1
|
Teder T, König S, Singh R, Samuelsson B, Werz O, Garscha U, Haeggström JZ. Modulation of the 5-Lipoxygenase Pathway by Chalcogen-Containing Inhibitors of Leukotriene A 4 Hydrolase. Int J Mol Sci 2023; 24:ijms24087539. [PMID: 37108702 PMCID: PMC10145651 DOI: 10.3390/ijms24087539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The 5-lipoxygenase (5-LOX) pathway gives rise to bioactive inflammatory lipid mediators, such as leukotrienes (LTs). 5-LOX carries out the oxygenation of arachidonic acid to the 5-hydroperoxy derivative and then to the leukotriene A4 epoxide which is converted to a chemotactic leukotriene B4 (LTB4) by leukotriene A4 hydrolase (LTA4H). In addition, LTA4H possesses aminopeptidase activity to cleave the N-terminal proline of a pro-inflammatory tripeptide, prolyl-glycyl-proline (PGP). Based on the structural characteristics of LTA4H, it is possible to selectively inhibit the epoxide hydrolase activity while sparing the inactivating, peptidolytic, cleavage of PGP. In the current study, chalcogen-containing compounds, 4-(4-benzylphenyl) thiazol-2-amine (ARM1) and its selenazole (TTSe) and oxazole (TTO) derivatives were characterized regarding their inhibitory and binding properties. All three compounds selectively inhibit the epoxide hydrolase activity of LTA4H at low micromolar concentrations, while sparing the aminopeptidase activity. These inhibitors also block the 5-LOX activity in leukocytes and have distinct inhibition constants with recombinant 5-LOX. Furthermore, high-resolution structures of LTA4H with inhibitors were determined and potential binding sites to 5-LOX were proposed. In conclusion, we present chalcogen-containing inhibitors which differentially target essential steps in the biosynthetic route for LTB4 and can potentially be used as modulators of inflammatory response by the 5-LOX pathway.
Collapse
Affiliation(s)
- Tarvi Teder
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Stefanie König
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Greifswald University, 17489 Greifswald, Germany
| | - Rajkumar Singh
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Bengt Samuelsson
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 7743 Jena, Germany
| | - Ulrike Garscha
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Greifswald University, 17489 Greifswald, Germany
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
2
|
H M Ehrler J, Brunst S, Tjaden A, Kilu W, Heering J, Hernandez-Olmos V, Krommes A, Kramer JS, Steinhilber D, Schubert-Zsilavecz M, Müller-Knapp S, Merk D, Proschak E. Compilation and Evaluation of Fatty Acid Mimetics Screening Library. Biochem Pharmacol 2022; 204:115191. [PMID: 35907497 DOI: 10.1016/j.bcp.2022.115191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/02/2022]
Abstract
Focused compound libraries are well-established tools for hit identification in drug discovery and chemical probe development. We present the compilation and application of a focused screening library of fatty acid mimetics (FAMs), which are compounds designed to bind the orthosteric site proteins that endogenously accommodate natural fatty acids and lipid metabolites. This set complies with chemical properties of FAM and was found suitable for use also in cellular setting. Several hits were retrieved in screening the focused library against diverse fatty acid binding targets including the enzymes soluble epoxide hydrolase (sEH) and leukotriene A4 hydrolase (LTA4H), the nuclear receptors peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor α (RXRα), the carrier proteins fatty acid binding protein 4 and 5 (FABP4 and FABP5), as well as the G-protein coupled receptors leukotriene B4 receptor 1 (BLT1) and free-fatty acid receptor 1 (FFAR1). Thus, the focused FAM library is suitable to obtain chemical starting matter for fatty acid binding proteins and valuable extends available screening collections.
Collapse
Affiliation(s)
- Johanna H M Ehrler
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Steffen Brunst
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Whitney Kilu
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Victor Hernandez-Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Andrè Krommes
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Jan S Kramer
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Manfred Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Susanne Müller-Knapp
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Ludwig-Maximilians-Universität München, Department of Pharmacy, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany.
| |
Collapse
|
3
|
Lee KH, Ali NF, Lee SH, Zhang Z, Burdick M, Beaulac ZJ, Petruncio G, Li L, Xiang J, Chung EM, Foreman KW, Noble SM, Shim YM, Paige M. Substrate-dependent modulation of the leukotriene A 4 hydrolase aminopeptidase activity and effect in a murine model of acute lung inflammation. Sci Rep 2022; 12:9443. [PMID: 35676292 PMCID: PMC9177663 DOI: 10.1038/s41598-022-13238-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/12/2022] [Indexed: 11/09/2022] Open
Abstract
The aminopeptidase activity (AP) of the leukotriene A4 hydrolase (LTA4H) enzyme has emerged as a therapeutic target to modulate host immunity. Initial reports focused on the benefits of augmenting the LTA4H AP activity and clearing its putative pro-inflammatory substrate Pro-Gly-Pro (PGP). However, recent reports have introduced substantial complexity disconnecting the LTA4H modulator 4-methoxydiphenylmethane (4MDM) from PGP as follows: (1) 4MDM inhibits PGP hydrolysis and subsequently inhibition of LTA4H AP activity, and (2) 4MDM activates the same enzyme target in the presence of alternative substrates. Differential modulation of LTA4H by 4MDM was probed in a murine model of acute lung inflammation, which showed that 4MDM modulates the host neutrophilic response independent of clearing PGP. X-ray crystallography showed that 4MDM and PGP bind at the zinc binding pocket and no allosteric binding was observed. We then determined that 4MDM modulation is not dependent on the allosteric binding of the ligand, but on the N-terminal side chain of the peptide. In conclusion, our study revealed that a peptidase therapeutic target can interact with its substrate and ligand in complex biochemical mechanisms. This raises an important consideration when ligands are designed to explain some of the unpredictable outcomes observed in therapeutic discovery targeting LTA4H.
Collapse
Affiliation(s)
- Kyung Hyeon Lee
- Department of Chemistry & Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, USA
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Nadia Fazal Ali
- Department of Chemistry & Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, USA
| | - Soo Hyeon Lee
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Zhimin Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, PO Box 800546, Charlottesville, VA, 22908, USA
| | - Marie Burdick
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, PO Box 800546, Charlottesville, VA, 22908, USA
| | - Zachary J Beaulac
- Department of Chemistry & Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, USA
| | - Greg Petruncio
- Department of Chemistry & Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, USA
| | - Linxia Li
- Department of Obstetrics and Gynecology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Shanghai, 200137, China
| | - Jiangdong Xiang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ezra M Chung
- STCube Pharmaceutical, Inc., 401 Professional Dr, Gaithersburg, MD, 20879, USA
| | - Kenneth W Foreman
- Department of Chemistry & Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, USA
| | - Schroeder M Noble
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.
| | - Yun M Shim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, PO Box 800546, Charlottesville, VA, 22908, USA.
| | - Mikell Paige
- Department of Chemistry & Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, USA.
| |
Collapse
|
4
|
Schierle S, Brunst S, Helmstädter M, Ebert R, Kramer JS, Steinhilber D, Proschak E, Merk D. Development and in vitro Profiling of Dual FXR/LTA4H Modulators. ChemMedChem 2021; 16:2366-2374. [PMID: 33856122 PMCID: PMC8453936 DOI: 10.1002/cmdc.202100118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 11/10/2022]
Abstract
Designed polypharmacology presents as an attractive strategy to increase therapeutic efficacy in multi-factorial diseases by a directed modulation of multiple involved targets with a single molecule. Such an approach appears particularly suitable in non-alcoholic steatohepatitis (NASH) which involves hepatic steatosis, inflammation and fibrosis as pathological hallmarks. Among various potential pharmacodynamic mechanisms, activation of the farnesoid X receptor (FXRa) and inhibition of leukotriene A4 hydrolase (LTA4Hi) hold promise to counteract NASH according to preclinical and clinical observations. We have developed dual FXR/LTA4H modulators as pharmacological tools, enabling evaluation of this polypharmacology concept to treat NASH and related pathologies. The optimized FXRa/LTA4Hi exhibits well-balanced dual activity on the intended targets with sub-micromolar potency and is highly selective over related nuclear receptors and enzymes rendering it suitable as tool to probe synergies of dual FXR/LTA4H targeting.
Collapse
Affiliation(s)
- Simone Schierle
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Steffen Brunst
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Moritz Helmstädter
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Roland Ebert
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Jan S. Kramer
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Dieter Steinhilber
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Ewgenij Proschak
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Daniel Merk
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| |
Collapse
|
5
|
Qin R, Wang H, Yan A. Classification and QSAR models of leukotriene A4 hydrolase (LTA4H) inhibitors by machine learning methods. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:411-431. [PMID: 33896285 DOI: 10.1080/1062936x.2021.1910862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Leukotriene A4 hydrolase (LTA4H) is an important anti-inflammatory target which can convert leukotriene A4 (LTA4) into pro-inflammatory substance leukotriene B4 (LTB4). In this paper, we built 18 classification models for 463 LTA4H inhibitors by using support vector machine (SVM), random forest (RF) and K-Nearest Neighbour (KNN). The best classification model (Model 2A) was built from RF and MACCS fingerprints. The prediction accuracy of 88.96% and the Matthews correlation coefficient (MCC) of 0.74 had been achieved on the test set. We also divided the 463 LTA4H inhibitors into six subsets using K-Means. We found that the highly active LTA4H inhibitors mostly contained diphenylmethane or diphenyl ether as the scaffold and pyridine or piperidine as the side chain. In addition, six quantitative structure-activity relationship (QSAR) models for 172 LTA4H inhibitors were built by multiple linear regression (MLR) and SVM. The best QSAR model (Model 6A) was built by using SVM and CORINA Symphony descriptors. The coefficients of determination of the training set and the test set were equal to 0.81 and 0.79, respectively. Classification and QSAR models could be used for subsequent virtual screening, and the obtained fragments that were important for highly active inhibitors would be helpful for designing new LTA4H inhibitors.
Collapse
Affiliation(s)
- R Qin
- State Key Laboratory of Chemical Resource Engineering Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - H Wang
- State Key Laboratory of Chemical Resource Engineering Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - A Yan
- State Key Laboratory of Chemical Resource Engineering Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|
6
|
Hefke L, Hiesinger K, Zhu WF, Kramer JS, Proschak E. Computer-Aided Fragment Growing Strategies to Design Dual Inhibitors of Soluble Epoxide Hydrolase and LTA4 Hydrolase. ACS Med Chem Lett 2020; 11:1244-1249. [PMID: 32551007 DOI: 10.1021/acsmedchemlett.0c00102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/08/2020] [Indexed: 12/22/2022] Open
Abstract
Multitarget ligands are interesting candidates for drug discovery and development due to improved safety and efficacy. However, rational design and optimization of multitarget ligands is tedious because affinity optimization for two or more targets has to be performed simultaneously. In this study, we demonstrate that, given a molecular fragment, which binds to two targets of interest, computer-aided fragment growing can be applied to optimize compound potency, relying on either ligand- or structure-derived information. This methodology is applied to the design of dual inhibitors of soluble epoxide hydrolase and leukotriene A4 hydrolase.
Collapse
Affiliation(s)
- Lena Hefke
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Kerstin Hiesinger
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - W. Felix Zhu
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Jan S. Kramer
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| |
Collapse
|
7
|
Hiesinger K, Schott A, Kramer JS, Blöcher R, Witt F, Wittmann SK, Steinhilber D, Pogoryelov D, Gerstmeier J, Werz O, Proschak E. Design of Dual Inhibitors of Soluble Epoxide Hydrolase and LTA 4 Hydrolase. ACS Med Chem Lett 2020; 11:298-302. [PMID: 32184960 DOI: 10.1021/acsmedchemlett.9b00330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/30/2019] [Indexed: 11/30/2022] Open
Abstract
Multitarget anti-inflammatory drugs interfering with the arachidonic acid cascade exhibit superior efficacy. In this study, a prototype dual inhibitor of soluble epoxide hydrolase (sEH) and LTA4 hydrolase (LTA4H) with submicromolar activity toward both targets has been designed and synthesized. Preliminary structure-activity relationship studies were performed to identify optimal substitution patterns. X-ray structure analysis of a promising dual inhibitor in complex with sEH, as well as molecular docking with LTA4H provided a rationale for further optimization. Hereby, scaffold extension was successfully applied to yield potent dual sEH/LTA4H inhibitors. The spectrum of pro- and anti-inflammatory lipid mediators was evaluated in M1 and M2 macrophages, stimulated with LPS, and incubated with the most promising compound 14. The effect of 14 on the inflammatory lipid mediator profile characterizes dual sEH/LTA4H inhibitors as an interesting option for future anti-inflammatory agent investigations.
Collapse
Affiliation(s)
- Kerstin Hiesinger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Annika Schott
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Jan S. Kramer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - René Blöcher
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Finja Witt
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Sandra K. Wittmann
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Denys Pogoryelov
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|
8
|
Lee KH, Petruncio G, Shim A, Burdick M, Zhang Z, Shim YM, Noble SM, Paige M. Effect of Modifier Structure on the Activation of Leukotriene A 4 Hydrolase Aminopeptidase Activity. J Med Chem 2019; 62:10605-10616. [PMID: 31751136 DOI: 10.1021/acs.jmedchem.9b00663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Activation of the leukotriene A4 hydrolase (LTA4H) aminopeptidase (AP) activity with 4-methoxydiphenylmethane (4MDM) promoted resolution of neutrophil infiltration in a murine cigarette smoke-induced model for emphysematous chronic obstructive pulmonary disease. Recently, 4-(4-benzylphenyl)thiazol-2-amine (ARM1) was published as a ligand for LTA4H with potential anti-inflammatory properties. To investigate the effect of modifier structure on enzyme kinetics of LTA4H, a series of analogues bearing structural features of ARM1 and 4MDM were synthesized using trifluoroborate Suzuki coupling reactions. Following, the 2.8 Å X-ray crystal structure of LTA4H complexed with 4-OMe-ARM1, a 4MDM-ARM1 hybrid molecule, was determined. Kinetic analysis showed that ARM1 and related analogues lowered affinity for the enzyme-substrate complex, resulting in a change of mechanism from hyperbolic mixed predominately catalytic activation (HMx(Sp < Ca)A) as observed for 4MDM to a predominately specific activation (HMx(Sp > Ca)A) mechanism. 4-OMe-ARM1 was then shown to dose responsively reduce LTB4 production in human neutrophils.
Collapse
Affiliation(s)
- Kyung Hyeon Lee
- Department of Chemistry & Biochemistry , George Mason University , 10920 George Mason Circle , Manassas , Virginia 20110 , United States
- Bacterial Diseases Branch, Wound Infections Department , Walter Reed Army Institute of Research , 503 Robert Grant Ave , Silver Spring , Maryland 20910 , United States
| | - Greg Petruncio
- Department of Chemistry & Biochemistry , George Mason University , 10920 George Mason Circle , Manassas , Virginia 20110 , United States
| | - Amanda Shim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Virginia , P.O. Box 800546, Charlottesville , Virginia 22908 , United States
| | - Marie Burdick
- Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Virginia , P.O. Box 800546, Charlottesville , Virginia 22908 , United States
| | - Zhimin Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Virginia , P.O. Box 800546, Charlottesville , Virginia 22908 , United States
| | - Yun M Shim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Virginia , P.O. Box 800546, Charlottesville , Virginia 22908 , United States
| | - Schroeder M Noble
- Bacterial Diseases Branch, Wound Infections Department , Walter Reed Army Institute of Research , 503 Robert Grant Ave , Silver Spring , Maryland 20910 , United States
| | - Mikell Paige
- Department of Chemistry & Biochemistry , George Mason University , 10920 George Mason Circle , Manassas , Virginia 20110 , United States
| |
Collapse
|
9
|
König S, Pace S, Pein H, Heinekamp T, Kramer J, Romp E, Straßburger M, Troisi F, Proschak A, Dworschak J, Scherlach K, Rossi A, Sautebin L, Haeggström JZ, Hertweck C, Brakhage AA, Gerstmeier J, Proschak E, Werz O. Gliotoxin from Aspergillus fumigatus Abrogates Leukotriene B 4 Formation through Inhibition of Leukotriene A 4 Hydrolase. Cell Chem Biol 2019; 26:524-534.e5. [PMID: 30745237 DOI: 10.1016/j.chembiol.2019.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/23/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022]
Abstract
The epidithiodioxopiperazine gliotoxin is a virulence factor of Aspergillus fumigatus, the most important airborne fungal pathogen of humans. Gliotoxin suppresses innate immunity in invasive aspergillosis, particularly by compromising neutrophils, but the underlying molecular mechanisms remain elusive. Neutrophils are the first responders among innate immune cells recruited to sites of infection by the chemoattractant leukotriene (LT)B4 that is biosynthesized by 5-lipoxygenase and LTA4 hydrolase (LTA4H). Here, we identified gliotoxin as inhibitor of LTA4H that selectively abrogates LTB4 formation in human leukocytes and in distinct animal models. Gliotoxin failed to inhibit the formation of other eicosanoids and the aminopeptidase activity of the bifunctional LTA4H. Suppression of LTB4 formation by gliotoxin required the cellular environment and/or reducing conditions, and only the reduced form of gliotoxin inhibited LTA4H activity. Conclusively, gliotoxin suppresses the biosynthesis of the potent neutrophil chemoattractant LTB4 by direct interference with LTA4H thereby impairing neutrophil functions in invasive aspergillosis.
Collapse
Affiliation(s)
- Stefanie König
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Helmut Pein
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), 07745 Jena, Germany
| | - Jan Kramer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Erik Romp
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Maria Straßburger
- Transfer Group Antiinfectives, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), 07745 Jena, Germany
| | - Fabiana Troisi
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Anna Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Jan Dworschak
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), 07745 Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), 07745 Jena, Germany
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Lidia Sautebin
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), 07745 Jena, Germany; Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), 07745 Jena, Germany; Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
| |
Collapse
|
10
|
Mu X, Xu D. QM/MM Molecular Dynamics Investigations of the Substrate Binding of Leucotriene A4 Hydrolase: Implication for the Catalytic Mechanism. J Phys Chem B 2018; 122:7253-7263. [PMID: 29965770 DOI: 10.1021/acs.jpcb.8b04203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
LTA4H is a monozinc bifunctional enzyme which exhibits both aminopeptidase and epoxide hydrolase activities. Its dual functions in anti- and pro-inflammatory roles have attracted wide attention to the inhibitor design. In this work, we tried to construct Michaelis complexes of LTA4H with both a native peptide substrate and LTA4 molecule using combined quantum mechanics and molecular mechanics molecular dynamics simulations. First of all, the zinc ion is coordinated by H295, H299, and E318. For its aminopeptidase activity, similar to conventional peptidases, the fourth ligand to the zinc ion is suggested to be an active site water, which is further hydrogen bonded with a downstream glutamic acid, E296. For the epoxide hydrolase activity, the fourth ligand to the zinc ion is found to be an epoxy oxygen atom. The potential of mean force calculation indicates about an 8.5 kcal/mol activation barrier height for the ring-opening reaction, which will generate a metastable carbenium intermediate. Subsequent frontier molecular orbital analyses suggest that the next step would be the nucleophilic attacking reaction at the C12 atom by a water molecule activated by D375. Our simulations also analyzed functions of several important residues like R563, K565, E271, Y383, and Y378 in the binding of peptide and LTA4.
Collapse
Affiliation(s)
- Xia Mu
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry , Sichuan University , Chengdu , Sichuan , People's Republic of China 610064
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry , Sichuan University , Chengdu , Sichuan , People's Republic of China 610064
| |
Collapse
|
11
|
Büttner D, Kramer JS, Klingler FM, Wittmann SK, Hartmann MR, Kurz CG, Kohnhäuser D, Weizel L, Brüggerhoff A, Frank D, Steinhilber D, Wichelhaus TA, Pogoryelov D, Proschak E. Challenges in the Development of a Thiol-Based Broad-Spectrum Inhibitor for Metallo-β-Lactamases. ACS Infect Dis 2018; 4:360-372. [PMID: 29172434 DOI: 10.1021/acsinfecdis.7b00129] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pathogens, expressing metallo-β-lactamases (MBLs), become resistant against most β-lactam antibiotics. Besides the dragging search for new antibiotics, development of MBL inhibitors would be an alternative weapon against resistant bacterial pathogens. Inhibition of resistance enzymes could restore the antibacterial activity of β-lactams. Various approaches to MBL inhibitors are described; among others, the promising motif of a zinc coordinating thiol moiety is very popular. Nevertheless, since the first report of a thiol-based MBL inhibitor (thiomandelic acid) in 2001, no steps in development of thiol based MBL inhibitors were reported that go beyond clinical isolate testing. In this study, we report on the synthesis and biochemical characterization of thiol-based MBL inhibitors and highlight the challenges behind the development of thiol-based compounds, which exhibit good in vitro activity toward a broad spectrum of MBLs, selectivity against human off-targets, and reasonable activity against clinical isolates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Denia Frank
- Institute of Medical Microbiology and Infection Control, Goethe University Hospital, Paul-Ehrlich-Straße 40, 60596 Frankfurt, Germany
| | | | - Thomas A. Wichelhaus
- Institute of Medical Microbiology and Infection Control, Goethe University Hospital, Paul-Ehrlich-Straße 40, 60596 Frankfurt, Germany
| | | | | |
Collapse
|
12
|
Proschak E, Heitel P, Kalinowsky L, Merk D. Opportunities and Challenges for Fatty Acid Mimetics in Drug Discovery. J Med Chem 2017; 60:5235-5266. [PMID: 28252961 DOI: 10.1021/acs.jmedchem.6b01287] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fatty acids beyond their role as an endogenous energy source and storage are increasingly considered as signaling molecules regulating various physiological effects in metabolism and inflammation. Accordingly, the molecular targets involved in formation and physiological activities of fatty acids hold significant therapeutic potential. A number of these fatty acid targets are addressed by some of the oldest and most widely used drugs such as cyclooxygenase inhibiting NSAIDs, whereas others remain unexploited. Compounds orthosterically binding to proteins that endogenously bind fatty acids are considered as fatty acid mimetics. On the basis of their structural resemblance, fatty acid mimetics constitute a family of bioactive compounds showing specific binding thermodynamics and following similar pharmacokinetic mechanisms. This perspective systematically evaluates targets for fatty acid mimetics, investigates their common structural characteristics, and highlights demands in their discovery and design. In summary, fatty acid mimetics share particularly favorable characteristics justifying the conclusion that their therapeutic potential vastly outweighs the challenges in their design.
Collapse
Affiliation(s)
- Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Pascal Heitel
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Lena Kalinowsky
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| |
Collapse
|