua Jiang
- Department of Chemistry, Lakehead University, Thunder Bay, ON, Canada
| | - Sheng-Tao Yuan
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Jiang-Miao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
12
|
Khan H, Amin S, Tewari D, Nabavi SM, Atanasov AG. Plant-derived Glycosides with α-Glucosidase Inhibitory Activity: Current Standing and Future Prospects. Endocr Metab Immune Disord Drug Targets 2019; 19:391-401. [DOI: 10.2174/1871530319666181128104831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/30/2018] [Accepted: 06/27/2018] [Indexed: 11/22/2022]
Abstract
Background:The α-glucosidase (EC 3.2.1.20), a calcium-containing intestinal enzyme which is positioned in the cells which cover the intestinal microvilli brush border. The carbohydrates require metabolism by α-glucosidase before being absorbed into the small intestine, and as a result, this enzyme represents a significant drug target for the effective management of diabetes. There are few α- glucosidase inhibitors in the clinical practice that is challenged by several limitations. Thus, new effective and safe therapeutic agents in this class are required. In this regard, plant secondary metabolites are a very promising source to be investigated. Herein in this review, we have focused on the preclinical studies on various glycosides with in vitro α-glucosidase inhibitory activity.Methods:The literature available on various websites such as GoogleScholar, PubMed, Scopus. All the peer-reviewed articles were included without considering the impact factor.Results:The surveyed literature revealed marked inhibitory profile of various glycosides derived from plants, and some of them were extremely potent relatively to the standard, acarbose in preclinical trials and exhibited multiple targeted effects.Conclusion:Keeping in view the results, these glycosides are strong candidates for further, more detailed studies to ascertain their clinical potential and for effective contribution in effective management of diabetes, where multiple targets are required to address
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, KPK, Pakistan
| | - Surrya Amin
- Department of Botany, Islamia College University Peshawar, Peshawar, Pakistan
| | - Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University Bhimtal Campus Nainital, Uttarakhand, India
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| |
Collapse
|
13
|
Liang X, Wu Q, Luan S, Yin Z, He C, Yin L, Zou Y, Yuan Z, Li L, Song X, He M, Lv C, Zhang W. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Eur J Med Chem 2019; 171:129-168. [PMID: 30917303 DOI: 10.1016/j.ejmech.2019.03.034] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 01/28/2023]
Abstract
The topoisomerase enzymes play an important role in DNA metabolism, and searching for enzyme inhibitors is an important target in the search for new anticancer drugs. Discovery of new anticancer chemotherapeutical capable of inhibiting topoisomerase enzymes is highlighted in anticancer research. Therefore, biologists, organic chemists and medicinal chemists all around the world have been identifying, designing, synthesizing and evaluating a variety of novel bioactive molecules targeting topoisomerase. This review summarizes types of topoisomerase inhibitors in the past decade, and divides them into nine classes by structural characteristics, including N-heterocycles compounds, quinone derivatives, flavonoids derivatives, coumarin derivatives, lignan derivatives, polyphenol derivatives, diterpenes derivatives, fatty acids derivatives, and metal complexes. Then we discussed the application prospect and development of these anticancer compounds, as well as concluded parts of their structural-activity relationships. We believe this review would be invaluable in helping to further search potential topoisomerase inhibition as antitumor agent in clinical usage.
Collapse
Affiliation(s)
- Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Qiang Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shangxian Luan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhixiang Yuan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Min He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Wei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|
14
|
Zi CT, Yang L, Xu FQ, Dong FW, Yang D, Li Y, Ding ZT, Zhou J, Jiang ZH, Hu JM. Synthesis and anticancer activity of dimeric podophyllotoxin derivatives. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3393-3406. [PMID: 30349193 PMCID: PMC6186772 DOI: 10.2147/dddt.s167382] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Podophyllotoxin is a potent cytotoxic agent and serves as a useful lead compound for the development of antitumor drugs. Several podophyllotoxin-derived antitumor agents, including etoposide, are currently in clinical use; however, their therapeutic efficacy is often limited due to side effects and the development of resistance by cancer cells. Previous studies have shown that 4β-1,2,3-triazole derivatives of podophyllotoxin exhibit more potent anticancer activity and better binding to topoisomerase-II than etoposide. The effect of dimerization of such derivatives on the anticancer activity has not been studied. Methods Two moieties of podophyllotoxin were linked at the C-4 position via 1,2,3-triazole rings to give a series of novel dimeric podophyllotoxin derivatives. 4β-Azido-substituted podophyllotoxin derivatives (23 and 24) were coupled with various dipropargyl functionalized linkers by utilizing the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction to provide dimeric products in very good yield. The in vitro anticancer activity of the synthesized compounds was evaluated by MTT assay against a panel of five human cancer cell lines (HL-60, SMMC-7721, A-549, MCF-7, and SW480). The normal BEAS-2B (lung) cell line was also included for study in order to evaluate the cancer selectivity of the most active compound as compared with normal cells. Results A group of 16 dimeric podophyllotoxin derivatives with different linkers were synthesized and structurally characterized. Most compounds do not show significant cytotoxicity (IC50 > 40 mM) against all five cancer cell lines. However, one compound (29) which bears a perbutyrylated glucose residue on the glycerol linker is highly potent against all five cancer cell lines tested, with IC50 values ranging from 0.43 to 3.50 μM. This compound (29) also shows good selectivity towards cancer cell lines as compared with the normal BEAS-2B (lung) cell line, showing selectivity indexes from 4.4 to 35.7. Conclusion The anticancer activity of dimeric podophyllotoxin derivatives is generally speaking not improved as compared to their monomeric counterparts, and the potency of these dimeric derivatives can be largely affected by the nature of the linker between the two moieties. Among the synthesized derivatives, compound 29 is significantly more cytotoxic and selective towards cancer cells than etoposide and cisplatin, which are currently in clinical use. Compound 29 is a promising anticancer drug and needs further studies.
Collapse
Affiliation(s)
- Cheng-Ting Zi
- Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming 650201, China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China, .,Key Laboratory of Medicinal Chemistry for Nature Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Liu Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China,
| | - Feng-Qing Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China,
| | - Fa-Wu Dong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China,
| | - Dan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China,
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China,
| | - Zhong-Tao Ding
- Key Laboratory of Medicinal Chemistry for Nature Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jun Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China,
| | - Zi-Hua Jiang
- Department of Chemistry, Lakehead University, Thunder Bay, ON P7B 5E1, Canada,
| | - Jiang-Miao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China,
| |
Collapse
|
15
|
Synthesis and biological evaluation of benzo[b]furo[3,4-e][1,4]diazepin-1-one derivatives as anti-cancer agents. Bioorg Chem 2018; 80:631-638. [DOI: 10.1016/j.bioorg.2018.07.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/12/2018] [Accepted: 07/18/2018] [Indexed: 01/05/2023]
|
16
|
Synthesis, antitumor evaluation and molecular docking study of a novel podophyllotoxin-lonidamine hybrid. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2230-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Zhang X, Rakesh KP, Shantharam CS, Manukumar HM, Asiri AM, Marwani HM, Qin HL. Podophyllotoxin derivatives as an excellent anticancer aspirant for future chemotherapy: A key current imminent needs. Bioorg Med Chem 2017; 26:340-355. [PMID: 29269253 DOI: 10.1016/j.bmc.2017.11.026] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022]
Abstract
Cancer is one of the leading groups of threatened caused by abnormal state cell growth and second leading diseases involved in the major global death. To treat this, research looking for promising anticancer drugs from natural resource, or synthesized novel molecules by diverse group of scientists worldwide. Currently, drugs get into clinical practices and showing side effects with target actions which in turn leading to multidrug resistance unknowingly. Podophyllotoxin, a naturally occurring lignan and with hybrids have become one of the most attractive subjects due to their broad spectrum of pharmacological activities. Podophyllotoxin derivatives have been the centre of attention of extensive chemical amendment and pharmacological investigation in modern decades. Mainly, the innovation of the semi-synthetic anticancer drugs etoposide and teniposide has stimulated prolonged research interest in this structural phenotype. The present review focuses mainly onnew anticancer drugs from podophyllotoxin analogs, mechanism of action and their structure-activity relationships (SAR) as potential anticancer candidates for future discovery of suitable drug candidates.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430073, PR China
| | - K P Rakesh
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430073, PR China.
| | - C S Shantharam
- Department of Chemistry, Pooja Bhagavath Memorial Mahajana Education Centre, Mysuru 570016, Karnataka, India
| | - H M Manukumar
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - A M Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - H M Marwani
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hua-Li Qin
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430073, PR China.
| |
Collapse
|
18
|
Santos JA, Santos CS, Almeida CL, Silva TD, Freitas Filho JR, Militão GC, da Silva TG, da Cruz CH, Freitas JC, Menezes PH. Structure-based design, synthesis and antitumoral evaluation of enulosides. Eur J Med Chem 2017; 128:192-201. [DOI: 10.1016/j.ejmech.2017.01.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/13/2017] [Accepted: 01/21/2017] [Indexed: 10/20/2022]
|
19
|
Ling L, Yao C, Du Y, Ismail M, He R, Hou Y, Zhang Y, Li X. Assembled liposomes of dual podophyllotoxin phospholipid: preparation, characterization and in vivo anticancer activity. Nanomedicine (Lond) 2017; 12:657-672. [DOI: 10.2217/nnm-2016-0396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: A novel amphiphilic prodrug dual podophyllotoxin (PPT) succinate glycerophosphorylcholine (Di-PPT-GPC) assembled liposomes was developed to improve efficiency of PPT. Materials & methods: Di-PPT-GPC liposomes were prepared by thin film technique and characterized by dynamic light scattering and cryo-electron microscopy. Results: In vitro release studies showed that Di-PPT-GPC liposomes could significantly release PPT in weakly acidic environment but had good stability under biological conditions. Methyl tetrazolium assay data revealed that the liposomes have comparable cytotoxicities to free PPT against MCF-7, HeLa and U87 cells. More importantly, in vivo antitumor evaluation indicated that Di-PPT-GPC liposomes exhibited favorable tumor growth inhibition without side effects. Conclusion: Di-PPT-GPC liposomes might have potential to promote the therapeutic effect of PPT for cancer therapy.
Collapse
Affiliation(s)
- Longbing Ling
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Chen Yao
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yawei Du
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Muhammad Ismail
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Ruiyu He
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yongpeng Hou
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Ying Zhang
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xinsong Li
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, PR China
| |
Collapse
|
20
|
Zhu P, Ye W, Li J, Zhang Y, Huang W, Cheng M, Wang Y, Zhang Y, Liu H, Zuo J. Design, synthesis, and biological evaluation of novel tetrahydroisoquinoline derivatives as potential antitumor candidate. Chem Biol Drug Des 2016; 89:443-455. [DOI: 10.1111/cbdd.12873] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/04/2016] [Accepted: 08/29/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Panhu Zhu
- Department of Medicinal Chemistry; Anhui University of Chinese Medicine; Hefei China
| | - Wenfeng Ye
- Department of Medicinal Chemistry; Anhui University of Chinese Medicine; Hefei China
| | - Jiaming Li
- Department of Medicinal Chemistry; Anhui University of Chinese Medicine; Hefei China
| | - Yanchun Zhang
- Department of Medicinal Chemistry; Anhui University of Chinese Medicine; Hefei China
| | - Weijun Huang
- Department of Medicinal Chemistry; Anhui University of Chinese Medicine; Hefei China
| | - Mohan Cheng
- Department of Medicinal Chemistry; Anhui University of Chinese Medicine; Hefei China
| | - Yujun Wang
- Department of Medicinal Chemistry; Anhui University of Chinese Medicine; Hefei China
| | - Yang Zhang
- Department of Medicinal Chemistry; Anhui University of Chinese Medicine; Hefei China
| | - Huicai Liu
- Department of Medicinal Chemistry; Anhui University of Chinese Medicine; Hefei China
| | - Jian Zuo
- Department of Medicinal Chemistry; Anhui University of Chinese Medicine; Hefei China
| |
Collapse
|
21
|
Guo Y, Zhang Y, Li J, Zhao F, Liu Y, Su M, Jiang Y, Liu Y, Zhang J, Yang B, Yang R. Inclusion Complex of Podophyllotoxin withγ-Cyclodextrin: Preparation, Characterization, Anticancer Activity, Water-Solubility and Toxicity. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201500692] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|