1
|
Zhou Z, Sun Y, Pang J, Long YQ. Advances in the Delivery, Activation and Therapeutics Applications of Bioorthogonal Prodrugs. Med Res Rev 2024. [PMID: 39692238 DOI: 10.1002/med.22095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
Traditional prodrug strategies have been leveraged to overcome many inherent drawbacks of active native drugs in the drug research and development. However, endogenous stimuli such as specific microenvironment or enzymes are relied on to achieve the prodrug activation, resulting in unintended drug release and systemic toxicity. Alternatively, bioorthogonal cleavage reaction-enabled bioorthogonal prodrugs activation via exogenous triggers has emerged as a valuable approach, featuring spatiotemporally controlled drug release. Such bioorthogonal prodrug strategies would ensure targeted drug delivery and/or in situ generation, further circumventing systemic toxicity or premature elimination of active drugs. In recent years, metal-free bioorthogonal cleavage reactions with fast kinetics have boomed in the bioorthogonal prodrug design. Meanwhile, transition-metal-catalyzed and photocatalytic deprotection reactions have also been developed to trigger prodrug activation in biological systems. Besides traditional small molecule prodrugs, gasotransmitters have been successfully delivered to specific organelles or cells via bioorthogonal reactions, and nanosystems have been devised into bioorthogonal triggers as well. Herein, we present an overview of the latest advances in these bioorthogonally-uncaged prodrugs, focused on the delivery, activation and therapeutics applications.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Medicinal Chemistry, Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yuanjun Sun
- Department of Medicinal Chemistry, Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| | - Jing Pang
- Department of Medicinal Chemistry, Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| | - Ya-Qiu Long
- Department of Medicinal Chemistry, Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| |
Collapse
|
2
|
van de L'Isle M, Croke S, Valero T, Unciti‐Broceta A. Development of Biocompatible Cu(I)-Microdevices for Bioorthogonal Uncaging and Click Reactions. Chemistry 2024; 30:e202400611. [PMID: 38512657 PMCID: PMC11497292 DOI: 10.1002/chem.202400611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Transition-metal-catalyzed bioorthogonal reactions emerged a decade ago as a novel strategy to implement spatiotemporal control over enzymatic functions and pharmacological interventions. The use of this methodology in experimental therapy is driven by the ambition of improving the tolerability and PK properties of clinically-used therapeutic agents. The preclinical potential of bioorthogonal catalysis has been validated in vitro and in vivo with the in situ generation of a broad range of drugs, including cytotoxic agents, anti-inflammatory drugs and anxiolytics. In this article, we report our investigations towards the preparation of solid-supported Cu(I)-microdevices and their application in bioorthogonal uncaging and click reactions. A range of ligand-functionalized polymeric devices and off-on Cu(I)-sensitive sensors were developed and tested under conditions compatible with life. Last, we present a preliminary exploration of their use for the synthesis of PROTACs through CuAAC assembly of two heterofunctional mating units.
Collapse
Affiliation(s)
- Melissa van de L'Isle
- Edinburgh Cancer ResearchInstitute of Genetics & CancerUniversity of EdinburghCrewe Road SouthEdinburghEH4 2XRUK
| | - Stephen Croke
- Edinburgh Cancer ResearchInstitute of Genetics & CancerUniversity of EdinburghCrewe Road SouthEdinburghEH4 2XRUK
| | - Teresa Valero
- Edinburgh Cancer ResearchInstitute of Genetics & CancerUniversity of EdinburghCrewe Road SouthEdinburghEH4 2XRUK
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of Chemistry applied to Biomedicine and the EnvironmentFaculty of PharmacyUniversity of GranadaCampus de Cartuja s/n18071GranadaSpain
- GENYOCentre for Genomics and Oncological ResearchPfizer/University of Granada/Andalusian Regional GovernmentAvda. Ilustración 11418016GranadaSpain
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
| | - Asier Unciti‐Broceta
- Edinburgh Cancer ResearchInstitute of Genetics & CancerUniversity of EdinburghCrewe Road SouthEdinburghEH4 2XRUK
| |
Collapse
|
3
|
Lahmadi G, Horchani M, Dbeibia A, Mahdhi A, Romdhane A, Lawson AM, Daïch A, Harrath AH, Ben Jannet H, Othman M. Novel Oleanolic Acid-Phtalimidines Tethered 1,2,3 Triazole Hybrids as Promising Antibacterial Agents: Design, Synthesis, In Vitro Experiments and In Silico Docking Studies. Molecules 2023; 28:4655. [PMID: 37375209 DOI: 10.3390/molecules28124655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
As part of the valorization of agricultural waste into bioactive compounds, a series of structurally novel oleanolic acid ((3β-hydroxyolean-12-en-28-oic acid, OA-1)-phtalimidines (isoindolinones) conjugates 18a-u bearing 1,2,3-triazole moieties were designed and synthesized by treating an azide 4 previously prepared from OA-1 isolated from olive pomace (Olea europaea L.) with a wide range of propargylated phtalimidines using the Cu(I)-catalyzed click chemistry approach. OA-1 and its newly prepared analogues, 18a-u, were screened in vitro for their antibacterial activity against two Gram-positive bacteria, Staphylococcus aureus and Listeria monocytogenes, and two Gram-negative bacteria, Salmonella thyphimurium and Pseudomonas aeruginosa. Attractive results were obtained, notably against L. monocytogenes. Compounds 18d, 18g, and 18h exhibited the highest antibacterial activity when compared with OA-1 and other compounds in the series against tested pathogenic bacterial strains. A molecular docking study was performed to explore the binding mode of the most active derivatives into the active site of the ABC substrate-binding protein Lmo0181 from L. monocytogenes. Results showed the importance of both hydrogen bonding and hydrophobic interactions with the target protein and are in favor of the experimental data.
Collapse
Affiliation(s)
- Ghofrane Lahmadi
- Normandie University, URCOM, UNILEHAVRE, FR3021, UR 3221, 25 Rue Philippe Lebon, BP 540, F-76058 Le Havre, France
- Laboratory of Heterocyclic Chemistry, LR11ES39, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia
| | - Mabrouk Horchani
- Laboratory of Heterocyclic Chemistry, LR11ES39, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia
| | - Amal Dbeibia
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Abdelkarim Mahdhi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Anis Romdhane
- Laboratory of Heterocyclic Chemistry, LR11ES39, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia
| | - Ata Martin Lawson
- Normandie University, URCOM, UNILEHAVRE, FR3021, UR 3221, 25 Rue Philippe Lebon, BP 540, F-76058 Le Havre, France
| | - Adam Daïch
- Normandie University, URCOM, UNILEHAVRE, FR3021, UR 3221, 25 Rue Philippe Lebon, BP 540, F-76058 Le Havre, France
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, LR11ES39, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia
| | - Mohamed Othman
- Normandie University, URCOM, UNILEHAVRE, FR3021, UR 3221, 25 Rue Philippe Lebon, BP 540, F-76058 Le Havre, France
| |
Collapse
|
4
|
Abonia R, Insuasty D, Laali KK. Recent Advances in the Synthesis of Propargyl Derivatives, and Their Application as Synthetic Intermediates and Building Blocks. Molecules 2023; 28:molecules28083379. [PMID: 37110613 PMCID: PMC10146578 DOI: 10.3390/molecules28083379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The propargyl group is a highly versatile moiety whose introduction into small-molecule building blocks opens up new synthetic pathways for further elaboration. The last decade has witnessed remarkable progress in both the synthesis of propargylation agents and their application in the synthesis and functionalization of more elaborate/complex building blocks and intermediates. The goal of this review is to highlight these exciting advances and to underscore their impact.
Collapse
Affiliation(s)
- Rodrigo Abonia
- Research Group of Heterocyclic Compounds, Department of Chemistry, Universidad del Valle, Cali A.A. 25360, Colombia
| | - Daniel Insuasty
- Grupo de Investigación en Química y Biología, Departamento de Química y Biología, Universidad del Norte, Barranquilla 081007, Atlántico, Colombia
| | - Kenneth K Laali
- Department of Chemistry, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
| |
Collapse
|
5
|
Rubio-Ruiz B, Pérez-López AM, Uson L, Ortega-Liebana MC, Valero T, Arruebo M, Hueso JL, Sebastian V, Santamaria J, Unciti-Broceta A. In Cellulo Bioorthogonal Catalysis by Encapsulated AuPd Nanoalloys: Overcoming Intracellular Deactivation. NANO LETTERS 2023; 23:804-811. [PMID: 36648322 PMCID: PMC9912372 DOI: 10.1021/acs.nanolett.2c03593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Bioorthogonal metallocatalysis has opened up a xenobiotic route to perform nonenzymatic catalytic transformations in living settings. Despite their promising features, most metals are deactivated inside cells by a myriad of reactive biomolecules, including biogenic thiols, thereby limiting the catalytic functioning of these abiotic reagents. Here we report the development of cytocompatible alloyed AuPd nanoparticles with the capacity to elicit bioorthogonal depropargylations with high efficiency in biological media. We also show that the intracellular catalytic performance of these nanoalloys is significantly enhanced by protecting them following two different encapsulation methods. Encapsulation in mesoporous silica nanorods resulted in augmented catalyst reactivity, whereas the use of a biodegradable PLGA matrix increased nanoalloy delivery across the cell membrane. The functional potential of encapsulated AuPd was demonstrated by releasing the potent chemotherapy drug paclitaxel inside cancer cells. Nanoalloy encapsulation provides a novel methodology to develop nanoreactors capable of mediating new-to-life reactions in cells.
Collapse
Affiliation(s)
- Belén Rubio-Ruiz
- Edinburgh
Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
- Department
of Medicinal and Organic Chemistry and Unit of Excellence in Chemistry
Applied to Biomedicine and Environment, Faculty of Pharmacy, Campus
Cartuja s/n, University of Granada, 18071 Granada, Spain
- GENYO,
Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain
| | - Ana M. Pérez-López
- Edinburgh
Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
- TU
Berlin, Institut für
Biotechnologie, Aufgang
17-1, Level 4, Raum 472, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Laura Uson
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Department
of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50018 Zaragoza, Spain
| | - M. Carmen Ortega-Liebana
- Edinburgh
Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
- Department
of Medicinal and Organic Chemistry and Unit of Excellence in Chemistry
Applied to Biomedicine and Environment, Faculty of Pharmacy, Campus
Cartuja s/n, University of Granada, 18071 Granada, Spain
- GENYO,
Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain
| | - Teresa Valero
- Edinburgh
Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
- Department
of Medicinal and Organic Chemistry and Unit of Excellence in Chemistry
Applied to Biomedicine and Environment, Faculty of Pharmacy, Campus
Cartuja s/n, University of Granada, 18071 Granada, Spain
- GENYO,
Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain
| | - Manuel Arruebo
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Department
of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50018 Zaragoza, Spain
- Networking
Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-
BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jose L. Hueso
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Department
of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50018 Zaragoza, Spain
- Networking
Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-
BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Victor Sebastian
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Department
of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50018 Zaragoza, Spain
- Networking
Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-
BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jesus Santamaria
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Department
of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50018 Zaragoza, Spain
- Networking
Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-
BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Asier Unciti-Broceta
- Edinburgh
Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| |
Collapse
|
6
|
The key new techniques in the medicinal chemist's toolkit to prioritize solubility during drug design. Future Med Chem 2022; 14:1421-1424. [PMID: 36165807 DOI: 10.4155/fmc-2022-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Liu Y, Lai KL, Vong K. Transition Metal Scaffolds Used To Bring New‐to‐Nature Reactions into Biological Systems. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yifei Liu
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Ka Lun Lai
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Kenward Vong
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| |
Collapse
|
8
|
Adam C, Bray TL, Pérez-López AM, Tan EH, Rubio-Ruiz B, Baillache DJ, Houston DR, Salji MJ, Leung HY, Unciti-Broceta A. A 5-FU Precursor Designed to Evade Anabolic and Catabolic Drug Pathways and Activated by Pd Chemistry In Vitro and In Vivo. J Med Chem 2022; 65:552-561. [PMID: 34979089 DOI: 10.1021/acs.jmedchem.1c01733] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
5-Fluorouracil (5-FU) is an antineoplastic antimetabolite that is widely administered to cancer patients by bolus injection, especially to those suffering from colorectal and pancreatic cancer. Because of its suboptimal route of administration and dose-limiting toxicities, diverse 5-FU prodrugs have been developed to confer oral bioavailability and increase the safety profile of 5-FU chemotherapy regimens. Our contribution to this goal is presented herein with the development of a novel palladium-activated prodrug designed to evade the metabolic machinery responsible for 5-FU anabolic activation and catabolic processing. The new prodrug is completely innocuous to cells and highly resistant to metabolization by primary hepatocytes and liver S9 fractions (the main metabolic route for 5-FU degradation), whereas it is rapidly converted into 5-FU in the presence of a palladium (Pd) source. In vivo pharmokinetic analysis shows the prodrug is rapidly and completely absorbed after oral administration and exhibits a longer half-life than 5-FU. In vivo efficacy studies in a xenograft colon cancer model served to prove, for the first time, that orally administered prodrugs can be locally converted to active drugs by intratumorally inserted Pd implants.
Collapse
Affiliation(s)
- Catherine Adam
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, U.K
| | - Thomas L Bray
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, U.K
| | - Ana M Pérez-López
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, U.K
| | - Ee Hong Tan
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, U.K.,Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, U.K
| | - Belén Rubio-Ruiz
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, U.K
| | - Daniel J Baillache
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, U.K
| | - Douglas R Houston
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Mark J Salji
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, U.K.,Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, U.K
| | - Hing Y Leung
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, U.K.,Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, U.K
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, U.K
| |
Collapse
|
9
|
Ortega‐Liebana MC, Porter NJ, Adam C, Valero T, Hamilton L, Sieger D, Becker CG, Unciti‐Broceta A. Truly-Biocompatible Gold Catalysis Enables Vivo-Orthogonal Intra-CNS Release of Anxiolytics. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202111461. [PMID: 38505566 PMCID: PMC10946786 DOI: 10.1002/ange.202111461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/23/2021] [Indexed: 03/21/2024]
Abstract
Being recognized as the best-tolerated of all metals, the catalytic potential of gold (Au) has thus far been hindered by the ubiquitous presence of thiols in organisms. Herein we report the development of a truly-catalytic Au-polymer composite by assembling ultrasmall Au-nanoparticles at the protein-repelling outer layer of a co-polymer scaffold via electrostatic loading. Illustrating the in vivo-compatibility of the novel catalysts, we show their capacity to uncage the anxiolytic agent fluoxetine at the central nervous system (CNS) of developing zebrafish, influencing their swim pattern. This bioorthogonal strategy has enabled -for the first time- modification of cognitive activity by releasing a neuroactive agent directly in the brain of an animal.
Collapse
Affiliation(s)
- M. Carmen Ortega‐Liebana
- Cancer Research UK Edinburgh CentreInstitute of Genetics & CancerUniversity of EdinburghEdinburghEH4 2XUUK
| | - Nicola J. Porter
- Centre for Discovery Brain SciencesThe Chancellor's BuildingUniversity of EdinburghEdinburghEH16 4SBUK
| | - Catherine Adam
- Cancer Research UK Edinburgh CentreInstitute of Genetics & CancerUniversity of EdinburghEdinburghEH4 2XUUK
| | - Teresa Valero
- Cancer Research UK Edinburgh CentreInstitute of Genetics & CancerUniversity of EdinburghEdinburghEH4 2XUUK
| | - Lloyd Hamilton
- Centre for Discovery Brain SciencesThe Chancellor's BuildingUniversity of EdinburghEdinburghEH16 4SBUK
| | - Dirk Sieger
- Centre for Discovery Brain SciencesThe Chancellor's BuildingUniversity of EdinburghEdinburghEH16 4SBUK
| | - Catherina G. Becker
- Centre for Discovery Brain SciencesThe Chancellor's BuildingUniversity of EdinburghEdinburghEH16 4SBUK
- Center for Regenerative TherapiesTechnische Universität Dresden01307DresdenGermany
| | - Asier Unciti‐Broceta
- Cancer Research UK Edinburgh CentreInstitute of Genetics & CancerUniversity of EdinburghEdinburghEH4 2XUUK
| |
Collapse
|
10
|
Ortega‐Liebana MC, Porter NJ, Adam C, Valero T, Hamilton L, Sieger D, Becker CG, Unciti‐Broceta A. Truly-Biocompatible Gold Catalysis Enables Vivo-Orthogonal Intra-CNS Release of Anxiolytics. Angew Chem Int Ed Engl 2022; 61:e202111461. [PMID: 34730266 PMCID: PMC9299494 DOI: 10.1002/anie.202111461] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/23/2021] [Indexed: 01/07/2023]
Abstract
Being recognized as the best-tolerated of all metals, the catalytic potential of gold (Au) has thus far been hindered by the ubiquitous presence of thiols in organisms. Herein we report the development of a truly-catalytic Au-polymer composite by assembling ultrasmall Au-nanoparticles at the protein-repelling outer layer of a co-polymer scaffold via electrostatic loading. Illustrating the in vivo-compatibility of the novel catalysts, we show their capacity to uncage the anxiolytic agent fluoxetine at the central nervous system (CNS) of developing zebrafish, influencing their swim pattern. This bioorthogonal strategy has enabled -for the first time- modification of cognitive activity by releasing a neuroactive agent directly in the brain of an animal.
Collapse
Affiliation(s)
- M. Carmen Ortega‐Liebana
- Cancer Research UK Edinburgh CentreInstitute of Genetics & CancerUniversity of EdinburghEdinburghEH4 2XUUK
| | - Nicola J. Porter
- Centre for Discovery Brain SciencesThe Chancellor's BuildingUniversity of EdinburghEdinburghEH16 4SBUK
| | - Catherine Adam
- Cancer Research UK Edinburgh CentreInstitute of Genetics & CancerUniversity of EdinburghEdinburghEH4 2XUUK
| | - Teresa Valero
- Cancer Research UK Edinburgh CentreInstitute of Genetics & CancerUniversity of EdinburghEdinburghEH4 2XUUK
| | - Lloyd Hamilton
- Centre for Discovery Brain SciencesThe Chancellor's BuildingUniversity of EdinburghEdinburghEH16 4SBUK
| | - Dirk Sieger
- Centre for Discovery Brain SciencesThe Chancellor's BuildingUniversity of EdinburghEdinburghEH16 4SBUK
| | - Catherina G. Becker
- Centre for Discovery Brain SciencesThe Chancellor's BuildingUniversity of EdinburghEdinburghEH16 4SBUK
- Center for Regenerative TherapiesTechnische Universität Dresden01307DresdenGermany
| | - Asier Unciti‐Broceta
- Cancer Research UK Edinburgh CentreInstitute of Genetics & CancerUniversity of EdinburghEdinburghEH4 2XUUK
| |
Collapse
|
11
|
Structural modification aimed for improving solubility of lead compounds in early phase drug discovery. Bioorg Med Chem 2022; 56:116614. [DOI: 10.1016/j.bmc.2022.116614] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022]
|