1
|
Omran MM, Kamal MM, Ammar YA, Abusaif MS, Ismail MMF, Mansour HH. Pharmacological investigation of new niclosamide-based isatin hybrids as antiproliferative, antioxidant, and apoptosis inducers. Sci Rep 2024; 14:19818. [PMID: 39191850 DOI: 10.1038/s41598-024-69250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
A group of Niclosamide-linked isatin hybrids (Xo, X1, and X2) was created and examined using IR, 1HNMR, 13C NMR, and mass spectrometry. These hybrids' cytotoxicity, antioxidant, cell cycle analysis, and apoptosis-inducing capabilities were identified. Using the SRB assay, their cytotoxicity against the human HCT-116, MCF-7, and HEPG-2 cancer cell lines, as well as VERO (African Green Monkey Kidney), was evaluated. Compound X1 was the most effective compound. In HCT-116 cells, compound X1 produced cell cycle arrest in the G1 phase, promoted cell death, and induced apoptosis through mitochondrial membrane potential breakdown in comparison to niclosamide and the control. Niclosamide and compound X1 reduced reactive oxygen species generation and modulated the gene expression of BAX, Bcl-2, Bcl-xL, and PAR-4 in comparison to the control. Docking modeling indicated their probable binding modalities with the XIAP BIR2 domain, which selectively binds caspase-3/7, and highlighted their structural drivers of activity for further optimization investigations. Computational in silico modeling of the new hybrids revealed that they presented acceptable physicochemical values as well as drug-like characteristics, which may introduce them as drug-like candidates. The study proved that compound X1 might be a novel candidate for the development of anticancer agents as it presents antiproliferative activity mediated by apoptosis.
Collapse
Affiliation(s)
- Mervat M Omran
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mona M Kamal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Magda M F Ismail
- Department of Medicinal Pharmaceutical Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11754, Egypt
| | - Heba H Mansour
- Health Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, P.O. Box 29, Nasr City Cairo, Egypt.
| |
Collapse
|
2
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
3
|
Alcalá S, Villarino L, Ruiz-Cañas L, Couceiro JR, Martínez-Calvo M, Palencia-Campos A, Navarro D, Cabezas-Sainz P, Rodriguez-Arabaolaza I, Cordero-Barreal A, Trilla-Fuertes L, Rubiolo JA, Batres-Ramos S, Vallespinos M, González-Páramos C, Rodríguez J, Gámez-Pozo A, Vara JÁF, Fernández SF, Berlinches AB, Moreno-Mata N, Redondo AMT, Carrato A, Hermann PC, Sánchez L, Torrente S, Fernández-Moreno MÁ, Mascareñas JL, Sainz B. Targeting cancer stem cell OXPHOS with tailored ruthenium complexes as a new anti-cancer strategy. J Exp Clin Cancer Res 2024; 43:33. [PMID: 38281027 PMCID: PMC10821268 DOI: 10.1186/s13046-023-02931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/11/2023] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Previous studies by our group have shown that oxidative phosphorylation (OXPHOS) is the main pathway by which pancreatic cancer stem cells (CSCs) meet their energetic requirements; therefore, OXPHOS represents an Achille's heel of these highly tumorigenic cells. Unfortunately, therapies that target OXPHOS in CSCs are lacking. METHODS The safety and anti-CSC activity of a ruthenium complex featuring bipyridine and terpyridine ligands and one coordination labile position (Ru1) were evaluated across primary pancreatic cancer cultures and in vivo, using 8 patient-derived xenografts (PDXs). RNAseq analysis followed by mitochondria-specific molecular assays were used to determine the mechanism of action. RESULTS We show that Ru1 is capable of inhibiting CSC OXPHOS function in vitro, and more importantly, it presents excellent anti-cancer activity, with low toxicity, across a large panel of human pancreatic PDXs, as well as in colorectal cancer and osteosarcoma PDXs. Mechanistic studies suggest that this activity stems from Ru1 binding to the D-loop region of the mitochondrial DNA of CSCs, inhibiting OXPHOS complex-associated transcription, leading to reduced mitochondrial oxygen consumption, membrane potential, and ATP production, all of which are necessary for CSCs, which heavily depend on mitochondrial respiration. CONCLUSIONS Overall, the coordination complex Ru1 represents not only an exciting new anti-cancer agent, but also a molecular tool to dissect the role of OXPHOS in CSCs. Results indicating that the compound is safe, non-toxic and highly effective in vivo are extremely exciting, and have allowed us to uncover unprecedented mechanistic possibilities to fight different cancer types based on targeting CSC OXPHOS.
Collapse
Affiliation(s)
- Sonia Alcalá
- Department of Biochemistry, Autónoma University of Madrid, School of Medicine and Department of Cancer, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Lara Villarino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Laura Ruiz-Cañas
- Department of Biochemistry, Autónoma University of Madrid, School of Medicine and Department of Cancer, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - José R Couceiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Miguel Martínez-Calvo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Adrián Palencia-Campos
- Department of Biochemistry, Autónoma University of Madrid, School of Medicine and Department of Cancer, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Diego Navarro
- Department of Biochemistry, Autónoma University of Madrid, School of Medicine and Department of Cancer, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Pablo Cabezas-Sainz
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, USC, Lugo, Spain
| | - Iker Rodriguez-Arabaolaza
- Department of Biochemistry, Autónoma University of Madrid, School of Medicine and Department of Cancer, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain
- Facultad de Ciencia y Técnología, Universidad del País Vasco, 48940, Leioa (Bizkaia), Spain
| | - Alfonso Cordero-Barreal
- Department of Biochemistry, Autónoma University of Madrid, School of Medicine and Department of Cancer, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Lucia Trilla-Fuertes
- Molecular Oncology and Pathology Lab, Instituto de Genética Médica y Molecular-INGEMM, Instituto de Investigación Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
- Biomedica Molecular Medicine SL, Madrid, Spain
| | - Juan A Rubiolo
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, USC, Lugo, Spain
| | - Sandra Batres-Ramos
- Department of Biochemistry, Autónoma University of Madrid, School of Medicine and Department of Cancer, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Mireia Vallespinos
- Department of Biochemistry, Autónoma University of Madrid, School of Medicine and Department of Cancer, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Cristina González-Páramos
- Department of Biochemistry, Autónoma University of Madrid, School of Medicine and Department of Cancer, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Jéssica Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Angelo Gámez-Pozo
- Molecular Oncology and Pathology Lab, Instituto de Genética Médica y Molecular-INGEMM, Instituto de Investigación Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
- Biomedica Molecular Medicine SL, Madrid, Spain
| | - Juan Ángel Fresno Vara
- Molecular Oncology and Pathology Lab, Instituto de Genética Médica y Molecular-INGEMM, Instituto de Investigación Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Red, Área Cáncer, CIBERONC, ISCIII, Madrid, Spain
| | - Sara Fra Fernández
- Servicio de Cirugía Torácica, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Amparo Benito Berlinches
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Servicio de Anatomía Patológica, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Nicolás Moreno-Mata
- Servicio de Cirugía Torácica, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Alfredo Carrato
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red, Área Cáncer, CIBERONC, ISCIII, Madrid, Spain
- Pancreatic Cancer Europe (PCE) Chairperson, Brussels, Belgium
| | | | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, USC, Lugo, Spain
| | - Susana Torrente
- Valuation, Transfer and Entrepreneurship Area, USC, Santiago de Compostela, Spain
| | - Miguel Ángel Fernández-Moreno
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Biochemistry, Autónoma University of Madrid, School of Medicine and Department of Rare Diseases, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain.
| | - Bruno Sainz
- Department of Biochemistry, Autónoma University of Madrid, School of Medicine and Department of Cancer, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain.
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
- Centro de Investigación Biomédica en Red, Área Cáncer, CIBERONC, ISCIII, Madrid, Spain.
| |
Collapse
|
4
|
Erturk E, Onur OE, Aydin I, Akgun O, Coskun D, Ari F. Targeting the epithelial-mesenchymal transition (EMT) pathway with combination of Wnt inhibitor and chalcone complexes in lung cancer cells. J Cell Biochem 2023; 124:1203-1219. [PMID: 37450704 DOI: 10.1002/jcb.30442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/31/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of the lung cancer. Despite development in treatment options in NSCLC, the overall survival ratios is still poor due to epithelial and mesenchymal transition (EMT) feature and associated metastasis event. Thereby there is a need to develop strategy to increase antitumor response against the NSCLC cells by targeting EMT pathway with combination drugs. Niclosamide and chalcone complexes are both affect cancer cell signaling pathways and therefore inhibit the EMT pathway. In this study, it was aimed to increase antitumor response and suppress EMT pathway in NSCLC cells by combining niclosamide and chalcone complexes. SRB cell viability assay was performed to investigate the anticancer activity of drugs. The drugs were tested on both NSCLC cells (A549 and H1299) and normal lung bronchial cells (BEAS-2B). Then the two drugs were combined and their effects on cancer cells were evaluated. Fluorescence imaging and enzyme-linked immunosorbent assay were performed on treated cells to observe the cell death manner. Wound healing assay, real-time quantitative polymerase chain reaction, and western blot analysis were performed to measure EMT pathway activity. Our results showed that niclosamide and chalcone complexes combination kill cancer cells more than normal lung bronchial cells. Compared to single drug administration, the combination of both drugs killed NSCLC cells more effectively by increasing apoptotic activity. In addition, the combination of niclosamide and chalcone complexes decreased multidrug resistance and EMT activity by lowering their gene expressions and protein levels. These results showed that niclosamide and chalcone complexes combination could be a new drug combination for the treatment of NSCLC.
Collapse
Affiliation(s)
- Elif Erturk
- Vocational School of Health Services, Bursa Uludag University, Bursa, Turkey
| | - Omer E Onur
- Department of Biology, Science and Art Faculty, Bursa Uludag University, Bursa, Turkey
| | - Ipek Aydin
- Department of Biology, Science and Art Faculty, Bursa Uludag University, Bursa, Turkey
| | - Oguzhan Akgun
- Department of Biology, Science and Art Faculty, Bursa Uludag University, Bursa, Turkey
| | - Demet Coskun
- Department of Chemistry, Faculty of Science, Firat University, Elazig, Turkey
| | - Ferda Ari
- Department of Biology, Science and Art Faculty, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
5
|
Shi T, Yu H, Blair RH. Integrated regulatory and metabolic networks of the tumor microenvironment for therapeutic target prioritization. Stat Appl Genet Mol Biol 2023; 22:sagmb-2022-0054. [PMID: 37988745 DOI: 10.1515/sagmb-2022-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 09/28/2023] [Indexed: 11/23/2023]
Abstract
Translation of genomic discovery, such as single-cell sequencing data, to clinical decisions remains a longstanding bottleneck in the field. Meanwhile, computational systems biological models, such as cellular metabolism models and cell signaling pathways, have emerged as powerful approaches to provide efficient predictions in metabolites and gene expression levels, respectively. However, there has been limited research on the integration between these two models. This work develops a methodology for integrating computational models of probabilistic gene regulatory networks with a constraint-based metabolism model. By using probabilistic reasoning with Bayesian Networks, we aim to predict cell-specific changes under different interventions, which are embedded into the constraint-based models of metabolism. Applications to single-cell sequencing data of glioblastoma brain tumors generate predictions about the effects of pharmaceutical interventions on the regulatory network and downstream metabolisms in different cell types from the tumor microenvironment. The model presents possible insights into treatments that could potentially suppress anaerobic metabolism in malignant cells with minimal impact on other cell types' metabolism. The proposed integrated model can guide therapeutic target prioritization, the formulation of combination therapies, and future drug discovery. This model integration framework is also generalizable to other applications, such as different cell types, organisms, and diseases.
Collapse
Affiliation(s)
- Tiange Shi
- University at Buffalo, Biostatistics, Buffalo, USA
| | - Han Yu
- Roswell Park Comprehensive Cancer Center, Biostatistics and Bioinformatics, Buffalo, USA
| | - Rachael Hageman Blair
- University at Buffalo, Biostatistics, Institute for Artificial Intelligence and Data Science, Buffalo, USA
| |
Collapse
|
6
|
Ren J, Wang B, Wu Q, Wang G. Combination of niclosamide and current therapies to overcome resistance for cancer: New frontiers for an old drug. Biomed Pharmacother 2022; 155:113789. [DOI: 10.1016/j.biopha.2022.113789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/02/2022] Open
|
7
|
Alioglu I, Tsochantaridis I, Pappa A, Dere E, Ari F. Zn(II) 5,5-Diethylbarbiturate Complex Selectively Induces Apoptosis in Breast Cancer and Breast Cancer Stem-Like Cells. Chem Biodivers 2022; 19:e202101001. [PMID: 35254725 DOI: 10.1002/cbdv.202101001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/07/2022] [Indexed: 11/03/2022]
Abstract
The biological activities of Zn(II) compounds have been extensively studied in recent years. In this study, the growth suppressive effect of Zn(II) 5,5-diethylbarbiturate complex on MCF-7 and MDA-MB-231 human breast cancer cells was determined by SRB and ATP viability assays and apoptosis-inducing effect by double staining method. Significant increase in cytokeratin 18 level, caspase 3/7 activity and annexin-V upregulation prove that Zn(II) complex has apoptotic effect in breast cancer cells. Intrinsic apoptosis pathway in MCF-7 cells and extrinsic apoptosis pathway in MDA-MB-231 cells was determined by Western blot (PARP, Cleave PARP, BAX, COX4, RIP, Caspase 8, Split Caspase 8, DR4 and B-Actin) and RT-PCR (PARP, Fas, Bcl-2, TNF10A, P53) analysis. No reduction of viability was found in MCF-710A healthy breast cells treated with Zn(II) complex. In breast cancer stem-like cells (MCF-7s), the Zn(II) complex was found to have a cytotoxic effect and to activate the apoptotic pathway. As a result, it was concluded that Zn(II) complex has anti-proliferative and apoptotic effects on breast cancer and breast cancer stem-like cells. Also this complex prevents the metastatic effect of cancer cells and does not effect to healthy cells so this complex has a specific effect on cancer cells. These findings might shed light on the discovery of new chemotherapeutic agents.
Collapse
Affiliation(s)
- Imren Alioglu
- Department of Biology, Bursa Uludag University, Science and Art Faculty, 16059, Bursa, Turkey.,Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Ilias Tsochantaridis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Egemen Dere
- Department of Biology, Bursa Uludag University, Science and Art Faculty, 16059, Bursa, Turkey
| | - Ferda Ari
- Department of Biology, Bursa Uludag University, Science and Art Faculty, 16059, Bursa, Turkey
| |
Collapse
|
8
|
Cevatemre B, Ulukaya E, Dere E, Dilege S, Acilan C. Pyruvate Dehydrogenase Contributes to Drug Resistance of Lung Cancer Cells Through Epithelial Mesenchymal Transition. Front Cell Dev Biol 2022; 9:738916. [PMID: 35083212 PMCID: PMC8785343 DOI: 10.3389/fcell.2021.738916] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/13/2021] [Indexed: 01/10/2023] Open
Abstract
Recently, there has been a growing interest on the role of mitochondria in metastatic cascade. Several reports have shown the preferential utilization of glycolytic pathway instead of mitochondrial respiration for energy production and the pyruvate dehydrogenase (PDH) has been considered to be a contributor to this switch in some cancers. Since epithelial mesenchymal transition (EMT) is proposed to be one of the significant mediators of metastasis, the molecular connections between cancer cell metabolism and EMT may reveal underlying mechanisms and improve our understanding on metastasis. In order to explore a potential role for PDH inhibition on EMT and associated drug resistance, we took both pharmacological and genetic approaches, and selectively inhibited or knocked down PDHA1 by using Cpi613 and shPDHA1, respectively. We found that both approaches triggered morphological changes and characteristics of EMT (increase in mesenchymal markers). This change was accompanied by enhanced wound healing and an increase in migration. Interestingly, cells were more resistant to many of the clinically used chemotherapeutics following PDH inhibition or PDHA1 knockdown. Furthermore, the TGFβRI (known as a major inducer of the EMT) inhibitor (SB-431542) together with the PDHi, was effective in reversing EMT. In conclusion, interfering with PDH induced EMT, and more importantly resulted in chemoresistance. Therefore, our study demonstrates the need for careful consideration of PDH-targeting approaches in cancer treatment.
Collapse
Affiliation(s)
- Buse Cevatemre
- Research Center for Translational Medicine, Koc University, Istanbul, Turkey.,Department of Biology, Uludag University, Bursa, Turkey
| | - Engin Ulukaya
- Department of Clinical Biochemistry, Istinye University Faculty of Medicine, Istanbul, Turkey
| | - Egemen Dere
- Department of Biology, Uludag University, Bursa, Turkey
| | - Sukru Dilege
- School of Medicine, Koc University, Istanbul, Turkey
| | - Ceyda Acilan
- Research Center for Translational Medicine, Koc University, Istanbul, Turkey.,School of Medicine, Koc University, Istanbul, Turkey
| |
Collapse
|
9
|
Cabeza L, El-Hammadi MM, Ortiz R, Cayero-Otero MD, Jiménez-López J, Perazzoli G, Martin-Banderas L, Baeyens JM, Melguizo C, Prados J. Evaluation of poly (lactic-co-glycolic acid) nanoparticles to improve the therapeutic efficacy of paclitaxel in breast cancer. BIOIMPACTS : BI 2022; 12:515-531. [PMID: 36644541 PMCID: PMC9809141 DOI: 10.34172/bi.2022.23433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/10/2021] [Accepted: 02/20/2021] [Indexed: 01/18/2023]
Abstract
Introduction: Paclitaxel (PTX) is a cornerstone in the treatment of breast cancer, the most common type of cancer in women. However, this drug has serious limitations, including lack of tissue-specificity, poor water solubility, and the development of drug resistance. The transport of PTX in a polymeric nanoformulation could overcome these limitations. Methods: In this study, PLGA-PTX nanoparticles (NPs) were assayed in breast cancer cell lines, breast cancer stem cells (CSCs) and multicellular tumor spheroids (MTSs) analyzing cell cycle, cell uptake (Nile Red-NR-) and α-tubulin expression. In addition, PLGA-PTX NPs were tested in vivo using C57BL/6 mice, including a biodistribution assay. Results: PTX-PLGA NPs induced a significant decrease in the PTX IC50 of cancer cell lines (1.31 and 3.03-fold reduction in MDA-MB-231 and E0771 cells, respectively) and CSCs. In addition, MTSs treated with PTX-PLGA exhibited a more disorganized surface and significantly higher cell death rates compared to free PTX (27.9% and 16.3% less in MTSs from MCF-7 and E0771, respectively). PTX-PLGA nanoformulation preserved PTX's mechanism of action and increased its cell internalization. Interestingly, PTX-PLGA NPs not only reduced the tumor volume of treated mice but also increased the antineoplastic drug accumulation in their lungs, liver, and spleen. In addition, mice treated with PTX-loaded NPs showed blood parameters similar to the control mice, in contrast with free PTX. Conclusion: These results suggest that our PTX-PLGA NPs could be a suitable strategy for breast cancer therapy, improving antitumor drug efficiency and reducing systemic toxicity without altering its mechanism of action.
Collapse
Affiliation(s)
- Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Mazen M. El-Hammadi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Maria D. Cayero-Otero
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| | - Julia Jiménez-López
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Lucia Martin-Banderas
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| | - Jose M. Baeyens
- Department of Pharmacology, Institute of Neuroscience, Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
,Corresponding author: Consolación Melguizo,
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| |
Collapse
|
10
|
Li Y, Liu B, Shi H, Wang Y, Sun Q, Zhang Q. Metal complexes against breast cancer stem cells. Dalton Trans 2021; 50:14498-14512. [PMID: 34591055 DOI: 10.1039/d1dt02909f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the highest incidence, breast cancer is the leading cause of cancer deaths among women in the world. Tumor metastasis is the major contributor of high mortality in breast cancer, and the existence of cancer stem cells (CSCs) has been proven to be the cause of tumor metastasis. CSCs are a small proportion of tumor cells, and they are associated with self-renewal and tumorigenic potential. Given the significance of CSCs in tumor initiation, expansion, relapse, resistance, and metastasis, studies should investigate and discover effective anticancer agents that can not only inhibit the proliferation of differentiated tumor cells but also reduce the tumorigenic capability of CSCs. Thus, new therapies must be discovered to treat and prevent this severely hazardous disease of human beings. The success of platinum complexes in cancer treatment has laid the basic foundation for the utilization of metal complexes in the treatment of malignant cancers, in particular the highly aggressive triple-negative breast cancer. Importantly, metal complexes currently have diverse and versatile competences in the therapeutic targeting of CSCs. The anti-CSC properties provide a strong impetus for the development of novel metal-based compounds for the targeting of CSCs and treatment of chemotherapy-resistant and relapsed tumors. In this review, we provide the latest advances in metal complexes including platinum, ruthenium, osmium, iridium, manganese, cobalt, nickel, copper, zinc, palladium, and tin complexes against breast CSCs obtained over the past decade, with pertinent literature including those published until 2021.
Collapse
Affiliation(s)
- Yingsi Li
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China.
| | - Boxin Liu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China.
| | - Hongdong Shi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Yi Wang
- Key Laboratory for Advanced Materials of MOE, School of Chemistry & Molecular Engineering, East China University of Science and Technology Shanghai, 200237, P. R. China
| | - Qi Sun
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China.
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| |
Collapse
|
11
|
Alper P, Salomatina OV, Salakhutdinov NF, Ulukaya E, Ari F. Soloxolone methyl, as a 18βH-glycyrrhetinic acid derivate, may result in endoplasmic reticulum stress to induce apoptosis in breast cancer cells. Bioorg Med Chem 2020; 30:115963. [PMID: 33383441 DOI: 10.1016/j.bmc.2020.115963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022]
Abstract
Being one of the leading causes of cancer death among women, various chemotherapeutic agents isolated from natural compounds are used in breast cancer treatment and consequently studies to develop new drugs still continue. There are several studies on 18βH-glycyrrhetinic acid, a secondary metabolite which is found in Glycyrrhiza glabra (liquorice roots), as a potential anticancer agent. In this study, the cytotoxic and apoptotic effects of Soloxolone methyl compound, a semisynthetic derivative of 18βH-glycyrrhetinic acid were investigated on breast cancer cells (MCF-7, MDA-MBA-231). Soloxolone methyl is found to be cytotoxic on both MCF-7 and MDA-MBA-231 breast cancer cells by inducing apoptosis. Especially in MDA-MB-231 cells apoptosis is detected to be triggered by ER stress. The antigrowth effects of Soloxolone methyl were determined using MTT and ATP assays. To identify the mode of cell death (apoptosis/necrosis), fluorescent staining (Hoechst 33342 and Propidium iodide) and caspase-cleaved cytokeratin 18 (M30-antigen) analyses were used. In addition, apoptosis was investigated on gene and protein levels by PCR and Western Blotting. Soloxolone methyl decreased cell viability on cells in a dose and time-dependent manner and induced apoptosis markers. An increase on apoptotic proteins related to endoplasmic reticulum stress (IRE1-α, Bip, CHOP) was also determined in MDA-MB-231 cells. Moreover, an increase of apoptotic gene expressions was determined in both cells treated with Soloxolone methyl. Advance analyses should be performed to elucidate the potential of Soloxolone methyl as an anticancer agent in breast cancer treatment.
Collapse
Affiliation(s)
- Pinar Alper
- Bursa Uludag University, Faculty of Science and Arts, Department of Biology, 16059 Bursa, Turkey; Istanbul University, Aziz Sancar Experimental Medicine Research Institute, Molecular Medicine, 34093 Istanbul, Turkey
| | - Oksana V Salomatina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrent'ev Ave., 9, 630090 Novosibirsk, Russia
| | - Nariman F Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrent'ev Ave., 9, 630090 Novosibirsk, Russia
| | - Engin Ulukaya
- Istinye University, Faculty of Medicine, Department of Medical Biochemistry, 34010 Istanbul, Turkey.
| | - Ferda Ari
- Bursa Uludag University, Faculty of Science and Arts, Department of Biology, 16059 Bursa, Turkey.
| |
Collapse
|
12
|
Eskandari A, Kundu A, Johnson A, Karmakar S, Ghosh S, Suntharalingam K. A tri-metallic palladium complex with breast cancer stem cell potency. Dalton Trans 2020; 49:4211-4215. [PMID: 32186576 DOI: 10.1039/d0dt00006j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multi-nuclear, triangular-shaped palladium(ii) complex is shown to equipotently kill bulk cancer cells and cancer stem cells (CSCs) in the micromolar range. The palladium(ii) complex evokes CSC apoptosis by entering CSC nuclei and damaging genomic DNA.
Collapse
Affiliation(s)
| | | | - Alice Johnson
- School of Chemistry, University of Leicester, Leicester, UK.
| | - Sanjib Karmakar
- Department of Chemistry, Gauhati University, Guwahati, India.
| | - Sushobhan Ghosh
- Department of Chemistry, Gauhati University, Guwahati, India.
| | | |
Collapse
|
13
|
A promising therapeutic combination for metastatic prostate cancer: Chloroquine as autophagy inhibitor and palladium(II) barbiturate complex. Biochimie 2020; 175:159-172. [PMID: 32497551 DOI: 10.1016/j.biochi.2020.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 12/16/2022]
Abstract
Autophagy is a catabolic process for cells that can provide energy sources and allows cancer cells to evade cell death. Therefore, studies on the combination of autophagy inhibitors with drugs are increasing as a new treatment modality in cancer. Previously, we reported the anti-tumor activity of a Palladium (Pd)(II) complex against different types of cancer in vitro and in vivo. Chloroquine (CQ), the worldwide used anti-malarial drug, has recently been focused as a chemosensitizer in cancer treatment. The aim of this study was to investigate the efficacy of a combined treatment of these agents that work through different mechanisms to provide an effective treatment modality for metastatic prostate cancer that is certainly fatal. Metastatic prostate cancer cell lines (PC-3 and LNCaP) were treated with Pd (II) complex, CQ, and their combination. The combination enhanced apoptosis by increasing phosphatidylserine translocation and pro-apoptotic proteins. Apoptosis was confirmed by the use of apoptosis inhibitor. The formation of acidic vesicular organelles (AVOs) was observed by acridine orange staining in fluorescence microscopy. The Pd (II) complex increased AVOs formation in prostate cancer cells and CQ-pretreatment has potentiated this effect. Importantly, treatment with CQ suppressed the pro-survival function of autophagy, which might have contributed to enhanced cytotoxicity. In addition, PI3K/AKT/mTOR-related protein expressions were altered after the combination of treatments. Our results suggest that combination treatment enhances apoptotic cell death possibly via the inhibition of autophagy, and may therefore be regarded as a novel and better approach for the treatment of metastatic prostate cancer.
Collapse
|
14
|
Artun FT, Karagöz A. Antiproliferative and apoptosis inducing effects of the methanolic extract of Centaurea hermannii in human cervical cancer cell line. Biotech Histochem 2020; 96:1-10. [PMID: 32362148 DOI: 10.1080/10520295.2020.1751288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
We investigated the antiproliferative and apoptosis inducing effects of a methanolic extract of Centaurea hermannii in Vero and HeLa cell lines. Both cell lines also were treated with doxorubicin. Antiproliferative effects were assessed by MTT assay and cell index parameters were determined using the xCELLigence real time cell analysis system (RTCA). The IC50, the half maximal inhibitory concentration, and selectivity index (SI) values for doxorubicin and the C. hermannii extract were determined for both cell lines. At 48 h culture, the C. hermannii extract exhibited a potent cytotoxic effect in HeLa cells. Our MTT findings were consistent with morphological evaluation and analysis by the xCELLigence RTCA. The apoptosis inducing effect of the C. hermannii extract in HeLa cells was determined by flow cytometry; caspases 3, 7 and 9 activation assays; and quantitative reverse transcription polymerase chain reaction analysis. Our findings suggest that components of C. hermannii extract should be investigated as possible anticancer drugs.
Collapse
Affiliation(s)
- Fulya Tuğba Artun
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Science, Istanbul University , Istanbul, Turkey
| | - Ali Karagöz
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University , Istanbul, Turkey
| |
Collapse
|
15
|
Armando RG, Gómez DLM, Gomez DE. New drugs are not enough‑drug repositioning in oncology: An update. Int J Oncol 2020; 56:651-684. [PMID: 32124955 PMCID: PMC7010222 DOI: 10.3892/ijo.2020.4966] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/16/2019] [Indexed: 11/24/2022] Open
Abstract
Drug repositioning refers to the concept of discovering novel clinical benefits of drugs that are already known for use treating other diseases. The advantages of this are that several important drug characteristics are already established (including efficacy, pharmacokinetics, pharmacodynamics and toxicity), making the process of research for a putative drug quicker and less costly. Drug repositioning in oncology has received extensive focus. The present review summarizes the most prominent examples of drug repositioning for the treatment of cancer, taking into consideration their primary use, proposed anticancer mechanisms and current development status.
Collapse
Affiliation(s)
- Romina Gabriela Armando
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Diego Luis Mengual Gómez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Daniel Eduardo Gomez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| |
Collapse
|
16
|
Aleksanyan DV, Churusova SG, Klemenkova ZS, Aysin RR, Rybalkina EY, Nelyubina YV, Artyushin OI, Peregudov AS, Kozlov VA. Extending the Application Scope of Organophosphorus(V) Compounds in Palladium(II) Pincer Chemistry. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00867] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Diana V. Aleksanyan
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia
| | - Svetlana G. Churusova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia
| | - Zinaida S. Klemenkova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia
| | - Rinat R. Aysin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia
| | - Ekaterina Yu. Rybalkina
- Institute of Carcinogenesis, Blokhin Russian Cancer Research Center, Kashirskoe shosse 24, Moscow, 115478 Russia
| | - Yulia V. Nelyubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow, 117901 Russia
| | - Oleg I. Artyushin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia
| | - Alexander S. Peregudov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia
| | - Vladimir A. Kozlov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia
| |
Collapse
|
17
|
Laws K, Suntharalingam K. The Next Generation of Anticancer Metallopharmaceuticals: Cancer Stem Cell-Active Inorganics. Chembiochem 2018; 19:2246-2253. [PMID: 30109911 DOI: 10.1002/cbic.201800358] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Indexed: 12/17/2022]
Abstract
Cancer stem cells (CSCs) are heavily linked to fatal incidences of cancer relapse and metastasis. Conventional cancer therapies such as surgery, chemotherapy and radiation are largely futile against CSCs. Therefore, highly original approaches are needed to overcome CSCs and to provide durable, long-term clinical outcomes. Many academia- and pharmaceutical-led studies aimed at developing chemical or biological anti-CSC agents are ongoing; however, the application of inorganic compounds is rare. In this minireview, we discuss how the chemical diversity and versatility offered by metals has been harnessed to develop an unprecedented, emerging class of metallopharmaceuticals: CSC-active inorganics. A detailed account of their mechanism(s) of action is provided, and possible future directions for exploration are also put forward.
Collapse
Affiliation(s)
- Kristine Laws
- Department of Chemistry, King's College London, Trinity Street, London, SE1 1DB, UK
| | | |
Collapse
|
18
|
New Pd(II) schiff base complexes derived from ortho-vanillin and -tyrosine or -glutamic acid: Synthesis, characterization, crystal structures and biological properties. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.05.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
Direct Detection of Membrane-Inserting Fragments Defines the Translocation Pores of a Family of Pathogenic Toxins. J Mol Biol 2018; 430:3190-3199. [DOI: 10.1016/j.jmb.2018.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 11/22/2022]
|
20
|
Churusova SG, Aleksanyan DV, Rybalkina EY, Nelyubina YV, Peregudov AS, Klemenkova ZS, Kozlov VA. Non-classical N-metallated Pd(II) pincer complexes featuring amino acid pendant arms: Synthesis and biological activity. Polyhedron 2018. [DOI: 10.1016/j.poly.2017.08.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Li J, Li H, Zhan D, Xiang M, Yang J, Zuo Y, Yu Y, Zhou H, Jiang D, Luo H, Chen Z, Yu Z, Xu Z. Niclosamide sensitizes nasopharyngeal carcinoma to radiation by downregulating Ku70/80 expression. J Cancer 2018; 9:736-744. [PMID: 29556331 PMCID: PMC5858495 DOI: 10.7150/jca.20963] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate whether niclosamide could sensitize the nasopharyngeal carcinoma cells to radiation and further explore the underlying mechanisms. CCK-8 assay was used to determine the effect of niclosamide on the proliferation of NPC cells. Colony formation assay was used to evaluate the radiosensitizing effect of niclosamide on NPC cells. Flow cytometry analysis was used to determine the apoptosis of NPC cells induced by niclosamide. Immunofluorescent staining was used to detect the formation of γ-H2AX foci and the localization of Ku70/80 proteins in NPC cells. Real-time PCR quantification analysis was used to examine the level of Ku70/80 mRNA. DNA damage repair-related proteins were detected by western blot analysis. Our results showed that niclosamide markedly suppressed the proliferation of NPC cells. Niclosamide pretreatment followed by irradiation reduced the colony forming ability of NPC cells. Niclosamide in combination with irradiation significantly increased the apoptotic rate of NPC cells. Niclosamide significantly reduced the transcriptional level of K70/80 but not the translocation of Ku70/80 protein induced by irradiation. In conclusion, our study demonstrated that niclosamide could inhibit the growth of NPC cells and sensitize the NPC cells to radiation via suppressing the transcription of Ku70/80.
Collapse
Affiliation(s)
- Jingjing Li
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
| | - Haiwen Li
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
| | - Dechao Zhan
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
| | - Mei Xiang
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
| | - Jun Yang
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
| | - Yufang Zuo
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
| | - Yin Yu
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
| | - Hechao Zhou
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
| | - Danxian Jiang
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
| | - Haiqing Luo
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
| | - Zihong Chen
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
| | - Zhonghua Yu
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
| | - Zumin Xu
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
| |
Collapse
|
22
|
Xia X, Wang L, Zhang X, Wang S, Lei L, Cheng L, Xu Y, Sun Y, Hang B, Zhang G, Bai Y, Hu J. Halofuginone-induced autophagy suppresses the migration and invasion of MCF-7 cells via regulation of STMN1 and p53. J Cell Biochem 2018; 119:4009-4020. [PMID: 29231257 DOI: 10.1002/jcb.26559] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/29/2017] [Indexed: 12/18/2022]
Abstract
Traditional Chinese medicines have been recognized as especially promising anticancer agents in modern anticancer research. Halofuginone (HF), an analog of quinazolinone alkaloid extracted from Dichroa febrifuga, is widely used in traditional medicine. However, whether HF inhibits the growth of breast cancer cells and/or reduces the migration and invasion of MCF-7 human breast cancer cells, as well as the underlying mechanisms in vitro, remains unclear. In this study, we report that an HF extract inhibits the growth of MCF-7 cells and reduces their migration and invasion, an important feature of potential anticancer agents. In addition, HF significantly increases the activation of autophagy, which is closely associated with tumor metastasis. As STMN1 and p53 have been closely implicated in breast cancer progression, we analyzed their expression in the context of HF extract treatment. Western blot analysis showed that HF suppresses STMN1 and p53 expression and activity in an autophagy-dependent manner. Collectively, these data indicate that activation of autophagy reduces expression of STMN1 and p53, and the migration and invasion of cancer cells contributes to the anti-cancer effects of the HF. These findings may provide new insight into breast cancer prevention and therapy.
Collapse
Affiliation(s)
- Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, P.R. China.,Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, P.R. China.,Post-doctoral Research Station, Henan Agriculture University, Zhengzhou, P.R. China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, P.R. China
| | - Xiaojian Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, P.R. China
| | - Shan Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, P.R. China
| | - Lianchen Lei
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Likun Cheng
- Shandong Binzhou Animal Science &Veterinary Medicine Academy, Binzhou, P.R. China
| | - Yanzhao Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, P.R. China
| | - Yawei Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, P.R. China
| | - Bolin Hang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, P.R. China
| | - Gaiping Zhang
- Post-doctoral Research Station, Henan Agriculture University, Zhengzhou, P.R. China
| | - YueYu Bai
- Animal Health Supervision of Henan Province, Bureau of Animal Husbandry of Henan province, Zhengzhou, P.R. China
| | - JianHe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, P.R. China.,Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, P.R. China
| |
Collapse
|
23
|
Aztopal N, Erkisa M, Erturk E, Ulukaya E, Tokullugil AH, Ari F. Valproic acid, a histone deacetylase inhibitor, induces apoptosis in breast cancer stem cells. Chem Biol Interact 2017; 280:51-58. [PMID: 29225137 DOI: 10.1016/j.cbi.2017.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/15/2017] [Accepted: 12/01/2017] [Indexed: 01/01/2023]
Abstract
Cancer stem-like cells (CSCs) are a cell subpopulation that can reinitiate tumors, resist chemotherapy, give rise to metastases and lead to disease relapse because of an acquired resistance to apoptosis. Especially, epigenetic alterations play a crucial role in the regulation of stemness and also have been implicated in the development of drug resistance. Hence, in the present study, we examined the cytotoxic and apoptotic activity of valproic acid (VPA) as an inhibitor of histone deacetylases (HDACs) against breast CSCs (BCSCs). Increased expression of stemness markers were determined by western blotting in mammospheres (MCF-7s, a cancer stem cell-enriched population) propagated from parental MCF-7 cells. Anti-growth activity of VPA was determined via ATP viability assay. The sphere formation assay (SFA) was performed to assess the inhibitory effect of VPA on the self-renewal capacity of MCF-7s cells. Acetylation of histon H3 was detected with ELISA assay. Cell death mode was performed by Hoechst dye 33342 and propidium iodide-based flouresent stainings (for pyknosis and membrane integrity), by M30 and M65 ELISA assays (for apoptosis and primary or secondary necrosis) as well as cytofluorimetric analysis (caspase 3/7 activity and annexin-V-FITC staining for early and late stage apoptosis). VPA exhibited anti-growth effect against both MCF-7 and MCF-7s cells in a dose (0.6-20 mM) and time (24, 48, 72 h) dependent manner. As expected, MCF-7s cells were found more resistant to VPA than MCF-7 cells. It was observed that VPA prevented mammosphere formation at relatively lower doses (2.5 and 5 mM) while the acetylation of histon H3 was increased. At the same doses, VPA increased the M30 levels, annexin-V-FITC positivity and caspase 3/7 activation, implying the induction of apoptosis. The secondary necrosis (late stage of apoptosis) was also evidenced by nuclear pyknosis with propidium iodide staining positivity. Taken together, inhibition of HDACs is cytotoxic to BCSCs by apoptosis. Our results suggested that targeting the epigenetic regulation of histones may be a novel approach and hold significant promise for successful treatment of breast cancer.
Collapse
Affiliation(s)
- Nazlıhan Aztopal
- Istinye University, Faculty of Medicine, Department of Clinical Biochemistry, Istanbul, Turkey; Uludag University, Science and Art Faculty, Department of Biology, Bursa, Turkey
| | - Merve Erkisa
- Istinye University, Faculty of Medicine, Department of Clinical Biochemistry, Istanbul, Turkey; Uludag University, Science and Art Faculty, Department of Biology, Bursa, Turkey
| | - Elif Erturk
- Uludag University, Vocational School of Health Services, Bursa, Turkey
| | - Engin Ulukaya
- Istinye University, Faculty of Medicine, Department of Clinical Biochemistry, Istanbul, Turkey
| | | | - Ferda Ari
- Uludag University, Science and Art Faculty, Department of Biology, Bursa, Turkey.
| |
Collapse
|
24
|
Cevatemre B, Erkısa M, Aztopal N, Karakas D, Alper P, Tsimplouli C, Sereti E, Dimas K, Armutak EII, Gurevin EG, Uvez A, Mori M, Berardozzi S, Ingallina C, D'Acquarica I, Botta B, Ozpolat B, Ulukaya E. A promising natural product, pristimerin, results in cytotoxicity against breast cancer stem cells in vitro and xenografts in vivo through apoptosis and an incomplete autopaghy in breast cancer. Pharmacol Res 2017; 129:500-514. [PMID: 29197639 DOI: 10.1016/j.phrs.2017.11.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 12/19/2022]
Abstract
Several natural products have been suggested as effective agents for the treatment of cancer. Given the important role of CSCs (Cancer Stem Cells) in cancer, which is a trendy hypothesis, it is worth investigating the effects of pristimerin on CSCs as well as on the other malignant cells (MCF-7 and MDA-MB-231) of breast cancer. The anti-growth activity of pristimerin against MCF-7 and MCF-7s (cancer stem cell enriched population) cells was investigated by real time viability monitorization (xCELLigence System®) and ATP assay, respectively. Mode of cell death was evaluated using electron and fluorescence microscopies, western blotting (autophagy, apoptosis and ER-stress related markers) and flow cytometry (annexin-V staining, caspase 3/7 activity, BCL-2 and PI3K expressions). Pristimerin showed an anti-growth effect on cancer cells and cancer stem cells with IC50 values ranging at 0.38-1.75μM. It inhibited sphere formation at relatively lower doses (<1.56μM). Apoptosis was induced in MCF-7 and MCF-7s cells. In addition, extensive cytoplasmic vacuolation was observed, implying an incompleted autophagy as evidenced by the increase of autophagy-related proteins (p62 and LC3-II) with an unfolded protein response (UPR). Pristimerin inhibited the growth of MCF-7 and MDA-MB-231-originated xenografts in NOD.CB17-Prkdcscid/J mice. In mice, apoptosis was further confirmed by cleavage of PARP, activation of caspase 3 and/or 7 and TUNEL staining. Taken together, pristimerin shows cytotoxic activity on breast cancer both in vitro and in vivo. It seems to represent a robust promising agent for the treatment of breast cancer. Pristimerin's itself or synthetic novel derivatives should be taken into consideration for novel potent anticancer agent(s).
Collapse
Affiliation(s)
- Buse Cevatemre
- Uludag University, Faculty of Arts and Sciences, Department of Biology, Bursa, Turkey
| | - Merve Erkısa
- Uludag University, Faculty of Arts and Sciences, Department of Biology, Bursa, Turkey; Istinye University, Faculty of Medicine, Department of Clinical Biochemistry, Istanbul, Turkey
| | - Nazlihan Aztopal
- Uludag University, Faculty of Arts and Sciences, Department of Biology, Bursa, Turkey; Istinye University, Faculty of Medicine, Department of Clinical Biochemistry, Istanbul, Turkey
| | - Didem Karakas
- Uludag University, Faculty of Arts and Sciences, Department of Biology, Bursa, Turkey; Istinye University, Faculty of Medicine, Department of Clinical Biochemistry, Istanbul, Turkey
| | - Pınar Alper
- Uludag University, Faculty of Arts and Sciences, Department of Biology, Bursa, Turkey; Istinye University, Faculty of Medicine, Department of Clinical Biochemistry, Istanbul, Turkey
| | - Chrisiida Tsimplouli
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Evangelia Sereti
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Elif I Ikitimur Armutak
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Istanbul University, 34320, Istanbul, Turkey
| | - Ebru Gurel Gurevin
- Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey
| | - Ayca Uvez
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Istanbul University, 34320, Istanbul, Turkey
| | - Mattia Mori
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, viale Regina Elena 291, 00161 Roma, Italy
| | - Simone Berardozzi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, viale Regina Elena 291, 00161 Roma, Italy; Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Roma, piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Cinzia Ingallina
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, viale Regina Elena 291, 00161 Roma, Italy; Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Roma, piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Ilaria D'Acquarica
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Roma, piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Bruno Botta
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Roma, piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Engin Ulukaya
- Istinye University, Faculty of Medicine, Department of Clinical Biochemistry, Istanbul, Turkey.
| |
Collapse
|
25
|
Churusova SG, Aleksanyan DV, Rybalkina EY, Susova OY, Brunova VV, Aysin RR, Nelyubina YV, Peregudov AS, Gutsul EI, Klemenkova ZS, Kozlov VA. Highly Cytotoxic Palladium(II) Pincer Complexes Based on Picolinylamides Functionalized with Amino Acids Bearing Ancillary S-Donor Groups. Inorg Chem 2017; 56:9834-9850. [DOI: 10.1021/acs.inorgchem.7b01348] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Svetlana G. Churusova
- A. N. Nesmeyanov
Institute of Organoelement Compounds, Russian Academy of Sciences, Ulitsa Vavilova 28, Moscow 119991, Russia
| | - Diana V. Aleksanyan
- A. N. Nesmeyanov
Institute of Organoelement Compounds, Russian Academy of Sciences, Ulitsa Vavilova 28, Moscow 119991, Russia
| | - Ekaterina Yu. Rybalkina
- Institute of Carcinogenesis, N. N. Blokhin Russian Cancer Research Center, Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Olga Yu. Susova
- Institute of Carcinogenesis, N. N. Blokhin Russian Cancer Research Center, Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Valentina V. Brunova
- A. N. Nesmeyanov
Institute of Organoelement Compounds, Russian Academy of Sciences, Ulitsa Vavilova 28, Moscow 119991, Russia
| | - Rinat R. Aysin
- A. N. Nesmeyanov
Institute of Organoelement Compounds, Russian Academy of Sciences, Ulitsa Vavilova 28, Moscow 119991, Russia
| | - Yulia V. Nelyubina
- A. N. Nesmeyanov
Institute of Organoelement Compounds, Russian Academy of Sciences, Ulitsa Vavilova 28, Moscow 119991, Russia
| | - Alexander S. Peregudov
- A. N. Nesmeyanov
Institute of Organoelement Compounds, Russian Academy of Sciences, Ulitsa Vavilova 28, Moscow 119991, Russia
| | - Evgenii I. Gutsul
- A. N. Nesmeyanov
Institute of Organoelement Compounds, Russian Academy of Sciences, Ulitsa Vavilova 28, Moscow 119991, Russia
| | - Zinaida S. Klemenkova
- A. N. Nesmeyanov
Institute of Organoelement Compounds, Russian Academy of Sciences, Ulitsa Vavilova 28, Moscow 119991, Russia
| | - Vladimir A. Kozlov
- A. N. Nesmeyanov
Institute of Organoelement Compounds, Russian Academy of Sciences, Ulitsa Vavilova 28, Moscow 119991, Russia
| |
Collapse
|
26
|
Tunc D, Dere E, Karakas D, Cevatemre B, Yilmaz VT, Ulukaya E. Cytotoxic and apoptotic effects of the combination of palladium (II) 5,5-diethylbarbiturate complex with bis(2-pyridylmethyl)amine and curcumin on non small lung cancer cell lines. Bioorg Med Chem 2017; 25:1717-1723. [PMID: 28187956 DOI: 10.1016/j.bmc.2017.01.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/25/2017] [Indexed: 11/29/2022]
Abstract
Metal-based chemotherapeutics such as cisplatin are widely used treatment of lung cancer which is the major cause of cancer-related mortality worldwide. Recent studies demonstrated that novel metal-based compounds have strong cytotoxic activity in a similar way as cisplatin. Therefore, metal-based compounds have been synthesized and investigated in order to determine their cytotoxic activities. It has been also reported curcumin, which has been derived from turmeric plant, has powerful cytotoxic effect on various cancer cell lines. In the light of these data, it has been investigated the cytotoxic effects of combination of curcumin (0.78-100μM) and palladium (II) 5,5-diethylbarbiturate complex with bis(2-pyridylmethyl)amine [Pd(II) complex] (0.39-50μM) against non small lung cancer cell lines, A549 and H1299. It has been found that combination of Pd(II) complex and curcumin enhanced the cytotoxic activity and apoptotic cell death at 48h, compared to single use of each agent, only in H1299 cell line (combination index <1). Apoptosis was evident by annexin v staining positivity, increased caspase 3/7 activity and the presence of pyknotic nuclei. Pro-apoptotic genes of TNFRSF10A and HRK were found to be involved in apoptotic cell death. In conclusion, the application of this combination may be regarded as a novel and effective approach for the treatment of lung cancer due to its promising cytotoxic and apoptotic effect.
Collapse
Affiliation(s)
- Duygu Tunc
- Uludag University, Faculty of Science and Art, Department of Biology, Bursa, Turkey
| | - Egemen Dere
- Uludag University, Faculty of Science and Art, Department of Biology, Bursa, Turkey
| | - Didem Karakas
- Uludag University, Faculty of Science and Art, Department of Biology, Bursa, Turkey
| | - Buse Cevatemre
- Uludag University, Faculty of Science and Art, Department of Biology, Bursa, Turkey
| | - Veysel Turan Yilmaz
- Uludag University, Faculty of Science and Art, Department of Chemistry, Bursa, Turkey
| | - Engin Ulukaya
- Istinye University, Faculty of Medical School, Department of Medical Biochemistry, Istanbul, Turkey.
| |
Collapse
|
27
|
A trans-platinum(II) complex induces apoptosis in cancer stem cells of breast cancer. Bioorg Med Chem 2017; 25:269-276. [DOI: 10.1016/j.bmc.2016.10.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 11/18/2022]
|
28
|
Cevatemre B, Botta B, Mori M, Berardozzi S, Ingallina C, Ulukaya E. The plant-derived triterpenoid tingenin B is a potent anticancer agent due to its cytotoxic activity on cancer stem cells of breast cancer in vitro. Chem Biol Interact 2016; 260:248-255. [DOI: 10.1016/j.cbi.2016.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
|
29
|
New water-soluble palladium(II) complexes of lidocaine and phenylcyanamide derivative ligands: cytotoxicity and cellular response mechanisms. Invest New Drugs 2016; 34:723-732. [DOI: 10.1007/s10637-016-0393-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022]
|
30
|
Serrano JL, Pérez J, García L, Pérez E, Sánchez G, Kapdi A. A convenient route to prepare mono- and dinuclear 2-benzoylpyridine palladacycles with imidate ligands. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.03.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Fanelli M, Formica M, Fusi V, Giorgi L, Micheloni M, Paoli P. New trends in platinum and palladium complexes as antineoplastic agents. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.11.004] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Miura K. [Histopathologic studies on epithelial proliferation in the peripheral region of the lung with special consideration of tumorlets]. Cell Signal 1968; 41:89-96. [PMID: 28389414 PMCID: PMC5628105 DOI: 10.1016/j.cellsig.2017.04.001] [Citation(s) in RCA: 282] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/27/2022]
Abstract
Niclosamide is an oral antihelminthic drug used to treat parasitic infections in millions of people worldwide. However recent studies have indicated that niclosamide may have broad clinical applications for the treatment of diseases other than those caused by parasites. These diseases and symptoms may include cancer, bacterial and viral infection, metabolic diseases such as Type II diabetes, NASH and NAFLD, artery constriction, endometriosis, neuropathic pain, rheumatoid arthritis, sclerodermatous graft-versus-host disease, and systemic sclerosis. Among the underlying mechanisms associated with the drug actions of niclosamide are uncoupling of oxidative phosphorylation, and modulation of Wnt/β-catenin, mTORC1, STAT3, NF-κB and Notch signaling pathways. Here we provide a brief overview of the biological activities of niclosamide, its potential clinical applications, and its challenges for use as a new therapy for systemic diseases. Niclosamide is an oral antihelminthic drug used to treat parasitic infections. Niclosamide is a multifunctional drug inhibiting multiple signaling pathways and biological processes. Niclosamide has biological activities potentially against systemic diseases.
Collapse
|