1
|
Dehnavi F, Akhavan M, Bekhradnia A. Advances in quinoxaline derivatives: synthetic routes and antiviral efficacy against respiratory pathogens. RSC Adv 2024; 14:35400-35423. [PMID: 39512644 PMCID: PMC11542553 DOI: 10.1039/d4ra04292a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
The study of quinoxalines as nitrogen-rich heterocyclic compounds has garnered substantial interest within scientific research owing to their multidimensional functionalization capabilities and significant biological activities. The scope of study encompasses their application as potent antiviral agents, particularly within the domain of respiratory pathologies-a topic of pivotal concern in this comprehensive review. They have several prominent pharmacological effects, such as potential influenza inhibitors, potential anti-SARS coronavirus inhibitors, potential anti-SARS-CO-2 coronavirus inhibitors, and miscellaneous respiratory antiviral activities. As a result, some of the literature has described many of these quinoxalines using various synthetic methods for their mentioned biological effects. In the present review, we provided insight into quinoxaline synthesis, structure-activity relationship (SAR), and antiviral activities, along with a compilation of recent studies. The article further encapsulates the gamut of past and ongoing research efforts in the design and synthetic exploration of antiviral scaffolds, with a pronounced emphasis on their strategic deployment against viral pandemics, contextualized against the tapestry of the recent COVID-19 outbreak. This illuminates the quintessential role of quinoxalines in the armamentarium against viral pathogens and provides a platform for the development of next-generation antiviral agents.
Collapse
Affiliation(s)
- Fateme Dehnavi
- Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Mazandaran University of Medical Sciences Sari Iran
| | - Malihe Akhavan
- Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Mazandaran University of Medical Sciences Sari Iran
| | - Ahmadreza Bekhradnia
- Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Mazandaran University of Medical Sciences Sari Iran
| |
Collapse
|
2
|
Xiong S, Pu J, Xiao T, Jiang Y. Synthesis of 2,3-Diperfluoroalkylated Quinoxalines via Selenium-Catalyzed Reductive C-C Coupling of Vicinal Perfluoroalkyl Formimidoyl Chlorides. Org Lett 2024; 26:8866-8871. [PMID: 39382382 DOI: 10.1021/acs.orglett.4c03308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
A direct and efficient approach to access structurally interesting 2,3-diperfluoroalkylated quinoxalines via selenium-catalyzed reductive C-C construction of vicinal bis(perfluoroalkyl formimidoyl chloride)s has been disclosed. This protocol features the use of easily accessible starting materials, scalability, and a diverse functional group tolerance. Mechanism studies suggested that this reaction may involve an interesting selenium-containing seven-membered-ring intermediate and proceed through an electrocyclization/selenium reductive elimination pathway, which is significantly different from the traditional transition-metal-catalyzed reductive coupling strategies of alkyl halides.
Collapse
Affiliation(s)
- Shaoqi Xiong
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Jijun Pu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Tiebo Xiao
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Yubo Jiang
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
3
|
Liang JH, Cho ST, Shih TL, Chen JJ. Synthesis of quinoxalines and assessment of their inhibitory effects against human non-small-cell lung cancer cells. RSC Adv 2024; 14:28659-28668. [PMID: 39252995 PMCID: PMC11382098 DOI: 10.1039/d4ra04453c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024] Open
Abstract
Twenty-six quinoxalin derivatives were synthesized to assess their biological activities against human non-small-cell lung cancer cells (A549 cells). Compound 4b (IC50 = 11.98 ± 2.59 μM) and compound 4m (IC50 = 9.32 ± 1.56 μM) possess anticancer activity comparable to 5-fluorouracil (clinical anticancer drug) (IC50 = 4.89 ± 0.20 μM). Western blot tests further confirmed that compound 4m effectively induced apoptosis of A549 cells through mitochondrial- and caspase-3-dependent pathways. The introduction of bromo groups instead of nitro groups into the quinoxaline skeleton has been shown to provide better inhibition against lung cancer cells in this article. This modification in the molecular structure could enhance the biological activity and effectiveness of quinoxaline derivatives in the design and synthesis of anticancer drugs, making bromo-substituted quinoxalines a promising avenue for further research and development in anticancer therapeutics.
Collapse
Affiliation(s)
- Jia-Hua Liang
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University Taipei 112304 Taiwan +886-2-2826-7195
| | - Shu-Tse Cho
- Department of Chemistry, Tamkang University 251301 Tamsui Dist. New Taipei City Taiwan +886-2-8631-5024
| | - Tzenge-Lien Shih
- Department of Chemistry, Tamkang University 251301 Tamsui Dist. New Taipei City Taiwan +886-2-8631-5024
| | - Jih-Jung Chen
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University Taipei 112304 Taiwan +886-2-2826-7195
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University Taipei 112304 Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University Taichung 404333 Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital Taipei 110301 Taiwan
| |
Collapse
|
4
|
Teli B, Wani MM, Jan S, Bhat HR, Bhat BA. Micelle-mediated synthesis of quinoxaline, 1,4-benzoxazine and 1,4-benzothiazine scaffolds from styrenes. Org Biomol Chem 2024; 22:6593-6604. [PMID: 39086328 DOI: 10.1039/d4ob00928b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
A range of heterocycles based on quinoxalines, 1,4-benzoxazines and 1,4-benzothiazines have been accessed from styrenes by reacting them with benzene-1,2-diamine, 2-aminophenol and 2-aminothiophenol respectively in micellar medium. This reaction occurring in a less explored cetylpyridinium bromide (CPB) micellar medium operates in the presence of NBS through a tandem hydrobromination-oxidation cascade, converting styrenes to phenacyl bromides. Its subsequent nucleophilic addition with aromatic 1,2-dinucleophiles and further transformations led to the formation of heterocyclic constructs. The locus of the reaction site was confirmed through NMR studies and the types of interactions between the CPB and solubilizates were established by DFT calculations.
Collapse
Affiliation(s)
- Bisma Teli
- CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar-190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Mohmad Muzafar Wani
- CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar-190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shafia Jan
- CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar-190005, India.
| | - Haamid Rasool Bhat
- CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar-190005, India.
| | - Bilal A Bhat
- CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar-190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
5
|
El-Beshti HS, Gercek Z, Kayi H, Yildizhan Y, Cetin Y, Adigüzel Z, Güngör G, Özalp-Yaman Ş. Antiproliferative activity of platinum(II) and copper(II) complexes containing novel biquinoxaline ligands. Metallomics 2024; 16:mfae001. [PMID: 38183277 PMCID: PMC10849753 DOI: 10.1093/mtomcs/mfae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/04/2024] [Indexed: 01/08/2024]
Abstract
Nowadays, cancer represents one of the major causes of death in humans worldwide, which renders the quest for new and improved antineoplastic agents to become an urgent issue in the field of biomedicine and human health. The present research focuses on the synthesis of 2,3,2',3'-tetra(pyridin-2-yl)-6,6'-biquinoxaline) and (2,3,2',3'-tetra(thiophen-2-yl)-6,6'-biquinoxaline) containing copper(II) and platinum(II) compounds as prodrug candidates. The binding interaction of these compounds with calf thymus DNA (CT-DNA) and human serum albumin were assessed with UV titration, thermal decomposition, viscometric, and fluorometric methods. The thermodynamical parameters and the temperature-dependent binding constant (K'b) values point out to spontaneous interactions between the complexes and CT-DNA via the van der Waals interactions and/or hydrogen bonding, except Cu(ttbq)Cl2 for which electrostatic interaction was proposed. The antitumor activity of the complexes against several human glioblastomata, lung, breast, cervix, and prostate cell lines were investigated by examining cell viability, oxidative stress, apoptosis-terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, in vitro migration and invasion, in vitro-comet DNA damage, and plasmid DNA interaction assays. The U87 and HeLa cells were investigated as the cancer cells most sensitive to our complexes. The exerted cytotoxic effect of complexes was attributed to the formation of the reactive oxygen species in vitro. It is clearly demonstrated that Cu(ttbq)Cl2, Pt(ttbq)Cl2, and Pt(tpbq)Cl2 have the highest DNA degradation potential and anticancer effect among the tested complexes by leading apoptosis. The wound healing and invasion analysis results also supported the higher anticancer activity of these two compounds.
Collapse
Affiliation(s)
| | - Zuhal Gercek
- Zonguldak Bülent Ecevit University, Department of Chemistry, Incevez, Zonguldak, Türkiye
| | - Hakan Kayi
- Ankara University, Department of Chemical Engineering, 06100, Tandoğan, Ankara, Türkiye
| | - Yasemin Yildizhan
- TUBITAK, Marmara Research Center, Life Sciences, Medical Biotechnology Unit, Gebze/Kocaeli, Türkiye
| | - Yuksel Cetin
- TUBITAK, Marmara Research Center, Life Sciences, Medical Biotechnology Unit, Gebze/Kocaeli, Türkiye
| | - Zelal Adigüzel
- Koç University, School of Medicine, KUTTAM, Istanbul, Türkiye
| | - Gamze Güngör
- TUBITAK, Marmara Research Center, Life Sciences, Medical Biotechnology Unit, Gebze/Kocaeli, Türkiye
| | - Şeniz Özalp-Yaman
- Atilim University, Department of Chemical Engineering, Incek, Ankara, Türkiye
| |
Collapse
|
6
|
Mamedov VA, Galimullina VR, Qu ZW, Zhu H, Syakaev VV, Shamsutdinova LR, Sergeev MA, Rizvanov IK, Gubaidullin AT, Sinyashin OG, Grimme S. AlCl 3-Promoted Intramolecular Indolinone-Quinolone Rearrangement of Spiro[indoline-3,2'-quinoxaline]-2,3'-diones: Easy Access to Quinolino[3,4- b]quinoxalin-6-ones. J Org Chem 2023. [PMID: 38151045 DOI: 10.1021/acs.joc.3c01906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
A facile and direct intramolecular indolinone-quinolone rearrangement was developed for the synthesis of quinolino[3,4-b]quinoxalin-6-ones from spiro[indoline-3,2'-quinoxaline]-2,3'-diones, which are readily available with use of isatines, malononitrile, and 1,2-phenylenediamines under quite mild conditions. This efficient approach provides excellent yields and could potentially be used for the construction of a diverse library of quinolino[3,4-b]quinoxalin-6-ones for high-throughput screening in medicinal chemistry. The reaction mechanism is explored by extensive DFT calculations.
Collapse
Affiliation(s)
- Vakhid A Mamedov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Venera R Galimullina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Zheng-Wang Qu
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Hui Zhu
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Victor V Syakaev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Leisan R Shamsutdinova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Mikhail A Sergeev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Il'dar Kh Rizvanov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Aidar T Gubaidullin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Oleg G Sinyashin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
7
|
Kejík Z, Koubková N, Krčová L, Sýkora D, Abramenko N, Veselá K, Kaplánek R, Hajduch J, Houdová Megová M, Bušek P, Šedo A, Lacina L, Smetana K, Martásek P, Jakubek M. Combination of quinoxaline with pentamethinium system: Mitochondrial staining and targeting. Bioorg Chem 2023; 141:106816. [PMID: 37716274 DOI: 10.1016/j.bioorg.2023.106816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 09/18/2023]
Abstract
Pentamethinium indolium salts are promising fluorescence probes and anticancer agents with high mitochondrial selectivity. We synthesized two indolium pentamethinium salts: a cyclic form with quinoxaline directly incorporated in the pentamethinium chain (cPMS) and an open form with quinoxaline substitution in the γ-position (oPMS). To better understand their properties, we studied their interaction with mitochondrial phospholipids (cardiolipin and phosphatidylcholine) by spectroscopic methods (UV-Vis, fluorescence, and NMR spectroscopy). Both compounds displayed significant affinity for cardiolipin and phosphatidylcholine, which was associated with a strong change in their UV-Vis spectra. Nevertheless, we surprisingly observed that fluorescence properties of cPMS changed in complex with both cardiolipin and phosphatidylcholine, whereas those of oPMS only changed in complex with cardiolipin. Both salts, especially cPMS, display high usability in mitochondrial imaging and are cytotoxic for cancer cells. The above clearly indicates that conjugates of pentamethinium and quinoxaline group, especially cPMS, represent promising structural motifs for designing mitochondrial-specific agents.
Collapse
Affiliation(s)
- Zdeněk Kejík
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Prumyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic; Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 6, 166 28 Prague, Czech Republic
| | - Nela Koubková
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Prumyslová 595, 252 50 Vestec, Czech Republic; Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 6, 166 28 Prague, Czech Republic
| | - Lucie Krčová
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Prumyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic; Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 6, 166 28 Prague, Czech Republic
| | - David Sýkora
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 6, 166 28 Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Prumyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Prumyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Robert Kaplánek
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Prumyslová 595, 252 50 Vestec, Czech Republic; Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 6, 166 28 Prague, Czech Republic
| | - Jan Hajduch
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Prumyslová 595, 252 50 Vestec, Czech Republic; Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 6, 166 28 Prague, Czech Republic
| | - Magdalena Houdová Megová
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague 2, CZ-120 00 Prague, Czech Republic
| | - Petr Bušek
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague 2, CZ-120 00 Prague, Czech Republic
| | - Aleksi Šedo
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague 2, CZ-120 00 Prague, Czech Republic
| | - Lukáš Lacina
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Prumyslová 595, 252 50 Vestec, Czech Republic; Department of Dermatovenerology, First Faculty of Medicine, Charles University and General University Hospital, CZ-128 08 Prague, Czech Republic; Institute of Anatomy, First Faculty of Medicine, Charles University, Prague 2, CZ-120 00 Prague, Czech Republic
| | - Karel Smetana
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Prumyslová 595, 252 50 Vestec, Czech Republic; Institute of Anatomy, First Faculty of Medicine, Charles University, Prague 2, CZ-120 00 Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Milan Jakubek
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Prumyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic; Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 6, 166 28 Prague, Czech Republic.
| |
Collapse
|
8
|
Tran TMC, Lai ND, Bui TTT, Mac DH, Nguyen TTT, Retailleau P, Nguyen TB. DABCO-Catalyzed DMSO-Promoted Sulfurative 1,2-Diamination of Phenylacetylenes with Elemental Sulfur and o-Phenylenediamines: Access to Quinoxaline-2-thiones. Org Lett 2023; 25:7225-7229. [PMID: 37738043 DOI: 10.1021/acs.orglett.3c02835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The oxidative amination of alkynes typically requires transition metal catalysts and strong oxidants. Herein, we alternatively utilize DABCO as a sulfur-activating catalyst to achieve the sulfurative 1,2-diamination of phenylacetylenes with elemental sulfur and o-phenylenediamines. DMSO was found to be particularly suitable for use as a terminal oxidant for this three-component process. A mechanistic study has shown that this cascade reaction is triggered by the addition of active sulfur species to the triple bond of phenylacetylenes.
Collapse
Affiliation(s)
- Thi Minh Chau Tran
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Nang Duy Lai
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Thai Thanh Thu Bui
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Dinh Hung Mac
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Thi Thu Tram Nguyen
- Department of Chemistry, Faculty of Basic Science, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Thanh Binh Nguyen
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
9
|
Keri RS, Reddy D, Budagumpi S, Adimule V. Reusable nano-catalyzed green protocols for the synthesis of quinoxalines: an overview. RSC Adv 2023; 13:20373-20406. [PMID: 37425629 PMCID: PMC10326672 DOI: 10.1039/d3ra03646d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023] Open
Abstract
Heterocyclic compounds are very widely distributed in nature and are essential for life activities. They play a vital role in the metabolism of all living cells, for example, vitamins and co-enzyme precursors thiamine, riboflavin etc. Quinoxalines are a class of N-heterocycles that are present in a variety of natural and synthetic compounds. The distinct pharmacological activities of quinoxalines have attracted medicinal chemists considerably over the past few decades. Quinoxaline-based compounds possess extensive potential applications as medicinal drugs, presently; more than fifteen drugs are available for the treatment of different diseases. Diverse synthetic protocols have been developed via a one-pot approach using efficient catalysts, reagents, and nano-composites/nanocatalysts etc. But the use of homogeneous and transition metal-based catalysts suffers some demerits such as low atom economy, recovery of catalysts, harsh reaction conditions, extended reaction period, expensive catalysts, the formation of by-products, and unsatisfactory yield of products as well as toxic solvents. These drawbacks have shifted the attention of chemists/researchers to develop green and efficient protocols for synthesizing quinoxaline derivatives. In this context, many efficient methods have been developed for the synthesis of quinoxalines using nanocatalysts or nanostructures. In this review, we have summarized the recent progress (till 2023) in the nano-catalyzed synthesis of quinoxalines using condensation of o-phenylenediamine with diketone/other reagents with plausible mechanistic details. With this review, we hope that some more efficient ways of synthesizing quinoxalines can be developed by synthetic chemists.
Collapse
Affiliation(s)
- Rangappa S Keri
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University) Jain Global Campus, Kanakapura Bangalore Karnataka 562112 India +918027577199 +919620667075
| | - Dinesh Reddy
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University) Jain Global Campus, Kanakapura Bangalore Karnataka 562112 India +918027577199 +919620667075
| | - Srinivasa Budagumpi
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University) Jain Global Campus, Kanakapura Bangalore Karnataka 562112 India +918027577199 +919620667075
| | - Vinayak Adimule
- Angadi Institute of Technology and Management (AITM) Savagaon Road Belagavi-5800321 Karnataka India
| |
Collapse
|
10
|
Das A, Dey S, Naresh Yadav R, Jyoti Boruah P, Bakli P, Sarkar S, Mahata P, Kumar Paul A, Hossain F. An Expeditious One‐Pot Two‐Component Synthesis of Quinoxaline Derivatives in Natural Deep Eutectic Solvents (NADESs). ChemistrySelect 2023. [DOI: 10.1002/slct.202204651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- Arindam Das
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling 734013 India
| | - Sovan Dey
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling 734013 India
| | - Ram Naresh Yadav
- Department of Chemistry Faculty of Engineering & Technology Veer Bahadur Singh Purvanchal University Jaunpur 222003 (U.P) India
| | | | - Prerana Bakli
- Department of Chemistry, NIT Meghalaya Shillong 793003 India
| | - Sourav Sarkar
- Department of Chemistry Jadavpur University Raja Subodh Chandra Mallick Rd, Jadavpur Kolkata West Bengal 700032
| | - Partha Mahata
- Department of Chemistry Jadavpur University Raja Subodh Chandra Mallick Rd, Jadavpur Kolkata West Bengal 700032
| | - Amit Kumar Paul
- Department of Chemistry, NIT Meghalaya Shillong 793003 India
| | - Firoj Hossain
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling 734013 India
| |
Collapse
|
11
|
Quinoxaline-specific enantioselective sulfa-michael reaction catalyzed by chiral phosphoric acid. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Zarenezhad E, Sadeghian S, Shekoohi K, Emami L, Ghasemian AM, Zarenezhad A. Synthesis, Biological Evaluation and In Silico Studies of Oxime Ether Derivatives Containing a Quinoxaline Moiety. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162023010326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Recent advances in transition metal-catalyzed reactions of chloroquinoxalines: Applications in bioorganic chemistry. Bioorg Chem 2022; 129:106195. [DOI: 10.1016/j.bioorg.2022.106195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022]
|
14
|
Anchoring of a nickel Schiff base complex with mixed ligands on MCM-41 as a heterogeneous catalyst for the synthesis of quinoxaline derivatives by various energies. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Mondal K, Ghosh S, Hajra A. Transition-metal-catalyzed ortho C-H functionalization of 2-arylquinoxalines. Org Biomol Chem 2022; 20:7361-7376. [PMID: 36107011 DOI: 10.1039/d2ob01119k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, direct C-H bond activation and functionalization has become a prodigious and hot topic among synthetic organic chemists due to its step-economic nature and substantial synthetic versatility. On the other hand, quinoxaline, a fused bicycle of benzene and pyrazine, has omnipresent applications in medicinal-, industrial- and materials chemistry. The presence of the N-1 atom in 2-arylquinoxaline enables chelation formation with a metal catalyst leading to the formation of ortho-substituted products. In this review, all articles related to the ortho C-H bond functionalization of 2-arylquinoxalines published up to May 2022 are highlighted.
Collapse
Affiliation(s)
- Koushik Mondal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| |
Collapse
|
16
|
El
Rayes SM, El-Enany G, Gomaa MS, Ali IAI, Fathalla W, Pottoo FH, Khan FA. Convenient Synthesis of N-Alkyl-2-(3-phenyl-quinoxalin-2-ylsulfanyl)acetamides and Methyl-2-[2-(3-phenyl-quinoxalin-2-ylsulfanyl)acetylamino]alkanoates. ACS OMEGA 2022; 7:34166-34176. [PMID: 36188256 PMCID: PMC9520703 DOI: 10.1021/acsomega.2c03522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
A series of 27 new quinoxaline derivatives (N-alkyl-[2-(3-phenyl-quinoxalin-2-ylsulfanyl)]acetamides, methyl-2-[2-(3-phenylquinoxalin-2-ylsulfanyl)-acetylamino]alkanoates, and their corresponding dipeptides) were prepared from 3-phenylquinoxaline-2(1H)-thione based on the chemoselective reaction with soft electrophiles. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to study the efficacy of 27 compounds on cancer cell viability and proliferation. A total of 13 compounds (4a-c, 5, 6, 8c, 9c, 9f, 10a, 10b, 11c, 12b, and 12c) showed inhibitory action on HCT-116 cancer cells and 15 compounds (4a-c, 5, 6, 8c, 9a, 9c, 9f, 9h, 10b, 11c, 12a, 12b, and 12c) showed activity on MCF-7 cancer cells, with compound 10b exhibiting the highest inhibitory action (IC50 1.52 and 2 μg/mL, respectively) on both cell lines. The molecular modeling studies on the human thymidylate synthase (hTS) homodimer interface showed that these compounds are good binders and could selectively inhibit the enzyme by stabilizing its inactive conformation. The study also identified key residues for homodimer binding, which could be used for further optimization and development.
Collapse
Affiliation(s)
- Samir Mohamed El
Rayes
- Department
of Chemistry, Faculty of Science, Suez Canal
University, Ismailia 41522, Egypt
| | - Gaber El-Enany
- Department
of Physics, College of Science and Arts in Uglat Asugour, Qassim University, Buraydah 52571, Kingdom of Suadi Arabia
- Science
& Math Department, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
| | - Mohamed Sayed Gomaa
- Department
of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Kingdom of Saudi Arabia
| | - Ibrahim A. I. Ali
- Department
of Chemistry, Faculty of Science, Suez Canal
University, Ismailia 41522, Egypt
| | - Walid Fathalla
- Science
& Math Department, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
| | - Faheem Hyder Pottoo
- Department
of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Kingdom of Saudi Arabia
| | - Firdos Alam Khan
- Department
of Stem Cell Research, Institute of Research and Medical Consultations
(IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Fıstıkçı M, Eşsiz S. Revisiting the pyrolysis of 1,5‐diaryl‐1,2,5‐triazapentadienes: A computational reaction mechanism study. ChemistrySelect 2022. [DOI: 10.1002/slct.202202957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Meryem Fıstıkçı
- Hakkari University Vocational School of Health Services Department of Medical Services and Techniques Hakkari 30000 Turkey
| | - Selçuk Eşsiz
- Hakkari University Vocational School of Health Services Department of Medical Services and Techniques Hakkari 30000 Turkey
| |
Collapse
|
18
|
Hameed S, Khan KM, Salar U, Özil M, Baltaş N, Saleem F, Qureshi U, Taha M, Ul-Haq Z. Hydrazinyl thiazole linked indenoquinoxaline hybrids: Potential leads to treat hyperglycemia and oxidative stress; Multistep synthesis, α-amylase, α-glucosidase inhibitory and antioxidant activities. Int J Biol Macromol 2022; 221:1294-1312. [PMID: 36113601 DOI: 10.1016/j.ijbiomac.2022.09.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/27/2022] [Accepted: 09/11/2022] [Indexed: 11/24/2022]
Abstract
A library of hydrazinyl thiazole-linked indenoquinoxaline hybrids 1-36 were synthesized via a multistep reaction scheme. All synthesized compounds were characterized by various spectroscopic techniques including EI-MS (electron ionization mass spectrometry) and 1H NMR (nuclear magnetic resonance spectroscopy). Compounds 1-36 were evaluated for their inhibitory potential against α-amylase, and α-glucosidase enzymes. Among thirty-six, compounds 2, 9, 10, 13, 15, 17, 21, 22, 31, and 36 showed excellent inhibition against α-amylase (IC50 = 0.3-76.6 μM) and α-glucosidase (IC50 = 1.1-92.2 μM). Results were compared to the standard acarbose (IC50 = 13.5 ± 0.2 μM). All compounds were also evaluated for their DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity and compounds 2, 9, 10, 17, 21, 31, and 36 showed (SC50 = 7.58-125.86 μM) as compared to the standard ascorbic acid (SC50 = 21.50 ± 0.18 μM). Among this library, compounds 9 and 10 with a hydroxy group on the phenyl rings and thiosemicarbazide bearing intermediate 21 were identified as the most potent inhibitors against α-amylase, and α-glucosidase enzymes. The remaining compounds were found to be moderately active. The molecular docking studies were conducted to understand the binding mode of active inhibitors and kinetic studies of the active compounds followed competitive modes of inhibition.
Collapse
Affiliation(s)
- Shehryar Hameed
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Musa Özil
- Department of Chemistry, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Nimet Baltaş
- Department of Chemistry, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Faiza Saleem
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Urooj Qureshi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
19
|
Zinc ferrite as reusable and green catalyst for synthesis of quinoxaline derivatives. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
20
|
Alanazi M, Arafa WA, Althobaiti IO, Altaleb HA, Bakr RB, Elkanzi NAA. Green Design, Synthesis, and Molecular Docking Study of Novel Quinoxaline Derivatives with Insecticidal Potential against Aphis craccivora. ACS OMEGA 2022; 7:27674-27689. [PMID: 35967065 PMCID: PMC9366785 DOI: 10.1021/acsomega.2c03332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
An efficient and environmentally friendly method was established for designing novel 3-amino-1,4-dihydroquinoxaline-2-carbonitrile (1) via the reaction of bromomalononitrile and benzene-1,2-diamine under microwave irradiation in an excellent yield (93%). This targeted amino derivative was utilized for the construction of a series of Schiff bases (8-13). A new series of thiazolidinone derivatives (15-20) were synthesized in high yields (89-96%) via treatment of thioglycolic acid with Schiff bases (8-13) under microwave irradiation in high yields (89-96%). Moreover, new pyrimidine derivatives (26-30 and 35-38) were prepared by treatment of compound 1 with arylidenes (21-25) and/or alkylidenemalononitriles (31-34) using piperidine as a basic catalyst under microwave conditions. Based on elemental analyses and spectral data, the structures of the new assembled compounds were determined. The newly synthesized quinoxaline derivatives were screened and studied as an insecticidal agent against Aphis craccivora. The obtained results indicate that compound 16 is the most toxicological agent against nymphs of cowpea aphids (Aphis craccivora) compared to the other synthesized pyrimidine and thiazolidinone derivatives. The molecular docking study of the new quinoxaline derivatives registered that compound 16 had the highest binding score (-10.54 kcal/mol) and the thiazolidinone moiety formed hydrogen bonds with Trp143.
Collapse
Affiliation(s)
- Mariam
Azzam Alanazi
- Chemistry
Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 2014, Saudi Arabia
| | - Wael A.A. Arafa
- Chemistry
Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 2014, Saudi Arabia
- Chemistry
Department, Faculty of Science, Fayoum University, P.O. Box 63514, Fayoum 63514, Egypt
| | - Ibrahim O. Althobaiti
- Department
of Chemistry, College of Science and Arts, Jouf University, Sakaka 42421, Saudi Arabia
| | - Hamud A. Altaleb
- Department
of Chemistry, Faculty of Science, Islamic
University of Madinah, Madinah 42351, Saudi Arabia
| | - Rania B. Bakr
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Nadia A. A. Elkanzi
- Chemistry
Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 2014, Saudi Arabia
- Chemistry
Department, Faculty of Science, Aswan University, P.O. Box 81528, Aswan 81528, Egypt
| |
Collapse
|
21
|
Recent Advances of Green Catalytic System I2/DMSO in C–C and C–Heteroatom Bonds Formation. Catalysts 2022. [DOI: 10.3390/catal12080821] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Developing a green, practical and efficient method for the formation of C–C and C–Heteroatom bonds is an important topic in modern organic synthetic chemistry. In recent years, the I2/DMSO catalytic system has attracted wide attention because of its green, high efficiency, atomic economy, low cost, mild reaction conditions and it is environment-friendly, which is more in line with the requirements of sustainable chemistry. Heteroatom-containing compounds have shown lots of important applications in pharmaceutical synthesis, agrochemicals, material chemistry and organic dyes. At present, the I2/DMSO catalytic system has been successfully applied to the synthesis of various heteroatom-containing compounds. The C–C and C–Heteroatom bonds have been formed efficiently, which has been proved to be a green and mild catalytic system. In this review, the research achievements of the I2/DMSO catalytic system in the formation of C–C and C–Heteroatom bonds from 2015 to date are described, and the research area is prospected. This review attempts to reveal the general law of iodine catalysis and lay a foundation for the design of new reactions.
Collapse
|
22
|
Hameed S, Khan KM, Taslimi P, Salar U, Taskin-Tok T, Kisa D, Saleem F, Solangi M, Ahmed MHU, Rani K. Evaluation of synthetic 2-aryl quinoxaline derivatives as α-amylase, α-glucosidase, acetylcholinesterase, and butyrylcholinesterase inhibitors. Int J Biol Macromol 2022; 211:653-668. [PMID: 35568155 DOI: 10.1016/j.ijbiomac.2022.05.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 01/13/2023]
Abstract
Variety of 2-aryl quinoxaline derivatives 1-23 were synthesized in good yields, by reacting 1,2-phenylenediamine with varyingly substituted phenacyl bromides in the presence of pyridine catalyst. All molecules 1-23 were characterized by spectroscopic techniques and evaluated for their diverse biological potential against α-amylase (α-AMY), α-glucosidase (α-GLU), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) enzymes. Synthetic derivatives possess enhanced inhibitory potential against all enzymes at nanomolar concentrations. In particular, compound 14 was found much superior with IC50 = 294.35, 198.21, 17.04, and 21.46 nM against α-AMY, α-GLU, AChE, and BChE, respectively, as compared to standard inhibitors. Furthermore, selected potent compounds, including 3, 4, 8, 14, 15, 17, and 18, were subjected to molecular docking studies to decipher the binding energies and interactions of ligands (synthetic molecules) with all four target enzymes.
Collapse
Affiliation(s)
- Shehryar Hameed
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia.
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Tugba Taskin-Tok
- Gaziantep University, Faculty of Arts and Sciences, Department of Chemistry, Gaziantep, Turkey; Gaziantep University, Institute of Health Sciences, Department of Bioinformatics and Computational Biology, Gaziantep, Turkey
| | - Dursun Kisa
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Faiza Saleem
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Mehwish Solangi
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Hassaan Uddin Ahmed
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Kiran Rani
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
23
|
Controllable cross-coupling of thiophenols with dichloromethane mediated by consecutively paired electrolysis. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
El–Beshti HS, Yildizhan Y, Kayi H, Cetin Y, Adigüzel Z, Gungor-Topcu G, Gercek Z, Özalp-Yaman Ş. Anticancer investigation of platinum and copper-based complexes containing quinoxaline ligands. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Kong L, Meng J, Tian W, Liu J, Hu X, Jiang ZH, Zhang W, Li Y, Bai LP. I 2-Catalyzed Carbonylation of α-Methylene Ketones to Synthesize 1,2-Diaryl Diketones and Antiviral Quinoxalines in One Pot. ACS OMEGA 2022; 7:1380-1394. [PMID: 35036799 PMCID: PMC8757360 DOI: 10.1021/acsomega.1c06017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/10/2021] [Indexed: 05/03/2023]
Abstract
An efficient approach for the synthesis of 1,2-diaryl diketones was developed from readily available α-methylene ketones by catalysis of I2. In the same oxidation system, a novel one-pot procedure was established for the construction of antiviral and anticancer quinoxalines. The reactions proceeded well with a wide variety of substrates and good functional group tolerance, affording desired compounds in moderate to excellent yields. Quinoxalines 4ca and 4ad inhibited viral entry of SARS-CoV-2 spike pseudoviruses into HEK-293T-ACE2h host cells as dual blockers of both human ACE2 receptor and viral spike RBD with IC50 values of 19.70 and 21.28 μM, respectively. In addition, cytotoxic evaluation revealed that 4aa, 4ba, 4ia, and 4ab suppressed four cancer cells with IC50 values ranging from 6.25 to 28.55 μM.
Collapse
Affiliation(s)
- Lingkai Kong
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
- School
of Chemistry and Chemical Engineering, Linyi
University, Linyi, Shandong 276000, People’s Republic of China
| | - Jieru Meng
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
| | - Wenyue Tian
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
| | - Jiazheng Liu
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
| | - Xueping Hu
- School
of Chemistry and Chemical Engineering, Linyi
University, Linyi, Shandong 276000, People’s Republic of China
| | - Zhi-Hong Jiang
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
| | - Wei Zhang
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
| | - Yanzhong Li
- School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Li-Ping Bai
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
| |
Collapse
|
26
|
Das A, Banik BK. Advances in heterocycles as DNA intercalating cancer drugs. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The insertion of a molecule between the bases of DNA is known as intercalation. A molecule is able to interact with DNA in different ways. DNA intercalators are generally aromatic, planar, and polycyclic. In chemotherapeutic treatment, to suppress DNA replication in cancer cells, intercalators are used. In this article, we discuss the anticancer activity of 10 intensively studied DNA intercalators as drugs. The list includes proflavine, ethidium bromide, doxorubicin, dactinomycin, bleomycin, epirubicin, mitoxantrone, ellipticine, elinafide, and echinomycin. Considerable structural diversities are seen in these molecules. Besides, some examples of the metallo-intercalators are presented at the end of the chapter. These molecules have other crucial properties that are also useful in the treatment of cancers. The successes and limitations of these molecules are also presented.
Collapse
Affiliation(s)
- Aparna Das
- Department of Mathematics and Natural Sciences , College of Sciences and Human Studies, Prince Mohammad Bin Fahd University , Al Khobar 31952 , Kingdom of Saudi Arabia
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences , College of Sciences and Human Studies, Prince Mohammad Bin Fahd University , Al Khobar 31952 , Kingdom of Saudi Arabia
| |
Collapse
|
27
|
Kumar P, Tomar V, Kumar D, Joshi RK, Nemiwal M. Magnetically active iron oxide nanoparticles for catalysis of organic transformations: A review. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Sosa AA, Palermo V, Langer P, Luque R, Romanelli GP, Pizzio LR. Tungstophosphoric acid/mesoporous silicas as suitable catalysts in quinoxaline synthesis. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Anahmadi H, Fathi M, El hajri F, Benzekri Z, Sibous S, Idrissi BCE, El youbi MS, Souizi A, Boukhris S. Synthesis, characterization and application of α-Ca3 (PO4)2 as a heterogeneous catalyst for the synthesis of 2.3-diphenylquinoxaline derivatives and knoevenagel condensation under green conditions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
30
|
Design, synthesis of new novel quinoxalin-2(1H)-one derivatives incorporating hydrazone, hydrazine, and pyrazole moieties as antimicrobial potential with in-silico ADME and molecular docking simulation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103497] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
31
|
Sarmiento-Vizcaíno A, Martín J, Reyes F, García LA, Blanco G. Bioactive Natural Products in Actinobacteria Isolated in Rainwater From Storm Clouds Transported by Western Winds in Spain. Front Microbiol 2021; 12:773095. [PMID: 34858379 PMCID: PMC8631523 DOI: 10.3389/fmicb.2021.773095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Actinobacteria are the main producers of bioactive natural products essential for human health. Although their diversity in the atmosphere remains largely unexplored, using a multidisciplinary approach, we studied here 27 antibiotic producing Actinobacteria strains, isolated from 13 different precipitation events at three locations in Northern and Southern Spain. Rain samples were collected throughout 2013-2016, from events with prevailing Western winds. NOAA HYSPLIT meteorological analyses were used to estimate the sources and trajectories of the air-mass that caused the rainfall events. Five-day backward air masses trajectories of the diverse events reveals a main oceanic source from the North Atlantic Ocean, and in some events long range transport from the Pacific and the Arctic Oceans; terrestrial sources from continental North America and Western Europe were also estimated. Different strains were isolated depending on the precipitation event and the latitude of the sampling site. Taxonomic identification by 16S rRNA sequencing and phylogenetic analysis revealed these strains to belong to two Actinobacteria genera. Most of the isolates belong to the genus Streptomyces, thus increasing the number of species of this genus isolated from the atmosphere. Furthermore, five strains belonging to the rare Actinobacterial genus Nocardiopsis were isolated in some events. These results reinforce our previous Streptomyces atmospheric dispersion model, which we extend herein to the genus Nocardiopsis. Production of bioactive secondary metabolites was analyzed by LC-UV-MS. Comparative analyses of Streptomyces and Nocardiopsis metabolites with natural product databases led to the identification of multiple, chemically diverse, compounds. Among bioactive natural products identified 55% are antibiotics, both antibacterial and antifungal, and 23% have antitumor or cytotoxic properties; also compounds with antiparasitic, anti-inflammatory, immunosuppressive, antiviral, insecticidal, neuroprotective, anti-arthritic activities were found. Our findings suggest that over time, through samples collected from different precipitation events, and space, in different sampling places, we can have access to a great diversity of Actinobacteria producing an extraordinary reservoir of bioactive natural products, from remote and very distant origins, thus highlighting the atmosphere as a contrasted source for the discovery of novel compounds of relevance in medicine and biotechnology.
Collapse
Affiliation(s)
- Aida Sarmiento-Vizcaíno
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Oviedo, Spain
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | - Luis A García
- Departamento de Ingeniería Química y Tecnología del Medio Ambiente, Área de Ingeniería Química, Universidad de Oviedo, Oviedo, Spain
| | - Gloria Blanco
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
32
|
Suzuki Y, Takehara R, Miura K, Ito R, Suzuki N. Regioselective Synthesis of Trisubstituted Quinoxalines Mediated by Hypervalent Iodine Reagents. J Org Chem 2021; 86:16892-16900. [PMID: 34797078 DOI: 10.1021/acs.joc.1c02087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A facile and regioselective synthesis of quinoxalines, an important motif in medicinal chemistry and materials sciences, was developed. Despite their prospective utility, the regioselective preparation of trisubstituted quinoxalines has not been previously established. In the reported system, hypervalent iodine reagents catalyzed the annulation between α-iminoethanones and o-phenylenediamines in a chemo/regioselective manner to afford trisubstituted quinoxalines. Excellent regioselectivities (6:1 to 1:0) were achieved using [bis(trifluoroacetoxy)iodo]benzene and [bis(trifluoroacetoxy)iodo]pentafluorobenzene as annulation catalysts.
Collapse
Affiliation(s)
- Yumiko Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | - Ren Takehara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | - Kasumi Miura
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | - Ryota Ito
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | - Noriyuki Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| |
Collapse
|
33
|
Kiran KR, Swaroop TR, Santhosh C, Rangappa KS, Sadashiva MP. Cyclocondensation of
o
‐Phenylenediamines with 2‐Oxo‐ethanimidothioates: A Novel Synthesis of 2‐Amino‐3‐(het)aryl‐quinoxalines. ChemistrySelect 2021. [DOI: 10.1002/slct.202102071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kuppalli R. Kiran
- DOS in Chemistry University of Mysore Manasagangothri Mysuru Karnataka – 570 006 India
| | | | | | | | | |
Collapse
|
34
|
Mohlala RL, Coyanis EM, Fernandes MA, Bode ML. Catalyst-free synthesis of novel 1,5-benzodiazepines and 3,4-dihydroquinoxalines using isocyanide-based one-pot, three- and four-component reactions. RSC Adv 2021; 11:24466-24473. [PMID: 35479051 PMCID: PMC9036818 DOI: 10.1039/d1ra04444c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022] Open
Abstract
Reaction of benzimidazolone derivatives, or their thio- or aza-counterparts, with an isocyanide in the presence of acetone unexpectedly gave rise to novel tricyclic benzodiazepine derivatives in good yield by means of a four-component reaction incorporating two moles of acetone. Benzimidazole starting substrates bearing an electron-withdrawing group gave rise instead to dihydroquinoxaline derivatives by means of a three-component reaction. Use of deuterated acetone instead of acetone in the reactions significantly affected yield and reactivity in the four-component reaction but not in the three-component reaction. Reaction of benzimidazole derivatives with an isocyanide and acetone led to tricyclic benzodiazepine derivatives or dihydroquinoxalines depending on the nature of the substituents R1 and R2.![]()
Collapse
Affiliation(s)
- Reagan L Mohlala
- Advanced Materials Division, Mintek Private Bag X3015 Randburg 2125 South Africa .,Molecular Sciences Institute, University of the Witwatersrand PO Wits 2050 South Africa
| | - E Mabel Coyanis
- Advanced Materials Division, Mintek Private Bag X3015 Randburg 2125 South Africa
| | - Manuel A Fernandes
- Molecular Sciences Institute, University of the Witwatersrand PO Wits 2050 South Africa
| | - Moira L Bode
- Molecular Sciences Institute, University of the Witwatersrand PO Wits 2050 South Africa
| |
Collapse
|
35
|
Recent Updates on the Synthesis of Bioactive Quinoxaline-Containing Sulfonamides. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125702] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Quinoxaline is a privileged pharmacophore that has broad-spectrum applications in the fields of medicine, pharmacology and pharmaceutics. Similarly, the sulfonamide moiety is of considerable interest in medicinal chemistry, as it exhibits a wide range of pharmacological activities. Therefore, the therapeutic potential and biomedical applications of quinoxalines have been enhanced by incorporation of the sulfonamide group into their chemical framework. The present review surveyed the literature on the preparation, biological activities and structure-activity relationship (SAR) of quinoxaline sulfonamide derivatives due to their broad range of biomedical activities, such as diuretic, antibacterial, antifungal, neuropharmacological, antileishmanial, anti-inflammatory, anti-tumor and anticancer action. The current biological diagnostic findings in this literature review suggest that quinoxaline-linked sulfonamide hybrids are capable of being established as lead compounds; modifications on quinoxaline sulfonamide derivatives may give rise to advanced therapeutic agents against a wide variety of diseases.
Collapse
|
36
|
Hebade MJ, Deshmukh TR, Dhumal ST. Silica supported dodecatungstophosphoric acid (DTP/SiO2): An efficient and recyclable heterogeneous catalyst for rapid synthesis of quinoxalines. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1939060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Madhav J. Hebade
- Department of Chemistry, Badrinarayan Barwale Mahavidyalaya, Jalna, India
| | - Tejshri R. Deshmukh
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Sambhaji T. Dhumal
- Department of Chemistry, Ramkrishna Paramhansa Mahavidyalaya, Osmanabad, India
| |
Collapse
|
37
|
Babu TSS, Srinivasu N. Nucleophilic Substitution in 6-Chloro-2-(2-cyanophenoxy)quinoxalines and Antibacterial Activity of Phenoxychloroquinoxaline Derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021040217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Malamiri F, Khaksar S, Badri R, Tahanpesar E. Organocatalytic Combinatorial Synthesis of Quinazoline, Quinoxaline and Bis(indolyl)methanes. Comb Chem High Throughput Screen 2021; 23:83-88. [PMID: 31838991 DOI: 10.2174/1386207323666191213123026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/24/2019] [Accepted: 11/29/2019] [Indexed: 11/22/2022]
Abstract
AIMS AND OBJECTIVE An efficient and practical procedure for the synthesis of heterocyclic compounds such as quinazolines, quinoxalines and bis(indolyl)methanes was developed using 3,5-bis(trifluoromethyl) phenyl ammonium hexafluorophosphate (BFPHP) as a novel organocatalyst. MATERIALS AND METHODS All of the obtained products are known compounds and identified by IR, 1HNMR, 13CNMR and melting points. RESULT Various products were obtained in good to excellent yields under reaction conditions. CONCLUSION The BFPHP organocatalyst demonstrates a novel class of non-asymmetric organocatalysts, which has gained much attention in green chemistry.
Collapse
Affiliation(s)
- Fatemeh Malamiri
- Department of Chemistry, Khouzestan Science and Research Branch, Islamic Azad University, Ahvaz, Iran
| | - Samad Khaksar
- Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.,School of Science and Technology, The University of Georgia, Tbilisi, Georgia
| | - Rashid Badri
- Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Elham Tahanpesar
- Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| |
Collapse
|
39
|
Ahmadvand Z, Bayat M. Competition between the Hiyama and Suzuki–Miyaura Pd-catalyzed cross-coupling reaction mechanisms for the formation of some regioselective derivatives of quinoxaline and benzofuran; Which reaction mechanism is more favorable? J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Khatoon H, Abdulmalek E. Novel Synthetic Routes to Prepare Biologically Active Quinoxalines and Their Derivatives: A Synthetic Review for the Last Two Decades. Molecules 2021; 26:molecules26041055. [PMID: 33670436 PMCID: PMC7923122 DOI: 10.3390/molecules26041055] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
Quinoxalines, a class of N-heterocyclic compounds, are important biological agents, and a significant amount of research activity has been directed towards this class. They have several prominent pharmacological effects like antifungal, antibacterial, antiviral, and antimicrobial. Quinoxaline derivatives have diverse therapeutic uses and have become the crucial component in drugs used to treat cancerous cells, AIDS, plant viruses, schizophrenia, certifying them a great future in medicinal chemistry. Due to the current pandemic situation caused by SARS-COVID 19, it has become essential to synthesize drugs to combat deadly pathogens (bacteria, fungi, viruses) for now and near future. Since quinoxalines is an essential moiety to treat infectious diseases, numerous synthetic routes have been developed by researchers, with a prime focus on green chemistry and cost-effective methods. This review paper highlights the various synthetic routes to prepare quinoxaline and its derivatives, covering the literature for the last two decades. A total of 31 schemes have been explained using the green chemistry approach, cost-effective methods, and quinoxaline derivatives' therapeutic uses.
Collapse
Affiliation(s)
- Hena Khatoon
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
- Correspondence: (H.K.); (E.A.)
| | - Emilia Abdulmalek
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
- Integrated Chemical BioPhysics Research, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
- Correspondence: (H.K.); (E.A.)
| |
Collapse
|
41
|
Ying P, Yu J, Su W. Liquid‐Assisted Grinding Mechanochemistry in the Synthesis of Pharmaceuticals. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001245] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ping Ying
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jingbo Yu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
42
|
Southerland MR, DeBord MA, Johnson NA, Crabtree SR, Alexander NE, Stromyer ML, Wagers PO, Panzner MJ, Wesdemiotis C, Shriver LP, Tessier CA, Youngs WJ. Synthesis, characterization, in vitro SAR study, and preliminary in vivo toxicity evaluation of naphthylmethyl substituted bis-imidazolium salts. Bioorg Med Chem 2021; 30:115893. [PMID: 33333447 PMCID: PMC7903221 DOI: 10.1016/j.bmc.2020.115893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/11/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
A series of novel bis-imidazolium salts was synthesized, characterized, and evaluated in vitro against a panel of non-small cell lung cancer (NSCLC) cells. Two imidazolium cores were connected with alkyl chains of varying lengths to develop a structure activity relationship (SAR). Increasing the length of the connecting alkyl chain was shown to correlate to an increase in the anti-proliferative activity. The National Cancer Institute's NCI-60 human tumor cell line screen confirmed this trend. The compound containing a decyl linker chain, 10, was chosen for further in vivo toxicity studies with C578BL/6 mice. The compound was well tolerated by the mice and all of the animals survived and gained weight over the course of the study.
Collapse
Affiliation(s)
| | - Michael A DeBord
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | - Nicholas A Johnson
- Department of Chemistry, Ashland University, 401 College Ave., Ashland, OH 44805, USA
| | - Steven R Crabtree
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | | | - Michael L Stromyer
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | - Patrick O Wagers
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | - Matthew J Panzner
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | - Chrys Wesdemiotis
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | - Leah P Shriver
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | - Claire A Tessier
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | - Wiley J Youngs
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA.
| |
Collapse
|
43
|
Zilla MK, Mahajan S, Khajuria R, Gupta VK, Kapoor KK, Ali A. An efficient synthesis of 4-phenoxy-quinazoline, 2-phenoxy-quinoxaline, and 2-phenoxy-pyridine derivatives using aryne chemistry. RSC Adv 2021; 11:3477-3483. [PMID: 35424287 PMCID: PMC8693993 DOI: 10.1039/d0ra09994e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Herein we report the mild and efficient synthesis of 4-phenoxyquinazoline, 2-phenoxyquinoxaline, and 2-phenoxypyridine derivatives from the starting materials viz. quinazolin-4(3H)-one, quinoxalin-2(1H)-one, and pyridin-2(1H)-one and aryne generated in situ from 2-(trimethylsilyl)phenyl trifluoromethanesulfonate and cesium fluoride. This synthetic methodology gives a new environmentally benign way for the preparation of several unnatural series of 4-phenoxyquinazoline, 2-phenoxyquinoxaline and 2-phenoxypyridine compounds with high yields and broad substrate scope. Efficient synthesis of 4-phenoxyquinazoline, 2-phenoxyquinoxaline, 2-phenoxypyridine derivatives were generated of aryne from 2-(trimethylsilyl)phenyltrifluoromethanesulfonate with cesium fluoride.![]()
Collapse
Affiliation(s)
- Mahesh K Zilla
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur Odisha 760010 India .,CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India
| | - Sheena Mahajan
- CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India
| | - Rajni Khajuria
- Department of Chemistry, GDC for Women Kathua Kathua-184101 India
| | - Vivek K Gupta
- Post-Graduate Department of Physics & Electronics, University of Jammu Jammu Tawi- 180006 India
| | - Kamal K Kapoor
- Department of Chemistry, University of Jammu Jammu Tawi-180006 India
| | - Asif Ali
- CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India .,CSIR-Traditional Knowledge Digital Library (TKDL) 14-Satsang Vihar, Vigyan Suchna Bhawan New Delhi-110067 India
| |
Collapse
|
44
|
Babu LT, Paira P. 9-Arylacenaphtho[1,2- b]quinoxalines via Suzuki coupling reaction as cancer therapeutic and cellular imaging agents. NEW J CHEM 2021. [DOI: 10.1039/d1nj03915f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A series of 9-arylacenaphtho[1,2-b]quinoxaline analogues have been synthesized via a Suzuki coupling reaction in a one pot sequence. These are capable of imaging, as well as terminating, cancer cells in the human body.
Collapse
Affiliation(s)
- Lavanya Thilak Babu
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamilnadu, India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamilnadu, India
| |
Collapse
|
45
|
Attia AS, Alfallous KA, El-Shahat M. A novel quinoxalinedione-bicapped tri-ruthenium carbonyl cluster [Ru3(μ-H)2(CO)6(μ3-HDCQX)2]: synthesis, characterization, anticancer activity and theoretical investigation of Ru–Ru and Ru–Ligand bonding interactions. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Abstract
Quinoxalines are observed in several bioactive molecules and have been widely employed in designing molecules for DSSC's, optoelectronics, and sensing applications. Therefore, developing newer synthetic routes as well as novel ways for their functionalization is apparent.
Collapse
Affiliation(s)
- Gauravi Yashwantrao
- Department of Speciality Chemicals Technology
- Institute of Chemical Technology
- Mumbai-400019
- India
| | - Satyajit Saha
- Department of Speciality Chemicals Technology
- Institute of Chemical Technology
- Mumbai-400019
- India
| |
Collapse
|
47
|
Simultaneous formation of 3-(benzimidazol-2-yl)quinoxalin-2(1H)-ones and 2-(benzimidazol-2-yl)quinoxalines from quinoxalin-2(1H)-one-3-carbaldoximes when exposed to 1,2-benzenediamines. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Kumar AK, Sunitha V, Ramesh G, Jalapathi P. Synthesis and Antimicrobial Activity of Quinoxaline Based
1,2,3-Triazoles. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220120257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Sun K, Li D, Lu G, Cai C. Hydrogen Auto‐transfer Synthesis of Quinoxalines from
o
‐Nitroanilines and Biomass‐based Diols Catalyzed by MOF‐derived N,P Co‐doped Cobalt Catalysts. ChemCatChem 2020. [DOI: 10.1002/cctc.202001362] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kangkang Sun
- School of Chemical Engineering Nanjing University of Science & Technology Xiaolingwei 200 Nanjing 210094 P. R. China
| | - Dandan Li
- School of Chemical Engineering Nanjing University of Science & Technology Xiaolingwei 200 Nanjing 210094 P. R. China
| | - Guo‐Ping Lu
- School of Chemical Engineering Nanjing University of Science & Technology Xiaolingwei 200 Nanjing 210094 P. R. China
| | - Chun Cai
- School of Chemical Engineering Nanjing University of Science & Technology Xiaolingwei 200 Nanjing 210094 P. R. China
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Lingling Lu 345 Shanghai 200032 P. R. China
| |
Collapse
|
50
|
Keivanloo A, Abbaspour S, Sepehri S, Bakherad M. Synthesis, Antibacterial Activity and Molecular Docking Study of a Series of 1,3-Oxazole-Quinoxaline Amine Hybrids. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1833052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ali Keivanloo
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| | - Sima Abbaspour
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| | - Saghi Sepehri
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Bakherad
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|