1
|
Zhang L, Wang Y, Zheng C, Zhou Z, Chen Z. Cellular thermal shift assay: an approach to identify and assess protein target engagement. Expert Rev Proteomics 2024; 21:387-400. [PMID: 39317941 DOI: 10.1080/14789450.2024.2406785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION A comprehensive and global knowledge of protein target engagement is of vital importance for mechanistic studies and in drug development. Since its initial introduction, the cellular thermal shift assay (CETSA) has proven to be a reliable and flexible technique that can be widely applied to multiple contexts and has profound applications in facilitating the identification and assessment of protein target engagement. AREAS COVERED This review introduces the principle of CETSA, elaborates on western blot-based CETSA and MS-based thermal proteome profiling (TPP) as well as the major applications and prospects of these approaches. EXPERT OPINION CETSA primarily evaluates a given ligand binding to a particular target protein in cells and tissues with the protein thermal stabilities analyzed by western blot. When coupling mass spectrometry with CETSA, thermal proteome profiling allows simultaneous proteome-wide experiment that greatly increased the efficiency of target engagement evaluation, and serves as a promising strategy to identify protein targets and off-targets as well as protein-protein interactions to uncover the biological effects. The CETSA approaches have broad applications and potentials in drug development and clinical research.
Collapse
Affiliation(s)
- Liying Zhang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yuchuan Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Chang Zheng
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zihan Zhou
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zhe Chen
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
2
|
Ni Z, Shi Y, Liu Q, Wang L, Sun X, Rao Y. Degradation-Based Protein Profiling: A Case Study of Celastrol. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308186. [PMID: 38664976 PMCID: PMC11220716 DOI: 10.1002/advs.202308186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/28/2024] [Indexed: 07/04/2024]
Abstract
Natural products, while valuable for drug discovery, encounter limitations like uncertainty in targets and toxicity. As an important active ingredient in traditional Chinese medicine, celastrol exhibits a wide range of biological activities, yet its mechanism remains unclear. In this study, they introduced an innovative "Degradation-based protein profiling (DBPP)" strategy, which combined PROteolysis TArgeting Chimeras (PROTAC) technology with quantitative proteomics and Immunoprecipitation-Mass Spectrometry (IP-MS) techniques, to identify multiple targets of natural products using a toolbox of degraders. Taking celastrol as an example, they successfully identified its known targets, including inhibitor of nuclear factor kappa B kinase subunit beta (IKKβ), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PI3Kα), and cellular inhibitor of PP2A (CIP2A), as well as potential new targets such as checkpoint kinase 1 (CHK1), O-GlcNAcase (OGA), and DNA excision repair protein ERCC-6-like (ERCC6L). Furthermore, the first glycosidase degrader is developed in this work. Finally, by employing a mixed PROTAC toolbox in quantitative proteomics, they also achieved multi-target identification of celastrol, significantly reducing costs while improving efficiency. Taken together, they believe that the DBPP strategy can complement existing target identification strategies, thereby facilitating the rapid advancement of the pharmaceutical field.
Collapse
Affiliation(s)
- Zhihao Ni
- MOE Key Laboratory of Protein SciencesSchool of Pharmaceutical SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijing100084China
| | - Yi Shi
- MOE Key Laboratory of Protein SciencesSchool of Pharmaceutical SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijing100084China
| | - Qianlong Liu
- MOE Key Laboratory of Protein SciencesSchool of Pharmaceutical SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijing100084China
| | - Liguo Wang
- MOE Key Laboratory of Protein SciencesSchool of Pharmaceutical SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijing100084China
| | | | - Yu Rao
- MOE Key Laboratory of Protein SciencesSchool of Pharmaceutical SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijing100084China
- Changping LaboratoryBeijing102206China
| |
Collapse
|
3
|
Gassaway BM, Huttlin EL, Huntsman EM, Yaron-Barir TM, Johnson JL, Kurmi K, Cantley LC, Paulo JA, Ringel AE, Gygi SP, Haigis MC. Profiling Proteins and Phosphorylation Sites During T Cell Activation Using an Integrated Thermal Shift Assay. Mol Cell Proteomics 2024; 23:100801. [PMID: 38880243 PMCID: PMC11298636 DOI: 10.1016/j.mcpro.2024.100801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024] Open
Abstract
T cell activation is a complex biological process of naive cells maturing into effector cells. Proteomic and phospho-proteomic approaches have provided critical insights into this process, yet it is not always clear how changes in individual proteins or phosphorylation sites have functional significance. Here, we developed the Phosphorylation Integrated Thermal Shift Assay (PITSA) that combines the measurement of protein or phosphorylation site abundance and thermal stability into a single tandem mass tags experiment and apply this method to study T cell activation. We quantified the abundance and thermal stability of over 7500 proteins and 5000 phosphorylation sites and identified significant differences in chromatin-related, TCR signaling, DNA repair, and proliferative phosphoproteins. PITSA may be applied to a wide range of biological contexts to generate hypotheses as to which proteins or phosphorylation sites are functionally regulated in a given system as well as the mechanisms by which this regulation may occur.
Collapse
Affiliation(s)
- Brandon M Gassaway
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA; Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Emily M Huntsman
- Meyer Cancer Center and Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Tomer M Yaron-Barir
- Meyer Cancer Center and Department of Medicine, Weill Cornell Medicine, New York, New York, USA; Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Jared L Johnson
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA; Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kiran Kurmi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lewis C Cantley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA; Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alison E Ringel
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA; Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, USA.
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
| | - Marcia C Haigis
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
4
|
Müller J, Boubaker G, Müller N, Uldry AC, Braga-Lagache S, Heller M, Hemphill A. Investigating Antiprotozoal Chemotherapies with Novel Proteomic Tools-Chances and Limitations: A Critical Review. Int J Mol Sci 2024; 25:6903. [PMID: 39000012 PMCID: PMC11241152 DOI: 10.3390/ijms25136903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Identification of drug targets and biochemical investigations on mechanisms of action are major issues in modern drug development. The present article is a critical review of the classical "one drug"-"one target" paradigm. In fact, novel methods for target deconvolution and for investigation of resistant strains based on protein mass spectrometry have shown that multiple gene products and adaptation mechanisms are involved in the responses of pathogens to xenobiotics rather than one single gene or gene product. Resistance to drugs may be linked to differential expression of other proteins than those interacting with the drug in protein binding studies and result in complex cell physiological adaptation. Consequently, the unraveling of mechanisms of action needs approaches beyond proteomics. This review is focused on protozoan pathogens. The conclusions can, however, be extended to chemotherapies against other pathogens or cancer.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Norbert Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Sophie Braga-Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| |
Collapse
|
5
|
Lv Q, Yang H, Wang D, Zhou H, Wang J, Zhang Y, Wu D, Xie Y, Lv Y, Hu L, Wang J. Discovery of a Novel CSF-1R Inhibitor with Highly Improved Pharmacokinetic Profiles and Superior Efficacy in Colorectal Cancer Immunotherapy. J Med Chem 2024; 67:6854-6879. [PMID: 38593344 DOI: 10.1021/acs.jmedchem.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Blocking CSF-1/CSF-1R pathway has emerged as a promising strategy to remodel tumor immune microenvironment (TME) by reprogramming tumor-associated macrophages (TAMs). In this work, a novel CSF-1R inhibitor C19 with a highly improved pharmacokinetic profile and in vivo anticolorectal cancer (CRC) efficiency was successfully discovered. C19 could effectively reprogram M2-like TAMs to M1 phenotype and reshape the TME by inducing the recruitment of CD8+ T cells into tumors and reducing the infiltration of immunosuppressive Tregs/MDSCs. Deeper mechanistic studies revealed that C19 facilitated the infiltration of CD8+ T cells by enhancing the secretion of chemokine CXCL9, thus significantly potentiating the anti-CRC efficiency of PD-1 blockade. More importantly, C19 combined with PD-1 mAb could induce durable antitumor immune memory, effectively overcoming the recurrence of CRC. Taken together, our findings suggest that C19 is a promising therapeutic option for sensitizing CRC to anti-PD-1 therapy.
Collapse
Affiliation(s)
- Qi Lv
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Hongqiong Yang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Dan Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Haikun Zhou
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Juan Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yishu Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Dapeng Wu
- Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P. R. China
| | - Ying Xie
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yingshan Lv
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Junwei Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
6
|
Zhao H, Kumar P, Sobreira TJP, Smith M, Novick S, Johansson A, Luchniak A, Zhang A, Woollard KJ, Larsson N, Kawatkar A. Integrated Proteomics Characterization of NLRP3 Inflammasome Inhibitor MCC950 in Monocytic Cell Line Confirms Direct MCC950 Engagement with Endogenous NLRP3. ACS Chem Biol 2024; 19:962-972. [PMID: 38509779 DOI: 10.1021/acschembio.3c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inhibition of the NLRP3 inflammasome is a promising strategy for the development of new treatments for inflammatory diseases. MCC950 is a potent and selective small-molecule inhibitor of the NLRP3 pathway and has been validated in numerous species and disease models. Although the capacity of MCC950 to block NLRP3 signaling is well-established, it is still critical to identify the mechanism of action and molecular targets of MCC950 to inform and derisk drug development. Quantitative proteomics performed in disease-relevant systems provides a powerful method to study both direct and indirect pharmacological responses to small molecules to elucidate the mechanism of action and confirm target engagement. A comprehensive target deconvolution campaign requires the use of complementary chemical biology techniques. Here we applied two orthogonal chemical biology techniques: compressed Cellular Thermal Shift Assay (CETSA) and photoaffinity labeling chemoproteomics, performed under biologically relevant conditions with LPS-primed THP-1 cells, thereby deconvoluting, for the first time, the molecular targets of MCC950 using chemical biology techniques. In-cell chemoproteomics with inlysate CETSA confirmed the suspected mechanism as the disruption of inflammasome formation via NLRP3. Further cCETSA (c indicates compressed) in live cells mapped the stabilization of NLRP3 inflammasome pathway proteins, highlighting modulation of the targeted pathway. This is the first evidence of direct MCC950 engagement with endogenous NLRP3 in a human macrophage cellular system using discovery proteomics chemical biology techniques, providing critical information for inflammasome studies.
Collapse
Affiliation(s)
- Heng Zhao
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, 02451 Waltham, Massachusetts, United States
| | - Praveen Kumar
- Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, 02451 Waltham, Massachusetts, United States
| | | | - Mackenzie Smith
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, 02451 Waltham, Massachusetts, United States
| | - Steven Novick
- Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, 02451 Waltham, Massachusetts, United States
| | - Anders Johansson
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 43183 Mölndal, Sweden
| | - Anna Luchniak
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, 43183 Mölndal, Sweden
| | - Andrew Zhang
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, 02451 Waltham, Massachusetts, United States
| | - Kevin J Woollard
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, CB2 OAA Cambridge, U.K
| | - Niklas Larsson
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, 43183 Mölndal, Sweden
| | - Aarti Kawatkar
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, 02451 Waltham, Massachusetts, United States
| |
Collapse
|
7
|
Hu X, Gan L, Tang Z, Lin R, Liang Z, Li F, Zhu C, Han X, Zheng R, Shen J, Yu J, Luo N, Peng W, Tan J, Li X, Fan J, Wen Q, Wang X, Li J, Zheng X, Liu Q, Guo J, Shi G, Mao H, Chen W, Yin S, Zhou Y. A Natural Small Molecule Mitigates Kidney Fibrosis by Targeting Cdc42-mediated GSK-3β/β-catenin Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307850. [PMID: 38240457 PMCID: PMC10987128 DOI: 10.1002/advs.202307850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Indexed: 04/04/2024]
Abstract
Kidney fibrosis is a common fate of chronic kidney diseases (CKDs), eventually leading to renal dysfunction. Yet, no effective treatment for this pathological process has been achieved. During the bioassay-guided chemical investigation of the medicinal plant Wikstroemia chamaedaphne, a daphne diterpenoid, daphnepedunin A (DA), is characterized as a promising anti-renal fibrotic lead. DA shows significant anti-kidney fibrosis effects in cultured renal fibroblasts and unilateral ureteral obstructed mice, being more potent than the clinical trial drug pirfenidone. Leveraging the thermal proteome profiling strategy, cell division cycle 42 (Cdc42) is identified as the direct target of DA. Mechanistically, DA targets to reduce Cdc42 activity and down-regulates its downstream phospho-protein kinase Cζ(p-PKCζ)/phospho-glycogen synthase kinase-3β (p-GSK-3β), thereby promoting β-catenin Ser33/37/Thr41 phosphorylation and ubiquitin-dependent proteolysis to block classical pro-fibrotic β-catenin signaling. These findings suggest that Cdc42 is a promising therapeutic target for kidney fibrosis, and highlight DA as a potent Cdc42 inhibitor for combating CKDs.
Collapse
Affiliation(s)
- Xinrong Hu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Lu Gan
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Ziwen Tang
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Ruoni Lin
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Zhou Liang
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Feng Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Changjian Zhu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Xu Han
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Ruilin Zheng
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jiani Shen
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jing Yu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Ning Luo
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Wenxing Peng
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jiaqing Tan
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Xiaoyan Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jinjin Fan
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Qiong Wen
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Xin Wang
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jianbo Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Xunhua Zheng
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Qinghua Liu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jianping Guo
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Guo‐Ping Shi
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Haiping Mao
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Wei Chen
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Sheng Yin
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Yi Zhou
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| |
Collapse
|
8
|
Monticelli M, Wright DM, Cubellis MV, Andreotti G. ReBaTSA: A simplified CeTSA protocol for studying recombinant mutant proteins in bacterial extracts. Biochim Biophys Acta Gen Subj 2024; 1868:130526. [PMID: 38049040 DOI: 10.1016/j.bbagen.2023.130526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
INTRODUCTION The study of protein stability is crucial to biochemistry and relies on different methodologies. Recently, the Cellular Thermal Shift Assay has been introduced to study protein stability in whole cells. METHODS We report a novel application of CeTSA named ReBaTSA. This Recombinant Bacterial TSA was performed using clear extracts from bacteria expressing a recombinant protein, incubated at different temperatures, centrifuged and analyzed via SDS-PAGE. RESULTS AND CONCLUSIONS We demonstrated the feasibility and reliability of this simplified approach. We validated the method using the protein phosphomannomutase-2 and its common mutants, which were compared in the presence or the absence of a known ligand.
Collapse
Affiliation(s)
- Maria Monticelli
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; Department of Biology, University of Napoli "Federico II", Complesso Universitario Monte Sant'Angelo, Via Cinthia, 80126 Napoli, Italy
| | - Demi Marie Wright
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; Institute of Chemistry and Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Maria Vittoria Cubellis
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; Department of Biology, University of Napoli "Federico II", Complesso Universitario Monte Sant'Angelo, Via Cinthia, 80126 Napoli, Italy; Stazione Zoologica "Anton Dohrn", Villa Comunale, Naples, Italy.
| | - Giuseppina Andreotti
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy.
| |
Collapse
|
9
|
Sun S, Zheng Z, Wang J, Li F, He A, Lai K, Zhang S, Lu JH, Tian R, Tan CSH. Improved in situ characterization of protein complex dynamics at scale with thermal proximity co-aggregation. Nat Commun 2023; 14:7697. [PMID: 38001062 PMCID: PMC10673876 DOI: 10.1038/s41467-023-43526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Cellular activities are carried out vastly by protein complexes but large repertoire of protein complexes remains functionally uncharacterized which necessitate new strategies to delineate their roles in various cellular processes and diseases. Thermal proximity co-aggregation (TPCA) is readily deployable to characterize protein complex dynamics in situ and at scale. We develop a version termed Slim-TPCA that uses fewer temperatures increasing throughputs by over 3X, with new scoring metrics and statistical evaluation that result in minimal compromise in coverage and detect more relevant complexes. Less samples are needed, batch effects are minimized while statistical evaluation cost is reduced by two orders of magnitude. We applied Slim-TPCA to profile K562 cells under different duration of glucose deprivation. More protein complexes are found dissociated, in accordance with the expected downregulation of most cellular activities, that include 55S ribosome and respiratory complexes in mitochondria revealing the utility of TPCA to study protein complexes in organelles. Protein complexes in protein transport and degradation are found increasingly assembled unveiling their involvement in metabolic reprogramming during glucose deprivation. In summary, Slim-TPCA is an efficient strategy for characterization of protein complexes at scale across cellular conditions, and is available as Python package at https://pypi.org/project/Slim-TPCA/ .
Collapse
Affiliation(s)
- Siyuan Sun
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhenxiang Zheng
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jun Wang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Fengming Li
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - An He
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Kunjia Lai
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shuang Zhang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Zhuhai, Macau SAR, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Zhuhai, Macau SAR, China
| | - Ruijun Tian
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Chris Soon Heng Tan
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
10
|
Bailey BL, Nguyen W, Cowman AF, Sleebs BE. Chemo-proteomics in antimalarial target identification and engagement. Med Res Rev 2023; 43:2303-2351. [PMID: 37232495 PMCID: PMC10947479 DOI: 10.1002/med.21975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Humans have lived in tenuous battle with malaria over millennia. Today, while much of the world is free of the disease, areas of South America, Asia, and Africa still wage this war with substantial impacts on their social and economic development. The threat of widespread resistance to all currently available antimalarial therapies continues to raise concern. Therefore, it is imperative that novel antimalarial chemotypes be developed to populate the pipeline going forward. Phenotypic screening has been responsible for the majority of the new chemotypes emerging in the past few decades. However, this can result in limited information on the molecular target of these compounds which may serve as an unknown variable complicating their progression into clinical development. Target identification and validation is a process that incorporates techniques from a range of different disciplines. Chemical biology and more specifically chemo-proteomics have been heavily utilized for this purpose. This review provides an in-depth summary of the application of chemo-proteomics in antimalarial development. Here we focus particularly on the methodology, practicalities, merits, and limitations of designing these experiments. Together this provides learnings on the future use of chemo-proteomics in antimalarial development.
Collapse
Affiliation(s)
- Brodie L. Bailey
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - William Nguyen
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
11
|
Li N, Wang R, Li W, Du Q, Deng Z, Fan Y, Zheng L. Identification of OLA1 as a Novel Protein Target of Vitexin to Ameliorate Dextran Sulfate Sodium-Induced Colitis with Tissue Thermal Proteome Profiling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16057-16066. [PMID: 37856434 DOI: 10.1021/acs.jafc.3c01559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Vitexin, which exists in various medicinal plants and food sources, has recently received increasing attention because of its anti-inflammatory properties. This study aims to identify the protein target of vitexin that ameliorates dextran sulfate sodium (DSS)-induced colitis. The results showed that vitexin not only alleviated the clinical symptoms and colonic damage in mice with DSS-induced colitis but also suppressed the colonic production of inflammatory cytokines (IL-1β, IL-6, ICAM, and VCAM) and enhanced the expression of barrier-associated proteins (ZO-1, Occludin, and E-cadherin). Based on tissue thermal proteome profiling (Tissue-TPP) and molecular docking, OLA1 was creatively identified as a potential protein target for vitexin. Further siRNA-mediated knockdown of the OLA1 gene in Caco-2 cells demonstrated the ability of OLA1 to increase Nrf2 protein expression and, thus, mediated the anti-inflammatory effects of vitexin. Interaction of the OLA1-vitexin complex with Keap1 protein to disrupt the Keap1-Nrf2 interaction may be required for activating Nrf2. Our findings revealed a novel role for OLA1 as a protein target of vitexin that contributes to its anti-inflammatory action by activating Nrf2, which may provide a promising molecular mechanism for novel therapeutic strategies to treat colitis and the associated systemic inflammation.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Ruiyan Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Wenwen Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Qian Du
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
- Institute for Advanced Study, University of Nanchang, Nanchang 330031, Jiangxi, China
| | - Yawei Fan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
12
|
Chen F, Zhang W, Xu S, Zhang H, Chen L, Chen C, Zhu Z, Zhao Y. Discovery and validation of PURA as a transcription target of 20(S)-protopanaxadiol: Implications for the treatment of cognitive dysfunction. J Ginseng Res 2023; 47:662-671. [PMID: 37720572 PMCID: PMC10499581 DOI: 10.1016/j.jgr.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/23/2023] [Accepted: 04/24/2023] [Indexed: 09/19/2023] Open
Abstract
Background 20(S)-protopanaxadiol (PPD), a ginsenoside metabolite, has prominent benefits for the central nervous system, especially in improving learning and memory. However, its transcriptional targets in brain tissue remain unknown. Methods In this study, we first used mass spectrometry-based drug affinity responsive target stability (DARTS) to identify the potential proteins of ginsenosides and intersected them with the transcription factor library. Second, the transcription factor PURA was confirmed as a target of PPD by biolayer interferometry (BLI) and molecular docking. Next, the effect of PPD on the transcriptional levels of target genes of PURA in brain tissues was determined by qRT-PCR. Finally, bioinformatics analysis was used to analyze the potential biological features of these target proteins. Results The results showed three overlapping transcription factors between the proteomics of DARTS and transcription factor library. BLI analysis further showed that PPD had a higher direct interaction with PURA than parent ginsenosides. Subsequently, BLI kinetic analysis, molecular docking, and mutations in key amino acids of PURA indicated that PPD specifically bound to PURA. The results of qRT-PCR showed that PPD could increase the transcription levels of PURA target genes in brain. Finally, bioinformatics analysis showed that these target proteins were involved in learning and memory function. Conclusion The above-mentioned findings indicate that PURA is a transcription target of PPD in brain, and PPD upregulate the transcription levels of target genes related to cognitive dysfunction by binding PURA, which could provide a chemical and biological basis for the study of treating cognitive impairment by targeting PURA.
Collapse
Affiliation(s)
- Feiyan Chen
- Research and Innovation Center, College of Traditional Chinese Medicine·Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjing Zhang
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuyi Xu
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hantao Zhang
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Chen
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cuihua Chen
- Research and Innovation Center, College of Traditional Chinese Medicine·Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhu Zhu
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunan Zhao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
13
|
Yin TC, Van Vranken JG, Srivastava D, Mittal A, Buscaglia P, Moore AE, Verdinez JA, Graham AE, Walsh SA, Acevedo MA, Kerns RJ, Artemyev NO, Gygi SP, Sebag JA. Insulin sensitization by small molecules enhancing GLUT4 translocation. Cell Chem Biol 2023; 30:933-942.e6. [PMID: 37453421 PMCID: PMC11191318 DOI: 10.1016/j.chembiol.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/06/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Insulin resistance (IR) is the root cause of type II diabetes, yet no safe treatment is available to address it. Using a high throughput compatible assay that measures real-time translocation of the glucose transporter glucose transporter 4 (GLUT4), we identified small molecules that potentiate insulin action. In vivo, these insulin sensitizers improve insulin-stimulated GLUT4 translocation, glucose tolerance, and glucose uptake in a model of IR. Using proteomic and CRISPR-based approaches, we identified the targets of those compounds as Unc119 proteins and solved the structure of Unc119 bound to the insulin sensitizer. This study identifies compounds that have the potential to be developed into diabetes treatment and establishes Unc119 proteins as targets for improving insulin sensitivity.
Collapse
Affiliation(s)
- Terry C Yin
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA
| | | | - Dhiraj Srivastava
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Ayushi Mittal
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Paul Buscaglia
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Autumn E Moore
- Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jissele A Verdinez
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Aschleigh E Graham
- Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Susan A Walsh
- Small Animal Imaging Core, University of Iowa, Iowa City, IA 52242, USA
| | - Michael A Acevedo
- Small Animal Imaging Core, University of Iowa, Iowa City, IA 52242, USA
| | - Robert J Kerns
- Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Julien A Sebag
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
14
|
Tu Y, Tan L, Tao H, Li Y, Liu H. CETSA and thermal proteome profiling strategies for target identification and drug discovery of natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154862. [PMID: 37216761 DOI: 10.1016/j.phymed.2023.154862] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Monitoring target engagement at various stages of drug development is essential for natural product (NP)-based drug discovery and development. The cellular thermal shift assay (CETSA) developed in 2013 is a novel, broadly applicable, label-free biophysical assay based on the principle of ligand-induced thermal stabilization of target proteins, which enables direct assessment of drug-target engagement in physiologically relevant contexts, including intact cells, cell lysates and tissues. This review aims to provide an overview of the work principles of CETSA and its derivative strategies and their recent progress in protein target validation, target identification and drug lead discovery of NPs. METHODS A literature-based survey was conducted using the Web of Science and PubMed databases. The required information was reviewed and discussed to highlight the important role of CETSA-derived strategies in NP studies. RESULTS After nearly ten years of upgrading and evolution, CETSA has been mainly developed into three formats: classic Western blotting (WB)-CETSA for target validation, thermal proteome profiling (TPP, also known as MS-CETSA) for unbiased proteome-wide target identification, and high-throughput (HT)-CETSA for drug hit discovery and lead optimization. Importantly, the application possibilities of a variety of TPP approaches for the target discovery of bioactive NPs are highlighted and discussed, including TPP-temperature range (TPP-TR), TPP-compound concentration range (TPP-CCR), two-dimensional TPP (2D-TPP), cell surface-TPP (CS-TPP), simplified TPP (STPP), thermal stability shift-based fluorescence difference in 2D gel electrophoresis (TS-FITGE) and precipitate supported TPP (PSTPP). In addition, the key advantages, limitations and future outlook of CETSA strategies for NP studies are discussed. CONCLUSION The accumulation of CETSA-based data can significantly accelerate the elucidation of the mechanism of action and drug lead discovery of NPs, and provide strong evidence for NP treatment against certain diseases. The CETSA strategy will certainly bring a great return far beyond the initial investment and open up more possibilities for future NP-based drug research and development.
Collapse
Affiliation(s)
- Yanbei Tu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lihua Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
15
|
Zhao S, Zhang P, Yan Y, Xu W, Li J, Wang L, Wang N, Huang Y. Network pharmacology-based prediction and validation of the active ingredients and potential mechanisms of the Huangxiong formula for treating ischemic stroke. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116507. [PMID: 37080367 DOI: 10.1016/j.jep.2023.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/30/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangxiong Formula (HXF) is composed of four herbs: Rheum palmatum L., Ligusticum striatum DC., Curcuma aromatica Salisb., and Acorus gramineus Aiton. HXF is clinically used for the treatment of ischemic stroke (IS). However, its molecular mechanism remains unclear. AIM OF THE STUDY A network pharmacology-based strategy combined with experimental study in vivo and in vitro to were used to investigate the bioactive components, potential targets, and molecular mechanisms of HXF in the treatment of IS. MATERIALS AND METHODS The components of HXF were detected by ultra-performance liquid chromatography (UPLC). The potential active ingredients of HXF were acquired from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and literature, and corresponding targets were discerned through the Swiss TargetPrediction database. IS-related targets were obtained from Genecards, Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), and DisGeNET. The intersection of ingredient and disease targets was screened, and a herbal-compound-target network was constructed. A protein-protein interaction (PPI) network was created, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Based on these analyses, we established a compound-target-pathway (C-T-P) network. A cerebral ischemia-reperfusion (I/R) animal model was established, and the cerebral protective effect of HXF was assessed. The accuracy of the predicted targets was verified by real-time quantitative polymerase chain reaction (RT-qPCR). Hippocampal neuronal injury cell model induced by oxygen-glucose deprivation and reperfusion (OGD/R) was used to evaluate the protective effect of α-Asarone. Furthermore, molecular docking, drug affinity responsive target stability (DARTS) assay, and cellular thermal shift assay (CETSA) were performed to verify whether α-Asarone can bind to PI3K. RESULTS A total of 44 active ingredients and 795 gene targets were identified through network pharmacology. Network analysis showed that naringenin, eupatin, kaempferol, and α-Asarone were possible drug candidates. SRC, AKT1, TP53, MAPK3, STAT3, HRAS, CTNNB1, EGFR, VEGFA, PIK3R1 could serve as potential drug targets. KEGG analysis implied that the PI3K/AKT signaling pathway might play an important role in treating IS by HXF. Moreover, HXF significantly reduced neurological impairment, cerebral infarct volume, brain index, and brain histopathological damage in I/R rats. The mRNA expression of the top 10 potential targets was verified in the brain tissue. The C-T-P network and UPLC analysis suggested that α-Asarone might be an important component of HXF and can inhibit oxidative stress and apoptosis in HT22 cells by activating the PI3K/AKT signaling pathway. Molecular docking, DARTS, and CETSA assay analysis confirmed that there were direct interactions between α-Asarone and PI3K. CONCLUSION HXF had a therapeutic effect in IS with multi-component, multi-target, and multi-approach features. α-Asarone, identified as one of the major active components of HXF, could alleviate oxidative stress and apoptosis by targeting PI3K/AKT pathway.
Collapse
Affiliation(s)
- Saihong Zhao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Pingping Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yonghuan Yan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Weifang Xu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jiacheng Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lei Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ning Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China; Institute for the Evaluation of the Efficacy and Safety of Chinese Medicines, Anhui Academy of Chinese Medicine, Hefei, China.
| | - Yingying Huang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China; Institute for the Evaluation of the Efficacy and Safety of Chinese Medicines, Anhui Academy of Chinese Medicine, Hefei, China.
| |
Collapse
|
16
|
Rao SPS, Manjunatha UH, Mikolajczak S, Ashigbie PG, Diagana TT. Drug discovery for parasitic diseases: powered by technology, enabled by pharmacology, informed by clinical science. Trends Parasitol 2023; 39:260-271. [PMID: 36803572 DOI: 10.1016/j.pt.2023.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/22/2023]
Abstract
While prevention is a bedrock of public health, innovative therapeutics are needed to complement the armamentarium of interventions required to achieve disease control and elimination targets for neglected diseases. Extraordinary advances in drug discovery technologies have occurred over the past decades, along with accumulation of scientific knowledge and experience in pharmacological and clinical sciences that are transforming many aspects of drug R&D across disciplines. We reflect on how these advances have propelled drug discovery for parasitic infections, focusing on malaria, kinetoplastid diseases, and cryptosporidiosis. We also discuss challenges and research priorities to accelerate discovery and development of urgently needed novel antiparasitic drugs.
Collapse
Affiliation(s)
| | | | | | - Paul G Ashigbie
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA.
| | | |
Collapse
|
17
|
Kurbatov I, Dolgalev G, Arzumanian V, Kiseleva O, Poverennaya E. The Knowns and Unknowns in Protein-Metabolite Interactions. Int J Mol Sci 2023; 24:4155. [PMID: 36835565 PMCID: PMC9964805 DOI: 10.3390/ijms24044155] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Increasing attention has been focused on the study of protein-metabolite interactions (PMI), which play a key role in regulating protein functions and directing an orchestra of cellular processes. The investigation of PMIs is complicated by the fact that many such interactions are extremely short-lived, which requires very high resolution in order to detect them. As in the case of protein-protein interactions, protein-metabolite interactions are still not clearly defined. Existing assays for detecting protein-metabolite interactions have an additional limitation in the form of a limited capacity to identify interacting metabolites. Thus, although recent advances in mass spectrometry allow the routine identification and quantification of thousands of proteins and metabolites today, they still need to be improved to provide a complete inventory of biological molecules, as well as all interactions between them. Multiomic studies aimed at deciphering the implementation of genetic information often end with the analysis of changes in metabolic pathways, as they constitute one of the most informative phenotypic layers. In this approach, the quantity and quality of knowledge about PMIs become vital to establishing the full scope of crosstalk between the proteome and the metabolome in a biological object of interest. In this review, we analyze the current state of investigation into the detection and annotation of protein-metabolite interactions, describe the recent progress in developing associated research methods, and attempt to deconstruct the very term "interaction" to advance the field of interactomics further.
Collapse
Affiliation(s)
| | | | | | - Olga Kiseleva
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | | |
Collapse
|
18
|
Feng F, Zhang W, Chai Y, Guo D, Chen X. Label-free target protein characterization for small molecule drugs: recent advances in methods and applications. J Pharm Biomed Anal 2023; 223:115107. [DOI: 10.1016/j.jpba.2022.115107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
19
|
Ma N, Liang Y, Yue L, Liu P, Xu Y, Zhu C. The identities of insulin signaling pathway are affected by overexpression of Tau and its phosphorylation form. Front Aging Neurosci 2022; 14:1057281. [PMID: 36589543 PMCID: PMC9800792 DOI: 10.3389/fnagi.2022.1057281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Hyperphosphorylated Tau formed neurofibrillary tangles was one of the major neuropathological hallmarks of Alzheimer's disease (AD). Dysfunctional insulin signaling in brain is involved in AD. However, the effect of Tau pathology on brain insulin resistance remains unclear. This study explored the effects of overexpressing wild-type Tau (WTau) or Tau with pseudo-phosphorylation at AT8 residues (PTau) on the insulin signaling pathway (ISP). Methods 293T cells or SY5Y cells overexpressing WTau or PTau were treated with or without insulin. The elements in ISP or the regulators of IPS were analyzed by immunoblotting, immunofluorescent staining and co-immunoprecipitation. Akt inhibitor MK2206 was used for evaluating the insulin signaling to downstream of mTOR in Tau overexpressing cells. The effects of anti-aging drug lonafarnib on ISP in WTau or PTau cells were also analyzed with immunoblotting. Considering lonafarnib is an inhibitor of FTase, the states of Rhes, one of FTase substrate in WTau or PTau cells were analyzed by drug affinity responsive target stability (DARTS) assay and the cellular thermal shift assay (CETSA). Results WTau or PTau overexpression in cells upregulated basal activity of elements in ISP in general. However, overexpression of WTau or PTau suppressed the ISP signaling transmission responses induced by insulin simulation, appearing relative higher response of IRS-1 phosphorylation at tyrosine 612 (IRS-1 p612) in upstream IPS, but a lower phosphorylation response of downstream IPS including mTOR, and its targets 4EPB1 and S6. This dysregulation of insulin evoked signaling transmission was more obvious in PTau cells. Suppressing Akt with MK2206 could compromise the levels of p-S6 and p-mTOR in WTau or PTau cells. Moreover, the changes of phosphatases detected in WTau and PTau cells may be related to ISP dysfunction. In addition, the effects of lonafarnib on the ISP in SY5Y cells with WTau and PTau overexpression were tested, which showed that lonafarnib treatment resulted in reducing the active levels of ISP elements in PTau cells but not in WTau cells. The differential effects are probably due to Tau phosphorylation modulating lonafarnib-induced alterations in Rhes, as revealed by DARTS assay. Conclusion and discussion Overexpression of Tau or Tau with pseudo-phosphorylation at AT8 residues could cause an upregulation of the basal/tonic ISP, but a suppression of insulin induced the phasic activation of ISP. This dysfunction of ISP was more obvious in cells overexpressing pseudo-phosphorylated Tau. These results implied that the dysfunction of ISP caused by Tau overexpression might impair the physiological fluctuation of neuronal functions in AD. The different effects of lonafarnib on ISP between WTau and PTau cells, indicating that Tau phosphorylation mediates an additional effect on ISP. This study provided a potential linkage of abnormal expression and phosphorylation of Tau to the ISP dysfunction in AD.
Collapse
|
20
|
Sanchez TW, Ronzetti MH, Owens AE, Antony M, Voss T, Wallgren E, Talley D, Balakrishnan K, Leyes Porello SE, Rai G, Marugan JJ, Michael SG, Baljinnyam B, Southall N, Simeonov A, Henderson MJ. Real-Time Cellular Thermal Shift Assay to Monitor Target Engagement. ACS Chem Biol 2022; 17:2471-2482. [PMID: 36049119 PMCID: PMC9486815 DOI: 10.1021/acschembio.2c00334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Determining a molecule's mechanism of action is paramount during chemical probe development and drug discovery. The cellular thermal shift assay (CETSA) is a valuable tool to confirm target engagement in cells for a small molecule that demonstrates a pharmacological effect. CETSA directly detects biophysical interactions between ligands and protein targets, which can alter a protein's unfolding and aggregation properties in response to thermal challenge. In traditional CETSA experiments, each temperature requires an individual sample, which restricts throughput and requires substantial optimization. To capture the full aggregation profile of a protein from a single sample, we developed a prototype real-time CETSA (RT-CETSA) platform by coupling a real-time PCR instrument with a CCD camera to detect luminescence. A thermally stable Nanoluciferase variant (ThermLuc) was bioengineered to withstand unfolding at temperatures greater than 90 °C and was compatible with monitoring target engagement events when fused to diverse targets. Utilizing well-characterized inhibitors of lactate dehydrogenase alpha, RT-CETSA showed significant correlation with enzymatic, biophysical, and other cell-based assays. A data analysis pipeline was developed to enhance the sensitivity of RT-CETSA to detect on-target binding. RT-CETSA technology advances capabilities of the CETSA method and facilitates the identification of ligand-target engagement in cells, a critical step in assessing the mechanism of action of a small molecule.
Collapse
|
21
|
Yan H, Jiang M, Yang F, Tang X, Lin M, Zhou C, Tan Y, Liu D. Ajuforrestin A, an Abietane Diterpenoid from Ajuga ovalifolia var. calanthe, Induces A549 Cell Apoptosis by Targeting SHP2. Molecules 2022; 27:molecules27175469. [PMID: 36080236 PMCID: PMC9457730 DOI: 10.3390/molecules27175469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The Src-homology 2 domain-containing phosphatase 2 (SHP2), which is encoded by PTPN11, participates in many cellular signaling pathways and is closely related to various tumorigenesis. Inhibition of the abnormal activity of SHP2 by small molecules is an important part of cancer treatment. Here, three abietane diterpenoids, named compounds 1–3, were isolated from Ajuga ovalifolia var. calantha. Spectroscopic analysis was used to identify the exact structure of the compounds. The enzymatic kinetic experiment and the cellular thermal shift assay showed compound 2 selectively inhibited SHP2 activity in vitro. Molecular docking indicated compound 2 targeted the SHP2 catalytic domain. The predicted pharmacokinetic properties by SwissADME revealed that compound 2 passed the majority of the parameters of common drug discovery rules. Compound 2 restrained A549 proliferation (IC50 = 8.68 ± 0.96 μM), invasion and caused A549 cell apoptosis by inhibiting the SHP2–ERK/AKT signaling pathway. Finally, compound 2 (Ajuforrestin A) is a potent and efficacious SHP2 inhibitor and may be a promising compound for human lung epithelial cancer treatment.
Collapse
Affiliation(s)
- Hongling Yan
- Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Miao Jiang
- Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fujin Yang
- Chongqing Clinical Research Center for Dermatology, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Chongqing Key Laboratory of Integrative Dermatology Research, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Key Laboratory of External Therapies of Traditional Chinese Medicine in Eczema, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
| | - Xueyong Tang
- Chongqing Clinical Research Center for Dermatology, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Chongqing Key Laboratory of Integrative Dermatology Research, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Key Laboratory of External Therapies of Traditional Chinese Medicine in Eczema, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
| | - Mao Lin
- Chongqing Clinical Research Center for Dermatology, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Chongqing Key Laboratory of Integrative Dermatology Research, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Key Laboratory of External Therapies of Traditional Chinese Medicine in Eczema, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
| | - Chunyan Zhou
- General Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
- Correspondence: (C.Z.); (Y.T.); (D.L.)
| | - Yuzhu Tan
- Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (C.Z.); (Y.T.); (D.L.)
| | - Deming Liu
- Chongqing Clinical Research Center for Dermatology, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Chongqing Key Laboratory of Integrative Dermatology Research, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Key Laboratory of External Therapies of Traditional Chinese Medicine in Eczema, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Correspondence: (C.Z.); (Y.T.); (D.L.)
| |
Collapse
|
22
|
Sugumaran A, Pandiyan R, Kandasamy P, Antoniraj MG, Navabshan I, Sakthivel B, Dharmaraj S, Chinnaiyan SK, Ashokkumar V, Ngamcharussrivichai C. Marine biome-derived secondary metabolites, a class of promising antineoplastic agents: A systematic review on their classification, mechanism of action and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155445. [PMID: 35490806 DOI: 10.1016/j.scitotenv.2022.155445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Cancer is one of the most deadly diseases on the planet. Over the past decades, numerous antineoplastic compounds have been discovered from natural resources such as medicinal plants and marine species as part of multiple drug discovery initiatives. Notably, several marine flora (e.g. Ascophyllum nodosum, Sargassum thunbergii) have been identified as a rich source for novel cytotoxic compounds of different chemical forms. Despite the availability of enormous chemically enhanced new resources, the anticancer potential of marine flora and fauna has received little attention. Interestingly, numerous marine-derived secondary metabolites (e.g., Cytarabine, Trabectedin) have exhibited anticancer effects in preclinical cancer models. Most of the anticancer drugs obtained from marine sources stimulated apoptotic signal transduction pathways in cancer cells, such as the intrinsic and extrinsic pathways. This review highlights the sources of different cytotoxic secondary metabolites obtained from marine bacteria, algae, fungi, invertebrates, and vertebrates. Furthermore, this review provides a comprehensive overview of the utilisation of numerous marine-derived cytotoxic compounds as anticancer drugs, as well as their modes of action (e.g., molecular target). Finally, it also discusses the future prospects of marine-derived drug developments and their constraints.
Collapse
Affiliation(s)
- Abimanyu Sugumaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Rajesh Pandiyan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai 600073, India
| | - Palanivel Kandasamy
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, Inselspital, University of Bern, Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Mariya Gover Antoniraj
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Science, Ben-Gurion University of Negev, Israel
| | - Irfan Navabshan
- Crescent School of Pharmacy, B.S. Abdur Rahman Cresent Institute of Science and Technology, Chennai, India
| | | | - Selvakumar Dharmaraj
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Santhosh Kumar Chinnaiyan
- Department of Pharmaceutics, Srikrupa Institute of Pharmaceutical Sciences, Velikatta, Kondapak, Siddipet, Telangana State 502277, India.
| | - Veeramuthu Ashokkumar
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand.
| | - Chawalit Ngamcharussrivichai
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand
| |
Collapse
|
23
|
Looker O, Dans MG, Bullen HE, Sleebs BE, Crabb BS, Gilson PR. The Medicines for Malaria Venture Malaria Box contains inhibitors of protein secretion in
Plasmodium falciparum
blood stage parasites. Traffic 2022; 23:442-461. [PMID: 36040075 PMCID: PMC9543830 DOI: 10.1111/tra.12862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022]
Abstract
Plasmodium falciparum parasites which cause malaria, traffic hundreds of proteins into the red blood cells (RBCs) they infect. These exported proteins remodel their RBCs enabling host immune evasion through processes such as cytoadherence that greatly assist parasite survival. As resistance to all current antimalarial compounds is rising new compounds need to be identified and those that could inhibit parasite protein secretion and export would both rapidly reduce parasite virulence and ultimately lead to parasite death. To identify compounds that inhibit protein export we used transgenic parasites expressing an exported nanoluciferase reporter to screen the Medicines for Malaria Venture Malaria Box of 400 antimalarial compounds with mostly unknown targets. The most potent inhibitor identified in this screen was MMV396797 whose application led to export inhibition of both the reporter and endogenous exported proteins. MMV396797 mediated blockage of protein export and slowed the rigidification and cytoadherence of infected RBCs—modifications which are both mediated by parasite‐derived exported proteins. Overall, we have identified a new protein export inhibitor in P. falciparum whose target though unknown, could be developed into a future antimalarial that rapidly inhibits parasite virulence before eliminating parasites from the host.
Collapse
Affiliation(s)
| | - Madeline G. Dans
- Burnet Institute Melbourne Australia
- School of Medicine Deakin University Geelong Australia
| | - Hayley E. Bullen
- Burnet Institute Melbourne Australia
- Department of Immunology and Microbiology University of Melbourne Melbourne Australia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical Research Parkville Victoria Australia
- Department of Medical Biology The University of Melbourne Parkville Victoria Australia
| | - Brendan S. Crabb
- Burnet Institute Melbourne Australia
- Department of Immunology and Microbiology University of Melbourne Melbourne Australia
- Department of Immunology and Pathology Monash University Melbourne Australia
| | - Paul R. Gilson
- Burnet Institute Melbourne Australia
- Department of Immunology and Microbiology University of Melbourne Melbourne Australia
| |
Collapse
|
24
|
Abstract
Knowing that the drug candidate binds to its intended target is a vital part of drug discovery. Thus, several labeled and label-free methods have been developed to study target engagement. In recent years, the cellular thermal shift assay (CETSA) with its variations has been widely adapted to drug discovery workflows. Western blot–based CETSA is used primarily to validate the target binding of a molecule to its target protein whereas CETSA based on bead chemistry detection methods (CETSA HT) has been used to screen molecular libraries to find novel molecules binding to a pre-determined target. Mass spectrometry–based CETSA also known as thermal proteome profiling (TPP) has emerged as a powerful tool for target deconvolution and finding novel binding partners for old and novel molecules. With this technology, it is possible to probe thermal shifts among over 7,000 proteins from one sample and to identify the wanted target binding but also binding to unwanted off-targets known to cause adverse effects. In addition, this proteome-wide method can provide information on the biological process initiated by the ligand binding. The continued development of mass spectrometry labeling reagents, such as isobaric tandem mass tag technology (TMT) continues to increase the throughput of CETSA MS, allowing its use for structure–activity relationship (SAR) studies with a limited number of molecules. In this review, we discussed the differences between different label-free methods to study target engagement, but our focus was on CETSA and recent advances in the CETSA method.
Collapse
Affiliation(s)
- Tuomas Aleksi Tolvanen
- Division of Rheumatology, Department of Medicine Solna, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden.,Pelago Bioscience AB, Solna, Sweden
| |
Collapse
|
25
|
Targeting the HER3 pseudokinase domain with small molecule inhibitors. Methods Enzymol 2022; 667:455-505. [PMID: 35525551 DOI: 10.1016/bs.mie.2022.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HER3 is a potent oncogenic growth factor receptor belonging to the human epidermal growth factor (HER/EGFR) family of receptor tyrosine kinases. In contrast to other EGFR family members, HER3 is a pseudokinase, lacking functional kinase activity. As such, efforts to develop small molecule tyrosine kinase inhibitors against this family member have been limited. In response to HER3-specific growth factors such as neuregulin (NRG, also known as heregulin or HRG), HER3 must couple with catalytically active family members, including its preferred partner HER2. Dimerization of the intracellular HER2:HER3 kinase domains is a critical part of the activation mechanism and HER3 plays a specialized role as an allosteric activator of the active HER2 kinase partner. Intriguingly, many pseudokinases retain functionally important nucleotide binding capacity, despite loss of kinase activity. We demonstrated that occupation of the nucleotide pocket of the pseudokinase HER3 retains functional importance for growth factor signaling through oncogenic HER2:HER3 heterodimers. Mutation of the HER3 nucleotide pocket both disrupts signaling and disrupts HER2:HER3 dimerization. Conversely, ATP competitive drugs which bind to HER3, but not HER2, can stabilize HER2:HER3 dimers, induce signaling and promote cell growth in breast cancer models. This indicates a nucleotide-dependent conformational role for the HER3 kinase domain. Critically, our recent proof-of-concept work demonstrated that HER3-directed small molecule inhibitors can also disrupt HER2:HER3 dimerization and signaling, supporting the prospect that HER3 can be a direct drug target despite its lack of intrinsic activity. In this chapter we will describe methods for identifying and validating small molecule inhibitors against the HER3 pseudokinase.
Collapse
|
26
|
Unmodified methodologies in target discovery for small molecule drugs: A rising star. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Vu V, Szewczyk MM, Nie DY, Arrowsmith CH, Barsyte-Lovejoy D. Validating Small Molecule Chemical Probes for Biological Discovery. Annu Rev Biochem 2022; 91:61-87. [PMID: 35363509 DOI: 10.1146/annurev-biochem-032620-105344] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small molecule chemical probes are valuable tools for interrogating protein biological functions and relevance as a therapeutic target. Rigorous validation of chemical probe parameters such as cellular potency and selectivity is critical to unequivocally linking biological and phenotypic data resulting from treatment with a chemical probe to the function of a specific target protein. A variety of modern technologies are available to evaluate cellular potency and selectivity, target engagement, and functional response biomarkers of chemical probe compounds. Here, we review these technologies and the rationales behind using them for the characterization and validation of chemical probes. In addition, large-scale phenotypic characterization of chemical probes through chemical genetic screening is increasingly leading to a wealth of information on the cellular pharmacology and disease involvement of potential therapeutic targets. Extensive compound validation approaches and integration of phenotypic information will lay foundations for further use of chemical probes in biological discovery. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Victoria Vu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada;
| | - David Y Nie
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Tu S, Mao D, Shi M, Zhang H, Liu C, Li X, Zhao Y, Chen Y, Liu Y. Icaritin ameliorates extracellular microparticles‐induced inflammatory pre‐metastatic niche via modulating the
cGAS‐STING
signaling. Phytother Res 2022; 36:2127-2142. [PMID: 35257426 DOI: 10.1002/ptr.7433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/27/2021] [Accepted: 11/18/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Shumei Tu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing China
- Jiangsu Province Academy of Traditional Chinese Medicine Nanjing China
| | - Dengxuan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing China
- Jiangsu Province Academy of Traditional Chinese Medicine Nanjing China
| | - Mengxin Shi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing China
- Jiangsu Province Academy of Traditional Chinese Medicine Nanjing China
| | - Huangqin Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing China
- Jiangsu Province Academy of Traditional Chinese Medicine Nanjing China
| | - Congyan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing China
- Jiangsu Province Academy of Traditional Chinese Medicine Nanjing China
| | - Xiaoqi Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing China
- Jiangsu Province Academy of Traditional Chinese Medicine Nanjing China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine Nanjing China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing China
- Jiangsu Province Academy of Traditional Chinese Medicine Nanjing China
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing China
- Jiangsu Province Academy of Traditional Chinese Medicine Nanjing China
| |
Collapse
|
29
|
Ji H, Lu X, Zheng Z, Sun S, Tan CSH. ProSAP: a GUI software tool for statistical analysis and assessment of thermal stability data. Brief Bioinform 2022; 23:6542221. [PMID: 35246677 DOI: 10.1093/bib/bbac057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/18/2022] [Accepted: 02/04/2022] [Indexed: 11/14/2022] Open
Abstract
The Cellular Thermal Shift Assay (CETSA) plays an important role in drug-target identification, and statistical analysis is a crucial step significantly affecting conclusion. We put forward ProSAP (Protein Stability Analysis Pod), an open-source, cross-platform and user-friendly software tool, which provides multiple methods for thermal proteome profiling (TPP) analysis, nonparametric analysis (NPA), proteome integral solubility alteration and isothermal shift assay (iTSA). For testing the performance of ProSAP, we processed several datasets and compare the performance of different algorithms. Overall, TPP analysis is more accurate with fewer false positive targets, but NPA methods are flexible and free from parameters. For iTSA, edgeR and DESeq2 identify more true targets than t-test and Limma, but when it comes to ranking, the four methods show not much difference. ProSAP software is available at https://github.com/hcji/ProSAP and https://zenodo.org/record/5763315.
Collapse
Affiliation(s)
- Hongchao Ji
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xue Lu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhenxiang Zheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siyuan Sun
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chris Soon Heng Tan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
30
|
Chen F, Li C, Cao H, Zhang H, Lu C, Li R, Zhu Z, Chen L, Zhao Y. Identification of Adenylate Kinase 5 as a Protein Target of Ginsenosides in Brain Tissues Using Mass Spectrometry-Based Drug Affinity Responsive Target Stability (DARTS) and Cellular Thermal Shift Assay (CETSA) Techniques. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2741-2751. [PMID: 35184563 DOI: 10.1021/acs.jafc.1c07819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ginseng is a very famous Chinese herbal medicine with various pharmacological effects. Ginsenosides, the main effective compounds of ginseng, show favorable biological activities in the central nervous system (CNS), but the protein targets of ginsenosides in brain tissues have not been clarified clearly. First, we screened proteins that interact with ginsenosides by mass spectrometry-based drug affinity responsive target stability (DARTS) and cellular thermal shift assay (CETSA). Then, we identified and confirmed adenylate kinase 5 (AK5) as a target protein of ginsenosides by biolayer interferometry (BLI), isothermal titration calorimetry (ITC), and molecular docking. Finally, an enzyme activity kit was used to determine the effect of 20(S)-protopanaxadiol (PPD), a ginseng saponin metabolite, on AK5 activities in vivo and in vitro. We screened out seven overlapping target proteins by proteomics of DARTS and CETSA. The BLI direct action assays showed that the direct interaction of PPD with AK5 was higher compared to the parental ginsenosides. Subsequently, BLI kinetic analysis and ITC assay showed that PPD specifically bound to AK5. Furthermore, key amino acid mutations predicted by molecular docking decreased the affinity between PPD and AK5. Enzyme activity assays showed that PPD increased AK5 activities in vivo and in vitro. The above-mentioned findings indicated that AK5 is a protein target of ginsenoside in the brain and PPD is considered to be a small-molecular activator of AK5, which can improve comprehension of the molecular mechanisms of ginseng pharmacological effects in the CNS and further develop AK5 activators based on the dammarane-type triterpenoid structure.
Collapse
Affiliation(s)
- Feiyan Chen
- Research and Innovation Center, College of Traditional Chinese Medicine, Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chu Li
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huiying Cao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hantao Zhang
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cai Lu
- Department of Medicinal Chemistry and Analysis, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruimei Li
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhu Zhu
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lin Chen
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yunan Zhao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
31
|
A High-Throughput Phenotypic Screen of the 'Pandemic Response Box' Identifies a Quinoline Derivative with Significant Anthelmintic Activity. Pharmaceuticals (Basel) 2022; 15:ph15020257. [PMID: 35215369 PMCID: PMC8874578 DOI: 10.3390/ph15020257] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/23/2022] Open
Abstract
Parasitic nematodes cause diseases in livestock animals and major economic losses to the agricultural industry worldwide. Nematodes of the order Strongylida, including Haemonchus contortus, are particularly important. The excessive use of anthelmintic compounds to treat infections and disease has led to widespread resistance to these compounds in nematodes, such that there is a need for new anthelmintics with distinctive mechanisms of action. With a focus on discovering new anthelmintic entities, we screened 400 chemically diverse compounds within the 'Pandemic Response Box' (from Medicines for Malaria Venture, MMV) for activity against H. contortus and its free-living relative, Caenorhabditis elegans-a model organism. Using established phenotypic assays, test compounds were evaluated in vitro for their ability to inhibit the motility and/or development of H. contortus and C. elegans. Dose-response evaluations identified a compound, MMV1581032, that significantly the motility of H. contortus larvae (IC50 = 3.4 ± 1.1 μM) and young adults of C. elegans (IC50 = 7.1 ± 4.6 μM), and the development of H. contortus larvae (IC50 = 2.2 ± 0.7 μM). The favourable characteristics of MMV1581032, such as suitable physicochemical properties and an efficient, cost-effective pathway to analogue synthesis, indicates a promising candidate for further evaluation as a nematocide. Future work will focus on a structure-activity relationship investigation of this chemical scaffold, a toxicity assessment of potent analogues and a mechanism/mode of action investigation.
Collapse
|
32
|
Osman S, Bendtsen C, Peel S, Yrlid L, Muthas D, Simpson J, Willison KR, Klug DR. Evaluation of FOXO1 Target Engagement Using a Single-Cell Microfluidic Platform. Anal Chem 2021; 93:14659-14666. [PMID: 34694778 DOI: 10.1021/acs.analchem.1c02808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cellular thermal shift assay (CETSA) has been used extensively since its introduction to study drug-target engagement within both live cells and cellular lysate. This has proven to be a useful tool in early stage drug discovery and is used to study a wide range of protein classes. We describe the application of a single-cell CETSA workflow within a microfluidic affinity capture (MAC) chip. This has enabled us to quantitatively determine the active FOXO1 single-molecule count and observe FOXO1 stabilization and destabilization in the presence of three small molecule inhibitors, including demonstrating the determination of EC50. The successful use of the MAC chip for single-cell CETSA paves the way for the study of precious clinical samples owing to the low number of cells needed by the chip. It also provides a useful tool for studying any underlying population heterogeneity that exists within a cellular system, a feature that is usually masked when conducting ensemble measurements.
Collapse
Affiliation(s)
- Suhuur Osman
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, United Kingdom
| | - Claus Bendtsen
- Discovery Sciences, R&D, AstraZeneca, 310 Milton Road, Cambridge, CB4 0WG, United Kingdom
| | - Samantha Peel
- Discovery Sciences, R&D, AstraZeneca, 310 Milton Road, Cambridge, CB4 0WG, United Kingdom
| | - Linda Yrlid
- Early Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43150 Gothenburg, Sweden
| | - Daniel Muthas
- Early Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43150 Gothenburg, Sweden
| | - John Simpson
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, United Kingdom
| | - Keith R Willison
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, United Kingdom
| | - David R Klug
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, United Kingdom
| |
Collapse
|
33
|
Lu KY, Mansfield CR, Fitzgerald MC, Derbyshire ER. Chemoproteomics for Plasmodium Parasite Drug Target Discovery. Chembiochem 2021; 22:2591-2599. [PMID: 33999499 PMCID: PMC8373781 DOI: 10.1002/cbic.202100155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/16/2021] [Indexed: 12/16/2022]
Abstract
Emerging Plasmodium parasite drug resistance is threatening progress towards malaria control and elimination. While recent efforts in cell-based, high-throughput drug screening have produced first-in-class drugs with promising activities against different Plasmodium life cycle stages, most of these antimalarial agents have elusive mechanisms of action. Though challenging to address, target identification can provide valuable information to facilitate lead optimization and preclinical drug prioritization. Recently, proteome-wide methods for direct assessment of drug-protein interactions have emerged as powerful tools in a number of systems, including Plasmodium. In this review, we will discuss current chemoproteomic strategies that have been adapted to antimalarial drug target discovery, including affinity- and activity-based protein profiling and the energetics-based techniques thermal proteome profiling and stability of proteins from rates of oxidation. The successful application of chemoproteomics to the Plasmodium blood stage highlights the potential of these methods to link inhibitors to their molecular targets in more elusive Plasmodium life stages and intracellular pathogens in the future.
Collapse
Affiliation(s)
- Kuan-Yi Lu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| | - Christopher R Mansfield
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| | - Michael C Fitzgerald
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Emily R Derbyshire
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| |
Collapse
|
34
|
Lang Y, Shah NR, Tao X, Reeve SM, Zhou J, Moya B, Sayed ARM, Dharuman S, Oyer JL, Copik AJ, Fleischer BA, Shin E, Werkman C, Basso KB, Lucas DD, Sutaria DS, Mégroz M, Kim TH, Loudon-Hossler V, Wright A, Jimenez-Nieves RH, Wallace MJ, Cadet KC, Jiao Y, Boyce JD, LoVullo ED, Schweizer HP, Bonomo RA, Bharatham N, Tsuji BT, Landersdorfer CB, Norris MH, Shin BS, Louie A, Balasubramanian V, Lee RE, Drusano GL, Bulitta JB. Combating Multidrug-Resistant Bacteria by Integrating a Novel Target Site Penetration and Receptor Binding Assay Platform Into Translational Modeling. Clin Pharmacol Ther 2021; 109:1000-1020. [PMID: 33576025 PMCID: PMC10662281 DOI: 10.1002/cpt.2205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/26/2022]
Abstract
Multidrug-resistant bacteria are causing a serious global health crisis. A dramatic decline in antibiotic discovery and development investment by pharmaceutical industry over the last decades has slowed the adoption of new technologies. It is imperative that we create new mechanistic insights based on latest technologies, and use translational strategies to optimize patient therapy. Although drug development has relied on minimal inhibitory concentration testing and established in vitro and mouse infection models, the limited understanding of outer membrane permeability in Gram-negative bacteria presents major challenges. Our team has developed a platform using the latest technologies to characterize target site penetration and receptor binding in intact bacteria that inform translational modeling and guide new discovery. Enhanced assays can quantify the outer membrane permeability of β-lactam antibiotics and β-lactamase inhibitors using multiplex liquid chromatography tandem mass spectrometry. While β-lactam antibiotics are known to bind to multiple different penicillin-binding proteins (PBPs), their binding profiles are almost always studied in lysed bacteria. Novel assays for PBP binding in the periplasm of intact bacteria were developed and proteins identified via proteomics. To characterize bacterial morphology changes in response to PBP binding, high-throughput flow cytometry and time-lapse confocal microscopy with fluorescent probes provide unprecedented mechanistic insights. Moreover, novel assays to quantify cytosolic receptor binding and intracellular drug concentrations inform target site occupancy. These mechanistic data are integrated by quantitative and systems pharmacology modeling to maximize bacterial killing and minimize resistance in in vitro and mouse infection models. This translational approach holds promise to identify antibiotic combination dosing strategies for patients with serious infections.
Collapse
Affiliation(s)
- Yinzhi Lang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Nirav R. Shah
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Present address: Jansen R&D, Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Xun Tao
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Present address: Genentech USA,Inc., South San Francisco, California, USA
| | - Stephanie M. Reeve
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jieqiang Zhou
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Bartolome Moya
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Alaa R. M. Sayed
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Department of Chemistry, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Suresh Dharuman
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jeremiah L. Oyer
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Alicja J. Copik
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Brett A. Fleischer
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Eunjeong Shin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Carolin Werkman
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Kari B. Basso
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Deanna Deveson Lucas
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Dhruvitkumar S. Sutaria
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Present address: Genentech USA,Inc., South San Francisco, California, USA
| | - Marianne Mégroz
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Tae Hwan Kim
- College of Pharmacy, Catholic University of Daegu, Gyeongsan, Gyeongbuk, Korea
| | - Victoria Loudon-Hossler
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Amy Wright
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Rossie H. Jimenez-Nieves
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Miranda J. Wallace
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Keisha C. Cadet
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Yuanyuan Jiao
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - John D. Boyce
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Eric D. LoVullo
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Herbert P. Schweizer
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Robert A. Bonomo
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Nagakumar Bharatham
- BUGWORKS Research India Pvt. Ltd., Centre for Cellular & Molecular Platforms, National Centre for Biological Sciences, Bengaluru, Karnataka, India
| | - Brian T. Tsuji
- Laboratory for Antimicrobial Pharmacodynamics, University at Buffalo, Buffalo, New York, USA
| | - Cornelia B. Landersdorfer
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Michael H. Norris
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography and the Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Beom Soo Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Arnold Louie
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Venkataraman Balasubramanian
- BUGWORKS Research India Pvt. Ltd., Centre for Cellular & Molecular Platforms, National Centre for Biological Sciences, Bengaluru, Karnataka, India
| | - Richard E. Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - George L. Drusano
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Jürgen B. Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| |
Collapse
|
35
|
Jörg M, Madden KS. The right tools for the job: the central role for next generation chemical probes and chemistry-based target deconvolution methods in phenotypic drug discovery. RSC Med Chem 2021; 12:646-665. [PMID: 34124668 PMCID: PMC8152813 DOI: 10.1039/d1md00022e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
The reconnection of the scientific community with phenotypic drug discovery has created exciting new possibilities to develop therapies for diseases with highly complex biology. It promises to revolutionise fields such as neurodegenerative disease and regenerative medicine, where the development of new drugs has consistently proved elusive. Arguably, the greatest challenge in readopting the phenotypic drug discovery approach exists in establishing a crucial chain of translatability between phenotype and benefit to patients in the clinic. This remains a key stumbling block for the field which needs to be overcome in order to fully realise the potential of phenotypic drug discovery. Excellent quality chemical probes and chemistry-based target deconvolution techniques will be a crucial part of this process. In this review, we discuss the current capabilities of chemical probes and chemistry-based target deconvolution methods and evaluate the next advances necessary in order to fully support phenotypic screening approaches in drug discovery.
Collapse
Affiliation(s)
- Manuela Jörg
- School of Natural and Environmental Sciences, Newcastle University Bedson Building Newcastle upon Tyne NE1 7RU UK
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Victoria 3052 Australia
| | - Katrina S Madden
- School of Natural and Environmental Sciences, Newcastle University Bedson Building Newcastle upon Tyne NE1 7RU UK
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Victoria 3052 Australia
| |
Collapse
|
36
|
Carnero Corrales MA, Zinken S, Konstantinidis G, Rafehi M, Abdelrahman A, Wu YW, Janning P, Müller CE, Laraia L, Waldmann H. Thermal proteome profiling identifies the membrane-bound purinergic receptor P2X4 as a target of the autophagy inhibitor indophagolin. Cell Chem Biol 2021; 28:1750-1757.e5. [PMID: 33725479 DOI: 10.1016/j.chembiol.2021.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/21/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
Signaling pathways are frequently activated through signal-receiving membrane proteins, and the discovery of small molecules targeting these receptors may yield insights into their biology. However, due to their intrinsic properties, membrane protein targets often cannot be identified by means of established approaches, in particular affinity-based proteomics, calling for the exploration of new methods. Here, we report the identification of indophagolin as representative member of an indoline-based class of autophagy inhibitors through a target-agnostic phenotypic assay. Thermal proteome profiling and subsequent biochemical validation identified the purinergic receptor P2X4 as a target of indophagolin, and subsequent investigations suggest that indophagolin targets further purinergic receptors. These results demonstrate that thermal proteome profiling may enable the de novo identification of membrane-bound receptors as cellular targets of bioactive small molecules.
Collapse
Affiliation(s)
- Marjorie A Carnero Corrales
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Technische Universität Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Sarah Zinken
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Technische Universität Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Georgios Konstantinidis
- Chemical Genomics Center of the Max Planck Society, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Muhammad Rafehi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Aliaa Abdelrahman
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Yao-Wen Wu
- Chemical Genomics Center of the Max Planck Society, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Petra Janning
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Technische Universität Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Luca Laraia
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Department of Chemistry, Technical University of Denmark, Kemitorvet 207, Room 124, 2800 Kongens Lyngby, Denmark.
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Technische Universität Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Straße 6, 44227 Dortmund, Germany.
| |
Collapse
|
37
|
Sun J, Prabhu N, Tang J, Yang F, Jia L, Guo J, Xiao K, Tam WL, Nordlund P, Dai L. Recent advances in proteome-wide label-free target deconvolution for bioactive small molecules. Med Res Rev 2021; 41:2893-2926. [PMID: 33533067 DOI: 10.1002/med.21788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 01/01/2023]
Abstract
Small-molecule drugs modulate biological processes and disease states through engagement of target proteins in cells. Assessing drug-target engagement on a proteome-wide scale is of utmost importance in better understanding the molecular mechanisms of action of observed beneficial and adverse effects, as well as in developing next generation tool compounds and drugs with better efficacies and specificities. However, systematic assessment of drug-target engagement has been an arduous task. With the continuous development of mass spectrometry-based proteomics instruments and techniques, various chemical proteomics approaches for drug target deconvolution (i.e., the identification of molecular target for drugs) have emerged. Among these, the label-free target deconvolution approaches that do not involve the chemical modification of compounds of interest, have gained increased attention in the community. Here we provide an overview of the basic principles and recent biological applications of the most important label-free methods including the cellular thermal shift assay, pulse proteolysis, chemical denaturant and protein precipitation, stability of proteins from rates of oxidation, drug affinity responsive target stability, limited proteolysis, and solvent-induced protein precipitation. The state-of-the-art technical implications and future outlook for the label-free approaches are also discussed.
Collapse
Affiliation(s)
- Jichao Sun
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, China.,Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Nayana Prabhu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jun Tang
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China
| | - Fan Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China
| | - Lin Jia
- College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong, China
| | - Jinan Guo
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, China
| | - Kefeng Xiao
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, China
| | - Wai Leong Tam
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Pär Nordlund
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lingyun Dai
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, China.,Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
38
|
Chernobrovkin AL, Cázares-Körner C, Friman T, Caballero IM, Amadio D, Martinez Molina D. A Tale of Two Tails: Efficient Profiling of Protein Degraders by Specific Functional and Target Engagement Readouts. SLAS DISCOVERY 2021; 26:534-546. [PMID: 33445986 DOI: 10.1177/2472555220984372] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Targeted protein degradation represents an area of great interest, potentially offering improvements with respect to dosing, side effects, drug resistance, and reaching "undruggable" proteins compared with traditional small-molecule therapeutics. A major challenge in the design and characterization of degraders acting as molecular glues is that binding of the molecule to the protein of interest (PoI) is not needed for efficient and selective protein degradation; instead, one needs to understand the interaction with the responsible ligase. Similarly, for proteasome targeting chimeras (PROTACs), understanding the binding characteristics of the PoI alone is not sufficient. Therefore, simultaneously assessing the binding to both PoI and the E3 ligase as well as the resulting degradation profile is of great value. The cellular thermal shift assay (CETSA) is an unbiased cell-based method, designed to investigate the interaction of compounds with their cellular protein targets by measuring compound-induced changes in protein thermal stability. In combination with mass spectrometry (MS), CETSA can simultaneously evaluate compound-induced changes in the stability of thousands of proteins. We have used CETSA MS to profile a number of protein degraders, including molecular glues (e.g., immunomodulatory drugs) and PROTACs, to understand mode of action and to deconvolute off-target effects in intact cells. Within the same experiment, we were able to monitor both target engagement by observing changes in protein thermal stability as well as efficacy by simultaneous assessment of protein abundances. This allowed us to correlate target engagement (i.e., binding to the PoI and ligases) and functional readout (i.e., degrader induced protein degradation).
Collapse
|
39
|
Choi LS, Jo IG, Kang KS, Im JH, Kim J, Kim J, Chung JW, Yoo SK. Discovery and preclinical efficacy of HSG4112, a synthetic structural analog of glabridin, for the treatment of obesity. Int J Obes (Lond) 2020; 45:130-142. [PMID: 32943760 PMCID: PMC7752758 DOI: 10.1038/s41366-020-00686-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022]
Abstract
Background HSG4112 is a clinical-stage drug candidate for the treatment of obesity. Here, we report its discovery and preclinical efficacy. Methods In high-fat diet (HFD)-induced obese male C57BL/6J mice, we tested the weight loss effect of synthetic compounds derived from a structure–activity relationship (SAR) study of glabridin, a natural compound known to reduce body weight and influence energy homeostasis. After selecting HSG4112 as our optimized compound from this discovery method, we characterized its pharmacological effects on parameters related to obesity through in vivo metabolic and biochemical measurements, histology and gene expression analysis, and indirect calorimetry. Results Through the SAR study, we identified four novel components of glabridin pertinent for its anti-obesity activity, and found that HSG4112, an optimized structural analog of glabridin, markedly supersedes glabridin in weight reduction efficacy and chemical stability. Six-week administration of HSG4112 to HFD-induced obese mice led to dose-dependent normalization of obesity-related parameters, including body weight, muscle and adipose tissue weight, adipocyte size, and serum leptin/insulin/glucose levels. The weight reduction induced by HSG4112 was partially mediated by decreased food intake and mainly mediated by increased energy expenditure, with no change in physical activity. Accordingly, the pattern of transcriptional changes was aligned with increased energy expenditure in the liver and muscles. Following significant body weight reduction, robust amelioration of histopathology and blood markers of fatty liver were also observed. Conclusions Our study demonstrates the key chemical components of glabridin pertinent to its weight loss effects and suggests HSG4112 as a promising novel drug candidate for the pharmacological treatment of obesity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sang-Ku Yoo
- Glaceum Inc., Suwon, Republic of Korea.,Erum Biotechnologies Inc., Suwon, Republic of Korea
| |
Collapse
|
40
|
A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes. Nat Commun 2020; 11:4200. [PMID: 32826910 PMCID: PMC7442650 DOI: 10.1038/s41467-020-18071-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/27/2020] [Indexed: 01/20/2023] Open
Abstract
Chemoproteomics is a key technology to characterize the mode of action of drugs, as it directly identifies the protein targets of bioactive compounds and aids in the development of optimized small-molecule compounds. Current approaches cannot identify the protein targets of a compound and also detect the interaction surfaces between ligands and protein targets without prior labeling or modification. To address this limitation, we here develop LiP-Quant, a drug target deconvolution pipeline based on limited proteolysis coupled with mass spectrometry that works across species, including in human cells. We use machine learning to discern features indicative of drug binding and integrate them into a single score to identify protein targets of small molecules and approximate their binding sites. We demonstrate drug target identification across compound classes, including drugs targeting kinases, phosphatases and membrane proteins. LiP-Quant estimates the half maximal effective concentration of compound binding sites in whole cell lysates, correctly discriminating drug binding to homologous proteins and identifying the so far unknown targets of a fungicide research compound. Proteomics is often used to map protein-drug interactions but identifying a drug’s protein targets along with the binding interfaces has not been achieved yet. Here, the authors integrate limited proteolysis and machine learning for the proteome-wide mapping of drug protein targets and binding sites.
Collapse
|