1
|
Zhang S, Yang L, Jin H, Wang Y, Teng Q, Meng Q, Cai Z. Residual and pharmacokinetic behavior of berberine in Carassius auratus under intraperitoneal injection conditions by HPLC-Q-TOF/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1254:124507. [PMID: 39923615 DOI: 10.1016/j.jchromb.2025.124507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/08/2024] [Revised: 01/21/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
The present study investigated the distribution characteristics of Berberine (BBR) in Carassius auratus under artificial environmental conditions (temperature: 26 ± 1.0 °C; continuous air pumping) following a single administration via intraperitoneal injection of an appropriate dosage of 2.0 mg/Kg per body weight. Additionally, studies have investigated the residual distribution of BBR in eight different tissues using high performance liquid chromatography-quadrupole-time of flight mass spectrometry (HPLC-Q-TOF/MS) technology. A total of 36 Carassius auratus (3 parallel samples per group) were in the drug-exposed group and 3 were in the control group. Carassius auratus were sampled at the indicated times (sampling interval: 24-96 h), lasting for approximately one month. The residual metabolic drug concentration-time curves were plotted according to the concentration of BBR in different tissues. The maximum BBR concentrations (Cmax) in all tissues were achieved 24 h after the administration of the intraperitoneal injection. The order of the Cmax was: muscle < eye < gill < brain < kidney < intestine< liver < bile. According to the distribution characteristics of BBR between tissues, the drug concentrations in muscle, brain, eye, and gill tissues were relatively low (∼100 to >400 ng/g). Their metabolism was rapid, and BBR residue was significantly reduced to tens of ng/g from 24 to 200 h. Meanwhile, the bile, kidney, intestine, and liver contained significantly higher concentrations of BBR (maintained at 1200 to 6000 ng/g). The concentration shows a fluctuating and decreasing characteristic, with the drug remaining for a longer period. Following the 31 days BBR withdrawal period, the pharmacokinetic parameters of maximum observed concentration(Cmax), terminal half-life (T1/2), elimination rate constant during terminal phase (λz), the volume of distribution (Vd/F), and total body clearance (Cl/F) were calculated employing non-compartmental analysis (NCA) using the PK Solver software. The research results of the article explain the retention of BBR in Carassius auratus until excretion and can be used to determine residual levels over time.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Le Yang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Hao Jin
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yuxiang Wang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qiaoqiao Teng
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qi Meng
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Zhiqiang Cai
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
2
|
Yamashita A, Kasai H, Maekawa S, Tanaka T, Akaike Y, Ryo A, Enomoto N, Moriishi K. Berberine promotes K 48-linked polyubiquitination of HNF4α, leading to the inhibition of HBV replication. Antiviral Res 2024; 232:106027. [PMID: 39489302 DOI: 10.1016/j.antiviral.2024.106027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The current antiviral agents for the treatment of chronic infection with hepatitis B virus (HBV) do not completely remove covalently closed circular DNA (cccDNA) and integrated viral DNA fragments from patients. Berberine is an isoquinoline alkaloid extracted from various plants and has been reported to inhibit the replication of various types of DNA. In this study, we tested the effects of berberine and its derivatives on HBV infection. Berberine inhibited viral core promoter activity at the highest level among the compounds tested and suppressed HBV production and cccDNA synthesis in primary human hepatocytes and HBV-infected HepG2-NTCP cells at an EC50 value of 3.6 μM and a CC50 value of over 240.0 μM. Compared with other viral promoter activities, berberine treatment potently downregulated core promoter activity and reduced protein levels, but not RNA levels, of hepatic nuclear factor 4α (HNF4α), which primarily enhances enhancer II/core promoter activity. Furthermore, berberine treatment enhanced K48-linked, but not K63-linked, polyubiquitination and subsequent proteasome-dependent degradation of HNF4α. These results suggest that berberine enhances the polyubiquitination- and proteasome-dependent degradation of HNF4α and then inhibits HBV replication via the suppression of core promoter activity. The development of antiviral agents based on berberine may contribute to the amelioration of HBV-related disorders, regardless of the presence of residual cccDNA or integrated viral DNA fragments.
Collapse
Affiliation(s)
- Atsuya Yamashita
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Hirotake Kasai
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Shinya Maekawa
- The First Department of Internal Medicine, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Tomohisa Tanaka
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan; Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, 060-0808, Japan
| | - Yasunori Akaike
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Akihide Ryo
- Department of Virology III, National Institute for Infectious Diseases, Tokyo, 208-0011, Japan
| | - Nobuyuki Enomoto
- The First Department of Internal Medicine, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan; Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, 060-0808, Japan; Center for Life Science Research, University of Yamanashi, Yamanashi, 409-3898, Japan.
| |
Collapse
|
3
|
Luo XF, Zhou H, Deng P, Zhang SY, Wang YR, Ding YY, Wang GH, Zhang ZJ, Wu ZR, Liu YQ. Current development and structure-activity relationship study of berberine derivatives. Bioorg Med Chem 2024; 112:117880. [PMID: 39216382 DOI: 10.1016/j.bmc.2024.117880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2024] [Revised: 07/28/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Berberine is a quaternary ammonium isoquinoline alkaloid derived from traditional Chinese medicines Coptis chinensis and Phellodendron chinense. It has many pharmacological activities such as hypoglycemic, hypolipidemic, anti-tumor, antimicrobial and anti-inflammatory. Through structural modifications at various sites of berberine, the introduction of different groups can change berberine's physical and chemical properties, thereby improving the biological activity and clinical efficacy, and expanding the scope of application. This paper reviews the research progress and structure-activity relationships of berberine in recent years, aiming to provide valuable insights for the exploration of novel berberine derivatives.
Collapse
Affiliation(s)
- Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Han Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Peng Deng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China.
| | - Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yan-Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Guang-Han Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zheng-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
4
|
Niu ZX, Wang YT, Wang JF. Recent advances in total synthesis of protoberberine and chiral tetrahydroberberine alkaloids. Nat Prod Rep 2024. [PMID: 38712365 DOI: 10.1039/d4np00016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 05/08/2024]
Abstract
Covering: Up to 2024Due to the widespread distribution of protoberberine alkaloids (PBs) and tetrahydroberberine alkaloids (THPBs) in nature, coupled with their myriad unique physiological activities, they have garnered considerable attention from medical practitioners. Over the past few decades, synthetic chemists have devised various total synthesis methods to attain these structures, continually expanding reaction pathways to achieve more efficient synthetic strategies. Simultaneously, the chiral construction of THPBs has become a focal point. In this comprehensive review, we categorically summarized the developmental trajectory of the total synthesis of these alkaloids based on the core closure strategies of protoberberine and tetrahydroberberine.
Collapse
Affiliation(s)
- Zhen-Xi Niu
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Ya-Tao Wang
- First People's Hospital of Shangqiu, Shangqiu 476000, Henan Province, China.
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Jun-Feng Wang
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, Suite 660, Boston, Massachusetts 02114, USA.
| |
Collapse
|
5
|
Del Gaudio MP, Kraus SI, Melzer TM, Bustos PS, Ortega MG. Oral treatment with Berberine reduces peripheral nociception: Possible interaction with different nociceptive pathways activated by different allogeneic substances. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117504. [PMID: 38061440 DOI: 10.1016/j.jep.2023.117504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/02/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Berberine was identified in extracts of Berberis ruscifolia Lam., a plant used in traditional medicine as an analgesic. Its presence may be involved in the reported pharmacological activity of this species. However, there is still a lack of scientific research concerning its analgesic activity in the peripheral nervous system. AIM OF THE STUDY To investigate Berb-induced antinociception in the formalin test and to evaluate several pathways related to its pharmacological antinociceptive effects in chemical models of nociception in mice. MATERIALS AND METHODS The antinociceptive activity of Berb was assessed by inducing the paw licking in mice with different allodynic agents. In the formalin test, the antiedematous and antithermal effect of Berb was evaluated simultaneously in the same experiment. Other nociceptive behavior produced by endogenous [prostaglandin E2 (PGE2), histamine (His), glutamate (Glu) or bradykinin (BK)] or exogenous [capsaicin (Caps) and cinnamaldehyde (Cin)] chemical stimuli, and activators as protein kinase A (PKA) and C (PKC), were also evaluated.The in vivo doses for p.o. were 3 and 30 mg/kg. RESULTS Berb, at 30 mg/kg p.o., showed a significant inhibition of the nociceptive action in formalin in both phases being stronger at the inflammatory phase (59 ± 9%) and more active than Asp (positive control) considering the doses evaluated. Moreover, Berb inhibited the edema (34 ± 10%), but not the temperature in the formalin test. Regarding the different nociceptive signaling pathways evaluated, the most relevant data were that the administration of p.o. of Berb, at 30 mg/kg, caused significant inhibition of nociception induced by endogenous [His (72 ± 11%), PGE2 (78 ± 4%), and BK (51 ± 7%)], exogenous [Cap (68 ± 4%) and Cinn (57 ± 5%)] compounds, and activators of the PKA [(FSK (86 ± 3%)] and PKC [(PMA(86 ± 6%)] signaling pathway. Berb did not inhibit the nociceptive effect produced by Glu. CONCLUSION The present study demonstrated, for the first time, the potential of Berb in several nociceptive tests, with the compound present in B. ruscifolia contributing to the analgesic effect reported for this species.
Collapse
Affiliation(s)
- Micaela Paula Del Gaudio
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Córdoba, 5000, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, 5000, Argentina
| | - Scheila Iria Kraus
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center for Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Thayza Martins Melzer
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center for Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Pamela Soledad Bustos
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Córdoba, 5000, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, 5000, Argentina
| | - María Gabriela Ortega
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Córdoba, 5000, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, 5000, Argentina.
| |
Collapse
|
6
|
Pacyga K, Pacyga P, Topola E, Viscardi S, Duda-Madej A. Bioactive Compounds from Plant Origin as Natural Antimicrobial Agents for the Treatment of Wound Infections. Int J Mol Sci 2024; 25:2100. [PMID: 38396777 PMCID: PMC10889580 DOI: 10.3390/ijms25042100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The rising prevalence of drug-resistant bacteria underscores the need to search for innovative and nature-based solutions. One of the approaches may be the use of plants that constitute a rich source of miscellaneous compounds with a wide range of biological properties. This review explores the antimicrobial activity of seven bioactives and their possible molecular mechanisms of action. Special attention was focused on the antibacterial properties of berberine, catechin, chelerythrine, cinnamaldehyde, ellagic acid, proanthocyanidin, and sanguinarine against Staphylococcus aureus, Enterococcus spp., Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, Serratia marcescens and Pseudomonas aeruginosa. The growing interest in novel therapeutic strategies based on new plant-derived formulations was confirmed by the growing number of articles. Natural products are one of the most promising and intensively examined agents to combat the consequences of the overuse and misuse of classical antibiotics.
Collapse
Affiliation(s)
- Katarzyna Pacyga
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Paweł Pacyga
- Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Ewa Topola
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (S.V.)
| | - Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (S.V.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| |
Collapse
|
7
|
Tian M, Nie L, Yin Y, Zhou H, Meng Z, Cao G, Zang H. Study on quality analysis of different species of Coptidis rhizome based on fingerprint-effect relationship. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:77-86. [PMID: 37621176 DOI: 10.1002/pca.3275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
INTRODUCTION The quality evaluation of Coptidis rhizome (CR) is attributed to the origin and processing method, and this strategy of ignoring the bioactive components usually leads to biased quality analysis, which is difficult to indicate the clinical efficacy. OBJECTIVES In order to evaluate the quality level of different species of CR, we collected 20 batches of CR and investigated the fingerprint-effect relationship. METHODS High-performance liquid chromatography (HPLC) fingerprints of CR were established, and the fingerprint-effect relationship was explored using cluster analysis, principal component analysis, Pearson correlation analysis, grey relation analysis, and partial least squares regression. RESULTS We have identified a total of 10 common peaks (1-10) with similarity scores above 0.96. The study on the relationship between spectra and potency further showed that the contents of peaks 8, 9, and 10 are potential key components. And based on a previous study, a method of one measurement and multiple evaluations of CR was established to achieve the goal of simplifying the analytical process and reducing costs. CONCLUSION Through a combination of fingerprint analysis, antioxidant activity evaluation, fingerprint-efficacy relationship analysis, and simultaneous quantification of multiple components, a CR quality control index and method have been selected and established, which can also provide a more comprehensive quality evaluation for traditional Chinese medicine.
Collapse
Affiliation(s)
- Mengyin Tian
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
| | - Lei Nie
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
| | - Yaqing Yin
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
| | - Haonan Zhou
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
| | - Zhaoqing Meng
- Shandong Hongjitang Pharmaceutical Group Co. Ltd., Jinan, Shandong, China
| | - Guiyun Cao
- Shandong Hongjitang Pharmaceutical Group Co. Ltd., Jinan, Shandong, China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
- National Glycoengineering Research Centre, Shandong University, Jinan, Shandong, China
| |
Collapse
|
8
|
Dhal A, Nayim S, Pattanayek S, Khatun M, Barman S, Paria S, Shit B, Kundu S, Jha PK, Hossain M. Evaluation of calf thymus DNA binding of newly synthesize five 9 O Imidazolyl alkyl berberine derivative: A comparative multi-spectroscopic and calorimetric study. Int J Biol Macromol 2023; 253:126958. [PMID: 37739293 DOI: 10.1016/j.ijbiomac.2023.126958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
DNA binding with small molecule plays an important role in the designing of various anticancer drugs with greater efficacy. The five 9-O-imidazolyl alkyl berberine derivatives (BI) of different chain length has been synthesized and fully characterized. The binding study of calf thymus DNA with these newly synthesized berberine derivative was performed using various biophysical techniques. The binding affinity of BI to calf thymus DNA increased with increasing the chain length. The binding constant value obtained from UV-Vis spectral analysis was 1.84x105for BI1, 2.01x105for BI2, 1.51 × 106 for BI3, 3.66 × 106 for BI4, 6.68 × 106. Partial intercalative binding with strong stabilization of the DNA helix was revealed from circular dichroism spectral study and viscosity measurement. From the ITC experiment it was revealed that the bindings of BI1, BI2, BI3, BI4 and BI5 to calf thymus DNA were favoured by a large positive favourable entropy and negative enthalpy change and the highest spontaneity found for BI5. With the increase in chain length the binding was driven by a stronger entropy term with a higher binding constant indicates involvement of hydrophobic force for all these interaction. High binding affinities of calf thymus DNA with berberine-imidazole derivatives might be helpful for new drug design.
Collapse
Affiliation(s)
- Asima Dhal
- Department of Chemistry, Vidyasagar University, Midnapore - 721102, West Bengal, India
| | - Sk Nayim
- Department of Chemistry, Vidyasagar University, Midnapore - 721102, West Bengal, India
| | - Swadesh Pattanayek
- Department of Chemistry, Vidyasagar University, Midnapore - 721102, West Bengal, India
| | - Munira Khatun
- Department of Chemistry, Vidyasagar University, Midnapore - 721102, West Bengal, India
| | - Subhajit Barman
- Department of Chemistry, Vidyasagar University, Midnapore - 721102, West Bengal, India
| | - Samaresh Paria
- Department of Chemistry, Vidyasagar University, Midnapore - 721102, West Bengal, India
| | - Basudev Shit
- Department of Chemistry, Vidyasagar University, Midnapore - 721102, West Bengal, India
| | - Somenath Kundu
- Department of Chemistry, Vidyasagar University, Midnapore - 721102, West Bengal, India
| | - Pradeep K Jha
- Research and Development, Ghaziabad, ACE Green Recycling Inc, Singapore
| | - Maidul Hossain
- Department of Chemistry, Vidyasagar University, Midnapore - 721102, West Bengal, India.
| |
Collapse
|
9
|
Gabbianelli R, Shahar E, de Simone G, Rucci C, Bordoni L, Feliziani G, Zhao F, Ferrati M, Maggi F, Spinozzi E, Mahajna J. Plant-Derived Epi-Nutraceuticals as Potential Broad-Spectrum Anti-Viral Agents. Nutrients 2023; 15:4719. [PMID: 38004113 PMCID: PMC10675658 DOI: 10.3390/nu15224719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Although the COVID-19 pandemic appears to be diminishing, the emergence of SARS-CoV-2 variants represents a threat to humans due to their inherent transmissibility, immunological evasion, virulence, and invulnerability to existing therapies. The COVID-19 pandemic affected more than 500 million people and caused over 6 million deaths. Vaccines are essential, but in circumstances in which vaccination is not accessible or in individuals with compromised immune systems, drugs can provide additional protection. Targeting host signaling pathways is recommended due to their genomic stability and resistance barriers. Moreover, targeting host factors allows us to develop compounds that are effective against different viral variants as well as against newly emerging virus strains. In recent years, the globe has experienced climate change, which may contribute to the emergence and spread of infectious diseases through a variety of factors. Warmer temperatures and changing precipitation patterns can increase the geographic range of disease-carrying vectors, increasing the risk of diseases spreading to new areas. Climate change may also affect vector behavior, leading to a longer breeding season and more breeding sites for disease vectors. Climate change may also disrupt ecosystems, bringing humans closer to wildlife that transmits zoonotic diseases. All the above factors may accelerate the emergence of new viral epidemics. Plant-derived products, which have been used in traditional medicine for treating pathological conditions, offer structurally novel therapeutic compounds, including those with anti-viral activity. In addition, plant-derived bioactive substances might serve as the ideal basis for developing sustainable/efficient/cost-effective anti-viral alternatives. Interest in herbal antiviral products has increased. More than 50% of approved drugs originate from herbal sources. Plant-derived compounds offer diverse structures and bioactive molecules that are candidates for new drug development. Combining these therapies with conventional drugs could improve patient outcomes. Epigenetics modifications in the genome can affect gene expression without altering DNA sequences. Host cells can use epigenetic gene regulation as a mechanism to silence incoming viral DNA molecules, while viruses recruit cellular epitranscriptomic (covalent modifications of RNAs) modifiers to increase the translational efficiency and transcript stability of viral transcripts to enhance viral gene expression and replication. Moreover, viruses manipulate host cells' epigenetic machinery to ensure productive viral infections. Environmental factors, such as natural products, may influence epigenetic modifications. In this review, we explore the potential of plant-derived substances as epigenetic modifiers for broad-spectrum anti-viral activity, reviewing their modulation processes and anti-viral effects on DNA and RNA viruses, as well as addressing future research objectives in this rapidly emerging field.
Collapse
Affiliation(s)
- Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Ehud Shahar
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| | - Gaia de Simone
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Chiara Rucci
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Giulia Feliziani
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Fanrui Zhao
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Marta Ferrati
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Eleonora Spinozzi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Jamal Mahajna
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| |
Collapse
|
10
|
Marques C, Fernandes MH, Lima SAC. Elucidating Berberine's Therapeutic and Photosensitizer Potential through Nanomedicine Tools. Pharmaceutics 2023; 15:2282. [PMID: 37765251 PMCID: PMC10535601 DOI: 10.3390/pharmaceutics15092282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Berberine, an isoquinoline alkaloid extracted from plants of the Berberidaceae family, has been gaining interest due to anti-inflammatory and antioxidant activities, as well as neuro and cardiovascular protective effects in animal models. Recently, photodynamic therapy demonstrated successful application in many fields of medicine. This innovative, non-invasive treatment modality requires a photosensitizer, light, and oxygen. In particular, the photosensitizer can selectively accumulate in diseased tissues without damaging healthy cells. Berberine's physicochemical properties allow its use as a photosensitising agent for photodynamic therapy, enabling reactive oxygen species production and thus potentiating treatment efficacy. However, berberine exhibits poor aqueous solubility, low oral bioavailability, poor cellular permeability, and poor gastrointestinal absorption that hamper its therapeutic and photodynamic efficacy. Nanotechnology has been used to minimize berberine's limitations with the design of drug delivery systems. Different nanoparticulate delivery systems for berberine have been used, as lipid-, inorganic- and polymeric-based nanoparticles. These berberine nanocarriers improve its therapeutic properties and photodynamic potential. More specifically, they extend its half-life, increase solubility, and allow a high permeation and targeted delivery. This review describes different nano strategies designed for berberine delivery as well as berberine's potential as a photosensitizer for photodynamic therapy. To benefit from berberine's overall potential, nanotechnology has been applied for berberine-mediated photodynamic therapy.
Collapse
Affiliation(s)
- Célia Marques
- IUCS-CESPU, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal;
- LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria Helena Fernandes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, LAQV, REQUIMTE, U. Porto, 4200-393 Porto, Portugal
| | - Sofia A. Costa Lima
- IUCS-CESPU, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal;
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
11
|
Faisal S, Badshah SL, Kubra B, Emwas AH, Jaremko M. Alkaloids as potential antivirals. A comprehensive review. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:4. [PMID: 36598588 PMCID: PMC9812014 DOI: 10.1007/s13659-022-00366-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/25/2022] [Accepted: 12/01/2022] [Indexed: 05/26/2023]
Abstract
Alkaloids are a diverse group of natural phytochemicals. These phytochemicals in plants provide them protection against pests, and herbivorous organisms and also control their development. Numerous of these alkaloids have a variety of biological effects, and some have even been developed into medications with different medicinal properties. This review aims to provide a broad overview of the numerous naturally occurring alkaloids (isolated from both terrestrial and aquatic species) along with synthetically produced alkaloid compounds having prominent antiviral properties. Previous reviews on this subject have focused on the biological actions of both natural and synthetic alkaloids, but they have not gone into comprehensive detail about their antiviral properties. We reviewed here several antiviral alkaloids that have been described in the literature in different investigational environments i.e. (in-vivo, in-ovo, in-vitro, and in-silico), and found that these alkaloid compounds have significant antiviral properties against several infectious viruses. These alkaloids repressed and targeted various important stages of viral infection at non-toxic doses while some of the alkaloids reported here also exhibited comparable inhibitory activities to commercially used drugs. Overall, these anti-viral effects of alkaloids point to a high degree of specificity, implying that they could serve as effective and safe antiviral medicines if further pursued in medicinal and pharmacological investigations.
Collapse
Affiliation(s)
- Shah Faisal
- Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120, Pakistan
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120, Pakistan.
| | - Bibi Kubra
- Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120, Pakistan
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
12
|
Gungor-Ak A, Turan I, Sayan-Ozacmak H, Karatas A. Chitosan nanoparticles as promising tool for berberine delivery: Formulation, characterization and in vivo evaluation. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/24/2023]
|
13
|
Cui G, Wang H, Yang C, Zhou X, Wang J, Wang T, Ma T. Berberine prevents lethal EV71 neurological infection in newborn mice. Front Pharmacol 2022; 13:1027566. [PMID: 36386168 PMCID: PMC9640474 DOI: 10.3389/fphar.2022.1027566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/25/2022] [Accepted: 10/14/2022] [Indexed: 12/01/2022] Open
Abstract
Enterovirus 71 (EV71) is the major pathogen causing fatal neurological complications of hand, foot, and mouth disease (HFMD) in young children. Currently no effective antiviral therapy is available. In the present study, we found that natural compound Berberine (BBR) displayed potent inhibitory effects on EV71 replication in various neural cells (IC50 of 2.79–4.03 μM). In a newborn mouse model of lethal EV71 infection, Berberine at 2–5 mg/kg markedly reduced mortality and clinical scores. Consistently, the replication of EV71 and pathological changes were attenuated in various infected organs including brain and lung with BBR treatment. Interestingly, EV71 infection in the brain mainly localized in the peripheral zone of brainstem and largely in astrocytes. Primary culture of astrocytes from newborn mouse brain confirmed the efficient EV71 replication that was mostly inhibited by BBR treatment at 5 μM. Further investigations revealed remarkably elevated cellular reactive oxygen species (ROS) levels that coincided with EV71 replication in primary cultured astrocytes and various cell lines. BBR largely abolished the virus-elevated ROS production and greatly diminished EV71 replication by up-regulating NFE2 like bZIP transcription factor 2 (Nrf2) via the kelch like ECH associated protein 1 (Keap)-Nrf2 axis. The nuclear localization of Nrf2 and expression of downstream antioxidant enzymes heme oxygenase 1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1) were increased significantly by BBR treatment. Collectively, our findings revealed that BBR prevents lethal EV71 neurological infection via inhibiting virus replication through regulating Keap-Nrf2 axis and ROS generation in astrocytes of brainstem, thus providing a potential antiviral treatment for severe EV71 infection associated with neurological complications.
Collapse
|
14
|
Zhou Y, Yang CJ, Luo XF, Li AP, Zhang SY, An JX, Zhang ZJ, Ma Y, Zhang BQ, Liu YQ. Design, synthesis, and biological evaluation of novel berberine derivatives against phytopathogenic fungi. PEST MANAGEMENT SCIENCE 2022; 78:4361-4376. [PMID: 35758905 DOI: 10.1002/ps.7055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/21/2022] [Revised: 06/01/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The abuse of chemical fungicides not only leads to toxic residues and resistance in plant pathogenic fungi, but also causes environmental pollution and side effects on in humans and animals. Based on the antifungal activities of berberine, seven different types of berberine derivatives (A1-G1) were synthesized, and their antifungal activities against six plant pathogenic fungi were evaluated (Rhizoctonia solani, Botrytis cinerea, Fusarium graminearum, Phytophthora capsici, Sclerotinia sclerotiorum, and Magnaporthe oryzae). RESULTS The results for antifungal activities in vitro showed that berberine derivative E1 displayed good antifungal activity against R. solani with a median effective concentration (EC50 ) of 1.77 μg ml-1 , and berberine derivatives F1 and G1 demonstrated broad-spectrum antifungal activities with EC50 values ranging from 4.43 to 42.23 μg ml-1 against six plant pathogenic fungi. Berberine derivatives (E2-E29, F2-F18, and G2-G9) were further synthesized to investigate the structure-activity relationship (SAR), and compound E20 displayed significant antifungal activity against R. solani with an EC50 value of 0.065 μg ml-1 . Preliminary mechanism studies showed that E20 could cause mycelial shrinkage, cell membrane damage, mitochondrial abnormalities and the accumulation of harmful reactive oxygen species, resulting in cell death in R. solani. Moreover, in vivo experimental results showed that the protective effect of E20 was 97.31% at 5 μg ml-1 , which was better than that of the positive control thifluzamide (50.13% at 5 μg ml-1 ). CONCLUSION Berberine derivative E20 merits further development as a new drug candidate with selective and excellent antifungal activity against R. solani. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yong Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - An-Ping Li
- Gansu Institute for Drug Control, Lanzhou, People's Republic of China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, People's Republic of China
| | - Jun-Xia An
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Yue Ma
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Bao-Qi Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, People's Republic of China
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
15
|
Fu L, Mou J, Deng Y, Ren X. Structural modifications of berberine and their binding effects towards polymorphic deoxyribonucleic acid structures: A review. Front Pharmacol 2022; 13:940282. [PMID: 36016553 PMCID: PMC9395745 DOI: 10.3389/fphar.2022.940282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2022] [Accepted: 07/14/2022] [Indexed: 11/19/2022] Open
Abstract
Berberine (BBR) is a plant derived quaternary benzylisoquinoline alkaloid, which has been widely used in traditional medicines for a long term. It possesses broad pharmacological effects and is widely applied in clinical. In recent years, the anti-tumor effects of BBR have attracted more and more attention of the researchers. The canonical right-handed double-stranded helical deoxyribonucleic acid (B-DNA) and its polymorphs occur under various environmental conditions and are involved in a plethora of genetic instability-related diseases especially tumor. BBR showed differential binding effects towards various polymorphic DNA structures. But its poor lipophilicity and fast metabolism limited its clinical utility. Structural modification of BBR is an effective approach to improve its DNA binding activity and bioavailability in vivo. A large number of studies dedicated to improving the binding affinities of BBR towards different DNA structures have been carried out and achieved tremendous advancements. In this article, the main achievements of BBR derivatives in polymorphic DNA structures binding researches in recent 20 years were reviewed. The structural modification strategy of BBR, the DNA binding effects of its derivatives, and the structure activity relationship (SAR) analysis have also been discussed.
Collapse
Affiliation(s)
| | - Jiajia Mou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
16
|
A Reaction of Berberine with Amides in Alkaline Media: An Experimental and Quantum-Chemical Study. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/16/2022]
|
17
|
Nguyen HT, Pham TN, Le AT, Thuy NT, Huy TQ, Nguyen TTT. Antibacterial activity of a berberine nanoformulation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:641-652. [PMID: 35923171 PMCID: PMC9296985 DOI: 10.3762/bjnano.13.56] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/16/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
This study describes the preparation of berberine (BBR) in nanoformulation to enhance its solubility and increase its antibacterial effectiveness against hospital-acquired infections. BBR nanoparticles (BBR NPs) were formed by antisolvent precipitation (ASP) using glycerol as a safe organic solvent. UV-vis absorption spectra demonstrated that the solubility of BBR NPs was greatly enhanced compared to that of pure BBR. Glycerol played a role as a stabilizer for BBR NPs through the formation of hydrogen bonds between glycerol and BBR NPs. The prepared BBR NPs have a narrow size distribution with an average diameter of 156 nm at a concentration of 2.0 mg/mL, measured by dynamic light scattering. After nanoformulation, the concentration of BBR NPs could reach up to 5.0 mg/mL, which is much higher than the saturation concentration without treatment. Results show a strongly enhanced antibacterial activity of BBR NPs compared with that of pure BBR at the same concentration. The minimum bactericidal concentration of BBR NPs against methicillin-resistant Staphylococcus aureus and Escherichia coli O157:H7 was found to be 2.0 and 5.0 mg/mL, respectively. Transmission electron microscopy showed that BBR NPs surrounded the bacterial cells and severely damaged the cell walls. Therefore, BBR NPs prepared by ASP appear to be a potential candidate for the treatment of bacterial pathogens.
Collapse
Affiliation(s)
- Hue Thi Nguyen
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam
| | - Tuyet Nhung Pham
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam
| | | | - Tran Quang Huy
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam
| | - Thuy Thi Thu Nguyen
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam
| |
Collapse
|
18
|
|
19
|
Lv J, Li ZH, Deng AJ, Qin HL. A unified total synthesis of benzo[ d][1,3]dioxole-type benzylisoquinoline alkaloids of aporphines, coptisines, and dibenzopyrrocolines. Org Biomol Chem 2021; 20:658-666. [PMID: 34951439 DOI: 10.1039/d1ob02258j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/21/2023]
Abstract
The first total synthesis of (S)-(+)-ovigerine, (S)-(+)-N-formylovigerine, and (6aS,6a'S)-(+)-ovigeridimerine of aporphine alkaloids with a benzo[d][1,3]dioxole structure feature was established. The strategy was based upon the well-known Pd-catalyzed arylation to set the aporphine framework, and Noyori asymmetric hydrogenation followed by diastereoselective resolution to achieve excellent enantioselectivity. By slightly modifying the total synthetic route and strategically combining it with a aza-Michael addition, Bischler-Napieralski reaction and N-arylation, this methodology was also applied to the total syntheses of benzo[d][1,3]dioxole-type benzylisoquinoline alkaloids of coptisines and dibenzopyrrocolines, including two impatiens, tetrahydrocoptisine, and quaternary coptisine bromide of coptisines and two dibenzopyrrocoline analogues, with the syntheses of all of these target compounds being efficient. Among the nine synthesized compounds, the total syntheses of the three aporphines and the two impatiens, all with ee values of greater than 99%, were reported for the first time. This work also represents the first unification of synthetic routes for the total synthesis of benzo[d][1,3]dioxole-type aporphines, coptisines, and dibenzopyrrocolines.
Collapse
Affiliation(s)
- Jie Lv
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Zhi-Hong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - An-Jun Deng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Hai-Lin Qin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
20
|
Rodriguez-Rodriguez BA, Noval MG, Kaczmarek ME, Jang KK, Thannickal SA, Cifuentes Kottkamp A, Brown RS, Kielian M, Cadwell K, Stapleford KA. Atovaquone and Berberine Chloride Reduce SARS-CoV-2 Replication In Vitro. Viruses 2021; 13:v13122437. [PMID: 34960706 PMCID: PMC8706021 DOI: 10.3390/v13122437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 01/05/2023] Open
Abstract
Epidemic RNA viruses seem to arise year after year leading to countless infections and devastating disease. SARS-CoV-2 is the most recent of these viruses, but there will undoubtedly be more to come. While effective SARS-CoV-2 vaccines are being deployed, one approach that is still missing is effective antivirals that can be used at the onset of infections and therefore prevent pandemics. Here, we screened FDA-approved compounds against SARS-CoV-2. We found that atovaquone, a pyrimidine biosynthesis inhibitor, is able to reduce SARS-CoV-2 infection in human lung cells. In addition, we found that berberine chloride, a plant-based compound used in holistic medicine, was able to inhibit SARS-CoV-2 infection in cells through direct interaction with the virion. Taken together, these studies highlight potential avenues of antiviral development to block emerging viruses. Such proactive approaches, conducted well before the next pandemic, will be essential to have drugs ready for when the next emerging virus hits.
Collapse
Affiliation(s)
- Bruno A. Rodriguez-Rodriguez
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
| | - Maria G. Noval
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
| | - Maria E. Kaczmarek
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
| | - Kyung Ku Jang
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sara A. Thannickal
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
| | | | - Rebecca S. Brown
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.S.B.); (M.K.)
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.S.B.); (M.K.)
| | - Ken Cadwell
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
- Correspondence:
| |
Collapse
|
21
|
Joshi T, Bhat S, Pundir H, Chandra S. Identification of Berbamine, Oxyacanthine and Rutin from Berberis asiatica as anti-SARS-CoV-2 compounds: An in silico study. J Mol Graph Model 2021; 109:108028. [PMID: 34649146 PMCID: PMC8504924 DOI: 10.1016/j.jmgm.2021.108028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/06/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022]
Abstract
Owing to the shortage of specific medicines, the global pandemic of COVID-19 caused by SARS-CoV-2 has been the greatest challenge for the science community. Researchers from all over the world developed some drugs which failed to completely suppress the contiguous disease. SARS-CoV-2 main protease (Mpro), an important component in viral pathogenesis, is considered as a prospective drug target to stop SARS-CoV-2 infection. Since identification of phytochemicals with anti-Mpro activity has been carried out to develop the potential drugs against SARS-CoV-2. Therefore, the present study was conducted to screen phytochemicals of Berberis asiatica for anti-SARS-CoV-2 activity. Through text mining, thirty phytochemicals were reported from B. asiatica, of which, three phytochemicals (Berbamine, Oxyacanthine, and Rutin) show high affinity with the SARS-CoV-2 Mpro and exhibited favorable intermolecular interactions with the catalytic residues (His41 and Cys145) and other essential residues. The molecular dynamics simulation showed that Mpro-phytochemical complexes are more stable, less fluctuating, more compact, and moderately extended than the Mpro-X77 (Reference) complex. The number of H-bonds and MMPBSA results also demonstrates that Berbamine, Oxyacanthine, and Rutin are potent Mpro inhibitors having free energy of -20.79, -33.35, and -31.12 kcal mol-1 respectively. The toxicity risk prediction supports all phytochemicals for drug-like and non-toxic nature. From the result, we propose that binding of these phytochemicals could hamper the function of Mpro. This work suggests that selected phytochemicals could be used as novel anti-COVID-19 drug candidates, and might act as novel compounds for in vitro and in vivo study.
Collapse
Affiliation(s)
- Tanuja Joshi
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Sunaullah Bhat
- Department of Zoology, Kumaun University, S.S.J Campus, Almora, 263601, Nainital, Uttarakhand, India
| | - Hemlata Pundir
- Department of Botany, D.S.B Campus, Kumaun University, Nainital, 263002, Uttarakhand, India
| | - Subhash Chandra
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, India.
| |
Collapse
|
22
|
Ruchawapol C, Yuan M, Wang SM, Fu WW, Xu HX. Natural Products and Their Derivatives against Human Herpesvirus Infection. Molecules 2021; 26:6290. [PMID: 34684870 PMCID: PMC8541008 DOI: 10.3390/molecules26206290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
Herpesviruses establish long-term latent infection for the life of the host and are known to cause numerous diseases. The prevalence of viral infection is significantly increased and causes a worldwide challenge in terms of health issues due to drug resistance. Prolonged treatment with conventional antiviral drugs is more likely to develop drug-resistant strains due to mutations of thymidine nucleoside kinase or DNA polymerase. Hence, the development of alternative treatments is clearly required. Natural products and their derivatives have played a significant role in treating herpesvirus infection rather than nucleoside analogs in drug-resistant strains with minimal undesirable effects and different mechanisms of action. Numerous plants, animals, fungi, and bacteria-derived compounds have been proved to be efficient and safe for treating human herpesvirus infection. This review covers the natural antiherpetic agents with the chemical structural class of alkaloids, flavonoids, terpenoids, polyphenols, anthraquinones, anthracyclines, and miscellaneous compounds, and their antiviral mechanisms have been summarized. This review would be helpful to get a better grasp of anti-herpesvirus activity of natural products and their derivatives, and to evaluate the feasibility of natural compounds as an alternative therapy against herpesvirus infections in humans.
Collapse
Affiliation(s)
- Chattarin Ruchawapol
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Si-Min Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
| | - Wen-Wei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| |
Collapse
|
23
|
Kutbi HI, Asfour HZ, Kammoun AK, Sirwi A, Cavalu S, Gad HA. Optimization of Hyaluronate-Based Liposomes to Augment the Oral Delivery and the Bioavailability of Berberine. MATERIALS 2021; 14:ma14195759. [PMID: 34640154 PMCID: PMC8510464 DOI: 10.3390/ma14195759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/01/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022]
Abstract
Various perspectives had been utilized to enhance the poor intestinal permeability and bioavailability of drugs with low water solubility. Berberine (Brb) is a unique molecule that possesses multiple therapeutic activities such as antimicrobial, anti-inflammatory, antioxidant and anti-hyperglycemic effects. To improve Brb permeability and bioavailability, this study presents a newly developed formulation, namely Brb hyaluronate-based liposomes, prepared by using film hydration method and characterized by dynamic light scattering measurements, entrapment efficiency percentage (EE%), transmission electron microscope (TEM), in vitro drug release and physical stability. The bioavailability of the selected formulations was assessed in vivo after oral administration to rats. The results revealed an enhanced effect of hyaluronic acid on the entrapment efficiency, reaching 78.1 ± 0.1% with mean size 520.7 ± 19.9 nm. Sustained release of Brb was recorded up to 24 h in comparison to Brb solution. Physical stability was maintained for three months at refrigeration temperature. Results of pharmacokinetics studies indicated the potential of the liposomal formulation to increase the oral bioavailability of Brb and to accelerate its entry into the bloodstream. The obtained results are accredited to the lipophilic nature of the prepared system, resembling the structural features of bio-membrane, in addition to their small size that enhances intestinal penetration.
Collapse
Affiliation(s)
- Hussam I. Kutbi
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hani Z. Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ahmed K. Kammoun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Alaa Sirwi
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
- Correspondence: (S.C.); (H.A.G.); Tel.: +20-100-022-6421 (H.A.G.)
| | - Heba A. Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (S.C.); (H.A.G.); Tel.: +20-100-022-6421 (H.A.G.)
| |
Collapse
|
24
|
A novel berberine-based colorimetric and fluorometric probe for Hg2+ detection and its applications in water samples. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023]
|
25
|
Ruan S, Wu S, Yang L, Li M, Zhang Y, Wang Z, Wang S. A novel turn-on fluorescent probe based on berberine for detecting Hg2+ and ClO− with the different fluorescence signals. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
|
26
|
Derosa G, Maffioli P, D’Angelo A, Di Pierro F. Nutraceutical Approach to Preventing Coronavirus Disease 2019 and Related Complications. Front Immunol 2021; 12:582556. [PMID: 34262553 PMCID: PMC8273380 DOI: 10.3389/fimmu.2021.582556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2020] [Accepted: 06/14/2021] [Indexed: 01/12/2023] Open
Abstract
Introduction Several months ago, Chinese authorities identified an atypical pneumonia in Wuhan city, province of Hubei (China) caused by a novel coronavirus (2019-nCoV or SARS-CoV-2). The WHO announced this new disease was to be known as "COVID-19". Evidence Acquisition Several approaches are currently underway for the treatment of this disease, but a specific cure remains to be established. Evidence Synthesis This review will describe how the use of selected nutraceuticals could be helpful, in addition to pharmacological therapy, in preventing some COVID-19-related complications in infected patients. Conclusions Even if a specific and effective cure for COVID-19 still has some way to go, selected nutraceuticals could be helpful, in addition to pharmacological therapy, in preventing some COVID-19-related complications in infected patients.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Pamela Maffioli
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Angela D’Angelo
- Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Francesco Di Pierro
- Velleja Research S.r.l., Milan, Italy
- Digestive Endoscopy & Gastroenterology, Poliambulanza Hospital, Brescia, Italy
| |
Collapse
|
27
|
Šudomová M, Berchová-Bímová K, Marzocco S, Liskova A, Kubatka P, Hassan ST. Berberine in Human Oncogenic Herpesvirus Infections and Their Linked Cancers. Viruses 2021; 13:v13061014. [PMID: 34071559 PMCID: PMC8229678 DOI: 10.3390/v13061014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/17/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Human herpesviruses are known to induce a broad spectrum of diseases, ranging from common cold sores to cancer, and infections with some types of these viruses, known as human oncogenic herpesviruses (HOHVs), can cause cancer. Challenges with viral latency, recurrent infections, and drug resistance have generated the need for finding new drugs with the ability to overcome these barriers. Berberine (BBR), a naturally occurring alkaloid, is known for its multiple biological activities, including antiviral and anticancer effects. This paper comprehensively compiles all studies that have featured anti-HOHV properties of BBR along with promising preventive effects against the associated cancers. The mechanisms and pathways induced by BBR via targeting the herpesvirus life cycle and the pathogenesis of the linked malignancies are reviewed. Approaches to enhance the therapeutic efficacy of BBR and its use in clinical practice as an anti-herpesvirus drug are also discussed.
Collapse
Affiliation(s)
- Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 66461 Rajhrad, Czech Republic;
| | - Kateřina Berchová-Bímová
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
| | - Stefania Marzocco
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy;
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Sherif T.S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
- Correspondence: ; Tel.: +420-774-630-604
| |
Collapse
|
28
|
Gaba S, Saini A, Singh G, Monga V. An insight into the medicinal attributes of berberine derivatives: A review. Bioorg Med Chem 2021; 38:116143. [PMID: 33848698 DOI: 10.1016/j.bmc.2021.116143] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2021] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 12/13/2022]
Abstract
In the last few decades, traditional natural products have been the center of attention for the scientific community and exploration of their therapeutic abilities is proceeding perpetually. Berberine, with remarkable therapeutic diversity, is a plant derived isoquinoline alkaloid which is widely used as a traditional medicine in China. Berberine has been tackled as a fascinating pharmacophore to make great contributions to the discovery and development of new therapeutic agents against variegated diseases. Despite its tremendous therapeutic potential, clinical utility of this alkaloid was significantly compromised due to undesirable pharmacokinetic properties. To overcome this limitation, several structural modifications were performed on this scaffold to improve its therapeutic efficacy. The collective efforts of the community have achieved the tremendous advancements, bringing berberine to clinical use and discovering new therapeutic opportunities by structural modifications on the berberine scaffold. In this review, recent advancements in the medicinal chemistry of berberine and its derivatives in the last few years (2016-2020) have been compiled to represent inclusive data associated with various biological activities of this alkaloid. The comprehensive structure-activity relationship studies along with molecular modelling and mechanistic studies have also been summarized. This article would be highly helpful for the scientific community to get better insight into medicinal research of berberine and become a compelling guide for the rational design of berberine based compounds.
Collapse
Affiliation(s)
- Sobhi Gaba
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Anjali Saini
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India.
| |
Collapse
|
29
|
Wang Z, Li K, Maskey AR, Huang W, Toutov AA, Yang N, Srivastava K, Geliebter J, Tiwari R, Miao M, Li X. A small molecule compound berberine as an orally active therapeutic candidate against COVID-19 and SARS: A computational and mechanistic study. FASEB J 2021; 35:e21360. [PMID: 33749932 PMCID: PMC8250068 DOI: 10.1096/fj.202001792r] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2020] [Revised: 12/09/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
The novel coronavirus disease, COVID-19, has grown into a global pandemic and a major public health threat since its breakout in December 2019. To date, no specific therapeutic drug or vaccine for treating COVID-19 and SARS has been FDA approved. Previous studies suggest that berberine, an isoquinoline alkaloid, has shown various biological activities that may help against COVID-19 and SARS, including antiviral, anti-allergy and inflammation, hepatoprotection against drug- and infection-induced liver injury, as well as reducing oxidative stress. In particular, berberine has a wide range of antiviral activities such as anti-influenza, anti-hepatitis C, anti-cytomegalovirus, and anti-alphavirus. As an ingredient recommended in guidelines issued by the China National Health Commission for COVID-19 to be combined with other therapy, berberine is a promising orally administered therapeutic candidate against SARS-CoV and SARS-CoV-2. The current study comprehensively evaluates the potential therapeutic mechanisms of berberine in preventing and treating COVID-19 and SARS using computational modeling, including target mining, gene ontology enrichment, pathway analyses, protein-protein interaction analysis, and in silico molecular docking. An orally available immunotherapeutic-berberine nanomedicine, named NIT-X, has been developed by our group and has shown significantly increased oral bioavailability of berberine, increased IFN-γ production by CD8+ T cells, and inhibition of mast cell histamine release in vivo, suggesting a protective immune response. We further validated the inhibition of replication of SARS-CoV-2 in lung epithelial cells line in vitro (Calu3 cells) by berberine. Moreover, the expression of targets including ACE2, TMPRSS2, IL-1α, IL-8, IL-6, and CCL-2 in SARS-CoV-2 infected Calu3 cells were significantly suppressed by NIT-X. By supporting protective immunity while inhibiting pro-inflammatory cytokines; inhibiting viral infection and replication; inducing apoptosis; and protecting against tissue damage, berberine is a promising candidate in preventing and treating COVID-19 and SARS. Given the high oral bioavailability and safety of berberine nanomedicine, the current study may lead to the development of berberine as an orally, active therapeutic against COVID-19 and SARS.
Collapse
Affiliation(s)
- Zhen‐Zhen Wang
- Academy of Chinese Medical ScienceHenan University of Chinese MedicineZhengzhouChina
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
| | - Kun Li
- Department of PediatricsUniversity of IowaIowa CityIAUSA
| | - Anish R. Maskey
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
| | - Weihua Huang
- Department of PathologyNew York Medical CollegeValhallaNYUSA
| | | | - Nan Yang
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
- General Nutraceutical TechnologyElmsfordNYUSA
| | - Kamal Srivastava
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
- General Nutraceutical TechnologyElmsfordNYUSA
| | - Jan Geliebter
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
- Department of OtolaryngologySchool of MedicineNew York Medical CollegeValhallaNYUSA
| | - Raj Tiwari
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
- Department of OtolaryngologySchool of MedicineNew York Medical CollegeValhallaNYUSA
| | - Mingsan Miao
- Academy of Chinese Medical ScienceHenan University of Chinese MedicineZhengzhouChina
| | - Xiu‐Min Li
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
- Department of OtolaryngologySchool of MedicineNew York Medical CollegeValhallaNYUSA
| |
Collapse
|
30
|
Jheng JR, Chen YS, Horng JT. Regulation of the proteostasis network during enterovirus infection: A feedforward mechanism for EV-A71 and EV-D68. Antiviral Res 2021; 188:105019. [PMID: 33484748 DOI: 10.1016/j.antiviral.2021.105019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 10/25/2022]
Abstract
The proteostasis network guarantees successful protein synthesis, folding, transportation, and degradation. Mounting evidence has revealed that this network maintains proteome integrity and is linked to cellular physiology, pathology, and virus infection. Human enterovirus A71 (EV-A71) and EV-D68 are suspected causative agents of acute flaccid myelitis, a severe poliomyelitis-like neurologic syndrome with no known cure. In this context, further clarification of the molecular mechanisms underlying EV-A71 and EV-D68 infection is paramount. Here, we summarize the components of the proteostasis network that are intercepted by EV-A71 and EV-D68, as well as antivirals that target this network and may help develop improved antiviral drugs.
Collapse
Affiliation(s)
- Jia-Rong Jheng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yuan-Siao Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Jim-Tong Horng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
31
|
Bioavailability and hepatoprotection enhancement of berberine and its nanoparticles prepared by liquid antisolvent method. Saudi J Biol Sci 2021; 28:327-332. [PMID: 33424313 PMCID: PMC7783676 DOI: 10.1016/j.sjbs.2020.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/03/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 01/23/2023] Open
Abstract
The study was devised to prepare berberine nanoparticles by anti-solvent precipitation method and were assessed for their hepatoprotective effect in Male Sprague-Dawley rats against carbon tetrachloride. The pharmacokinetic parameters of the prepared nanoparticles and berberine were evaluated in rabbits. Histopathological studies and blood biochemical analyses were carried out to evaluate the role of both forms of berberine in the experimental animals. Substantial improvement in the liver function test enzymes levels and liver histopathology were achieved in the animals treated with berberine nanoparticles in comparison to the unprocessed berberine whereas, pharmacokinetic parameters for nanoform of berberine were about 3.97 and 3.88 folds higher than that of the unprocessed berberine. The study revealed that the reduction of berberine particle size to nano range improved pharmacokinetic parameters in rabbits. The nano berberine provided better liver protection in experimental rats and high berberine blood concentration. Thus, better hepatoprotective and pharmacokinetics effects were observed for the nano form in comparison to unprocessed form.
Collapse
|
32
|
C. T. S, M. D, P. R. R, K. M, E. M. A, Balachandran I. Chemical profiling of selected Ayurveda formulations recommended for COVID-19. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021; 10:2. [PMID: 33457430 PMCID: PMC7799399 DOI: 10.1186/s43088-020-00089-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2020] [Accepted: 11/26/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is the global health concern since December 2019. It has become a big challenge for the researchers to find a solution for this newly evolved pandemic. In Ayurveda point of view, COVID-19 is a Janapadodhwamsa vikara (epidemic disease), a situation where the environment-air, water, land, and seasons-is vitiated, causing a simultaneous manifestation of a disease among large populations. The aim of this study is to identify the active compounds of selected Ayurveda medicines recommended for COVID-19. RESULTS The selected preparations are traditionally recommended for the management of various kinds of fever including the infectious ones and to enhance the immunity. HPTLC analysis of the same showed presence of many active molecules like umbelliferone, scopoletin, caffeic acid, ferulic acid, gallic acid, piperine, curcumin, berberine, and palmatine. CONCLUSION The study provided valuable scientific data regarding the active ingredients of the selected medicines with proven therapeutic potentials like anti-viral, immunomodulatory, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Sulaiman C. T.
- Phytochemistry Division, Centre for Medicinal Plants Research, Arya Vaidya Sala, Kottakkal, Malappuram, Kerala 676503 India
| | - Deepak M.
- Phytochemistry Division, Centre for Medicinal Plants Research, Arya Vaidya Sala, Kottakkal, Malappuram, Kerala 676503 India
| | - Ramesh P. R.
- Clinical Research Department, Arya Vaidya Sala, Kottakkal, Kerala India
| | - Mahesh K.
- Clinical Research Department, Arya Vaidya Sala, Kottakkal, Kerala India
| | - Anandan E. M.
- Product Development Department, Arya Vaidya Sala, Kottakkal, Kerala India
| | - Indira Balachandran
- Phytochemistry Division, Centre for Medicinal Plants Research, Arya Vaidya Sala, Kottakkal, Malappuram, Kerala 676503 India
| |
Collapse
|
33
|
Ali F, Alom S, Zaman MK. Berberine: A Comprehensive Review on its Isolation,
Biosynthesis, Chemistry and Pharmacology. ASIAN JOURNAL OF CHEMISTRY 2021; 33:2548-2560. [DOI: 10.14233/ajchem.2021.23365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2025]
Abstract
The isoquinoline compounds from alkaloidal class have been excellent source of important
phytoconstituents having wide range of pharmacological activities. Berberine is a protoberberine
alkaloidal compound obtained from Berberis genus plants which belongs to family Barberidaceae.
Due to its unique structural properties, berberine and its derivatives has been exploited extensively for
its potential uses in various pharmacological targets such as cancer, inflammation, diabetes,
gastrointestinal disorder, viral and microbial infections, neurological disorder like Alzheimer, anxiety,
schizophrenia, depression, etc. This review illustrates the updated information on berberine with respect
to its isolation, biosynthesis, chemical synthesis, structural modification and pharmacological activities.
An extensive literature search were carried out in various search engine like PubMed, Google Scholars,
Research Gate and SCOPUS by using keywords like Berberine, protoberberine alkaloids, isoquinoline
derivatives, pharmacological effects, etc. Prephenic acid is the starting material for biosynthesis of
berberine. Structural modifications lead to generation of various potential derivatives, which earn
patents by researchers. Besides toxicities, the complications of low solubility and bioavailability should
be eliminated. To improve its safety, efficacy and selectivity the berberine should be carefully derivatized.
Collapse
Affiliation(s)
- Farak Ali
- Faculty of Science and Engineering, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh-786004, India
| | - Shahnaz Alom
- Faculty of Science and Engineering, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh-786004, India
| | - Md Kamaruz Zaman
- Faculty of Science and Engineering, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh-786004, India
| |
Collapse
|
34
|
Shang XF, Yang CJ, Morris-Natschke SL, Li JC, Yin XD, Liu YQ, Guo X, Peng JW, Goto M, Zhang JY, Lee KH. Biologically active isoquinoline alkaloids covering 2014-2018. Med Res Rev 2020; 40:2212-2289. [PMID: 32729169 PMCID: PMC7554109 DOI: 10.1002/med.21703] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2019] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Isoquinoline alkaloids, an important class of N-based heterocyclic compounds, have attracted considerable attention from researchers worldwide since the early 19th century. Over the past 200 years, many compounds from this class were isolated, and most of them and their analogs possess various bioactivities. In this review, we survey the updated literature on bioactive alkaloids and highlight research achievements of this alkaloid class during the period of 2014-2018. We reviewed over 400 molecules with a broad range of bioactivities, including antitumor, antidiabetic and its complications, antibacterial, antifungal, antiviral, antiparasitic, insecticidal, anti-inflammatory, antioxidant, neuroprotective, and other activities. This review should provide new indications or directions for the discovery of new and better drugs from the original naturally occurring isoquinoline alkaloids.
Collapse
Affiliation(s)
- Xiao-Fei Shang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Susan L. Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jun-Cai Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiao-Dan Yin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiao Guo
- Tibetan Medicine Research Center of Qinghai University, Qinghai University Tibetan Medical College, Qinghai University, 251 Ningda Road, Xining 810016, P.R. China
| | - Jing-Wen Peng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ji-Yu Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40402, Taiwan
| |
Collapse
|
35
|
Narkhede RR, Pise AV, Cheke RS, Shinde SD. Recognition of Natural Products as Potential Inhibitors of COVID-19 Main Protease (Mpro): In-Silico Evidences. NATURAL PRODUCTS AND BIOPROSPECTING 2020; 10:297-306. [PMID: 32557405 PMCID: PMC7299459 DOI: 10.1007/s13659-020-00253-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/16/2020] [Accepted: 06/08/2020] [Indexed: 05/06/2023]
Abstract
SARS-CoV-2 (2019-nCoV) emerged in 2019 and proliferated rapidly across the globe. Scientists are attempting to investigate antivirals specific to COVID-19 treatment. The 2019-nCoV and SARS-CoV utilize the same receptor of the host which is COVID-19 of the main protease (Mpro).COVID-19 caused by SARS-CoV-2 is burdensome to overcome by presently acquired antiviral candidates. So the objective and purpose of this work was to investigate the plants with reported potential antiviral activity. With the aid of in silico techniques such as molecular docking and druggability studies, we have proposed several natural active compounds including glycyrrhizin, bicylogermecrene, tryptanthrine, β-sitosterol, indirubin, indican, indigo, hesperetin, crysophanic acid, rhein, berberine and β-caryophyllene which can be encountered as potential herbal candidate exhibiting anti-viral activity against SARS-CoV-2. Promising docking outcomes have been executed which evidenced the worthy of these selected herbal remedies for future drug development to combat coronavirus disease.
Collapse
Affiliation(s)
- Rohan R Narkhede
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, 226002, India
| | - Ashwini V Pise
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, 226002, India
| | - Rameshwar S Cheke
- Department of Pharmaceutical Chemistry, Dr. Rajendra Gode College of Pharmacy, Makapur, Maharashtra, 443101, India.
| | - Sachin D Shinde
- Department of Pharmacology, Shri. R.D. Bhakta College of Pharmacy, Jalna, Maharashtra, 431203, India
| |
Collapse
|
36
|
Quasi-Irreversible Inhibition of CYP2D6 by Berberine. Pharmaceutics 2020; 12:pharmaceutics12100916. [PMID: 32987920 PMCID: PMC7600264 DOI: 10.3390/pharmaceutics12100916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
In our previous study, Hwang-Ryun-Hae-Dok-Tang, which contains berberine (BBR) as a main active ingredient, inhibited cytochrome P450 (CYP) 2D6 in a quasi-irreversible manner. However, no information is available on the detailed mechanism of BBR-induced CYP2D6 inhibition. Thus, the present study aimed to characterize the inhibition mode and kinetics of BBR and its analogues against CYP2D6 using pooled human liver microsomes (HLM). BBR exhibited selective quasi-irreversible inhibition of CYP2D6 with inactivation rate constant (kinact) of 0.025 min−1, inhibition constant (KI) of 4.29 µM, and kinact/KI of 5.83 mL/min/µmol. In pooled HLM, BBR was metabolized to thalifendine (TFD), demethyleneberberine (DMB), M1 (proposed as demethylene-TFD), and to a lesser extent berberrubine (BRB), showing moderate metabolic stability with a half-life of 35.4 min and a microsomal intrinsic clearance of 7.82 µL/min/mg protein. However, unlike BBR, those metabolites (i.e., TFD, DMB, and BRB) were neither selective nor potent inhibitors of CYP2D6, based on comparison of half-maximal inhibitory concentration (IC50). Notably, TFD, but not DMB, exhibited metabolism-dependent CYP2D6 inhibition as in the case of BBR, which suggests that methylenedioxybenzene moiety of BBR may play a critical role in the quasi-irreversible inhibition. Moreover, the metabolic clearance of nebivolol (β-blocker; CYP2D6 substrate) was reduced in the presence of BBR. The present results warrant further evaluation of BBR–drug interactions in clinical situations.
Collapse
|
37
|
Ghorbani N, Sahebari M, Mahmoudi M, Rastin M, Zamani S, Zamani M. Berberine Inhibits the Gene Expression and Production of Proinflammatory Cytokines by Mononuclear Cells in Rheumatoid Arthritis and Healthy Individuals. Curr Rheumatol Rev 2020; 17:113-121. [PMID: 32895042 DOI: 10.2174/1573397116666200907111303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2020] [Revised: 05/13/2020] [Accepted: 06/29/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is the most prevalent autoimmune arthritis. Berberine is an alkaloid isolated from Berberis vulgaris, and its anti-inflammatory effect has been identified. METHODS Twenty newly diagnosed RA patients and 20 healthy controls participated. Peripheral mononuclear cells were prepared and stimulated with bacterial lipopolysachharide (LPS,1 μg/ml), exposed to different concentrations of berberine (10 and 50μM) and dexamethasone (10-7 M) as a reference. The toxicity of compounds was evaluated by WST-1 assay. The expression of TNF-α and IL-1β was determined by quantitative real-time PCR. Protein level of secreted TNF-α and IL-1β was measured by using ELISA. RESULTS Berberine did not have any toxic effect on cells, whereas Lipopolysaccharide (LPS) stimulation caused a noticeable rise in TNF-α and IL-1β production. Berberine markedly downregulated the expression of both TNF-α and IL-1β, and inhibited TNF-α and IL-1β secretion from LPS-stimulated PBMCs. DISCUSSION This study provided a molecular basis for anti-inflammatory effect of berberine on human mononuclear cells through the suppression of TNF-a and IL-1secretion. Our findings highlighted the significant inhibitory effect of berberine on proinflammatory responses of mononuclear cells from rheumatoid arthritis individuals, which may be responsible for antiinflammatory property of Barberry. We observed that berberine at high concentration exhibited anti-inflammatory effect in PBMCs of both healthy and patient groups by suppression of TNF-a and IL-1cytokines at both mRNA and protein levels. CONCLUSION Berberine may inhibit the gene expression and production of pro-inflammatory cytokines by mononuclear cells in rheumatoid arthritis and healthy individuals without affecting cell viability. Future studies with a larger sample size are needed to prove the idea.
Collapse
Affiliation(s)
- Niloofar Ghorbani
- Immunology Research Centre, Bu Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Sahebari
- Rheumatic Diseases Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Centre, Bu Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rastin
- Immunology Research Centre, Bu Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahrzad Zamani
- Immunology Research Centre, Bu Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marjan Zamani
- Immunology Research Centre, Bu Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
Shao J, Zeng D, Tian S, Liu G, Fu J. Identification of the natural product berberine as an antiviral drug. AMB Express 2020; 10:164. [PMID: 32897426 PMCID: PMC7479080 DOI: 10.1186/s13568-020-01088-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/28/2022] Open
Abstract
Drugs targeting the fusion process of viral entry into host cells have been approved for clinical use in the treatment of AIDS. There remains a great need to improve the use of existing drugs for HIV therapy. Berberine is traditionally used to treat diarrhea, bacillary dysentery, and gastroenteritis in clinics, here our research shows that berberine is effective in inhibiting HIV-1 entry. Native polyacrylamide gel electrophoresis studies reveal that berberine can directly bind to both N36 and C34 to form a novel N36-berberine-C34 complex and effectively block the six-helix bundle formation between the N-terminal heptad repeat peptide N36 and the C-terminal heptad repeat peptide C34. Circular dichroism experiments show that binding of berberine produces conformational changes that damages the secondary structures of 6-HB. Computer-aided molecular docking studies suggest a hydrogen bond with T-639 and two polar bonds with Q-563 and T-639 are established, involving the oxygen atom and the C=O group of the indole ring. Berberine completely inhibits six HIV-1 clade B isolates and exhibits antiviral activities in a concentration-dependent manner with IC50 values varying from 5.5 to 10.25 µg/ml. This compound-peptide interaction may represent a mechanism of action of antiviral activities of berberine. As a summary, these studies successfully identify compound berberine as a potential candidate drug for HIV-1 treatment. As a summary, antiviral activity of berberine in combination with its use in clinical practice, this medicine can be used as a potential clinically anti-HIV drug.
Collapse
|
39
|
Afshari AR, Fanoudi S, Rajabian A, Sadeghnia HR, Mollazadeh H, Hosseini A. Potential protective roles of phytochemicals on glutamate-induced neurotoxicity: A review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1113-1123. [PMID: 32963732 PMCID: PMC7491505 DOI: 10.22038/ijbms.2020.43687.10259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/08/2019] [Accepted: 05/17/2020] [Indexed: 01/12/2023]
Abstract
Glutamate, as an essential neurotransmitter, has been thought to have different roles in the central nervous system (CNS), including nerve regeneration, synaptogenesis, and neurogenesis. Excessive glutamate causes an up-regulation of the multiple signaling pathways, including phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), Akt/mammalian target of rapamycin (mTOR) protein, mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK)1/2, and autophagy that are involved in neurodegenerative diseases pathophysiology. There are numerous findings on curcumin, astaxanthin, thymoquinone, and berberine, as natural products, which have outstanding effects in cell signaling far beyond their anti-oxidant activity, considering as a potential therapeutic target for glutamate excitotoxicity. Herein, we address the role of glutamate as a potential target in neurodegenerative diseases and discuss the protective effects of certain phytochemicals on glutamate-induced neurotoxicity.
Collapse
Affiliation(s)
- Amir R. Afshari
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Fanoudi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid R. Sadeghnia
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
40
|
Katare AK, Singh B, Shukla P, Gupta S, Singh B, Yalamanchili K, Kulshrestha N, Bhanwaria R, Sharma AK, Sharma S, Sneha, Mindala DP, Roy S, Kalgotra R. Rapid determination and optimisation of berberine from Himalayan Berberis lycium by soxhlet apparatus using CCD-RSM and its quality control as a potential candidate for COVID-19. Nat Prod Res 2020; 36:868-873. [PMID: 32787584 DOI: 10.1080/14786419.2020.1806274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/23/2022]
Abstract
SARS-CoV-2 (or COVID-19) has become a global risk and scientists are attempting to investigate antiviral vaccine. Berberis are important plants due to the presence of bioactive phytochemicals, especially berberine from the protoberberine group of benzylisoquinoline and recent studies have shown its potential in treating COVID-19. B. lycium Royle growing in subtropical regions of Asia had wide applications in Indian system of medicine. Rapid determination and novel optimisation method for berberine extraction has been developed by Soxhlet extraction utilising central composite design-response surface methodology (CCD-RSM). Berberine was detected by high-performance liquid chromatography (HPLC), and the highest yield (13.39%) was obtained by maintaining optimal extraction conditions i.e., extraction time (7.28 hrs), ethyl alcohol (52.21%) and solvent to sample ratio (21.78 v/w). Investigation of two geographic regions (Ramnagar and Srinagar) showed high berberine content in lower altitude. This novel optimisation technique has placed berberine as a potential candidate for developing pharmaceutical products for human health care.
Collapse
Affiliation(s)
- Anil Kumar Katare
- cGMP-Chemical Engineering Division and Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Bikarma Singh
- Plant Sciences (Biodiversity and Applied Botany Division) and Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Pooja Shukla
- Environment Technology Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Sandeep Gupta
- Regional Services Division, Indra Gandhi National Open University, Jammu, India
| | - Bishander Singh
- Department of Botany, Veer Kunwar Singh University, Ara, India
| | - Kavya Yalamanchili
- cGMP-Chemical Engineering Division and Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Nitin Kulshrestha
- cGMP-Chemical Engineering Division and Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Rajendra Bhanwaria
- Genetic Resources and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Ashok Kumar Sharma
- Department of Chemical Engineering, Ujjain Engineering College, Ujjain, India
| | - Sarita Sharma
- Department of Chemical Engineering, Ujjain Engineering College, Ujjain, India
| | - Sneha
- Information Communication Technology, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, India
| | - Durga Prasad Mindala
- cGMP-Chemical Engineering Division and Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sumit Roy
- cGMP-Chemical Engineering Division and Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Rahul Kalgotra
- cGMP-Chemical Engineering Division and Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, India
| |
Collapse
|
41
|
Mandal SK, Maji AK, Mishra SK, Ishfaq PM, Devkota HP, Silva AS, Das N. Goldenseal (Hydrastis canadensis L.) and its active constituents: A critical review of their efficacy and toxicological issues. Pharmacol Res 2020; 160:105085. [PMID: 32683037 DOI: 10.1016/j.phrs.2020.105085] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/21/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022]
Abstract
Goldenseal (Hydrastis canadensis L.) is a medicinal plant widely used in various traditional systems of medicine and as a food supplement. It has been traditionally used by Native Americans as a coloring agent and as medicinal remedy for common diseases and conditions like wounds, digestive disorders, ulcers, skin and eye ailments, and cancer. Over the years, goldenseal has become a popular food supplement in the USA and other regions. The rhizome of this plant has been used for the treatment of a variety of diseases including, gastrointestinal disorders, ulcers, muscular debility, nervous prostration, constipation, skin and eye infections, cancer, among others. Berberine is one of the most bioactive alkaloid that has been identified in different parts of goldenseal. The goldenseal extract containing berberine showed numerous therapeutic effects such as antimicrobial, anti-inflammatory, hypolipidemic, hypoglycemic, antioxidant, neuroprotective (anti-Alzheimer's disease), cardioprotective, and gastrointestinal protective. Various research finding suggest the health promoting effects of goldenseal components and their extracts. However, few studies have also suggested the possible neurotoxic, hepatotoxic and phototoxic activities of goldenseal extract and its alkaloids. Thus, large randomized, double-blind clinical studies need to be conducted on goldenseal supplements and their main alkaloids to provide more evidence on the mechanisms responsible for the pharmaceutical activity, clinical efficacy and safety of these products. Thus, it is very important to review the scientific information about goldenseal to understand about the current scenario.
Collapse
Affiliation(s)
- Sudip Kumar Mandal
- Dr. B. C. Roy College of Pharmacy and AHS, Durgapur, 713206, West Bengal, India
| | | | - Siddhartha Kumar Mishra
- Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, 470003, Madhya Pradesh, India
| | - Pir Mohammad Ishfaq
- Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, 470003, Madhya Pradesh, India
| | - Hari Prasad Devkota
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan; Program for Leading Graduate Schools, Health Life Sciences: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, 4485-655, Portugal; Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, 4051-401, Portugal
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia, 799155, Tripura, India.
| |
Collapse
|
42
|
Abstract
Plants are a rich source of new antiviral, pharmacologically active agents. The naturally occurring plant alkaloid berberine (BBR) is one of the phytochemicals with a broad range of biological activity, including anticancer, anti-inflammatory and antiviral activity. BBR targets different steps in the viral life cycle and is thus a good candidate for use in novel antiviral drugs and therapies. It has been shown that BBR reduces virus replication and targets specific interactions between the virus and its host. BBR intercalates into DNA and inhibits DNA synthesis and reverse transcriptase activity. It inhibits replication of herpes simplex virus (HSV), human cytomegalovirus (HCMV), human papillomavirus (HPV), and human immunodeficiency virus (HIV). This isoquinoline alkaloid has the ability to regulate the MEK-ERK, AMPK/mTOR, and NF-κB signaling pathways, which are necessary for viral replication. Furthermore, it has been reported that BBR supports the host immune response, thus leading to viral clearance. In this short review, we focus on the most recent studies on the antiviral properties of berberine and its derivatives, which might be promising agents to be considered in future studies in the fight against the current pandemic SARS-CoV-2, the virus that causes COVID-19.
Collapse
|
43
|
Alagu Lakshmi S, Shafreen RMB, Priya A, Shunmugiah KP. Ethnomedicines of Indian origin for combating COVID-19 infection by hampering the viral replication: using structure-based drug discovery approach. J Biomol Struct Dyn 2020; 39:4594-4609. [PMID: 32573351 PMCID: PMC7332876 DOI: 10.1080/07391102.2020.1778537] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022]
Abstract
In the present study, we have explored the interaction of the active components from 10 different medicinal plants of Indian origin that are commonly used for treating cold and respiratory-related disorders, through molecular docking analysis. In the current scenario, COVID-19 patients experience severe respiratory syndromes, hence it is envisaged from our study that these traditional medicines are very likely to provide a favourable effect on COVID-19 infections. The active ingredients identified from these natural products are previously reported for antiviral activities against large group of viruses. Totally 47 bioactives identified from the medicinal plants were investigated against the structural targets of SARS-CoV-2 (Mpro and spike protein) and human ACE2 receptor. The top leads were identified based on interaction energies, number of hydrogen bond and other parameters that explain their potency to inhibit SARS-CoV-2. The bioactive ligands such as Cucurbitacin E, Orientin, Bis-andrographolide, Cucurbitacin B, Isocucurbitacin B, Vitexin, Berberine, Bryonolic acid, Piperine and Magnoflorine targeted the hotspot residues of SARS-CoV-2 main protease. In fact, this protease enzyme has an essential role in mediating the viral replication and therefore compounds targeting this key enzyme are expected to block the viral replication and transcription. The top scoring conformations identified through docking analysis were further demonstrated with molecular dynamics simulation. Besides, the stability of the conformation was studied in detail by investigating the binding free energy using MM-PBSA method. Overall, the study emphasized that the proposed hit Cucurbitacin E and orientin could serve as a promising scaffold for developing anti-COVID-19 drug. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
| | | | - Arumugam Priya
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | | |
Collapse
|
44
|
Stoyanova N, Ignatova M, Manolova N, Rashkov I, Toshkova R, Georgieva A. Nanoparticles based on complex of berberine chloride and polymethacrylic or polyacrylic acid with antioxidant and in vitro antitumor activities. Int J Pharm 2020; 584:119426. [PMID: 32445907 DOI: 10.1016/j.ijpharm.2020.119426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 11/27/2022]
Abstract
Berberine chloride (Brb) is a natural isoquinoline quaternary alkaloid that displayed a set of beneficial biological properties such as antioxidant, antimicrobial, antitumor, anti-inflammatory, and antiviral. Brb is poorly soluble in water and body fluids and its intestinal absorption is very low, which predetermine its low bioavailability. Polymeric nanoparticles seem to be a good platform to overcome these drawbacks. In this study, for the first time, stable aqueous dispersions of nanoparticles (NPs) based on complexes of Brb and poly(methacrylic acid) (PMA) or poly(acrylic acid) (PAA), were successfully prepared by mixing their dilute aqueous solutions as evidenced by the performed dynamic light scattering (DLS) and transmission electron microscopy (TEM) analyses. It was found that the mean diameter and zeta potential of NPs depended on the Brb molar fraction. In the case of Brb/PMA and Brb/PAA NPs the encapsulation efficiency was observed to approach a maximum value of 58.9 ± 0.5% and of 78.4 ± 0.9%, respectively, at values of Brb molar fraction at which maximum amount of complexes was obtained. The performed differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analyses revealed that Brb incorporated in the NPs was in the amorphous state. The Brb release profile was pH-dependent. The Brb-containing NPs displayed good antioxidant capacity close to that of free Brb. In vitro cell viability studies demonstrated that the Brb/PMA (PAA) NPs exerted a higher cytotoxicity against HeLa tumor cell than non-tumor BALB/c 3T3 mouse fibroblast cells. Thus, the obtained NPs are promising candidates in the drug delivery systems in the treatment of cervical tumors.
Collapse
Affiliation(s)
- Nikoleta Stoyanova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113 Sofia, Bulgaria
| | - Milena Ignatova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113 Sofia, Bulgaria.
| | - Nevena Manolova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113 Sofia, Bulgaria
| | - Iliya Rashkov
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113 Sofia, Bulgaria.
| | - Reneta Toshkova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 25, BG-1113 Sofia, Bulgaria
| | - Ani Georgieva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 25, BG-1113 Sofia, Bulgaria
| |
Collapse
|
45
|
Du P, Yan J, Long S, Xiong H, Wen N, Cai S, Wang Y, Peng D, Liu Z, Liu Y. Tumor microenvironment and NIR laser dual-responsive release of berberine 9-O-pyrazole alkyl derivative loaded in graphene oxide nanosheets for chemo-photothermal synergetic cancer therapy. J Mater Chem B 2020; 8:4046-4055. [PMID: 32248212 DOI: 10.1039/d0tb00489h] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Abstract
A berberine 9-O-pyrazole alkyl derivative, a chemical compound (called B3) previously synthesized by our group, shows anti-cancer activity. However, B3 lacks targeting cytotoxicity to cancer cells, leading to obvious toxic side effects on normal cells. To solve this problem, here, we prepared a drug delivery system, namely, AS1411-GO/B3 for tumor targeting, in which nano-graphene oxide (GO) sheets were employed as the drug carrier, and the aptamer AS1411 was conjugated onto GO for tumor targeting. GO also had a photothermal effect, which helped the release of B3 from GO as well as the thermal cytotoxicity to cells. We found that the release of B3 could respond to acid conditions, indicating that the tumor intracellular environment could promote the release of B3, thus allowing it to perform chemotherapy effects. This system could also release B3 in response to photothermal heating, moreover, combined photothermal therapy and chemotherapy to improve the anticancer activity was achieved. This AS1411-GO/B3 platform with chemo-photothermal synergetic therapy provides a very promising treatment for tumors.
Collapse
Affiliation(s)
- Peifang Du
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yoshida H, Takeda H, Wakana D, Hosoe T. Characterization of Burkholderia sp. strain CJ1, a newly isolated berberine-degrading bacterium from rhizosphere of Coptis japonica. Biosci Biotechnol Biochem 2020; 84:1299-1302. [PMID: 31985355 DOI: 10.1080/09168451.2020.1721264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/25/2022]
Abstract
Burkholderia sp. strain CJ1 was newly isolated as berberine (BBR) degrading bacteria from rhizosphere of Coptis japonica. CJ1 had the ability to utilize BBR as the sole carbon source and revealed that BBR metabolism via 11-hydroxylation and demethylenation pathway. It was also revealed that the 11-hydroxylation ability of BBR and palmatine (PAL) has induced by BBR.
Collapse
Affiliation(s)
- Hinaka Yoshida
- Department of Organic Chemistry, Hoshi University, Tokyo, Japan
| | - Hisashi Takeda
- Department of Organic Chemistry, Hoshi University, Tokyo, Japan
| | - Daigo Wakana
- Department of Organic Chemistry, Hoshi University, Tokyo, Japan
| | - Tomoo Hosoe
- Department of Organic Chemistry, Hoshi University, Tokyo, Japan
| |
Collapse
|
47
|
Mortazavi H, Nikfar B, Esmaeili SA, Rafieenia F, Saburi E, Chaichian S, Heidari Gorji MA, Momtazi-Borojeni AA. Potential cytotoxic and anti-metastatic effects of berberine on gynaecological cancers with drug-associated resistance. Eur J Med Chem 2019; 187:111951. [PMID: 31821990 DOI: 10.1016/j.ejmech.2019.111951] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/14/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
Gynaecological disorders, such as cervical, ovarian, and endometrial cancers are the second most prevalent cancer types in women worldwide. Therapeutic approaches for gynaecological cancers involve chemotherapy, radiation, and surgery. However, lifespan is not improved, and novel medications are required. Among various phytochemicals, berberine, a well-known natural product, has been shown to be a promising cancer chemopreventive agent. Pharmacokinetics, safety, and efficacy of berberine have been investigated in the several experiments against numerous diseases. Here, we aimed to provide a literature review from available published investigations showing the anticancer effects of berberine and its various synthetic analogues against gynaecological disorders, including cervical, ovarian, and endometrial cancers. In conclusion, berberine has been found to efficiently inhibit viability, proliferation, and migration of cancer cells, mainly, via induction of apoptosis by both mitochondrial dependent and -independent pathways. Additionally, structural modification of berberine showed that berberine analogues can improve its antitumor effects against gynaecological cancers.
Collapse
Affiliation(s)
- Hamed Mortazavi
- Geriatric Care Research Center, Department of Geriatric Nursing, School of Nursing and Midwifery, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Rafieenia
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahla Chaichian
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Heidari Gorji
- Diabetes Research Center, Department of Medical-Surgical Nursing, Nasibeh Faculty of Nursing and Midwifery, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Amir Abbas Momtazi-Borojeni
- Halal Research Center of IRI, FDA, Tehran, Iran; Nanotechnology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
48
|
Wang J, Wang L, Lou GH, Zeng HR, Hu J, Huang QW, Peng W, Yang XB. Coptidis Rhizoma: a comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. PHARMACEUTICAL BIOLOGY 2019; 57:193-225. [PMID: 30963783 PMCID: PMC6461078 DOI: 10.1080/13880209.2019.1577466] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/25/2018] [Revised: 01/04/2019] [Accepted: 01/20/2019] [Indexed: 05/09/2023]
Abstract
CONTEXT Coptidis rhizome (CR), also known as Huanglian in Chinese, is the rhizome of Coptis chinensis Franch., C. deltoidea C.Y. Cheng et Hsiao, or C. teeta Wall (Ranunculaceae). It has been widely used to treat bacillary dysentery, diabetes, pertussis, sore throat, aphtha, and eczema in China. OBJECTIVES The present paper reviews the latest advances of CR, focusing on the botany, phytochemistry, traditional usages, pharmacokinetics, pharmacology and toxicology of CR and its future perspectives. METHODS Studies from 1985 to 2018 were reviewed from books; PhD. and MSc. dissertations; the state and local drug standards; PubMed; CNKI; Scopus; the Web of Science; and Google Scholar using the keywords Coptis, Coptidis Rhizoma, Huanglian, and goldthread. RESULTS Currently, 128 chemical constituents have been isolated and identified from CR. Alkaloids are the characteristic components, together with organic acids, coumarins, phenylpropanoids and quinones. The extracts/compounds isolated from CR cover a wide pharmacological spectrum, including antibacterial, antivirus, antifungal, antidiabetic, anticancer and cardioprotective effects. Berberine is the most important active constituent and the primary toxic component of CR. CONCLUSIONS As an important herbal medicine in Chinese medicine, CR has the potential to treat various diseases. However, further research should be undertaken to investigate the clinical effects, toxic constituents, target organs and pharmacokinetics, and to establish criteria for quality control, for CR and its related medications. In addition, the active constituents, other than alkaloids, in both raw and processed products of CR should be investigated.
Collapse
Affiliation(s)
- Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guan-Hua Lou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin-Wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-Bo Yang
- Ya'an Xun Kang Pharmaceutical Co., Ltd, Ya'an, China
| |
Collapse
|
49
|
Mohammadinejad R, Ahmadi Z, Tavakol S, Ashrafizadeh M. Berberine as a potential autophagy modulator. J Cell Physiol 2019; 234:14914-14926. [PMID: 30770555 DOI: 10.1002/jcp.28325] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/07/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
Today, pharmacognosy is considered a valuable science in the prevention and treatment of diseases. Among herbals, Berberine is an isoquinoline alkaloid found in the Berberis species. Surprisingly, it shows antimicrobial, antiviral, antidiarrheal, antipyretic, and anti-inflammatory potential. Furthermore, it diminishes drug resistance in cancer therapy and enhances tumor suppression in part through autophagy and cell cycle arrest mechanisms. In the present review, we discuss the effect of berberine on diverse cellular pathways and describe how berberine acts as an autophagy modulator to adjust physiologic and pathologic conditions and diminishes drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, Shushtar, Khuzestan, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
50
|
Tan J, Wang J, Yang C, Zhu C, Guo G, Tang J, Shen H. Antimicrobial characteristics of Berberine against prosthetic joint infection-related Staphylococcus aureus of different multi-locus sequence types. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:218. [PMID: 31419978 PMCID: PMC6697971 DOI: 10.1186/s12906-019-2558-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/11/2018] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Staphylococcal aureus (S. aureus) has become the leading causative pathogen of Prosthetic Joint Infection (PJI), which is the most devastating complication after arthroplasty surgeries. Due to the biofilm formation ability and emergence of multiple-drugs resistance strains of S. aureus, it has become an urgency to find new anti-staphylococcal agents to establish effective prophylaxis and treatment strategy for PJI. Extracted from a traditional Chinese herb, berberine is proved active in inhibiting S. aureus, while whether it exerts the same effect on PJI-related S. aureus remains unknown. This study aims to investigate the antimicrobial activity of berbrine against clinical derived PJI-related S. aureus and whether its inhibiting efficacy is associated with subtypes of S. aureus. METHODS Eighteen PJI-associated S. aureus were collected and their Multi-locus Sequence Types (MLST) and susceptibility to berberine both in planktonic and biofilm form were investigated. Additionally, one S. aureus strain (ST1792) was selected from the group and its transcriptomic profiling in berberine incubation was performed. The statistical analyses were conducted using Student's t-test with SPSS 24.0(SPSS, IBM, USA). The data were expressed as the means ± standard deviation. Values of p < 0.05 were considered statistically significant. RESULTS It was found out that the Minimum Inhibitory Concentration values of PJI-related S. aureus varied in a broad range (from 64 to 512 μg/ml) among different MLST subtypes and the bacteria were able to regain growth after 24 h in berberine of MIC value or higher concentrations. In addition, sub-inhibitory concentrations of berberine surprisingly enhanced biofilm formation in some S. aureus strains. CONCLUSION Traditional medicine is utilised by a large number of individuals, which provides abundant resources for modern medical science. In our study, berberine was found bactericidal against PJI related S. aureus, however, its antibacterial property was impacted by the MLST subtypes of the bacteria, both in planktonic and biofilm growth forms.
Collapse
|