1
|
Ge S, Jian R, Xuan Q, Zhu Y, Ren X, Li W, Chen X, Huang RK, Lee CS, Leung SC, Basilico N, Parapini S, Taramelli D, Pinthong N, Antonyuk SV, O'Neill PM, Sheng Z, Hong WD. Novel antimalarial 3-substituted quinolones isosteres with improved pharmacokinetic properties. Eur J Med Chem 2025; 284:117228. [PMID: 39752821 DOI: 10.1016/j.ejmech.2024.117228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/05/2024] [Accepted: 12/27/2024] [Indexed: 01/20/2025]
Abstract
Aryl quinolone derivatives can target the cytochrome bc1 complex of Plasmodium falciparum, exhibiting excellent in vitro and in vivo antimalarial activity. However, their clinical development has been hindered due to their poor aqueous solubility profiles. In this study, a series of bioisosteres containing saturated heterocycles fused to a 4-pyridone ring were designed to replace the inherently poorly soluble quinolone core in antimalarial quinolones with the aim to reduce π-π stacking interactions in the crystal packing solid state, and a synthetic route was developed to prepare these alternative core derivatives. One such novel derivate, F14, exhibited significant enhancements in both aqueous solubility (20 μM) and lipophilicity (LogD 2.7), whilst retaining nanomolar antimalarial activity against the W2 strain of P. falciparum (IC50 = 235 nM). The pharmacokinetic studies reported, provide preliminary insights into the in vivo distribution and elimination of F14, while findings from single crystal X-ray diffraction experiment rationalized the enhanced solubility. Protein X-ray crystallography and in silico docking simulations provide insight into the potential mode of action within the cytochrome bc1 complex. These findings demonstrated the viability of this bioisostere replacement strategy and provided support for further exploration of in vivo efficacy in preclinical animal models and valuable insights for new drug design strategies in the fight against malaria.
Collapse
Affiliation(s)
- Siyuan Ge
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, China; Department of Chemistry, University of Liverpool, L69 7ZD, Liverpool, UK; Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - Rongchao Jian
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, China
| | - Qiwei Xuan
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, China; Liverpool-Jiangmen Public Health Research Centre, International Healthcare Innovation Institute (Jiangmen), 529020, Jiangmen, China
| | - Yingxiang Zhu
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, China; Liverpool-Jiangmen Public Health Research Centre, International Healthcare Innovation Institute (Jiangmen), 529020, Jiangmen, China
| | - Xiaofei Ren
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, China; Liverpool-Jiangmen Public Health Research Centre, International Healthcare Innovation Institute (Jiangmen), 529020, Jiangmen, China
| | - Wenjiao Li
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, China; Liverpool-Jiangmen Public Health Research Centre, International Healthcare Innovation Institute (Jiangmen), 529020, Jiangmen, China
| | - Xiaole Chen
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, China; Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - Rui-Kang Huang
- Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-ku, 060-0810, Sapporo, Japan; Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita-ku, Sapporo, Japan
| | - Chi-Sing Lee
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - Suet C Leung
- Department of Chemistry, University of Liverpool, L69 7ZD, Liverpool, UK
| | - Nicoletta Basilico
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133, Milano, Italy; Affiliated to Centro Interuniversitario di Ricerche sulla Malaria/ Italian Malaria Network (CIRM-IMN), Università degli Studi di Camerino, UK
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133, Milano, Italy; Affiliated to Centro Interuniversitario di Ricerche sulla Malaria/ Italian Malaria Network (CIRM-IMN), Università degli Studi di Camerino, UK
| | - Donatella Taramelli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Pascal 36, 20133, Milano, Italy; Affiliated to Centro Interuniversitario di Ricerche sulla Malaria/ Italian Malaria Network (CIRM-IMN), Università degli Studi di Camerino, UK
| | - Nattapon Pinthong
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, L69 7ZB, Liverpool, UK
| | - Svetlana V Antonyuk
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, L69 7ZB, Liverpool, UK
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool, L69 7ZD, Liverpool, UK
| | - Zhaojun Sheng
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, China; Liverpool-Jiangmen Public Health Research Centre, International Healthcare Innovation Institute (Jiangmen), 529020, Jiangmen, China.
| | - W David Hong
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, China; Department of Chemistry, University of Liverpool, L69 7ZD, Liverpool, UK.
| |
Collapse
|
2
|
Sharma V, Saini M, Das R, Chauhan S, Sharma D, Mujwar S, Gupta S, Mehta DK. Recent Updates on Antibacterial Quinolones: Green Synthesis, Mode of Interaction and Structure-Activity Relationship. Chem Biodivers 2025:e202401936. [PMID: 39756027 DOI: 10.1002/cbdv.202401936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Quinolone antibiotics are a crucial class of synthetic antibacterial agents, widely utilized due to their broad spectrum of antibacterial activity. Due to the development of antimicrobial resistance, the potency of quinolone drugs decreased. Many conventional methods have been developed to elevate amination rate and to improve yield. These methods are generally characterized by prolonged reaction durations, high boiling solvents, harsh conditions, costly reagents and excessive heat generation, which have adversely affected the therapeutic efficacy of these compounds. Recently, green chemistry has focused on sustainable chemistry-dependent quinolone analogue synthesis methods that significantly reduce bacterial infections. These methods include one-pot synthesis, photoredox catalysis, phase transfer catalysis, ultrasonic irradiation, microwave-assisted, green solvent and catalyst-free synthesis, which often utilize energy-efficient, non-toxic and less time-consuming techniques, aligning with green chemistry principles to improve safety and environmental impact. Researchers continuously explore innovative approaches to applying these methods in synthetic reactions. This review includes a comprehensive analysis of synthetic literature from the past 15 years from Scopus, PubMed, Embase and WOS using keywords, such as green chemistry, quinolone and antibacterial, highlighting significant advancements and emerging trends. This work's importance lies in its extensive literature overview on green synthesis methods for quinolones and related heterocyclic compounds. Furthermore, to provide useful information for the generation of future antibacterial drugs, some structural-activity relationship studies and in silico studies have also been included to investigate the stable binding interactions between quinolone leads and various target proteins.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Monika Saini
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Rina Das
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Samrat Chauhan
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Diksha Sharma
- Department of Pharmaceutical Chemistry, Swami Devidyal College of Pharmacy, Barwala, India
| | - Somdutt Mujwar
- Department of Pharmaceutical Chemistry, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sumeet Gupta
- Department of Pharmacology, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Dinesh Kumar Mehta
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| |
Collapse
|
3
|
Keerthana P, Suresh S, Nawaz Khan FR. Facile synthesis of functionalized quinolinones in a green reaction medium and their photophysical properties. Org Biomol Chem 2024; 23:126-137. [PMID: 39508629 DOI: 10.1039/d4ob01390e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
A facile and green chemical approach was successfully developed to construct functionalized quinolinones utilizing substituted alcohols, alkyl acetoacetate, and α-bromo ketones. Various quinolinones bearing either electron-rich or electron-deficient groups at different positions were synthesized in moderate to good yields under mild reaction conditions. The plausible mechanistic pathway for this transformation is supported by experimental evidence and control experiments. This simple approach for synthesizing quinolinones could open new avenues for discovering novel biological and pharmaceutical compounds. The use of affordable nickel catalysts, mild reaction conditions, operational simplicity, and high atom economy are attractive features of this method. Furthermore, the synthetic efficiency has been demonstrated through gram-scale experiments. Our research also provides valuable insights into the photophysical properties of the synthesized derivatives. Notably, compound 6n exhibited the highest Stokes shift (216 nm) in DCM solvent. Furthermore, compounds 5d and 6j showed positive solvatochromism, displaying a stronger emission as the solvent polarity increased. Additionally, compound 6j displayed aggregation-induced emission (AIE) properties in a DMSO : water mixture, making it suitable for use as a security ink, highlighting its potential applications in various fields.
Collapse
Affiliation(s)
- Pari Keerthana
- Organic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, Tamil Nadu, India.
| | - Sundararajan Suresh
- Organic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, Tamil Nadu, India.
| | - Fazlur Rahman Nawaz Khan
- Organic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, Tamil Nadu, India.
| |
Collapse
|
4
|
Kasalović MP, Jelača S, Dimić D, Maksimović-Ivanić D, Jevtić VV, Mijatović S, Rüffer T, Kaluđerović GN, Pantelić NĐ. Organic Moiety on Sn(IV) Does Matter for In Vitro Mode of Action: nBu 3Sn(IV) Compounds with Carboxylato N-Functionalized 2-Quinolones Induce Anoikis-like Cell Death in A375 Cells. Pharmaceutics 2024; 16:1529. [PMID: 39771508 PMCID: PMC11679857 DOI: 10.3390/pharmaceutics16121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Objectives: New tributyltin(IV) complexes containing the carboxylate ligands 3-(4-methyl-2-oxoquinolin-1(2H)-yl)propanoic acid (HL1) and 2-(4-methyl-2-oxoquinolin-1(2H)-yl)acetic acid (HL2) have been synthesized. Methods: Their structures have been determined by elemental microanalysis, FT-IR and multinuclear NMR (1H, 13C and 119Sn) spectroscopy and X-ray diffraction study. A solution state NMR analysis reveals a four-coordinated tributyltin(IV) complex in non-polar solvents, while an X-Ray crystallographic analysis confirms a five-coordinated trigonal-bipyramidal geometry around the tin atom due to the formation of 1D chains. A theoretical structural analysis was performed by optimization employing B3LYP-D3BJ functional and 6-311++G(d,p)/def2-TZVP(Sn) basis sets for H, C, N, O/Sn, respectively. The interactions between tin(IV) and surrounding atoms were examined by QTAIM approach. The in vitro antiproliferative activity of the synthesized compounds was evaluated by MTT and CV assays versus MCF-7 (human breast adenocarcinoma), HCT116 (human colorectal carcinoma), A375 (human melanoma), 4T1 (mouse breast carcinoma), CT26 (mouse colon carcinoma) and B16 (mouse melanoma) tumor cell lines. Results: Both synthesized compounds (nBu3SnL1 and nBu3SnL2) exerted powerful micromolar IC50 cytotoxicity values and demonstrated high selectivity toward malignant cells. Both experimental drugs affected cell adhesion and induced anchorage independent apoptosis, a favorable type of cell death with an essential role in cancer dissemination prevention. The BSA-binding affinity of the obtained organotin compounds was followed by spectrofluorometric titration and molecular docking simulations. Conclusions: The tributyltin(IV) compounds selectively induce anoikis-like cell death in A375 cells, also highlighting the importance of the organic moiety on the tin(IV) ion in the mechanism of action.
Collapse
Affiliation(s)
- Marijana P. Kasalović
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, 06217 Merseburg, Germany;
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia;
| | - Sanja Jelača
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (S.J.); (D.M.-I.); (S.M.)
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia;
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (S.J.); (D.M.-I.); (S.M.)
| | - Verica V. Jevtić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia;
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (S.J.); (D.M.-I.); (S.M.)
| | - Tobias Rüffer
- Institute of Chemistry, Chemnitz University of Technology, Straße der Nationen 62, 09111 Chemnitz, Germany;
| | - Goran N. Kaluđerović
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, 06217 Merseburg, Germany;
| | - Nebojša Đ. Pantelić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| |
Collapse
|
5
|
Navacchia ML, Cinti C, Marchesi E, Perrone D. Insights into SARS-CoV-2: Small-Molecule Hybrids for COVID-19 Treatment. Molecules 2024; 29:5403. [PMID: 39598790 PMCID: PMC11596935 DOI: 10.3390/molecules29225403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
The advantages of a treatment modality that combines two or more therapeutic agents with different mechanisms of action encourage the study of hybrid functional compounds for pharmacological applications. Molecular hybridization, resulting from a covalent combination of two or more pharmacophore units, has emerged as a promising approach to overcome several issues and has also been explored for the design of new drugs for COVID-19 treatment. In this review, we presented an overview of small-molecule hybrids from both natural products and synthetic sources reported in the literature to date with potential antiviral anti-SARS-CoV-2 activity.
Collapse
Affiliation(s)
- Maria Luisa Navacchia
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), 40129 Bologna, Italy;
| | - Caterina Cinti
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), 40129 Bologna, Italy;
| | - Elena Marchesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Daniela Perrone
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
6
|
Arutiunov N, Zatsepilina AM, Aksenova AA, Aksenov NA, Aksenov DA, Leontiev AV, Aksenov AV. One-Pot Synthesis of N-Fused Quinolone-4 Tetracyclic Scaffolds from 2,2-Disubstituted Indolin-3-ones. ACS OMEGA 2024; 9:45501-45517. [PMID: 39554462 PMCID: PMC11561625 DOI: 10.1021/acsomega.4c07691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/06/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
A cascade transformation of C2-quaternary indoxyls leading to an efficient assembly of complex (dihydro)indolo[1,2-a]quinolin-5-one ring systems is reported. The method involves the gram-scale preparation of 2-(2-aryl-3-oxoindolin-2-yl)-2-phenylacetonitriles which are then converted with methyl ketones to the corresponding 2-(2-oxo-2-aryl(alkyl)ethyl)-2-phenylindolin-3-ones. The latter can either be isolated with good yields (75-96%) or, in the case of o-nitroacetophenone, used in situ for further base-assisted intramolecular SNAr cyclization resulting in indoxyl-fused quinolone-4 hybrids (up to 95%).
Collapse
Affiliation(s)
- Nikolai
A. Arutiunov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Anna M. Zatsepilina
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Anna A. Aksenova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Nicolai A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Dmitrii A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Alexander V. Leontiev
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Alexander V. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| |
Collapse
|
7
|
Zang ZL, Wang YX, Battini N, Gao WW, Zhou CH. Synthesis and antibacterial medicinal evaluation of carbothioamido hydrazonyl thiazolylquinolone with multitargeting antimicrobial potential to combat increasingly global resistance. Eur J Med Chem 2024; 275:116626. [PMID: 38944934 DOI: 10.1016/j.ejmech.2024.116626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
The global microbial resistance is a serious threat to human health, and multitargeting compounds are considered to be promising to combat microbial resistance. In this work, a series of new thiazolylquinolones with multitargeting antimicrobial potential were developed through multi-step reactions using triethoxymethane and substituted anilines as start materials. Their structures were confirmed by 1H NMR, 13C NMR and HRMS spectra. Antimicrobial evaluation revealed that some of the target compounds could effectively inhibit microbial growth. Especially, carbothioamido hydrazonyl aminothiazolyl quinolone 8a showed strong inhibitory activity toward drug-resistant Staphylococcus aureus with MIC value of 0.0047 mM, which was 5-fold more active than that of norfloxacin. The highly active compound 8a exhibited negligible hemolysis, no significant toxicity in vitro and in vivo, low drug resistance, as well as rapidly bactericidal effects, which suggested its favorable druggability. Furthermore, compound 8a was able to effectively disrupt the integrity of the bacterial membrane, intercalate into DNA and inhibit the activity of topoisomerase IV, suggesting multitargeting mechanism of action. Compound 8a could form hydrogen bonds and hydrophobic interactions with DNA-topoisomerase IV complex, indicating the insertion of aminothiazolyl moiety was beneficial to improve antibacterial efficiency. These findings indicated that the active carbothioamido hydrazonyl aminothiazolyl quinolone 8a as a chemical therapeutic candidate demonstrated immense potential to tackle drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhong-Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yi-Xin Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wei-Wei Gao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
8
|
Khlifi T, Jbilou C, Leblais A, Marrot J, Nun P, Ghiazza C, Chataigner I, Coeffard V, Moreau X. Atroposelective Construction of Axially Chiral 2-Aryl-Pyrroloquinolones. Org Lett 2024; 26:6725-6729. [PMID: 39074095 DOI: 10.1021/acs.orglett.4c02366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
A two-step protocol including an enantioselective organocatalyzed synthesis of pyrroloquinolines followed by an oxidation reaction allowed the formation of axially chiral 2-aryl-pyrroloquinolones. Thorough optimization of the experimental conditions for the second step allowed the oxygenation reaction to take place and ensured, in most cases, a central-to-axial chirality conversion with complete retention of the enantiomeric excess.
Collapse
Affiliation(s)
- Tourya Khlifi
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| | - Chaimae Jbilou
- Nantes Université CNRS, CEISAM, UMR 6230, 44000 Nantes, France
| | - Alexis Leblais
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| | - Jérôme Marrot
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| | - Pierrick Nun
- Nantes Université CNRS, CEISAM, UMR 6230, 44000 Nantes, France
| | - Clément Ghiazza
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| | - Isabelle Chataigner
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, 76000 Rouen, France Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT UMR7616, 75005 Paris, France
| | | | - Xavier Moreau
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| |
Collapse
|
9
|
Sharma V, Das R, Mehta DK, Sharma D. Novel quinolone substituted 1,3,4-oxadiazole derivatives: design, synthesis, antimicrobial and anti-inflammatory potential. Mol Divers 2024:10.1007/s11030-024-10949-y. [PMID: 39096354 DOI: 10.1007/s11030-024-10949-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
A novel series of quinolone-substituted 1,3,4-oxadiazole derivatives 4(a-l) have been designed and synthesized. The target compounds were investigated for their antibacterial activity against gram positive (Staphylococcus aureus, ATCC 25923, Enterococcus faecalis, ATCC 29212) and gram negative bacterium (Escherichia coli, ATCC 25922, Pseudomonas aeruginosa, ATCC 27853) for antifungal activity using (Candida albicans, ATCC 10231) and anti-inflammatory activity as COX-II inhibitors, respectively. The 1,3,4-oxadiazole functionality was introduced at C-6 position of pipemidic acid derivatives. IR, 1H NMR and Mass spectrometry techniques confirmed the structure of synthesized derivatives. The quinolone (pipemidic acid)-oxadiazole hybrid derivatives were effective against bacterial strains. When compared to ciprofloxacin (MIC 16 µg/mL), the compounds under consideration (4f, 4h, and 4k) showed significant antibacterial activity against all bacterial strains except Enterococcus faecalis, with MICs of 8 µg/mL. On the other hand, synthesized target compounds 4(a-l) did not respond well against Candida albicans fungal strain. The compound (4k) represents high % inhibition against COX-II. The compounds (4f, 4h and 4k) exhibited highest hydrogen bonding interaction with ARG57, ARG72, ARG78, LEU54 and MET16 target residues with a binding energy of - 8.4, - 8.6 and - 8.5 kcal/mol into the active pocket of DNA gyrase enzyme respectively even better in comparison to reference ligands. Based on the docking study, quinolone (pipemidic acid) oxadiazole hybrid structural ligands exhibited strong interaction at binding pockets of DNA gyrase enzyme.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Rina Das
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Dinesh Kumar Mehta
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India.
| | - Diksha Sharma
- Swami Devidyal College of Pharmacy, Barwala, 134118, India
| |
Collapse
|
10
|
Sharma V, Das R, Mehta DK, Sharma D, Aman S, Khan MU. Quinolone scaffolds as potential drug candidates against infectious microbes: a review. Mol Divers 2024:10.1007/s11030-024-10862-4. [PMID: 38683488 DOI: 10.1007/s11030-024-10862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
Prevalence of microbial infections and new rising pathogens are signified as causative agent for variety of serious and lethal health crisis in past years. Despite medical advances, bacterial and fungal infections continue to be a rising problem in the health care system. As more bacteria develop resistance to antibiotics used in therapy, and as more invasive microbial species develop resistance to conventional antimicrobial drugs. Relevant published publications from the last two decades, up to 2024, were systematically retrieved from the MEDLINE/PubMed, SCOPUS, EMBASE, and WOS databases using keywords such as quinolones, anti-infective, antibacterial, antimicrobial resistance and patents on quinolone derivatives. With an approach of considerable interest towards novel heterocyclic derivatives as novel anti-infective agents, researchers have explored these as essential tools in vistas of drug design and development. Among heterocycles, quinolones have been regarded extremely essential for the development of novel derivatives, even able to tackle the associated resistance issues. The quinolone scaffold with its bicyclic structure and specific functional groups such as the carbonyl and acidic groups, is indeed considered a valuable functionalities for further lead generation and optimization in drug discovery. Besides, the substitution at N-1, C-3 and C-7 positions also subjected to be having a significant role in anti-infective potential. In this article, we intend to highlight recent quinolone derivatives based on the SAR approach and anti-infective potential such as antibacterial, antifungal, antimalarial, antitubercular, antitrypanosomal and antiviral activities. Moreover, some recent patents granted on quinolone-containing derivatives as anti-infective agents have also been highlighted in tabular form. Due consideration of this, future research in this scaffold is expected to be useful for aspiring scientists to get pharmacologically significant leads.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Rina Das
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Dinesh Kumar Mehta
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India.
| | - Diksha Sharma
- Swami Devidyal College of Pharmacy, Barwala, 134118, India
| | - Shahbaz Aman
- Department of Microbiology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - M U Khan
- Department of pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Uniazah, Al Qassim, Saudi Arabia
| |
Collapse
|
11
|
Kasalović MP, Jelača S, Maksimović-Ivanić D, Lađarević J, Radovanović L, Božić B, Mijatović S, Pantelić NĐ, Kaluđerović GN. Novel diphenyltin(IV) complexes with carboxylato N-functionalized 2-quinolone ligands: Synthesis, characterization and in vitro anticancer studies. J Inorg Biochem 2024; 250:112399. [PMID: 37890233 DOI: 10.1016/j.jinorgbio.2023.112399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Three new diphenyltin(IV) complexes, bis(3-(4-methyl-2-oxoquinolinyl-1(2H)-yl)propanoato)diphenyltin(IV) (1), bis(2-(4-methyl-2-oxoquinolin-1(2H)-yl)ethanoato)diphenyltin(IV) (2), and bis(2-(4-hydroxy-2-oxoquinolin-1(2H)-yl)ethanoato)diphenyltin(IV) (3), were synthesized and characterized by elemental microanalysis, FT-IR spectroscopy, and multinuclear (1H, 13C and 119Sn) NMR spectroscopy. Crystal structure of ligand precursor, 2-(4-methyl-2-oxoquinolinyl-1-(2H)-yl)acetic acid (HL2), has been determined by X-ray diffraction studies. Asymmetric bidentate coordination of the carboxylato ligands and skew trapezoidal structures are assumed for the synthesized complexes. In vitro anticancer activity of the synthesized diphenyltin(IV) complexes was evaluated against three human: MCF-7 (breast adenocarcinoma), A375 (melanoma), HCT116 (colorectal carcinoma), and three mouse tumor cell lines: 4T1 (breast carcinoma), B16 (melanoma), CT26 (colon carcinoma) using MTT and CV assays. The IC50 values fall in the range from 0.1 to 3.7 μM. Flow cytometric analysis and fluorescent microscopy suggest that complex 1 induces caspase-dependent apoptosis followed with strong blockade of cell division in HCT116 cells. Since complex 1 showed ROS/RNS scavenging potential mentioned cytotoxicity was not connected with oxidative stress.
Collapse
Affiliation(s)
- Marijana P Kasalović
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, 06217 Merseburg, Germany; Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Sanja Jelača
- Department of Immunology, Institute for Biological Research "Siniša Stanković" ̶ National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" ̶ National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Jelena Lađarević
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Lidija Radovanović
- Innovation Centre of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Bojan Božić
- Institute of Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade 11000, Serbia
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" ̶ National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Nebojša Đ Pantelić
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, 06217 Merseburg, Germany; Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
| | - Goran N Kaluđerović
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, 06217 Merseburg, Germany.
| |
Collapse
|
12
|
Singh Y, Bhatia N, Biharee A, Kulkarni S, Thareja S, Monga V. Developing our knowledge of the quinolone scaffold and its value to anticancer drug design. Expert Opin Drug Discov 2023; 18:1151-1167. [PMID: 37592843 DOI: 10.1080/17460441.2023.2246366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
INTRODUCTION The quinolone scaffold is a bicyclic benzene-pyridinic ring scaffold with nitrogen at the first position and a carbonyl group at the second or fourth position. It is endowed with a diverse spectrum of pharmacological activities, including antitumor activity, and has progressed into various development phases of clinical trials for their target-specific anticancer activity. AREAS COVERED The present review covers both classes of quinolones, i.e. quinolin-2(H)-one and quinolin-4(H)-one as anticancer agents, along with their possible mode of binding. Furthermore, their structure-activity relationships, molecular mechanisms, and pharmacokinetic properties are also covered to provide insight into their structural requirements for their rational design as anticancer agents. EXPERT OPINION Synthetic feasibility and ease of derivatization at multiple positions, has allowed medicinal chemists to explore quinolones and their chemical diversity to discover newer anticancer agents. The presence of both hydrogen bond donor (-NH) and acceptor (-C=O) functionality in the basic scaffold at two different positions, has broadened the research scope. In particular, substitution at the -NH functionality of the quinolone motif has provided ample space for suitable functionalization and appropriate substitution at the quinolone's third, sixth, and seventh carbons, resulting in selective anticancer agents binding specifically with various drug targets.
Collapse
Affiliation(s)
- Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Neha Bhatia
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Avadh Biharee
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Swanand Kulkarni
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| |
Collapse
|
13
|
Fedorowicz J, Cruz CD, Morawska M, Ciura K, Gilbert-Girard S, Mazur L, Mäkkylä H, Ilina P, Savijoki K, Fallarero A, Tammela P, Sączewski J. Antibacterial and antibiofilm activity of permanently ionized quaternary ammonium fluoroquinolones. Eur J Med Chem 2023; 254:115373. [PMID: 37084595 DOI: 10.1016/j.ejmech.2023.115373] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
A series of quaternary ammonium fluoroquinolones was obtained by exhaustive methylation of the amine groups present at the 7-position of fluoroquinolones, including ciprofloxacin, enoxacin, gatifloxacin, lomefloxacin, and norfloxacin. The synthesized molecules were tested for their antibacterial and antibiofilm activities against Gram-positive and Gram-negative human pathogens, i.e. Staphylococcus aureus and Pseudomonas aeruginosa. The study showed that the synthesized compounds are potent antibacterial agents (MIC values at the lowest 6.25 μM) with low cytotoxicity in vitro as assessed on the BALB 3T3 mouse embryo cell line. Further experiments proved that the tested derivatives are able to bind to the DNA gyrase and topoisomerase IV active sites in a fluoroquinolone-characteristic manner. The most active quaternary ammonium fluoroquinolones, in contrast to ciprofloxacin, reduce the total biomass of P. aeruginosa ATCC 15442 biofilm in post-exposure experiments. The latter effect may be due to the dual mechanism of action of the quaternary fluoroquinolones, which also involves disruption of bacterial cell membranes. IAM-HPLC chromatographic experiments with immobilized artificial membranes (phospholipids) showed that the most active compounds were those with moderate lipophilicity and containing a cyclopropyl group at the N1 nitrogen atom in the fluoroquinolone core.
Collapse
Affiliation(s)
- Joanna Fedorowicz
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland; Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5E), FI-00014, Helsinki, Finland.
| | - Cristina D Cruz
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5E), FI-00014, Helsinki, Finland
| | - Małgorzata Morawska
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland; Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5E), FI-00014, Helsinki, Finland; Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Krzesimir Ciura
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland; QSAR Lab Ltd., Trzy Lipy 3 St., 80-172, Gdańsk, Poland
| | - Shella Gilbert-Girard
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5E), FI-00014, Helsinki, Finland
| | - Liliana Mazur
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Plac Marii Curie-Skłodowskiej 5, 20-031, Lublin, Poland
| | - Heidi Mäkkylä
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5E), FI-00014, Helsinki, Finland
| | - Polina Ilina
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5E), FI-00014, Helsinki, Finland
| | - Kirsi Savijoki
- Infection Biology, Faculty of Medicine and Health Technology, Tampere University, Kalevantie 4, FI-33100, Tampere, Finland; Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, Agnes Sjöbergin katu 2, P.O. Box, FI-00014, Helsinki, Finland
| | - Adyary Fallarero
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5E), FI-00014, Helsinki, Finland
| | - Päivi Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5E), FI-00014, Helsinki, Finland
| | - Jarosław Sączewski
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| |
Collapse
|
14
|
Gao J, Hou H, Gao F. Current scenario of quinolone hybrids with potential antibacterial activity against ESKAPE pathogens. Eur J Med Chem 2023; 247:115026. [PMID: 36577217 DOI: 10.1016/j.ejmech.2022.115026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
The ESKAPE (Escherichia coli/E. coli, Staphylococcus aureus/S. aureus, Klebsiella pneumonia/K. pneumoniae, Acinetobacter Baumannii/A. baumannii, Pseudomonas aeroginosa/P. aeroginosa and Enterobacter spp.) pathogens, which could escape or evade common therapies through diverse antimicrobial resistance mechanisms and biofilm formation, are deemed as highly virulent bacteria responsible for life-threatening diseases, calling for novel chemotherapeutics. Quinolones including 2-quinolones and 4-quinolones have occupied a propitious place in drug design and development due to their excellent pharmacological profiles. Quinolones especially fluoroquinolones could inhibit the synthesis of nucleic acid of ESKAPE pathogens, leading to the rupture of bacterial chromosome. However, the resistance of ESKAPE pathogens to quinolones develops rapidly and spreads widely. Accordingly, it has become increasingly urgent to enhance the potency of quinolones against both drug-susceptible and drug-resistant ESKAPE pathogens. Quinolone hybrids can bind with different drug targets simultaneously and have been considered as useful prototypes to circumvent drug resistance. The purpose of this review is to summarize the current scenario (2018-present) of quinolone hybrids with potential antibacterial activity against ESKAPE pathogens, together with the structure-activity relationships and mechanisms of action to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Jingyue Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Haodong Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
15
|
Spencer AC, Panda SS. DNA Gyrase as a Target for Quinolones. Biomedicines 2023; 11:371. [PMID: 36830908 PMCID: PMC9953508 DOI: 10.3390/biomedicines11020371] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Bacterial DNA gyrase is a type II topoisomerase that can introduce negative supercoils to DNA substrates and is a clinically-relevant target for the development of new antibacterials. DNA gyrase is one of the primary targets of quinolones, broad-spectrum antibacterial agents and are used as a first-line drug for various types of infections. However, currently used quinolones are becoming less effective due to drug resistance. Common resistance comes in the form of mutation in enzyme targets, with this type being the most clinically relevant. Additional mechanisms, conducive to quinolone resistance, are arbitrated by chromosomal mutations and/or plasmid-gene uptake that can alter quinolone cellular concentration and interaction with the target, or affect drug metabolism. Significant synthetic strategies have been employed to modify the quinolone scaffold and/or develop novel quinolones to overcome the resistance problem. This review discusses the development of quinolone antibiotics targeting DNA gyrase to overcome bacterial resistance and reduce toxicity. Moreover, structural activity relationship (SAR) data included in this review could be useful for the development of future generations of quinolone antibiotics.
Collapse
Affiliation(s)
| | - Siva S. Panda
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
16
|
Deng C, Yan H, Wang J, Liu K, Liu BS, Shi YM. 1,2,3-Triazole-containing hybrids with potential antibacterial activity against ESKAPE pathogens. Eur J Med Chem 2022; 244:114888. [DOI: 10.1016/j.ejmech.2022.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 12/01/2022]
|
17
|
Aminoquinolones and Their Benzoquinone Dimer Hybrids as Modulators of Prion Protein Conversion. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227935. [PMID: 36432036 PMCID: PMC9693643 DOI: 10.3390/molecules27227935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/21/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
Prion Diseases or Transmissible Spongiform Encephalopathies are neurodegenerative conditions associated with a long incubation period and progressive clinical evolution, leading to death. Their pathogenesis is characterized by conformational changes of the cellular prion protein-PrPC-in its infectious isoform-PrPSc-which can form polymeric aggregates that precipitate in brain tissues. Currently, there are no effective treatments for these diseases. The 2,5-diamino-1,4-benzoquinone structure is associated with an anti-prion profile and, considering the biodynamic properties associated with 4-quinolones, in this work, 6-amino-4-quinolones derivatives and their respective benzoquinone dimeric hybrids were synthesized and had their bioactive profile evaluated through their ability to prevent prion conversion. Two hybrids, namely, 2,5-dichloro-3,6-bis((3-carboxy-1-pentyl-4-quinolone-6-yl)amino)-1,4-benzoquinone (8e) and 2,5-dichloro-3,6-bis((1-benzyl-3-carboxy-4-quinolone-6-yl)amino)-1,4-benzoquinone (8f), stood out for their prion conversion inhibition ability, affecting the fibrillation process in both the kinetics-with a shortening of the lag phase-and thermodynamics and their ability to inhibit the formation of protein aggregates without significant cytotoxicity at ten micromolar.
Collapse
|
18
|
Dong L, Wang X, Nie Y, Yu S, Li H, Zhao Q, Fan Z, Wang Y, Tan X, Yu Z. Regioselective Perfluoroalkylation of 4‐Quinolones Using Sodium Perfluoroalkyl Sulfinates. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Li Dong
- College of Life Science Hebei Agriculture University The Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Micro-organism Baoding Hebei 071000 China
| | - Xiaoqing Wang
- College of Science Hebei Agriculture University Baoding Hebei 071000 China
| | - Yudi Nie
- College of Life Science Hebei Agriculture University The Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Micro-organism Baoding Hebei 071000 China
| | - Shuo Yu
- College of Life Science Hebei Agriculture University The Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Micro-organism Baoding Hebei 071000 China
| | - Haotong Li
- College of Life Science Hebei Agriculture University The Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Micro-organism Baoding Hebei 071000 China
| | - Qian Zhao
- College of Modern Science and Technology Hebei Agriculture University Baoding Hebei 071000 China
| | - Zixuan Fan
- College of Life Science Hebei Agriculture University The Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Micro-organism Baoding Hebei 071000 China
| | - Yuqian Wang
- College of Modern Science and Technology Hebei Agriculture University Baoding Hebei 071000 China
| | - Xiaoting Tan
- College of Modern Science and Technology Hebei Agriculture University Baoding Hebei 071000 China
| | - Zhengsen Yu
- College of Life Science Hebei Agriculture University The Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Micro-organism Baoding Hebei 071000 China
| |
Collapse
|
19
|
New potent ciprofloxacin-uracil conjugates as DNA gyrase and topoisomerase IV inhibitors against methicillin-resistant Staphylococcus aureus. Bioorg Med Chem 2022; 73:117004. [PMID: 36148773 DOI: 10.1016/j.bmc.2022.117004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022]
Abstract
A series of ciprofloxacin-uracil conjugates 5a-t were synthesized and identified by 1H NMR, 13C NMR, mass spectroscopy and elemental analyses. The antibacterial results revealed that the new derivatives exhibited better activity against Gram-positive than the Gram-negative strains; most of the target compounds exhibited good activities against S. aureus ATCC 6538. Compounds 5b and 5g possess the highest activities with MICs of 1.25 and 2.37 µM, respectively, which are more potent than the parent drug ciprofloxacin, MIC, 7.58 µM. In addition, they also exhibited potent activities against MRSA AUMC 261 with MICs, 0.031 and 0.046 µM respectively, higher than ciprofloxacin with MIC, 0.57 µM. Moreover, compounds 5b and 5g showed potent inhibitory activities against DNA gyrase (IC50 = 1.72 and 5.72 µM) and topoisomerase IV (4.36 and 7.77 µM) compared to ciprofloxacin with IC50 values 0.66 and 8.16 µM, respectively. The molecular docking study revealed that compounds 5b and 5g may formed stable interaction with the active sites of DNA gyrase and topoisomerase IV similar to ciprofloxacin. Hence, 5b and 5g are considered promising antibacterial candidated against MRSA AUMC 261 strains that requires further optimization.
Collapse
|
20
|
Thopate Y, Singh R, Rastogi SK, Sinha AK. Cascade Multicomponent reaction Involving Unprecedented Gould‐Jacobs‐Heck/Suzuki Coupling‐Hydrolysis‐Decarboxylation in one pot: Rapid Synthesis of Hybrid Heterocyclic Molecules. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yogesh Thopate
- CSIR-Central Drug Research Institute: Central Drug Research Institute medicinal and process chemistry INDIA
| | - Richa Singh
- CSIR-Central Drug Research Institute Medicinal and Process Chemistry Division medicinal and process chemistry lucknow INDIA
| | - Sumit K Rastogi
- CSIR-Central Drug Research Institute: Central Drug Research Institute medicinal and process chemistry INDIA
| | - Arun Kumar Sinha
- CSIR-CDRI (Central Drug Research Institute) Medicinal and Process Chemistry Sitapur Road 226031 Lucknow INDIA
| |
Collapse
|