1
|
Makhal PN, Sood A, Shaikh AS, Dayare LN, Khatri DK, Rao Kaki V. Development of trisubstituted thiophene-3-arboxamide selenide derivatives as novel EGFR kinase inhibitors with cytotoxic activity. RSC Med Chem 2023; 14:2677-2698. [PMID: 38107169 PMCID: PMC10718591 DOI: 10.1039/d3md00403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/06/2023] [Indexed: 12/19/2023] Open
Abstract
Overexpression of EGFR is one of the eminent oncogenic drivers detected in the development of several human cancers. The increasing incidences of mutation-based resistance in the tyrosine kinase domain call upon the need for the development of a newer class of small-molecule TK inhibitors. Accordingly, a new series of symmetrical trisubstituted thiophene-3-carboxamide selenide derivatives was developed via the hybridization of complementary pharmacophores. Most of the compounds showed a modest to excellent antiproliferative action at 20 μM concentration. The utmost antiproliferative activity was portrayed by compound 16e on the selected cancer cell lines with IC50 < 9 μM, the lowest being 3.20 ± 0.12 μM in the HCT116 cell line. Further, it also displayed an impressive EGFR kinase inhibition with an IC50 value of 94.44 ± 2.22 nM concentration. As a corollary of the reported EGFR inhibition, the nature, energy, and stability of the binding interactions were contemplated via in silico studies.
Collapse
Affiliation(s)
- Priyanka N Makhal
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500037 India
| | - Anika Sood
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500037 India
| | - Arbaz Sujat Shaikh
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500037 India
| | - Lahu N Dayare
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500037 India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500037 India
| | - Venkata Rao Kaki
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500037 India
| |
Collapse
|
2
|
Computational Methods in Cooperation with Experimental Approaches to Design Protein Tyrosine Phosphatase 1B Inhibitors in Type 2 Diabetes Drug Design: A Review of the Achievements of This Century. Pharmaceuticals (Basel) 2022; 15:ph15070866. [PMID: 35890163 PMCID: PMC9322956 DOI: 10.3390/ph15070866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) dephosphorylates phosphotyrosine residues and is an important regulator of several signaling pathways, such as insulin, leptin, and the ErbB signaling network, among others. Therefore, this enzyme is considered an attractive target to design new drugs against type 2 diabetes, obesity, and cancer. To date, a wide variety of PTP1B inhibitors that have been developed by experimental and computational approaches. In this review, we summarize the achievements with respect to PTP1B inhibitors discovered by applying computer-assisted drug design methodologies (virtual screening, molecular docking, pharmacophore modeling, and quantitative structure–activity relationships (QSAR)) as the principal strategy, in cooperation with experimental approaches, covering articles published from the beginning of the century until the time this review was submitted, with a focus on studies conducted with the aim of discovering new drugs against type 2 diabetes. This review encourages the use of computational techniques and includes helpful information that increases the knowledge generated to date about PTP1B inhibition, with a positive impact on the route toward obtaining a new drug against type 2 diabetes with PTP1B as a molecular target.
Collapse
|
3
|
Recent Updates on Development of Protein-Tyrosine Phosphatase 1B Inhibitors for Treatment of Diabetes, Obesity and Related Disorders. Bioorg Chem 2022; 121:105626. [DOI: 10.1016/j.bioorg.2022.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 01/30/2023]
|
4
|
Discovery of inhibitors targeting protein tyrosine phosphatase 1B using a combined virtual screening approach. Mol Divers 2021; 26:2159-2174. [PMID: 34655403 DOI: 10.1007/s11030-021-10323-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) acts as a therapeutic target for type 2 diabetes. However, the major challenges of PTP1B drug discovery are the poor selectivity and the weak oral bioavailability. In this study, we performed a combined virtual screening approach including multicomplex pharmacophore, molecular docking-based screening, van der Waals energy normalization, pose scaling factor, ADMET evaluation, and molecular dynamics simulation to select PTP1B inhibitors from three databases (PubChem, ChEMBL, and ZINC). We identified three potential PTP1B inhibitors, compounds 1, 4, and 5, with favorable binding energy and good oral bioavailability. The energetic and geometrical analyses show that the three compounds are stably bound to PTP1B, via occupying both the catalytic site (site A) and the proximal noncatalytic site (site B or C). Such occupancy may improve the selectivity. This work not only provided a feasible virtual screening protocol, but also suggested three potential PTP1B inhibitors for the treatment of type 2 diabetes.
Collapse
|
5
|
Suruzhon M, Bodnarchuk MS, Ciancetta A, Viner R, Wall ID, Essex JW. Sensitivity of Binding Free Energy Calculations to Initial Protein Crystal Structure. J Chem Theory Comput 2021; 17:1806-1821. [PMID: 33534995 DOI: 10.1021/acs.jctc.0c00972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Binding free energy calculations using alchemical free energy (AFE) methods are widely considered to be the most rigorous tool in the computational drug discovery arsenal. Despite this, the calculations suffer from accuracy, precision, and reproducibility issues. In this publication, we perform a high-throughput study of more than a thousand AFE calculations, utilizing over 220 μs of total sampling time, on three different protein systems to investigate the impact of the initial crystal structure on the resulting binding free energy values. We also consider the influence of equilibration time and discover that the initial crystal structure can have a significant effect on free energy values obtained at short timescales that can manifest itself as a free energy difference of more than 1 kcal/mol. At longer timescales, these differences are largely overtaken by important rare events, such as torsional ligand motions, typically resulting in a much higher uncertainty in the obtained values. This work emphasizes the importance of rare event sampling and long-timescale dynamics in free energy calculations even for routinely performed alchemical perturbations. We conclude that an optimal protocol should not only concentrate computational resources on achieving convergence in the alchemical coupling parameter (λ) space but also on longer simulations and multiple repeats.
Collapse
Affiliation(s)
- Miroslav Suruzhon
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | | | | | - Russell Viner
- Syngenta, Jealott's Hill International Research Centre, Bracknell RG42 6EY, U.K
| | - Ian D Wall
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Jonathan W Essex
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| |
Collapse
|
6
|
Kousaxidis A, Petrou A, Lavrentaki V, Fesatidou M, Nicolaou I, Geronikaki A. Aldose reductase and protein tyrosine phosphatase 1B inhibitors as a promising therapeutic approach for diabetes mellitus. Eur J Med Chem 2020; 207:112742. [PMID: 32871344 DOI: 10.1016/j.ejmech.2020.112742] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a metabolic disease characterized by high blood glucose levels and usually associated with several chronic pathologies. Aldose reductase and protein tyrosine phosphatase 1B enzymes have identified as two novel molecular targets associated with the onset and progression of type II diabetes and related comorbidities. Although many inhibitors against these enzymes have already found in the field of diabetic mellitus, the research for discovering more effective and selective agents with optimal pharmacokinetic properties continues. In addition, dual inhibition of these target proteins has proved as a promising therapeutic approach. A variety of diverse scaffolds are presented in this review for the future design of potent and selective inhibitors of aldose reductase and protein tyrosine phosphatase 1B based on the most important structural features of both enzymes. The discovery of novel dual aldose reductase and protein tyrosine phosphatase 1B inhibitors could be effective therapeutic molecules for the treatment of insulin-resistant type II diabetes mellitus. The methods used comprise a literature survey and X-ray crystal structures derived from Protein Databank (PDB). Despite the available therapeutic options for type II diabetes mellitus, the inhibitors of aldose reductase and protein tyrosine phosphatase 1B could be two promising approaches for the effective treatment of hyperglycemia and diabetes-associated pathologies. Due to the poor pharmacokinetic profile and low in vivo efficacy of existing inhibitors of both targets, the research turned to more selective and cell-permeable agents as well as multi-target molecules.
Collapse
Affiliation(s)
- Antonios Kousaxidis
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Anthi Petrou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Vasiliki Lavrentaki
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Maria Fesatidou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Ioannis Nicolaou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Athina Geronikaki
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece.
| |
Collapse
|
7
|
Singh A, Singh G, Bedi PMS. Thiophene derivatives: A potent multitargeted pharmacological scaffold. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3990] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical SciencesGuru Nanak Dev University Amritsar Punjab India
| | - Gurvinder Singh
- Department of Pharmaceutical ChemistryKhalsa College of Pharmacy Amritsar Punjab India
| | | |
Collapse
|
8
|
Abstract
Tyrosine phosphorylation is a critical component of signal transduction for multicellular organisms, particularly for pathways that regulate cell proliferation and differentiation. While tyrosine kinase inhibitors have become FDA-approved drugs, inhibitors of the other important components of these signaling pathways have been harder to develop. Specifically, direct phosphotyrosine (pTyr) isosteres have been aggressively pursued as inhibitors of Src homology 2 (SH2) domains and protein tyrosine phosphatases (PTPs). Medicinal chemists have produced many classes of peptide and small molecule inhibitors that mimic pTyr. However, balancing affinity with selectivity and cell penetration has made this an extremely difficult space for developing successful clinical candidates. This review will provide a comprehensive picture of the field of pTyr isosteres, from early beginnings to the current state and trajectory. We will also highlight the major protein targets of these medicinal chemistry efforts, the major classes of peptide and small molecule inhibitors that have been developed, and the handful of compounds which have been tested in clinical trials.
Collapse
Affiliation(s)
- Robert A Cerulli
- Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111, USA
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA.
| |
Collapse
|
9
|
Volatile Secondary Metabolites with Potent Antidiabetic Activity from the Roots of Prangos pabularia Lindl.—Computational and Experimental Investigations. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9112362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
(1) Background: Almost 500 million people worldwide are suffering from diabetes. Since ancient times, humans have used medicinal plants for the treatment of diabetes. Medicinal plants continue to serve as natural sources for the discovery of antidiabetic compounds. Prangos pabularia Lindl. is a widely distributed herb with large reserves in Tajikistan. Its roots and fruits have been used in Tajik traditional medicine. To our best knowledge, there are no previously published reports concerning the antidiabetic activity and the chemical composition of the essential oil obtained from roots of P. pabularia. (2) Methods: The volatile secondary metabolites were obtained by hydrodistillation from the underground parts of P. pabularia growing wild in Tajikistan and were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Protein tyrosine phosphatase 1B (PTP-1B) inhibition assay and molecular docking analysis were carried out to evaluate the potential antidiabetic activity of the P. pabularia essential oil. (3) Results: The main constituents of the volatile oil of P. pabularia were 5-pentylcyclohexa-1,3-diene (44.6%), menthone (12.6%), 1-tridecyne (10.9%), and osthole (6.0%). PTP-1B inhibition assay of the essential oil and osthole resulted in significant inhibitory activity with an IC50 value of 0.06 ± 0.01 and 0.93 ± 0.1 μg/mL. Molecular docking analysis suggests volatile compounds such as osthole inhibit PTP-1B, and the results are also in agreement with experimental investigations. (4) Conclusions: Volatile secondary metabolites and the pure isolated compound (osthole) from the roots of P. pabularia exhibited potent antidiabetic activity, twenty-five and nearly two times more than the positive control (3-(3,5-dibromo-4-hydroxybenzoyl)-2-ethylbenzofuran-6-sulfonic acid-(4-(thiazol-2-ylsulfamyl)-phenyl)-amide)) with an IC50 value of 1.46 ± 0.4 μg/mL, respectively.
Collapse
|
10
|
Eleftheriou P, Geronikaki A, Petrou A. PTP1b Inhibition, A Promising Approach for the Treatment of Diabetes Type II. Curr Top Med Chem 2019; 19:246-263. [PMID: 30714526 DOI: 10.2174/1568026619666190201152153] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Diabetes Mellitus (DM), is a metabolic disorder characterized by high blood glucose levels. The main types of diabetes mellitus are Diabetes mellitus type I, Diabetes mellitus type II, gestational diabetes and Diabetes of other etiology. Diabetes type II, the Non Insulin Dependent Type (NIDDM) is the most common type, characterized by the impairment in activation of the intracellular mechanism leading to the insertion and usage of glucose after interaction of insulin with its receptor, known as insulin resistance. Although, a number of drugs have been developed for the treatment of diabetes type II, their ability to reduce blood glucose levels is limited, while several side effects are also observed. Furthermore, none of the market drugs targets the enhancement of the action of the intracellular part of insulin receptor or recuperation of the glucose transport mechanism in GLUT4 dependent cells. The Protein Tyrosine Phosphatase (PTP1b) is the main enzyme involved in insulin receptor desensitization and has become a drug target for the treatment of Diabetes type II. Several PTP1b inhibitors have already been found, interacting with the binding site of the enzyme, surrounding the catalytic amino acid Cys215 and the neighboring area or with the allosteric site of the enzyme, placed at a distance of 20 Å from the active site, around Phe280. However, the research continues for finding more potent inhibitors with increased cell permeability and specificity. OBJECTIVE The aim of this review is to show the attempts made in developing of Protein Tyrosine Phosphatase (PTP1b) inhibitors with high potency, selectivity and bioavailability and to sum up the indications for favorable structural characteristics of effective PTP1b inhibitors. METHODS The methods used include a literature survey and the use of Protein Structure Databanks such as PuBMed Structure and RCSB and the tools they provide. CONCLUSION The research for finding PTP1b inhibitors started with the design of molecules mimicking the Tyrosine substrate of the enzyme. The study revealed that an aromatic ring connected to a polar group, which preferably enables hydrogen bond formation, is the minimum requirement for small inhibitors binding to the active site surrounding Cys215. Molecules bearing two hydrogen bond donor/acceptor (Hb d/a) groups at a distance of 8.5-11.5 Å may form more stable complexes, interacting simultaneously with a secondary area A2. Longer molecules with two Hb d/a groups at a distance of 17 Å or 19 Å may enable additional interactions with secondary sites (B and C) that confer stability as well as specificity. An aromatic ring linked to polar or Hb d/a moieties is also required for allosteric inhibitors. A lower distance between Hb d/a moieties, around 7.5 Å may favor allosteric interaction. Permanent inhibition of the enzyme by oxidation of the catalytic Cys215 has also been referred. Moreover, covalent modification of Cys121, placed near but not inside the catalytic pocket has been associated with permanent inhibition of the enzyme.
Collapse
Affiliation(s)
- Phaedra Eleftheriou
- Department of Medical Laboratory Studies, School of Health and Medical Care, Alexander Technological Educational Institute of Thessaloniki, Thessaloniki 57400, Greece
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
11
|
The development of protein tyrosine phosphatase1B inhibitors defined by binding sites in crystalline complexes. Future Med Chem 2019; 10:2345-2367. [PMID: 30273014 DOI: 10.4155/fmc-2018-0089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Protein tyrosine phosphatase1B (PTP1B), a significant negative regulator in insulin and leptin signaling pathways, has emerged as a promising drug target for Type II diabetes mellitus and obesity. Numerous potent PTP1B inhibitors have been discovered within both academia and pharmaceutical industry. However, nearly all medicinal chemistry efforts have been severely hindered because a vast majority of them demonstrate poor membrane permeability and low-selectivity, especially over T-cell protein tyrosine phosphatase (TCPTP). To search the rules about the selectivity over TCPTP and membrane permeability of PTP1B inhibitors, based on the PTP1B/inhibitor crystal complexes, the development PTP1B inhibitors defined as AB, AC, ABC and ADC types have been concluded in the review.
Collapse
|
12
|
Gulipalli KC, Bodige S, Ravula P, Endoori S, Vanaja GR, Suresh Babu G, Narendra Sharath Chandra JN, Seelam N. Design, synthesis, in silico and in vitro evaluation of thiophene derivatives: A potent tyrosine phosphatase 1B inhibitor and anticancer activity. Bioorg Med Chem Lett 2017; 27:3558-3564. [PMID: 28579122 DOI: 10.1016/j.bmcl.2017.05.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/06/2017] [Accepted: 05/16/2017] [Indexed: 11/24/2022]
Abstract
A series of novel methyl 4-(4-amidoaryl)-3-methoxythiophene-2-carboxylate derivatives were designed against the active site of protein tyrosine phosphatise 1B (PTP1B) enzyme using MOE.2008.10. These molecules are also subjected for in silico toxicity prediction studies and considering their corresponding drug scores, it implied that, the molecules are promising as anticancer agents. The designed compounds were synthesized by using suitable methods and characterized. They were subjected to inhibitory activity against PTP1B and in vitro anticancer activity by MTT assay. Most of the tested compounds showed potent inhibitory activity against PTP1B, among the compounds tested, compound 5b exhibited the highest activity (IC50=5.25µM) and remarkable cytotoxic activity at 0.09µM of IC50 against the MCF-7 cell line. In addition to this, compound 5c also showed potential anticancer activity at 2.22µM of IC50 against MCF-7 and 0.72µM against HepG2 cell lines as well as PTP1B inhibitory activity at IC50 of 6.37µM.
Collapse
Affiliation(s)
- Kali Charan Gulipalli
- Department of Chemistry, K L University, Green Fields, Vaddeswaram, Guntur 522502, India
| | - Srinu Bodige
- Department of Chemistry, K L University, Green Fields, Vaddeswaram, Guntur 522502, India
| | - Parameshwar Ravula
- Department of Pharmaceutical Chemistry, Gurunanak Institutions Technical Campus, School of Pharmacy, Hyderabad, India
| | - Srinivas Endoori
- Department of Chemistry, K L University, Green Fields, Vaddeswaram, Guntur 522502, India
| | - G R Vanaja
- Department of Animal Biology, University of Hyderabad, Hyderabad 500046, India
| | - G Suresh Babu
- Department of Animal Biology, University of Hyderabad, Hyderabad 500046, India
| | | | - Nareshvarma Seelam
- Department of Chemistry, K L University, Green Fields, Vaddeswaram, Guntur 522502, India.
| |
Collapse
|
13
|
Meng G, Zheng M, Wang M, Tong J, Ge W, Zhang J, Zheng A, Li J, Gao L, Li J. Design and synthesis of new potent PTP1B inhibitors with the skeleton of 2-substituted imino-3-substituted-5-heteroarylidene-1,3-thiazolidine-4-one: Part I. Eur J Med Chem 2016; 122:756-769. [PMID: 27526040 DOI: 10.1016/j.ejmech.2016.05.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/26/2016] [Accepted: 05/26/2016] [Indexed: 11/19/2022]
Abstract
A new series of 2-substituted imino-3-substituted-5- heteroarylidene-1,3-thiazolidine-4-ones as the potent bidentate PTP1B inhibitors were designed and synthesized in this paper. All of the new compounds were characterized and identified by spectra analysis. The biological screening test against PTP1B showed that some of these compounds have the positive inhibitory activity against PTP1B. The activity of the compounds with 5-substituted pyrrole on 5-postion of 1,3-thiazolidine-4-one are more potent than that of those compounds with 5-substituted pyridine group. Compound 14b, 14h and 14i showed IC50 values of 8.66 μM, 6.83 μM and 6.09 μM against PTP1B, respectively. Docking analysis of these active compounds with PTP1B showed the possible interaction modes of these biheterocyclic compounds with the active sites of PTP1B. The inhibition tests against oncogenetic CDC25B were also conducted on this set of compounds to evaluate the selectivity and possible anti-neoplastic activity. Compound 14b also showed the lowest IC50 of 1.66 μM against CDC25B among all the possible inhibitors, including 14g, 14h, 14i and 15c. Some pharmacological parameters including VolSurf, steric and electric descriptors of all the compounds were calculated to give some hints about the relative relationship with the biological activity. The result of this study might give some light on designing the possible anti-cancer drugs targeting at phosphatases. The most active compound 14i might be used as the lead compound for further structure modification of the new low molecular weight PTP1B inhibitors with the N-containing heterocyclic skeleton.
Collapse
Affiliation(s)
- Ge Meng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China.
| | - Meilin Zheng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Mei Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Jing Tong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Weijuan Ge
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiehe Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Aqun Zheng
- School of Science, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Lixin Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| |
Collapse
|
14
|
The design strategy of selective PTP1B inhibitors over TCPTP. Bioorg Med Chem 2016; 24:3343-52. [PMID: 27353889 DOI: 10.1016/j.bmc.2016.06.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 02/01/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) has already been well studied as a highly validated therapeutic target for diabetes and obesity. However, the lack of selectivity limited further studies and clinical applications of PTP1B inhibitors, especially over T-cell protein tyrosine phosphatase (TCPTP). In this review, we enumerate the published specific inhibitors of PTP1B, discuss the structure-activity relationships by analysis of their X-ray structures or docking results, and summarize the characteristic of selectivity related residues and groups. Furthermore, the design strategy of selective PTP1B inhibitors over TCPTP is also proposed. We hope our work could provide an effective way to gain specific PTP1B inhibitors.
Collapse
|
15
|
Eleftheriou P, Petrou A, Geronikaki A, Liaras K, Dirnali S, Anna M. Prediction of enzyme inhibition and mode of inhibitory action based on calculation of distances between hydrogen bond donor/acceptor groups of the molecule and docking analysis: An application on the discovery of novel effective PTP1B inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2015; 26:557-576. [PMID: 26294069 DOI: 10.1080/1062936x.2015.1074939] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 07/16/2015] [Indexed: 06/04/2023]
Abstract
PTP1B is a protein tyrosine phosphatase involved in insulin receptor desensitization. PTP1B inhibition prolongs the activated state of the receptor, practically enhancing the effect of insulin. Thus PTP1B has become a drug target for the treatment of type II diabetes. PTP1b is an enzyme with multiple binding sites for competitive and allosteric inhibitors. Prediction of inhibitory action using docking analysis has limited success in case of enzymes with multiple binding sites, since the selection of the right crystal structure depends on the kind of inhibitor. In the present study, a two-step strategy for the prediction of PTP1b inhibitory action was applied to 12 compounds. Based on the study of known inhibitors, we isolated the structural characteristics required for binding to each binding site. As a first step, 3D-structures of the molecules were produced and their structural parameters were measured and used for prediction of the binding site of the compound. These results were used for the selection of the appropriate crystal structure for docking analysis of each compound, and the final prediction was based on the estimated binding energies. This strategy effectively predicted the activity of all compounds. A linear correlation was found between estimated binding energy and inhibition measured in vitro (r = -0.894).
Collapse
Affiliation(s)
- P Eleftheriou
- a Department of Medical Laboratory Studies, School of Health and Medical Care , Alexander Technological Educational Institute of Thessaloniki , Greece
| | - A Petrou
- b Department of Medicinal Chemistry, School of Medicine , Aristotle University of Thessaloniki , Greece
| | - A Geronikaki
- b Department of Medicinal Chemistry, School of Medicine , Aristotle University of Thessaloniki , Greece
| | - K Liaras
- b Department of Medicinal Chemistry, School of Medicine , Aristotle University of Thessaloniki , Greece
| | - S Dirnali
- a Department of Medical Laboratory Studies, School of Health and Medical Care , Alexander Technological Educational Institute of Thessaloniki , Greece
| | - M Anna
- a Department of Medical Laboratory Studies, School of Health and Medical Care , Alexander Technological Educational Institute of Thessaloniki , Greece
| |
Collapse
|
16
|
Sekhar KC, Syed R, Golla M, Kumar M V J, Yellapu NK, Chippada AR, Chamarthi NR. Novel heteroaryl phosphonicdiamides PTPs inhibitors as anti-hyperglycemic agents. Daru 2014; 22:76. [PMID: 25542373 PMCID: PMC4305230 DOI: 10.1186/s40199-014-0076-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 11/13/2014] [Indexed: 11/05/2023] Open
Abstract
BACKGROUND Chronic and oral administration of benzylamine improves glucose tolerance. Picolylamine is a selective functional antagonist of the human adenosine A2B receptor. Phosphonic diamide derivatives enhance the cellular permeability and in turn their biological activities. METHODS A series of heteroaryl phosphonicdiamide derivatives were designed as therapeutics to control and manage type2 diabetes. Initially defined Lipinski parameters encouraged them as safer drugs. Molecular docking of these compounds against Protein tyrosine phosphatase (PTP), the potential therapeutic target of type 2 diabetes, revealed their potential binding ability explaining their anti-diabetic activity in terms of PTP inhibition. Human intestinal absorption, Caco-2 cell permeability, MDCK cell permeability, BBB penetration, skin permeability and plasma protein binding abilities of the title compounds were calculated by PreADMET server. A convenient method has been developed for the synthesis of title compounds through the formation of 1-ethoxy-N,N'-bis(4-fluorobenzyl/pyridin-3-ylmethyl)phosphinediamine by the reaction of 4-fluorobenzylamine/ 3-picolylamine with ethyldichlorophosphite, subsequently reacted with heteroaryl halides using lanthanum(III) chloride as a catalyst. RESULTS All the compounds exhibited significant in vitro anti-oxidant activity and in vivo evaluation in streptozotocin induced diabetic rat models revealed that the normal glycemic levels were observed on 12(th) day by 9a and 20(th) day by 5b, 5c, 9e and 9f. The remaining compounds also exhibited normal glycemic levels by 25(th) day. CONCLUSION The results from molecular modeling, in vitro and in vivo studies are suggesting them as safer and effective therapeutic agents against type2 diabetes. Graphical Abstract Development of PTPs inhibitors.
Collapse
Affiliation(s)
| | - Rasheed Syed
- Department of Chemistry, Sri Venkateswara University, Tirupati, 517 502, India.
| | - Madhava Golla
- Department of Chemistry, Sri Venkateswara University, Tirupati, 517 502, India.
| | - Jyothi Kumar M V
- Department of Biotechnology, Sri Venkateswara University, Tirupati, 517 502, India.
| | - Nanda Kumar Yellapu
- Biomedical informatics Center, Vector Control Research Centre, Indian Council of Medical Research, Puducherry, 605006, India.
| | - Appa Rao Chippada
- Department of Biochemistry, Sri Venkateswara University, Tirupati, 517 502, India.
| | - Naga Raju Chamarthi
- Department of Chemistry, Sri Venkateswara University, Tirupati, 517 502, India.
| |
Collapse
|
17
|
Exploring conformational search protocols for ligand-based virtual screening and 3-D QSAR modeling. J Comput Aided Mol Des 2014; 29:165-82. [DOI: 10.1007/s10822-014-9813-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
|
18
|
Identification of novel PTP1B inhibitors by pharmacophore based virtual screening, scaffold hopping and docking. Eur J Med Chem 2014; 87:578-94. [DOI: 10.1016/j.ejmech.2014.09.097] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 09/03/2014] [Accepted: 09/30/2014] [Indexed: 11/23/2022]
|
19
|
Abstract
SIGNIFICANCE Protein tyrosine phosphatases (PTPs) are important enzymes that are involved in the regulation of cellular signaling. Evidence accumulated over the years has indicated that PTPs present exciting opportunities for drug discovery against diseases such as diabetes, cancer, autoimmune diseases, and tuberculosis. However, the highly conserved and partially positive charge of the catalytic sites of PTPs is a major challenge in the development of potent and highly selective PTP inhibitors. RECENT ADVANCES Here, we examine the strategy of developing bidentate inhibitors for selective inhibition of PTPs. Bidentate inhibitors are small-molecular-weight compounds with the ability to bind to both the active site and a non-conserved secondary phosphate binding site. This secondary phosphate binding site was initially discovered in protein tyrosine phosphatase 1B (PTP1B), and, hence, most of the bidentate inhibitors reported in this review are PTP1B inhibitors. CRITICAL ISSUES Although bidentate inhibition is a good strategy for developing potent and selective inhibitors, the cell membrane permeability and pharmacokinetic properties of the inhibitors are also important for successful drug development. In this review, we will also summarize the various efforts made toward the development of phosphotyrosine (pTyr) mimetics for increasing cellular permeability. FUTURE DIRECTIONS Even though the secondary phosphate binding site was initially found in PTP1B, structural data have shown that a secondary binding site can also be found in other PTPs, albeit with varying degrees of accessibility. Along with improvements in pTyr mimetics, we believe that the future will see an increase in the number of orally bioavailable bidentate inhibitors against the various classes of PTPs.
Collapse
Affiliation(s)
- Joo-Leng Low
- 1 Institute of Chemical and Engineering Sciences , Agency for Science Technology and Research, Singapore, Singapore
| | | | | |
Collapse
|
20
|
Matloubi Moghaddam F, Khodabakhshi MR, Latifkar A. A one-pot multicomponent synthesis of polysubstituted thiophenes via the reactions of an isocyanide, α-haloketones, and β-ketodithioesters in water. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
A paradigm for development of novel PTP 1B inhibitors: Pharmacophore modelling, atom-based 3D-QSAR and docking studies. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0690-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Iitsuka T, Schaal P, Hirano K, Satoh T, Bolm C, Miura M. Rhodium-Catalyzed C3-Selective Alkenylation of Substituted Thiophene-2-carboxylic Acids and Related Compounds. J Org Chem 2013; 78:7216-22. [DOI: 10.1021/jo4011969] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomonori Iitsuka
- Department of Applied Chemistry,
Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Petra Schaal
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen,
Germany
| | - Koji Hirano
- Department of Applied Chemistry,
Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tetsuya Satoh
- Department of Applied Chemistry,
Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- JST, ACT-C, 4-1-8 Honcho, Kawaguchi, Saitama
332-0012, Japan
| | - Carsten Bolm
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen,
Germany
| | - Masahiro Miura
- Department of Applied Chemistry,
Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Deora GS, Karthikeyan C, Moorthy NSHN, Rathore V, Rawat AK, Tamrakar AK, Srivastava AK, Trivedi P. Design, synthesis and biological evaluation of novel arylidine-malononitrile derivatives as non-carboxylic inhibitors of protein tyrosine phosphatase 1B. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0528-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
24
|
Synthesis of novel β-amino ketones containing a p-aminobenzoic acid moiety and evaluation of their antidiabetic activities. Sci China Chem 2013. [DOI: 10.1007/s11426-012-4816-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Baskaran SK, Goswami N, Selvaraj S, Muthusamy VS, Lakshmi BS. Molecular Dynamics Approach to Probe the Allosteric Inhibition of PTP1B by Chlorogenic and Cichoric Acid. J Chem Inf Model 2012; 52:2004-12. [DOI: 10.1021/ci200581g] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Ke S, Ho MC, Zhadin N, Deng H, Callender R. Investigation of catalytic loop structure, dynamics, and function relationship of Yersinia protein tyrosine phosphatase by temperature-jump relaxation spectroscopy and X-ray structural determination. J Phys Chem B 2012; 116:6166-76. [PMID: 22564106 DOI: 10.1021/jp3037846] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Yersinia protein tyrosine phosphatase (YopH) is the most efficient enzyme among all PTPases. YopH is hyperactive compared to human PTPases, interfering with mammalian cellular pathways to achieve the pathogenicity of Yersinia. Two properties related to the catalytic loop structure differences have been proposed to affect its dynamics and enzyme efficiency. One is the ability of the loop to form stabilizing interactions to bound ligand after loop closure, which has long been recognized. In addition, the loop flexibility/mobility was suggested in a previous study to be a factor as well, based on the observation that incremental changes in PTPase loop structure by single point mutations to alanine often induce incremental changes in enzyme catalytic efficiency. In this study, the temperature jump relaxation spectroscopy (T-jump) has been used to discern the subtle changes of the loop dynamics due to point loop mutations. As expected, our results suggest a correlation between loop dynamics and the size of the residue on the catalytic loop. The stabilization of the enzyme-ligand complex is often enthalpy driven, achieved by formation of additional favorable hydrogen bonding/ionic interactions after loop closure. Interestingly, our T-jump and X-ray crystallography studies on YopH suggest that the elimination of some ligand-protein interactions by mutation does not necessarily destabilize the ligand-enzyme complex after loop closure, since the increased entropy in the forms of more mobile protein residues may be sufficient to compensate the free energy loss due to lost interactions and may even lead to enhanced efficiency of the enzyme catalysis. How these competing loop properties may affect loop dynamics and enzyme function are discussed.
Collapse
Affiliation(s)
- Shan Ke
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | | | | | | | | |
Collapse
|
27
|
Using small molecules to target protein phosphatases. Bioorg Med Chem 2011; 19:2145-55. [DOI: 10.1016/j.bmc.2011.02.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/21/2011] [Accepted: 02/23/2011] [Indexed: 11/21/2022]
|
28
|
Yesudas JP, Sayyed FB, Suresh CH. Analysis of structural water and CH···π interactions in HIV-1 protease and PTP1B complexes using a hydrogen bond prediction tool, HBPredicT. J Mol Model 2010; 17:401-13. [PMID: 20490879 DOI: 10.1007/s00894-010-0736-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 04/27/2010] [Indexed: 11/29/2022]
Abstract
A hydrogen bond prediction tool HBPredicT is developed for detecting structural water molecules and CH···π interactions in PDB files of protein-ligand complexes. The program adds the missing hydrogen atoms to the protein, ligands, and oxygen atoms of water molecules and subsequently all the hydrogen bonds in the complex are located using specific geometrical criteria. Hydrogen bonds are classified into various types based on (i) donor and acceptor atoms, and interactions such as (ii) protein-protein, (iii) protein-ligand, (iv) protein-water, (v) ligand-water, (vi) water-water, and (vii) protein-water-ligand. Using the information in category (vii), the water molecules which form hydrogen bonds with the ligand and the protein simultaneously-the structural water-is identified and retrieved along with the associated ligand and protein residues. For CH···π interactions, the relevant portions of the corresponding structures are also extracted in the output. The application potential of this program is tested using 19 HIV-1 protease and 11 PTP1B inhibitor complexes. All the systems showed presence of structural water molecules and in several cases, the CH···π interaction between ligand and protein are detected. A rare occurrence of CH···π interactions emanating from both faces of a phenyl ring of the inhibitor is identified in HIV-1 protease 1D4L.
Collapse
Affiliation(s)
- Joshy P Yesudas
- Computational Modeling and Simulation Section, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum, India
| | | | | |
Collapse
|
29
|
Ye D, Zhang Y, Wang F, Zheng M, Zhang X, Luo X, Shen X, Jiang H, Liu H. Novel thiophene derivatives as PTP1B inhibitors with selectivity and cellular activity. Bioorg Med Chem 2010; 18:1773-82. [DOI: 10.1016/j.bmc.2010.01.055] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 01/22/2010] [Indexed: 01/10/2023]
|
30
|
Vidović D, Schürer SC. Knowledge-based characterization of similarity relationships in the human protein-tyrosine phosphatase family for rational inhibitor design. J Med Chem 2009; 52:6649-59. [PMID: 19810703 DOI: 10.1021/jm9008899] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tyrosine phosphorylation, controlled by the coordinated action of protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPs), is a fundamental regulatory mechanism of numerous physiological processes. PTPs are implicated in a number of human diseases, and their potential as prospective drug targets is increasingly being recognized. Despite their biological importance, until now no comprehensive overview has been reported describing how all members of the human PTP family are related. Here we review the entire human PTP family and present a systematic knowledge-based characterization of global and local similarity relationships, which are relevant for the development of small molecule inhibitors. We use parallel homology modeling to expand the current PTP structure space and analyze the human PTPs based on local three-dimensional catalytic sites and domain sequences. Furthermore, we demonstrate the importance of binding site similarities in understanding cross-reactivity and inhibitor selectivity in the design of small molecule inhibitors.
Collapse
Affiliation(s)
- Dusica Vidović
- Center for Computational Science, University of Miami, Miami, Florida 33136, USA
| | | |
Collapse
|
31
|
Ajmani S, Karanam S, Kulkarni SA. Rationalizing protein-ligand interactions for PTP1B inhibitors using computational methods. Chem Biol Drug Des 2009; 74:582-95. [PMID: 19824894 DOI: 10.1111/j.1747-0285.2009.00894.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein tyrosine phosphatase 1B inhibitors were reported to have anti-diabetic properties and hence this enzyme has become interesting drug target in the recent time. Huge amount of data is available in public domain about the PTP1B inhibitors in the form of X-ray structures. This study is an attempt to transform this data into useful knowledge which can be directly used to design more effective protein tyrosine phosphatase inhibitors. In this study, we have built quantitative models for activity of co-crystallized protein tyrosine phosphatase inhibitors using two new approaches developed in our group, i.e. receptor-ligand interaction and Structure-based compound optimization, prioritization and evolution based on receptor-ligand interaction descriptors and residue-wise interaction energies as descriptors, respectively. These models have given insights into the receptor-ligand interactions essential for modulating the activity of PTP1B inhibitors. An external validation set of 22 molecules was used to test predictive power of these models on external set molecules.
Collapse
Affiliation(s)
- Subhash Ajmani
- Novalead Pharma Pvt. Ltd., Pride Purple Coronet, 1st Floor, S. No. 287, Baner Road, Pune 411045, India.
| | | | | |
Collapse
|
32
|
The therapeutic potential of phosphatase inhibitors. Curr Opin Chem Biol 2009; 13:272-83. [DOI: 10.1016/j.cbpa.2009.03.021] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 03/30/2009] [Indexed: 02/05/2023]
|
33
|
Erbe DV, Klaman LD, Wilson DP, Wan ZK, Kirincich SJ, Will S, Xu X, Kung L, Wang S, Tam S, Lee J, Tobin JF. Prodrug delivery of novel PTP1B inhibitors to enhance insulin signalling. Diabetes Obes Metab 2009; 11:579-88. [PMID: 19383031 DOI: 10.1111/j.1463-1326.2008.01022.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A growing percentage of the population is resistant to two key hormones - insulin and leptin - as a result of increased obesity, often leading to significant health consequences such as type 2 diabetes. Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of signalling by both of these hormones, so that inhibitors of this enzyme may provide promise for correcting endocrine abnormalities in both diabetes and obesity. As with other tyrosine phosphatases, identification of viable drug candidates targeting PTP1B has been elusive because of the nature of its active site. Beginning with novel phosphotyrosine mimetics, we have designed some of the most potent PTP1B inhibitors. However, their highly acidic structures limit intrinsic permeability and pharmacokinetics. Ester prodrugs of these inhibitors improve their drug-like properties with the goal of delivering these nanomolar inhibitors to the cytoplasm of cells within target tissues. In addition to identifying prodrugs that is able to deliver active drugs into cells to inhibit PTP1B and increase insulin signalling, these compounds were further modified to gain a variety of cleavage properties for targeting activity in vivo. One such prodrug candidate improved insulin sensitivity in ob/ob mice, with lowered fasting blood glucose levels seen in the context of lowered fasting insulin levels following 4 days of intraperitoneal dosing. The results presented in this study highlight the potential for design of orally active drug candidates targeting PTP1B, while also delineating the considerable challenges remaining.
Collapse
Affiliation(s)
- D V Erbe
- Departments of Metabolic Diseases and Chemical Sciences, Wyeth Research, Cambridge, MA 02140, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mohler ML, He Y, Wu Z, Hwang DJ, Miller DD. Recent and emerging anti-diabetes targets. Med Res Rev 2009; 29:125-95. [DOI: 10.1002/med.20142] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
35
|
Wan ZK, Lee J, Hotchandani R, Moretto A, Binnun E, Wilson D, Kirincich S, Follows B, Ipek M, Xu W, Joseph-McCarthy D, Zhang YL, Tam M, Erbe D, Tobin J, Li W, Tam S, Mansour T, Wu J. Structure-Based Optimization of Protein Tyrosine Phosphatase-1 B Inhibitors: Capturing Interactions with Arginine 24. ChemMedChem 2008; 3:1525-9. [DOI: 10.1002/cmdc.200800188] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Fleckenstein CA, Plenio H. Highly efficient Suzuki-Miyaura coupling of heterocyclic substrates through rational reaction design. Chemistry 2008; 14:4267-79. [PMID: 18366046 DOI: 10.1002/chem.200701877] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A dicyclohexyl(2-sulfo-9-(3-(4-sulfophenyl)propyl)-9H-fluoren-9-yl)phosphonium salt was synthesized in 64% overall yield in three steps from simple commercially available starting materials. The highly water-soluble catalyst obtained from the corresponding phosphine and [Na(2)PdCl(4)] enabled the Suzuki coupling of a broad variety of N- and S-heterocyclic substrates. Chloropyridines (-quinolines) and aryl chlorides were coupled with aryl-, pyridine- or indoleboronic acids in quantitative yields in water/n-butanol solvent mixtures in the presence of 0.005-0.05 mol % of Pd catalyst at 100 degrees C, chloropurines were quantitatively Suzuki coupled in the presence of 0.5 mol % of catalyst, and S-heterocyclic aryl chlorides and aryl- or 3-pyridylboronic acids required 0.01-0.05 mol % Pd catalyst for full conversion. The key to the high activity of the Pd-phosphine catalyst is the rational design of the reaction parameters (i.e., the presence of water in the reaction mixture, good solubility of reactants and catalyst in n-butanol/water (3:1), and the electron-rich and sterically demanding nature of the phosphine ligand).
Collapse
Affiliation(s)
- Christoph A Fleckenstein
- Anorganische Chemie im Zintl-Institut, TU Darmstadt, Petersenstrasse 18, 64287 Darmstadt, Germany
| | | |
Collapse
|
37
|
Ling Q, Huang Y, Zhou Y, Cai Z, Xiong B, Zhang Y, Ma L, Wang X, Li X, Li J, Shen J. Illudalic acid as a potential LAR inhibitor: synthesis, SAR, and preliminary studies on the mechanism of action. Bioorg Med Chem 2008; 16:7399-409. [PMID: 18579388 DOI: 10.1016/j.bmc.2008.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 06/08/2008] [Accepted: 06/10/2008] [Indexed: 11/30/2022]
Abstract
A novel synthesis of the human leukocyte common antigen-related (LAR) phosphatase inhibitor, illudalic acid, has been achieved by a route more amenable to structure modifications. A series of simpler analogues of illudalic acid was synthesized and evaluated for potency in inhibiting LAR. The structure-activity relationship (SAR) study has shown that the 5-formyl group and the hemi-acetal lactone are crucial for effective inhibition of LAR activity, and are the key pharmacophores of illudalic acid. The fused dimethylcyclopentene ring moiety evidently helps to enhance the potency of illudalic acid against LAR. A preliminary study of the mechanism of action of illudalic acid against LAR was conducted using electrospray ionization mass spectrometry (ESI-MS) and molecular docking techniques. The results are in full agreement with the described mechanism.
Collapse
Affiliation(s)
- Qing Ling
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Maccari R, Paoli P, Ottanà R, Jacomelli M, Ciurleo R, Manao G, Steindl T, Langer T, Vigorita MG, Camici G. 5-Arylidene-2,4-thiazolidinediones as inhibitors of protein tyrosine phosphatases. Bioorg Med Chem 2007; 15:5137-49. [PMID: 17543532 DOI: 10.1016/j.bmc.2007.05.027] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 05/04/2007] [Accepted: 05/11/2007] [Indexed: 11/20/2022]
Abstract
4-(5-Arylidene-2,4-dioxothiazolidin-3-yl)methylbenzoic acids (2) were synthesized and evaluated in vitro as inhibitors of PTP1B and LMW-PTP, two protein tyrosine phosphatases (PTPs) which act as negative regulators of the metabolic and mitotic signalling of insulin. The synthesis of compounds 2 represents an example of utilizing phosphotyrosine-mimetics to identify effective low molecular weight nonphosphorus inhibitors of PTPs. Several thiazolidinediones 2 exhibited PTP1B inhibitory activity in the low micromolar range with moderate selectivity for human PTP1B and IF1 isoform of human LMW-PTP compared with other related PTPs.
Collapse
Affiliation(s)
- Rosanna Maccari
- Dipartimento Farmaco-Chimico, Università di Messina, Vl SS Annunziata, Messina, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhang YL, Tam M, Kirincich S, Wan ZK, Wilson D, Wu JJ, Lee J, Tobin JF, Erbe DV. An enzyme-linked immunosorbent assay to measure insulin receptor dephosphorylation by PTP1B. Anal Biochem 2007; 365:174-84. [PMID: 17481567 DOI: 10.1016/j.ab.2007.03.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 03/26/2007] [Accepted: 03/28/2007] [Indexed: 11/29/2022]
Abstract
Considerable effort exists within drug discovery to develop novel compounds to improve the underlying metabolic defects in type 2 diabetes. One approach is focused on inhibition of the tyrosine phosphatase, PTP1B, an important negative regulator of both insulin and leptin signaling. Historically, tyrosine phosphatase assays have used either small organic phosphates or, alternatively, phosphorylated peptides from the target proteins themselves. In characterizing inhibitors of PTP1B, measuring turnover of small organic phosphates is limited to evaluation of compounds that bind the active site itself. Peptide substrates allow identification of additional subsets of inhibitors (e.g., those that bind the second aryl-phosphate site), but assays of peptide turnover often involve detection steps that then limit full kinetic evaluation of inhibitors. Here we use a polyclonal antibody specific for the phosphorylated insulin receptor to allow much more sensitive detection of peptide phosphorylation. This kinetically robust enzyme-linked immunosorbent assay (ELISA) gives k(cat) and K(m) values for a phosphorylated insulin receptor peptide consistent with values determined by a continuous fluorescence-based assay. Furthermore, IC50 values determined for well-behaved active site inhibitors agree well with values determined for p-nitrophenyl phosphate cleavage. This assay permits full characterization of a larger subset of inhibitors as drug candidates for this promising target.
Collapse
Affiliation(s)
- Yan-Ling Zhang
- Cardiovascular and Metabolic Diseases, Wyeth Research, Cambridge, MA 02140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wan ZK, Follows B, Kirincich S, Wilson D, Binnun E, Xu W, Joseph-McCarthy D, Wu J, Smith M, Zhang YL, Tam M, Erbe D, Tam S, Saiah E, Lee J. Probing acid replacements of thiophene PTP1B inhibitors. Bioorg Med Chem Lett 2007; 17:2913-20. [PMID: 17336064 DOI: 10.1016/j.bmcl.2007.02.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 02/15/2007] [Accepted: 02/16/2007] [Indexed: 11/23/2022]
Abstract
The following account describes our systematic effort to replace one of the carboxylate groups of our diacid thiophene PTP1B inhibitors. Active hits were validated using enzymatic assays before pursuing efforts to improve the potency. Only when the C2 carboxylic acid was replaced with another ionizable functional group was reversible and competitive inhibition retained. Use of a tetrazole ring or 1,2,5-thiadiazolidine-3-one-1,1-dioxide as a carboxylate mimetic led to the discovery of two unique starting series that showed improved permeability (PAMPA) and potency of the order of 300nM. The SAR from these efforts underscores some of the major challenges in developing small molecule inhibitors for PTP1B.
Collapse
Affiliation(s)
- Zhao-Kui Wan
- Chemical and Screening Sciences, Wyeth Research, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|