1
|
Kulhankova K, Cheng A, Traore S, Auger M, Pelletier M, Hervault M, Wells K, Green J, Byrne A, Nelson B, Sponchiado M, Boosani C, Heffner C, Snow K, Murray S, Villacreses R, Rector M, Gansemer N, Stoltz D, Allamargot C, Couture F, Hemez C, Hallée S, Barbeau X, Harvey M, Lauvaux C, Gaillet B, Newby G, Liu D, McCray PB, Guay D. Amphiphilic shuttle peptide delivers base editor ribonucleoprotein to correct the CFTR R553X mutation in well-differentiated airway epithelial cells. Nucleic Acids Res 2024; 52:11911-11925. [PMID: 39315713 PMCID: PMC11514481 DOI: 10.1093/nar/gkae819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Base editing could correct nonsense mutations that cause cystic fibrosis (CF), but clinical development is limited by the lack of delivery methods that efficiently breach the barriers presented by airway epithelia. Here, we present a novel amphiphilic shuttle peptide based on the previously reported S10 peptide that substantially improved base editor ribonucleoprotein (RNP) delivery. Studies of the S10 secondary structure revealed that the alpha-helix formed by the endosomal leakage domain (ELD), but not the cell penetrating peptide (CPP), was functionally important for delivery. By isolating and extending the ELD, we created a novel shuttle peptide, termed S237. While S237 achieved lower delivery of green fluorescent protein, it outperformed S10 at Cas9 RNP delivery to cultured human airway epithelial cells and to pig airway epithelia in vivo, possibly due to its lower net charge. In well-differentiated primary human airway epithelial cell cultures, S237 achieved a 4.6-fold increase in base editor RNP delivery, correcting up to 9.4% of the cystic fibrosis transmembrane conductance regulator (CFTR) R553X allele and restoring CFTR channel function close to non-CF levels. These findings deepen the understanding of peptide-mediated delivery and offer a translational approach for base editor RNP delivery for CF airway disease.
Collapse
Affiliation(s)
| | | | - Soumba Traore
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Maud Auger
- Feldan Therapeutics, Quebec, Qc, Canada
- Department of Chemical Engineering, Laval University, Quebec, Qc, Canada
| | - Mia Pelletier
- Feldan Therapeutics, Quebec, Qc, Canada
- Department of Chemical Engineering, Laval University, Quebec, Qc, Canada
| | | | - Kevin D Wells
- Division of Animal Sciences, Swine Somatic Cell Genome Editing Center, University of Missouri, Columbia, MO, USA
| | - Jonathan A Green
- Division of Animal Sciences, Swine Somatic Cell Genome Editing Center, University of Missouri, Columbia, MO, USA
| | - Addison Byrne
- Division of Animal Sciences, Swine Somatic Cell Genome Editing Center, University of Missouri, Columbia, MO, USA
| | - Benjamin Nelson
- Division of Animal Sciences, Swine Somatic Cell Genome Editing Center, University of Missouri, Columbia, MO, USA
| | - Mariana Sponchiado
- Division of Animal Sciences, Swine Somatic Cell Genome Editing Center, University of Missouri, Columbia, MO, USA
| | - Chandra Boosani
- Division of Animal Sciences, Swine Somatic Cell Genome Editing Center, University of Missouri, Columbia, MO, USA
| | - Caleb S Heffner
- The Jackson Laboratory, Genetic Resource Science, Bar Harbor, ME, USA
| | - Kathy J Snow
- The Jackson Laboratory, Genetic Resource Science, Bar Harbor, ME, USA
| | - Stephen A Murray
- The Jackson Laboratory, Genetic Resource Science, Bar Harbor, ME, USA
| | - Raul A Villacreses
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael V Rector
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - Nicholas D Gansemer
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - David A Stoltz
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Chantal Allamargot
- Central Microscopy Research Facility (CMRF), and Office for the Vice President of Research (OVPR), University of Iowa, Iowa City, IA, USA
| | | | - Colin Hemez
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | | | | | | | | | - Bruno Gaillet
- Department of Chemical Engineering, Laval University, Quebec, Qc, Canada
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Paul B McCray
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - David Guay
- Feldan Therapeutics, Quebec, Qc, Canada
- Department of Chemical Engineering, Laval University, Quebec, Qc, Canada
| |
Collapse
|
2
|
Ito T, Ohoka N, Aoyama M, Nishikaze T, Misawa T, Inoue T, Ishii-Watabe A, Demizu Y. Strategic design of GalNAc-helical peptide ligands for efficient liver targeting. Chem Sci 2024:d4sc05606j. [PMID: 39464603 PMCID: PMC11506524 DOI: 10.1039/d4sc05606j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024] Open
Abstract
There is a growing need for liver-selective drug delivery systems (DDS) in the treatment and diagnosis of liver diseases. The asialoglycoprotein receptor, a trimeric protein specifically expressed in the liver, is a key target for DDS. We hypothesized that peptides with reduced main-chain flexibility and strategically positioned N-acetylgalactosamine (GalNAc) moieties could enhance liver selectivity and uptake efficiency. The helical peptides designed in this study demonstrated superior uptake efficiency and liver selectivity compared with the conventional triantennary GalNAc DDS. These peptides also showed potential in protein delivery. Furthermore, we explored their application in lysosome-targeting chimeras (LYTACs), gaining valuable insights into the requirements for effective LYTAC functionality. This study not only highlights the potential of helical peptides as liver-selective DDS ligands, but also opens avenues for their use in various therapeutic and diagnostic applications, making significant strides in the targeted treatment of liver diseases.
Collapse
Affiliation(s)
- Takahito Ito
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26 Tonomachi Kawasaki Kanagawa 210-9501 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Yokohama Kanagawa 230-0045 Japan
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences Kanagawa Japan
| | - Michihiko Aoyama
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences 3-25-26 Tonomachi Kawasaki-ku Kawasaki Kanagawa 210-9501 Japan
| | - Takashi Nishikaze
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation 1 Nishinokyo Kuwabara-cho, Nakagyo-ku Kyoto 604-8511 Japan
| | - Takashi Misawa
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26 Tonomachi Kawasaki Kanagawa 210-9501 Japan
| | - Takao Inoue
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences Kanagawa Japan
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences 3-25-26 Tonomachi Kawasaki-ku Kawasaki Kanagawa 210-9501 Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26 Tonomachi Kawasaki Kanagawa 210-9501 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Yokohama Kanagawa 230-0045 Japan
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University 1-1-1 Tsushimanaka Kita 700-8530 Japan
| |
Collapse
|
3
|
Morais KLP, Ciccone L, Stura E, Alvarez-Flores MP, Mourier G, Driessche MV, Sciani JM, Iqbal A, Kalil SP, Pereira GJ, Marques-Porto R, Cunegundes P, Juliano L, Servent D, Chudzinski-Tavassi AM. Structural and functional properties of the Kunitz-type and C-terminal domains of Amblyomin-X supporting its antitumor activity. Front Mol Biosci 2023; 10:1072751. [PMID: 36845546 PMCID: PMC9948614 DOI: 10.3389/fmolb.2023.1072751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
Amblyomin-X is a Kunitz-type FXa inhibitor identified through the transcriptome analysis of the salivary gland from Amblyomma sculptum tick. This protein consists of two domains of equivalent size, triggers apoptosis in different tumor cell lines, and promotes regression of tumor growth, and reduction of metastasis. To study the structural properties and functional roles of the N-terminal (N-ter) and C-terminal (C-ter) domains of Amblyomin-X, we synthesized them by solid-phase peptide synthesis, solved the X-Ray crystallographic structure of the N-ter domain, confirming its Kunitz-type signature, and studied their biological properties. We show here that the C-ter domain is responsible for the uptake of Amblyomin-X by tumor cells and highlight the ability of this domain to deliver intracellular cargo by the strong enhancement of the intracellular detection of molecules with low cellular-uptake efficiency (p15) after their coupling with the C-ter domain. In contrast, the N-ter Kunitz domain of Amblyomin-X is not capable of crossing through the cell membrane but is associated with tumor cell cytotoxicity when it is microinjected into the cells or fused to TAT cell-penetrating peptide. Additionally, we identify the minimum length C-terminal domain named F2C able to enter in the SK-MEL-28 cells and induces dynein chains gene expression modulation, a molecular motor that plays a role in the uptake and intracellular trafficking of Amblyomin-X.
Collapse
Affiliation(s)
- K. L. P. Morais
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil,Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - L. Ciccone
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France,Department of Pharmacy, University of Pisa, Pisa, Italy
| | - E. Stura
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France
| | - M. P. Alvarez-Flores
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | - G. Mourier
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France
| | - M. Vanden Driessche
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France
| | - J. M. Sciani
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | - A. Iqbal
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil
| | - S. P. Kalil
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | - G. J. Pereira
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - R. Marques-Porto
- Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil
| | - P. Cunegundes
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - L. Juliano
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - D. Servent
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France,*Correspondence: D. Servent, ; A. M. Chudzinski-Tavassi,
| | - A. M. Chudzinski-Tavassi
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil,*Correspondence: D. Servent, ; A. M. Chudzinski-Tavassi,
| |
Collapse
|
4
|
Nozaki I, Ishikawa N, Miyanari Y, Ogawa K, Tagawa A, Yoshida S, Munekane M, Mishiro K, Toriba A, Nakayama M, Fuchigami T. Borealin-Derived Peptides as Survivin-Targeting Cancer Imaging and Therapeutic Agents. Bioconjug Chem 2022; 33:2149-2160. [DOI: 10.1021/acs.bioconjchem.2c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Iori Nozaki
- Laboratory of Clinical Analytical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa920-1192, Japan
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki852-8521, Japan
| | - Natsumi Ishikawa
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki852-8521, Japan
| | - Yusuke Miyanari
- Institute of Nano Life Science, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa920-1192, Japan
| | - Kazuma Ogawa
- Laboratory of Clinical Analytical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa920-1192, Japan
| | - Ayako Tagawa
- Institute of Nano Life Science, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa920-1192, Japan
| | - Sakura Yoshida
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki852-8521, Japan
| | - Masayuki Munekane
- Laboratory of Clinical Analytical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa920-1192, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa920-1192, Japan
| | - Akira Toriba
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki852-8521, Japan
| | - Morio Nakayama
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki852-8521, Japan
| | - Takeshi Fuchigami
- Laboratory of Clinical Analytical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa920-1192, Japan
| |
Collapse
|
5
|
Misawa T. [Fundamental Studies on Development of Next-generation Medium Sized Peptide Drugs]. YAKUGAKU ZASSHI 2022; 142:1061-1066. [PMID: 36184440 DOI: 10.1248/yakushi.22-00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Medium-sized peptides are expected as a next-generation drug discovery modality because they combine the properties of conventional small-molecule drugs and biopharmaceuticals. Nonetheless, peptides are easily degraded by digestive enzymes such as protease in the body, which could be problematic for the development of peptide-based drugs. To overcome such a problem, peptide-based foldamers containing non-proteinogenic amino acids or cyclized peptides have been reported. In addition, peptides must form stable secondary structures and their side chains should be correctly positioned to exert their bioactivity. In our lab, bioactive peptides have been developed based on regulation of secondary structures by introducing non-proteinogenic amino acids such as acyclic α,α-disubstituted amino acids (dAAs), cyclic dAAs, cyclic β-amino acids, and side-chain stapling. Based on these knowledges, I have been performing research on the development of bioactive peptides based on the secondary structural control of peptides as categorized in the following manner: (1) rational design of antimicrobial foldamers; (2) post-functionalization of helical peptides; (3) development of carrier peptides for intracellular delivery of siRNA utilizing the helical template peptides.
Collapse
Affiliation(s)
- Takashi Misawa
- Division of Organic Chemistry, National Institute of Health Sciences
| |
Collapse
|
6
|
Jimaja S, Varlas S, Foster JC, Taton D, Dove AP, O'Reilly RK. Stimuli-responsive and core cross-linked micelles developed by NiCCo-PISA of helical poly(aryl isocyanide)s. Polym Chem 2022; 13:4047-4053. [PMID: 35923350 PMCID: PMC9274662 DOI: 10.1039/d2py00397j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/12/2022] [Indexed: 12/03/2022]
Abstract
We report the synthesis of redox- and pH-sensitive block copolymer micelles that contain chiral cores composed of helical poly(aryl isocyanide)s. Pentafluorophenyl (PFP) ester-containing micelles synthesised via nickel-catalysed coordination polymerisation-induced self-assembly (NiCCo-PISA) of helical poly(aryl isocyanide) amphiphilic diblock copolymers are modified post-polymerisation with various diamines to introduce cross-links and/or achieve stimulus-sensitive nanostructures. The successful introduction of the diamines is confirmed by Fourier-transform infrared spectroscopy (FT-IR), while the stabilisation effect of the cross-linking is explored by dynamic light scattering (DLS). The retention of the helicity of the core-forming polymer block is verified by circular dichroism (CD) spectroscopy and the stimuli-responsiveness of the nanoparticles towards a reducing agent (l-glutathione, GSH) and pH is evaluated by following the change in the size of the nanoparticles by DLS. These stimuli-responsive nanoparticles could find use in applications such as drug delivery, nanosensors or biological imaging.
Collapse
Affiliation(s)
- Sètuhn Jimaja
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- School of Chemistry, University of Birmingham Edgbaston B15 2TT UK
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux/CNRS École Nationale Supérieure de Chimie, de Biologie & de Physique 33607 Cedex Pessac France
| | - Spyridon Varlas
- School of Chemistry, University of Birmingham Edgbaston B15 2TT UK
| | - Jeffrey C Foster
- School of Chemistry, University of Birmingham Edgbaston B15 2TT UK
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux/CNRS École Nationale Supérieure de Chimie, de Biologie & de Physique 33607 Cedex Pessac France
| | - Andrew P Dove
- School of Chemistry, University of Birmingham Edgbaston B15 2TT UK
| | | |
Collapse
|
7
|
Helical Foldamers and Stapled Peptides as New Modalities in Drug Discovery: Modulators of Protein-Protein Interactions. Processes (Basel) 2022. [DOI: 10.3390/pr10050924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A “foldamer” is an artificial oligomeric molecule with a regular secondary or tertiary structure consisting of various building blocks. A “stapled peptide” is a peptide with stabilized secondary structures, in particular, helical structures by intramolecular covalent side-chain cross-linking. Helical foldamers and stapled peptides are potential drug candidates that can target protein-protein interactions because they enable multipoint molecular recognition, which is difficult to achieve with low-molecular-weight compounds. This mini-review describes a variety of peptide-based foldamers and stapled peptides with a view to their applications in drug discovery, including our recent progress.
Collapse
|
8
|
Leonard DJ, Zieleniewski F, Wellhöfer I, Baker EG, Ward JW, Woolfson DN, Clayden J. Scalable synthesis and coupling of quaternary α-arylated amino acids: α-aryl substituents are tolerated in α-helical peptides. Chem Sci 2021; 12:9386-9390. [PMID: 34349911 PMCID: PMC8278958 DOI: 10.1039/d1sc01378e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/08/2021] [Indexed: 11/21/2022] Open
Abstract
Quaternary amino acids are important tools for the modification and stabilisation of peptide secondary structures. Here we describe a practical and scalable synthesis applicable to quaternary alpha-arylated amino acids (Q4As), and the development of solid-phase synthesis conditions for their incorporation into peptides. Monomeric and dimeric α-helical peptides are synthesised with varying degrees of Q4A substitution and their structures examined using biophysical methods. Both enantiomers of the Q4As are tolerated in folded monomeric and oligomeric α-helical peptides, with the (R)-enantiomer slightly more so than the (S).
Collapse
Affiliation(s)
- Daniel J Leonard
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | | - Isabelle Wellhöfer
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Emily G Baker
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TS UK
- Bristol BioDesign Institute, University of Bristol, Life Sciences Building Tyndall Avenue Bristol BS8 1TQ UK
| | - John W Ward
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Derek N Woolfson
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TS UK
- Bristol BioDesign Institute, University of Bristol, Life Sciences Building Tyndall Avenue Bristol BS8 1TQ UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
9
|
Kato T, Kita Y, Iwanari K, Asano A, Oba M, Tanaka M, Doi M. Synthesis of six-membered carbocyclic ring α,α-disubstituted amino acids and arginine-rich peptides to investigate the effect of ring size on the properties of the peptide. Bioorg Med Chem 2021; 38:116111. [PMID: 33838611 DOI: 10.1016/j.bmc.2021.116111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023]
Abstract
Cell-penetrating peptides (CPPs) have been attracting attention as tools for intracellular delivery of membrane-impermeant functional molecules. Among the variety of CPPs that have been developed, many are composed of both natural and unnatural amino acids. We previously synthesized α,α-disubstituted α-amino acids (dAAs) containing a five-membered carbocyclic ring in its side chain and revealed the utility of dAAs for the development of novel CPPs. In the present study, we designed a six-membered carbocyclic ring dAA with an amino group on the ring and introduced it into arginine (Arg)-rich peptides to further investigate the value of dAAs for developing CPPs. We also assessed the effects of the size of the dAA carbocyclic ring on cellular uptake of dAA-containing peptides. The stability of the peptide's secondary structure and its membrane permeability were both greater in dAA-containing peptides than in an Arg nonapeptide. However, the number of carbon atoms in the dAA side chain ring had little effect. Nevertheless, these results show the utility of cyclic dAAs in the design of novel CPPs containing unnatural amino acids.
Collapse
Affiliation(s)
- Takuma Kato
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Yuki Kita
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kazuki Iwanari
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Akiko Asano
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Makoto Oba
- Graduate School of Medicine, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto 606-0823, Japan
| | - Masakazu Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mitsunobu Doi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
10
|
Hydrocarbon-Stapled Peptide Based-Nanoparticles for siRNA Delivery. NANOMATERIALS 2020; 10:nano10122334. [PMID: 33255624 PMCID: PMC7760004 DOI: 10.3390/nano10122334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/21/2020] [Indexed: 01/22/2023]
Abstract
Small interfering RNAs (siRNAs) are promising molecules for developing new therapies based on gene silencing; however, their delivery into cells remains an issue. In this study, we took advantage of stapled peptide technology that has emerged as a valuable strategy to render natural peptides more structured, resistant to protease degradation and more bioavailable, to develop short carriers for siRNA delivery. From the pool of stapled peptides that we have designed and synthesized, we identified non-toxic vectors that were able to efficiently encapsulate siRNA, transport them into the cell and induce gene silencing. Remarkably, the most efficient stapled peptide (JMV6582), is composed of only eight amino-acids and contains only two cationic charges.
Collapse
|
11
|
Peptides as a material platform for gene delivery: Emerging concepts and converging technologies. Acta Biomater 2020; 117:40-59. [PMID: 32966922 DOI: 10.1016/j.actbio.2020.09.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/27/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Successful gene therapies rely on methods that safely introduce DNA into target cells and enable subsequent expression of proteins. To that end, peptides are an attractive materials platform for DNA delivery, facilitating condensation into nanoparticles, delivery into cells, and subcellular release to enable protein expression. Peptides are programmable materials that can be designed to address biocompatibility, stability, and subcellular barriers that limit efficiency of non-viral gene delivery systems. This review focuses on fundamental structure-function relationships regarding peptide design and their impact on nanoparticle physical properties, biologic activity, and biocompatibility. Recent peptide technologies utilize multi-dimensional structures, non-natural chemistries, and combinations of peptides with lipids to achieve desired properties and efficient transfection. Advances in DNA cargo design are also presented to highlight further opportunities for peptide-based gene delivery. Modern DNA designs enable prolonged expression compared to traditional plasmids, providing an additional component that can be synergized with peptide carriers for improved transfection. Peptide transfection systems are poised to become a flexible and efficient platform incorporating new chemistries, functionalities, and improved DNA cargos to usher in a new era of gene therapy.
Collapse
|
12
|
Yokoo H, Misawa T, Demizu Y. De Novo Design of Cell-Penetrating Foldamers. CHEM REC 2020; 20:912-921. [PMID: 32463155 DOI: 10.1002/tcr.202000047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022]
Abstract
Cell-penetrating peptides (CPPs) have gained much attention as carriers of hydrophilic molecules, such as drugs, peptides, and nucleic acids, into cells. CPPs are mainly composed of cationic amino acid residues, which play an important role in their intracellular uptake via interactions with acidic groups on cell surfaces. In addition, the secondary structures of CPPs also affect their cell-membrane permeability. Based on this knowledge, a variety of cell-penetrating foldamers (oligomers that form organized secondary structures) have been developed to date. In this account, we describe recent attempts to develop cell-penetrating foldamers containing various building blocks, and their application as DDS carriers.
Collapse
Affiliation(s)
- Hidetomo Yokoo
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan.,Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa, 230-0045, Japan
| | - Takashi Misawa
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan.,Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
13
|
Shah SS, Casanova N, Antuono G, Sabatino D. Polyamide Backbone Modified Cell Targeting and Penetrating Peptides in Cancer Detection and Treatment. Front Chem 2020; 8:218. [PMID: 32296681 PMCID: PMC7136562 DOI: 10.3389/fchem.2020.00218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Cell penetrating and targeting peptides (CPPs and CTPs) encompass an important class of biochemically active peptides owning the capabilities of targeting and translocating within selected cell types. As such, they have been widely used in the delivery of imaging and therapeutic agents for the diagnosis and treatment of various diseases, especially in cancer. Despite their potential utility, first generation CTPs and CPPs based on the native peptide sequences are limited by poor biological and pharmacological properties, thereby restricting their efficacy. Therefore, medicinal chemistry approaches have been designed and developed to construct related peptidomimetics. Of specific interest herein, are the design applications which modify the polyamide backbone of lead CTPs and CPPs. These modifications aim to improve the biochemical characteristics of the native peptide sequence in order to enhance its diagnostic and therapeutic capabilities. This review will focus on a selected set of cell penetrating and targeting peptides and their related peptidomimetics whose polyamide backbone has been modified in order to improve their applications in cancer detection and treatment.
Collapse
Affiliation(s)
- Sunil S Shah
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| | - Nelson Casanova
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| | - Gina Antuono
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| | - David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| |
Collapse
|
14
|
Affiliation(s)
- John Howl
- Research Institute in Healthcare Science, University of Wolverhampton Wolverhampton UK
| | - Sarah Jones
- Research Institute in Healthcare Science, University of Wolverhampton Wolverhampton UK
| |
Collapse
|
15
|
Jimaja S, Varlas S, Xie Y, Foster JC, Taton D, Dove AP, O’Reilly RK. Nickel-Catalyzed Coordination Polymerization-Induced Self-Assembly of Helical Poly(aryl isocyanide)s. ACS Macro Lett 2020; 9:226-232. [PMID: 35638685 DOI: 10.1021/acsmacrolett.9b00972] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The interest in helix-containing nanostructures is currently growing as a consequence of their potential applications in areas such as nanomedicine, nanomaterial design, chiral recognition, and asymmetric catalysis. Herein, we present a facile and tunable one-pot methodology to achieve chiral nano-objects. The nickel-catalyzed coordination polymerization-induced self-assembly (NiCCo-PISA) of helical poly(aryl isocyanide) amphiphilic diblock copolymers was realized and allowed access to various nano-object morphologies (spheres, worm-like micelles, and polymersomes). The helicity of the core block was confirmed via circular dichroism (CD) spectroscopy for all morphologies, proving their chiral nature. Small-molecule uptake by the spherical nanoparticles was investigated by encapsulating Nile Red into the core of the spheres and subsequent transfer into aqueous media. The presence of a CD signal for the otherwise CD-inactive dye proved the chiral induction effect of the nano-objects' helical core. This demonstrates the potential of NiCCo-PISA to prepare nanoparticles for applications in nanomaterials, catalysis, and recognition.
Collapse
Affiliation(s)
- Sètuhn Jimaja
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- School of Chemistry, University of Birmingham, Edgbaston B15 2TT, United Kingdom
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux/CNRS École Nationale Supérieure de Chimie, de Biologie & de Physique, 33607 Cedex Pessac, France
| | - Spyridon Varlas
- School of Chemistry, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Yujie Xie
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- School of Chemistry, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Jeffrey C. Foster
- School of Chemistry, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux/CNRS École Nationale Supérieure de Chimie, de Biologie & de Physique, 33607 Cedex Pessac, France
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Rachel K. O’Reilly
- School of Chemistry, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| |
Collapse
|
16
|
Kang Z, Ding G, Meng Z, Meng Q. The rational design of cell-penetrating peptides for application in delivery systems. Peptides 2019; 121:170149. [PMID: 31491454 DOI: 10.1016/j.peptides.2019.170149] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022]
Abstract
Cell penetrating peptides (CPPs) play a crucial role in the transportation of bioactive molecules. Although CPPs have been used widely in various delivery systems, further applications of CPPs are hampered by several drawbacks, such as high toxicity, low delivery efficiency, proteolytic instability and poor specificity. To design CPPs with great cell-penetrating ability, physicochemical properties and safety, researchers have tried to develop new methods to overcome the defects of CPPs. Briefly, (1) the side chain of arginine containing the guanidinium group is essential for the facilitation of cellular uptake; (2) the hydrophobic counterion complex around the guanidinium-rich backbone can "coat" the highly cationic structure with lipophilic moieties and act as an activator; (3) the conformation-constrained strategy was pursued to shield the peptide, thereby impeding access of the proteolytic enzyme; (4) targeting strategies can increase cell-type specificity of CPPs. In this review, the above four aspects were discussed in detail.
Collapse
Affiliation(s)
- Ziyao Kang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Guihua Ding
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China; Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| |
Collapse
|
17
|
Habault J, Poyet JL. Recent Advances in Cell Penetrating Peptide-Based Anticancer Therapies. Molecules 2019; 24:E927. [PMID: 30866424 PMCID: PMC6429072 DOI: 10.3390/molecules24050927] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 12/12/2022] Open
Abstract
Cell-penetrating-peptides (CPPs) are small amino-acid sequences characterized by their ability to cross cellular membranes. They can transport various bioactive cargos inside cells including nucleic acids, large proteins, and other chemical compounds. Since 1988, natural and synthetic CPPs have been developed for applications ranging from fundamental to applied biology (cell imaging, gene editing, therapeutics delivery). In recent years, a great number of studies reported the potential of CPPs as carriers for the treatment of various diseases. Apart from a good efficacy due to a rapid and potent delivery, a crucial advantage of CPP-based therapies is the peptides low toxicity compared to most drug carriers. On the other hand, they are quite unstable and lack specificity. Higher specificity can be obtained using a cell-specific CPP to transport the therapeutic agent or using a non-specific CPP to transport a cargo with a targeted activity. CPP-cargo complexes can also be conjugated to another moiety that brings cell- or tissue-specificity. Studies based on all these approaches are showing promising results. Here, we focus on recent advances in the potential usage of CPPs in the context of cancer therapy, with a particular interest in CPP-mediated delivery of anti-tumoral proteins.
Collapse
Affiliation(s)
- Justine Habault
- INSERM U976, Institut de Recherche St Louis, 1 avenue Claude Vellefaux, 75010 Paris, France.
- Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Jean-Luc Poyet
- INSERM U976, Institut de Recherche St Louis, 1 avenue Claude Vellefaux, 75010 Paris, France.
- Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
- c-Dithem, Inserm Consortium for Discovery and Innovation in Therapy and Medicine, 75013 Paris, France.
| |
Collapse
|
18
|
Misawa T, Kanda Y, Demizu Y. Rational Design and Synthesis of Post-Functionalizable Peptide Foldamers as Helical Templates. Bioconjug Chem 2017; 28:3029-3035. [DOI: 10.1021/acs.bioconjchem.7b00621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Takashi Misawa
- Division of Organic Chemistry and ‡Division of Pharmacology, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Yasunari Kanda
- Division of Organic Chemistry and ‡Division of Pharmacology, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry and ‡Division of Pharmacology, National Institute of Health Sciences, Tokyo 158-8501, Japan
| |
Collapse
|
19
|
Wada SI, Takesada A, Nagamura Y, Sogabe E, Ohki R, Hayashi J, Urata H. Structure-activity relationship study of Aib-containing amphipathic helical peptide-cyclic RGD conjugates as carriers for siRNA delivery. Bioorg Med Chem Lett 2017; 27:5378-5381. [PMID: 29157863 DOI: 10.1016/j.bmcl.2017.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/08/2017] [Indexed: 12/22/2022]
Abstract
The conjugation of Aib-containing amphipathic helical peptide with cyclo(-Arg-Gly-Asp-d-Phe-Cys-) (cRGDfC) at the C-terminus of the helix peptide (PI) has been reported to be useful for constructing a carrier for targeted siRNA delivery into cells. In order to explore structure-activity relationships for the development of potential carriers for siRNA delivery, we synthesized conjugates of Aib-containing amphipathic helical peptide with cRGDfC at the N-terminus (PII) and both the N- and C-termini (PIII) of the helical peptide. Furthermore, to examine the influence of PI helical chain length on siRNA delivery, truncated peptides containing 16 (PIV), 12 (PV), and 8 (PVI) amino acid residues at the N-terminus of the helical chain were synthesized. PII and PIII, as well as PI, could deliver anti-luciferase siRNA into cells to induce the knockdown of luciferase stably expressed in cells. In contrast, all of the truncated peptides were unlikely to transport siRNA into cells.
Collapse
Affiliation(s)
- Shun-Ichi Wada
- Laboratory of Bioorganic Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Anna Takesada
- Laboratory of Bioorganic Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yurie Nagamura
- Laboratory of Bioorganic Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Eri Sogabe
- Laboratory of Bioorganic Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Rieko Ohki
- Laboratory of Bioorganic Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Junsuke Hayashi
- Laboratory of Bioorganic Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Hidehito Urata
- Laboratory of Bioorganic Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
20
|
Koba Y, Ueda A, Oba M, Doi M, Demizu Y, Kurihara M, Tanaka M. Helical l
-Leu-Based Peptides Having Chiral Five-Membered Carbocyclic Ring Amino Acids with an Ethylene Acetal Moiety. ChemistrySelect 2017. [DOI: 10.1002/slct.201700832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yurie Koba
- Graduate School of Biomedical Sciences; Nagasaki University, 1-14 Bunkyo-machi; Nagasaki 852-8521 Japan
| | - Atsushi Ueda
- Graduate School of Biomedical Sciences; Nagasaki University, 1-14 Bunkyo-machi; Nagasaki 852-8521 Japan
| | - Makoto Oba
- Graduate School of Biomedical Sciences; Nagasaki University, 1-14 Bunkyo-machi; Nagasaki 852-8521 Japan
| | - Mitsunobu Doi
- Osaka University of Pharmaceutical Sciences; Osaka 569-1094 Japan
| | - Yosuke Demizu
- Division of Organic Chemistry; National Institute of Health Sciences; Tokyo 158-8501 Japan
| | - Masaaki Kurihara
- Graduate School of Pharmaceutical Sciences; International University of Health and Welfare; Ohtawara 324-8501 Japan
| | - Masakazu Tanaka
- Graduate School of Biomedical Sciences; Nagasaki University, 1-14 Bunkyo-machi; Nagasaki 852-8521 Japan
| |
Collapse
|
21
|
Misawa T, Imamura M, Ozawa Y, Haishima K, Kurihara M, Kikuchi Y, Demizu Y. Development of helix-stabilized antimicrobial peptides composed of lysine and hydrophobic α,α-disubstituted α-amino acid residues. Bioorg Med Chem Lett 2017; 27:3950-3953. [PMID: 28789896 DOI: 10.1016/j.bmcl.2017.07.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 01/14/2023]
Abstract
Lysine-based amphipathic nonapeptides, including homochiral peptides [Ac-(l-Lys-l-Lys-Xaa)3-NH2 (Xaa=Gly, Ala, Aib, Ac5c, or Ac6c) and Ac-(d-Lys-d-Lys-Aib)3-NH2], a heterochiral peptide [Ac-(l-Lys-d-Lys-Aib)3-NH2], and a racemic mixture of diastereomeric peptides [Ac-(rac-Lys-rac-Lys-Aib)3-NH2] were designed and synthesized to investigate the relationship between their preferred secondary structures and their antimicrobial activity. Peptide 5, [Ac-(l-Lys-l-Lys-Ac6c)3-NH2] formed a stable α-helical structure and exhibited strong activity against Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa).
Collapse
Affiliation(s)
- Takashi Misawa
- National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| | - Mitsuyoshi Imamura
- National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| | - Yuto Ozawa
- National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| | - Kazuchika Haishima
- National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| | - Masaaki Kurihara
- National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| | - Yutaka Kikuchi
- National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya, Tokyo 158-8501, Japan.
| | - Yosuke Demizu
- National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya, Tokyo 158-8501, Japan.
| |
Collapse
|