1
|
Abdollahi MF, Zhao Y. Donor-Acceptor Fluorophores and Macrocycles Built Upon Wedge-Shaped π-Extended Phenanthroimidazoles. J Org Chem 2023; 88:3451-3465. [PMID: 36862080 DOI: 10.1021/acs.joc.2c02511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
A class of wedge-shaped organic π-fluorophores featuring a 6,9-diphenyl-substituted phenanthroimidazole (PI) core was designed, synthesized, and characterized. Among them, a π-extended PI derivative containing two electron-withdrawing aldehyde groups was found to exhibit versatile solid-state packing properties as well as strong solvatofluorochromism in different organic solvents. Another PI derivative that was functionalized with two electron-donating 1,4-dithiafulvenyl (DTF) end groups showed versatile redox reactivities and quenched fluorescence. Treatment of this wedge-shaped bis(DTF)-PI compound with iodine resulted in oxidative coupling reactions, leading to the formation of intriguing macrocyclic products that carry redox-active tetrathiafulvalene vinylogue (TTFV) moieties in their structures. Mixing the bis(DTF)-PI derivative with fullerene (C60 or C70) in an organic solvent resulted in substantial fluorescence enhancement (turn-on). In this process, fullerene acted as a photosensitizer to generate singlet oxygen, which in turn induced oxidative C = C bond cleavages and converted nonfluorescent bis(DTF)-PI into highly fluorescent dialdehyde-substituted PI. Treatment of TTFV-PI macrocycles with a small amount of fullerene also led to a moderate degree of fluorescence enhancement, but this is not because of photosensitized oxidative cleavage reactions. Instead, competitive photoinduced electron transfer from TTFV to fullerene can be attributed to their fluorescence turn-on behavior.
Collapse
Affiliation(s)
- Maryam F Abdollahi
- Department of Chemistry, Memorial University, Core Science Facility, 45 Arctic Avenue, St. John's, NL A1C 5S7, Canada
| | - Yuming Zhao
- Department of Chemistry, Memorial University, Core Science Facility, 45 Arctic Avenue, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
2
|
Ji Y, Li R, Tian Y, Chen G, Yan A. Classification models and SAR analysis on thromboxane A 2 synthase inhibitors by machine learning methods. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:429-462. [PMID: 35678125 DOI: 10.1080/1062936x.2022.2078880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Thromboxane A2 synthase (TXS) is a promising drug target for cardiovascular diseases and cancer. In this work, we conducted a structure-activity relationship (SAR) study on 526 TXS inhibitors for bioactivity prediction. Three types of descriptors (MACCS fingerprints, ECFP4 fingerprints, and MOE descriptors) were utilized to characterize inhibitors, 24 classification models were developed by support vector machine (SVM), random forest (RF), extreme gradient boosting (XGBoost), and deep neural networks (DNN). Then we reduced the number of fingerprints according to the contribution of descriptors to the models, and constructed 16 extra models on simplified fingerprints. In general, Model_4D built by DNN algorithm and 67 bits MACCS fingerprints performs best. The prediction accuracy of the model on the test set is 0.969, and Matthews correlation coefficient (MCC) is 0.936. The distance between compound and model (dSTD-PRO) was used to characterize the application domain of the model. In the test set of Model_4D, dSTD-PRO of 91.5% compounds is lower than the corresponding training set threshold (threshold0.90 = 0.1055), and the accuracy of these compounds is 0.983. In addition, the important descriptors were summarized and further analyzed. It showed that aromatic nitrogenous heterocyclic groups were beneficial to improve the bioactivity of TXS inhibitors.
Collapse
Affiliation(s)
- Y Ji
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - R Li
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Y Tian
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - G Chen
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - A Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|
3
|
Carlile GW, Yang Q, Matthes E, Liao J, Birault V, Sneddon HF, Poole DL, Hall CJ, Hanrahan JW, Thomas DY. The NSAID glafenine rescues class 2 CFTR mutants via cyclooxygenase 2 inhibition of the arachidonic acid pathway. Sci Rep 2022; 12:4595. [PMID: 35302062 PMCID: PMC8930988 DOI: 10.1038/s41598-022-08661-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Most cases of cystic fibrosis (CF) are caused by class 2 mutations in the cystic fibrosis transmembrane regulator (CFTR). These proteins preserve some channel function but are retained in the endoplasmic reticulum (ER). Partial rescue of the most common CFTR class 2 mutant, F508del-CFTR, has been achieved through the development of pharmacological chaperones (Tezacaftor and Elexacaftor) that bind CFTR directly. However, it is not clear whether these drugs will rescue all class 2 CFTR mutants to a medically relevant level. We have previously shown that the nonsteroidal anti-inflammatory drug (NSAID) ibuprofen can correct F508del-CFTR trafficking. Here, we utilized RNAi and pharmacological inhibitors to determine the mechanism of action of the NSAID glafenine. Using cellular thermal stability assays (CETSAs), we show that it is a proteostasis modulator. Using medicinal chemistry, we identified a derivative with a fourfold increase in CFTR corrector potency. Furthermore, we show that these novel arachidonic acid pathway inhibitors can rescue difficult-to-correct class 2 mutants, such as G85E-CFTR > 13%, that of non-CF cells in well-differentiated HBE cells. Thus, the results suggest that targeting the arachidonic acid pathway may be a profitable way of developing correctors of certain previously hard-to-correct class 2 CFTR mutations.
Collapse
Affiliation(s)
- Graeme W Carlile
- Department of Biochemistry, Cystic Fibrosis Translational Research Centre, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada.
- Department of Human Genetics, Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, H3G 1Y6, Canada.
| | - Qi Yang
- Department of Biochemistry, Cystic Fibrosis Translational Research Centre, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Department of Human Genetics, Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Elizabeth Matthes
- Department of Physiology, McGill Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jie Liao
- Department of Physiology, McGill Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Véronique Birault
- Translation Department, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Helen F Sneddon
- Department of Chemistry, Green Chemistry Centre of Excellence, University of York, Heslington, York, YO10 5DD, UK
| | - Darren L Poole
- Medicinal Chemistry, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Callum J Hall
- Medicinal Chemistry, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - John W Hanrahan
- Department of Physiology, McGill Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - David Y Thomas
- Department of Biochemistry, Cystic Fibrosis Translational Research Centre, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Department of Human Genetics, Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
4
|
Zhang YY, Yao YD, Luo JF, Liu ZQ, Huang YM, Wu FC, Sun QH, Liu JX, Zhou H. Microsomal prostaglandin E 2 synthase-1 and its inhibitors: Molecular mechanisms and therapeutic significance. Pharmacol Res 2021; 175:105977. [PMID: 34798265 DOI: 10.1016/j.phrs.2021.105977] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 12/17/2022]
Abstract
Inflammation is closely linked to the abnormal phospholipid metabolism chain of cyclooxygenase-2/microsomal prostaglandin E2 synthase-1/prostaglandin E2 (COX-2/mPGES-1/PGE2). In clinical practice, non-steroidal anti-inflammatory drugs (NSAIDs) as upstream COX-2 enzyme activity inhibitors are widely used to block COX-2 cascade to relieve inflammatory response. However, NSAIDs could also cause cardiovascular and gastrointestinal side effects due to its inhibition on other prostaglandins generation. To avoid this, targeting downstream mPGES-1 instead of upstream COX is preferable to selectively block overexpressed PGE2 in inflammatory diseases. Some mPGES-1 inhibitor candidates including synthetic compounds, natural products and existing anti-inflammatory drugs have been proved to be effective in in vitro experiments. After 20 years of in-depth research on mPGES-1 and its inhibitors, ISC 27864 have completed phase II clinical trial. In this review, we intend to summarize mPGES-1 inhibitors focused on their inhibitory specificity with perspectives for future drug development.
Collapse
Affiliation(s)
- Yan-Yu Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Yun-Da Yao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Jin-Fang Luo
- Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang City, Guizhou Province 550025, PR China
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 510006, PR China
| | - Yu-Ming Huang
- Hunan Zhengqing Pharmaceutical Company Group Ltd, Huaihua City, Hunan Province, PR China
| | - Fei-Chi Wu
- Hunan Zhengqing Pharmaceutical Company Group Ltd, Huaihua City, Hunan Province, PR China
| | - Qin-Hua Sun
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua City, Hunan Province 418000, PR China.
| | - Jian-Xin Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province 310053, PR China.
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 510006, PR China; Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province 519000, PR China.
| |
Collapse
|
5
|
Zhou S, Zheng F, Zhan CG. Clinical data mining reveals analgesic effects of lapatinib in cancer patients. Sci Rep 2021; 11:3528. [PMID: 33574423 PMCID: PMC7878815 DOI: 10.1038/s41598-021-82318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/14/2021] [Indexed: 12/03/2022] Open
Abstract
Microsomal prostaglandin E2 synthase 1 (mPGES-1) is recognized as a promising target for a next generation of anti-inflammatory drugs that are not expected to have the side effects of currently available anti-inflammatory drugs. Lapatinib, an FDA-approved drug for cancer treatment, has recently been identified as an mPGES-1 inhibitor. But the efficacy of lapatinib as an analgesic remains to be evaluated. In the present clinical data mining (CDM) study, we have collected and analyzed all lapatinib-related clinical data retrieved from clinicaltrials.gov. Our CDM utilized a meta-analysis protocol, but the clinical data analyzed were not limited to the primary and secondary outcomes of clinical trials, unlike conventional meta-analyses. All the pain-related data were used to determine the numbers and odd ratios (ORs) of various forms of pain in cancer patients with lapatinib treatment. The ORs, 95% confidence intervals, and P values for the differences in pain were calculated and the heterogeneous data across the trials were evaluated. For all forms of pain analyzed, the patients received lapatinib treatment have a reduced occurrence (OR 0.79; CI 0.70–0.89; P = 0.0002 for the overall effect). According to our CDM results, available clinical data for 12,765 patients enrolled in 20 randomized clinical trials indicate that lapatinib therapy is associated with a significant reduction in various forms of pain, including musculoskeletal pain, bone pain, headache, arthralgia, and pain in extremity, in cancer patients. Our CDM results have demonstrated the significant analgesic effects of lapatinib, suggesting that lapatinib may be repurposed as a novel type of analgesic.
Collapse
Affiliation(s)
- Shuo Zhou
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA. .,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA. .,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| |
Collapse
|
6
|
Yasui M, Hanaya K, Sugai T, Higashibayashi S. Metal-free thermal organocatalytic pinacol coupling of arylaldehydes using an isonicotinate catalyst with bis(pinacolato)diboron. RSC Adv 2021; 11:24652-24655. [PMID: 35481014 PMCID: PMC9036917 DOI: 10.1039/d1ra04443e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/07/2021] [Indexed: 01/12/2023] Open
Abstract
The metal and light-free thermal organocatalytic pinacol coupling of arylaldehydes has been developed.
Collapse
Affiliation(s)
| | - Kengo Hanaya
- Faculty of Pharmacy
- Keio University
- Tokyo 105-8512
- Japan
| | - Takeshi Sugai
- Faculty of Pharmacy
- Keio University
- Tokyo 105-8512
- Japan
| | | |
Collapse
|
7
|
Dias GG, Paz ERS, Kadooca JY, Sabino AA, Cury LA, Torikai K, de Simone CA, Fantuzzi F, da Silva Júnior EN. Rhodium(III)-Catalyzed C-H/N-H Alkyne Annulation of Nonsymmetric 2-Aryl (Benz)imidazole Derivatives: Photophysical and Mechanistic Insights. J Org Chem 2021; 86:264-278. [PMID: 33306394 DOI: 10.1021/acs.joc.0c02054] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rhodium(III) catalysis enabled C-H/N-H alkyne annulation of nonsymmetric imidazole derivatives. This study encompasses the synthesis of imidazoles from a naturally occurring quinoidal compound and their use for the preparation of rigid π-extended imidazole derivatives with outstanding fluorescence. Our study also brings to light the photophysical aspects and the mechanism of the reaction studied via computational calculations. This method provided an efficient and versatile tool for the synthesis of fluorescent compounds with a wide range of chemical and biological applications.
Collapse
Affiliation(s)
- Gleiston G Dias
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Esther R S Paz
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Juliana Y Kadooca
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Adão A Sabino
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Luiz A Cury
- Department of Physics, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Kohei Torikai
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Carlos A de Simone
- Institute of Physics, University of São Paulo, São Carlos, São Paulo 13560-160, Brazil
| | - Felipe Fantuzzi
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland, 97074 Würzburg, Germany
| | - Eufrânio N da Silva Júnior
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
8
|
|
9
|
DREAM-in-CDM Approach and Identification of a New Generation of Anti-inflammatory Drugs Targeting mPGES-1. Sci Rep 2020; 10:10187. [PMID: 32576928 PMCID: PMC7311425 DOI: 10.1038/s41598-020-67283-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/01/2020] [Indexed: 11/28/2022] Open
Abstract
Microsomal prostaglandin E2 synthase-1 (mPGES-1) is known as an ideal target for next generation of anti-inflammatory drugs without the side effects of currently available anti-inflammatory drugs. However, there has been no clinically promising mPGES-1 inhibitor identified through traditional drug discovery and development route. Here we report a new approach, called DREAM-in-CDM (Drug Repurposing Effort Applying Integrated Modeling-in vitro/vivo-Clinical Data Mining), to identify an FDA-approved drug suitable for use as an effective analgesic targeting mPGES-1. The DREAM-in-CDM approach consists of three steps: computational screening of FDA-approved drugs; in vitro and/or in vivo assays; and clinical data mining. By using the DREAM-in-CDM approach, lapatinib has been identified as a promising mPGES-1 inhibitor which may have significant anti-inflammatory effects to relieve various forms of pain and possibly treat various inflammation conditions involved in other inflammation-related diseases such as the lung inflammation caused by the newly identified COVID-19. We anticipate that the DREAM-in-CDM approach will be used to repurpose FDA-approved drugs for various new therapeutic indications associated with new targets.
Collapse
|
10
|
Bülbül B, Küçükgüzel İ. Microsomal Prostaglandin E2 Synthase-1 as a New Macromolecular Drug Target in the Prevention of Inflammation and Cancer. Anticancer Agents Med Chem 2020; 19:1205-1222. [PMID: 30827263 DOI: 10.2174/1871520619666190227174137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cancer is one of the most life-threatening diseases worldwide. Since inflammation is considered to be one of the known characteristics of cancer, the activity of PGE2 has been paired with different tumorigenic steps such as increased tumor cell proliferation, resistance to apoptosis, increased invasiveness, angiogenesis and immunosuppression. OBJECTIVE It has been successfully demonstrated that inhibition of mPGES-1 prevented inflammation in preclinical studies. However, despite the crucial roles of mPGEs-1 and PGE2 in tumorigenesis, there is not much in vivo study on mPGES-1 inhibition in cancer therapy. The specificity of mPGEs-1 enzyme and its low expression level under normal conditions makes it a promising drug target with a low risk of side effects. METHODS A comprehensive literature search was performed for writing this review. An updated view on PGE2 biosynthesis, PGES isoenzyme family and its pharmacology and the latest information about inhibitors of mPGES-1 have been discussed. RESULTS In this study, it was aimed to highlight the importance of mPGES-1 and its inhibition in inflammationrelated cancer and other inflammatory conditions. Information about PGE2 biosynthesis, its role in inflammationrelated pathologies were also provided. We kept the noncancer-related inflammatory part short and tried to bring together promising molecules or scaffolds. CONCLUSION The information provided in this review might be useful to researchers in designing novel and potent mPGES-1 inhibitors for the treatment of cancer and inflammation.
Collapse
Affiliation(s)
- Bahadır Bülbül
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - İlkay Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| |
Collapse
|
11
|
Şahin N, Gürbüz N, Karabıyık H, Karabıyık H, Özdemir İ. Arylation of heterocyclic compounds by benzimidazole-based N-heterocyclic carbene-palladium(II) complexes. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2019.121076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Abstract
Prostanoids (prostaglandins, prostacyclin and thromboxane) belong to the oxylipin family of biologically active lipids generated from arachidonic acid (AA). Protanoids control numerous physiological and pathological processes. Cyclooxygenase (COX) is a rate-limiting enzyme involved in the conversion of AA into prostanoids. There are two COX isozymes: the constitutive COX-1 and the inducible COX-2. COX-1 and COX-2 have similar structures, catalytic activities, and subcellular localizations but differ in patterns of expression and biological functions. Non-selective COX-1/2 or traditional, non-steroidal anti-inflammatory drugs (tNSAIDs) target both COX isoforms and are widely used to relieve pain, fever and inflammation. However, the use of NSAIDs is associated with various side effects, particularly in the gastrointestinal tract. NSAIDs selective for COX-2 inhibition (coxibs) were purposefully designed to spare gastrointestinal toxicity, but predisposed patients to increased cardiovascular risks. These health complications from NSAIDs prompted interest in the downstream effectors of the COX enzymes as novel drug targets. This chapter describes various safety issues with tNSAIDs and coxibs, and discusses the current development of novel classes of drugs targeting the prostanoid pathway, including nitrogen oxide- and hydrogen sulfide-releasing NSAIDs, inhibitors of prostanoid synthases, dual inhibitors, and prostanoid receptor agonists and antagonists.
Collapse
|
13
|
A review on mPGES-1 inhibitors: From preclinical studies to clinical applications. Prostaglandins Other Lipid Mediat 2019; 147:106383. [PMID: 31698145 DOI: 10.1016/j.prostaglandins.2019.106383] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/16/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
Prostaglandin E2 (PGE2) is a lipid mediator of inflammation and cancer progression. It is mainly formed via metabolism of arachidonic acid by cyclooxygenases (COX) and the terminal enzyme microsomal prostaglandin E synthase-1 (mPGES-1). Widely used non-steroidal anti-inflammatory drugs (NSAIDs) inhibit COX activity, resulting in decreased PGE2 production and symptomatic relief. However, NSAIDs block the production of many other lipid mediators that have important physiological and resolving actions, and these drugs cause gastrointestinal bleeding and/or increase the risk for severe cardiovascular events. Selective inhibition of downstream mPGES-1 for reduction in only PGE2 biosynthesis is suggested as a safer therapeutic strategy. This review covers the recent advances in characterization of new mPGES-1 inhibitors in preclinical models and their future clinical applications.
Collapse
|
14
|
Lee HH, Moon Y, Shin JS, Lee JH, Kim TW, Jang C, Park C, Lee J, Kim Y, Kim Y, Werz O, Park BY, Lee JY, Lee KT. A novel mPGES-1 inhibitor alleviates inflammatory responses by downregulating PGE2 in experimental models. Prostaglandins Other Lipid Mediat 2019; 144:106347. [DOI: 10.1016/j.prostaglandins.2019.106347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
|
15
|
Zhou S, Zhou Z, Ding K, Yuan Y, Zheng F, Zhan CG. In Silico Observation of the Conformational Opening of the Glutathione-Binding Site of Microsomal Prostaglandin E2 Synthase-1. J Chem Inf Model 2019; 59:3839-3845. [DOI: 10.1021/acs.jcim.9b00289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Singh I, Rani R, Luxami V, Paul K. Synthesis of 5-(4-(1H-phenanthro[9,10-d]imidazol-2-yl)benzylidene)thiazolidine-2,4-dione as promising DNA and serum albumin-binding agents and evaluation of antitumor activity. Eur J Med Chem 2019; 166:267-280. [PMID: 30721822 DOI: 10.1016/j.ejmech.2019.01.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
Abstract
A series of phenanthro[9,10-d]imidazole/oxazole and acenaphtho[1,2-d]imidazole with different aryl groups at C2-position has been synthesized. These compounds were in vitro evaluated for antitumor activity against a panel of 60 human cancer cell lines. Compound 8 exhibits higher cytotoxicity towards leukemia, colon, melanoma, renal, and breast cancer cell lines than the other evaluated cell panels and low toxicity against normal cell line Hek293. The binding properties of compound 8 with DNA have been investigated with absorption, emission and circular dichroism as well as thermal denaturation experiments which indicate intercalation with base pairs of human and calf thymus DNA. The molecular docking and site-selective binding studies also reveal the predominant intercalation of compound 8 in base pairs of DNA. The interaction between thiazolidine based phenanthrene 8 and serum albumins (HSA and BSA), transport proteins, has also been explored which shows quenching of fluorescence through static mechanism. The thermodynamic parameters, obtained from van't Hoff relationship indicate the prevalence of hydrogen-bonding/hydrophobic interactions for the binding phenomenon.
Collapse
Affiliation(s)
- Iqubal Singh
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala 147 001, India
| | - Richa Rani
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala 147 001, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala 147 001, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala 147 001, India.
| |
Collapse
|
17
|
Puratchikody A, Umamaheswari A, Irfan N, Sinha S, Manju SL, Ramanan M, Ramamoorthy G, Doble M. A novel class of tyrosine derivatives as dual 5-LOX and COX-2/mPGES1 inhibitors with PGE2 mediated anticancer properties. NEW J CHEM 2019. [DOI: 10.1039/c8nj04385j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Leukotriene and prostaglandin pathways are controlled by the enzymes, LOX and COX/mPGES1 respectively and are responsible for inflammatory responses.
Collapse
Affiliation(s)
- Ayarivan Puratchikody
- Drug Discovery and Development Research Group
- Department of Pharmaceutical Technology
- Bharathidasan Institute of Technology
- Anna University
- Tiruchirappalli
| | - Appavoo Umamaheswari
- Drug Discovery and Development Research Group
- Department of Pharmaceutical Technology
- Bharathidasan Institute of Technology
- Anna University
- Tiruchirappalli
| | - Navabshan Irfan
- Drug Discovery and Development Research Group
- Department of Pharmaceutical Technology
- Bharathidasan Institute of Technology
- Anna University
- Tiruchirappalli
| | - Shweta Sinha
- Bioengineering and Drug Design Lab
- Department of Biotechnology
- Bhupat and Jyoti Mehta School of Biosciences
- Indian Institute of Technology
- Madras
| | - S. L. Manju
- Department of Chemistry
- Vellore Institute of Technology
- Vellore
- India
| | - Meera Ramanan
- Bioengineering and Drug Design Lab
- Department of Biotechnology
- Bhupat and Jyoti Mehta School of Biosciences
- Indian Institute of Technology
- Madras
| | - Gayathri Ramamoorthy
- Bioengineering and Drug Design Lab
- Department of Biotechnology
- Bhupat and Jyoti Mehta School of Biosciences
- Indian Institute of Technology
- Madras
| | - Mukesh Doble
- Bioengineering and Drug Design Lab
- Department of Biotechnology
- Bhupat and Jyoti Mehta School of Biosciences
- Indian Institute of Technology
- Madras
| |
Collapse
|
18
|
Zhang T, Qiao J, Song H, Xu F, Liu X, Xu C, Ma J, Liu H, Sun Z, Chu W. Cu(OAc)2-Mediated benzimidazole-directed C–H cyanation using 2-(4-methylpiperazin-1-yl)acetonitrile as the cyano source. NEW J CHEM 2019. [DOI: 10.1039/c9nj00776h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The C–H activation catalytic system was originally applied to the C(sp2)–H cyanation of aryls/heteroaryls to synthesize 2-(1H-benzo[d]imidazol-2-yl)aryl nitriles.
Collapse
|
19
|
Potential targets for the development of new antifungal drugs. J Antibiot (Tokyo) 2018; 71:978-991. [DOI: 10.1038/s41429-018-0100-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/26/2018] [Accepted: 08/31/2018] [Indexed: 12/19/2022]
|
20
|
Sasmal M, Bhowmick R, Musha Islam AS, Bhuiya S, Das S, Ali M. Domain-Specific Association of a Phenanthrene-Pyrene-Based Synthetic Fluorescent Probe with Bovine Serum Albumin: Spectroscopic and Molecular Docking Analysis. ACS OMEGA 2018; 3:6293-6304. [PMID: 31458811 PMCID: PMC6644396 DOI: 10.1021/acsomega.8b00186] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/01/2018] [Indexed: 05/20/2023]
Abstract
In this report, the interaction between a phenanthrene-pyrene-based fluorescent probe (PPI) and bovine serum albumin (BSA), a transport protein, has been explored by steady-state emission spectroscopy, fluorescence anisotropy, far-ultraviolet circular dichroism (CD), time-resolved spectral measurements, and molecular docking simulation study. The blue shift along with emission enhancement indicates the interaction between PPI and BSA. The binding of the probe causes quenching of BSA fluorescence through both static and dynamic quenching mechanisms, revealing a 1:1 interaction, as delineated from Benesi-Hildebrand plot, with a binding constant of ∼105 M-1, which is in excellent agreement with the binding constant extracted from fluorescence anisotropy measurements. The thermodynamic parameters, ΔH°, ΔS°, and ΔG°, as determined from van't Hoff relationship indicate the predominance of van der Waals/extensive hydrogen-bonding interactions for the binding phenomenon. The molecular docking and site-selective binding studies reveal the predominant binding of PPI in subdomain IIA of BSA. From the fluorescence resonance energy transfer study, the average distance between tryptophan 213 of the BSA donor and the PPI acceptor is found to be 3.04 nm. CD study demonstrates the reduction of α-helical content of BSA protein on binding with PPI, clearly indicating the change of conformation of BSA.
Collapse
|
21
|
Muthukaman N, Deshmukh S, Tambe M, Pisal D, Tondlekar S, Shaikh M, Sarode N, Kattige VG, Sawant P, Pisat M, Karande V, Honnegowda S, Kulkarni A, Behera D, Jadhav SB, Sangana RR, Gudi GS, Khairatkar-Joshi N, Gharat LA. Alleviating CYP and hERG liabilities by structure optimization of dihydrofuran-fused tricyclic benzo[d]imidazole series - Potent, selective and orally efficacious microsomal prostaglandin E synthase-1 (mPGES-1) inhibitors: Part-2. Bioorg Med Chem Lett 2018. [PMID: 29519738 DOI: 10.1016/j.bmcl.2018.02.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In an effort to identify CYP and hERG clean mPGES-1 inhibitors from the dihydrofuran-fused tricyclic benzo[d]imidazole series lead 7, an extensive structure-activity relationship (SAR) studies were performed. Optimization of A, D and E-rings in 7 afforded many potent compounds with human whole blood potency in the range of 160-950 nM. Selected inhibitors 21d, 21j, 21m, 21n, 21p and 22b provided selectivity against COX-enzymes and mPGES-1 isoforms (mPGES-2 and cPGES) along with sufficient selectivity against prostanoid synthases. Most of the tested analogs demonstrated required metabolic stability in liver microsomes, low hERG and CYP liability. Oral pharmacokinetics and bioavailability of lead compounds 21j, 21m and 21p are discussed in multiple species like rat, guinea pig, dog, and cynomolgus monkey. Besides, these compounds revealed low to moderate activity against human pregnane X receptor (hPXR). The selected lead 21j further demonstrated in vivo efficacy in acute hyperalgesia (ED50: 39.6 mg/kg) and MIA-induced osteoarthritic pain models (ED50: 106 mg/kg).
Collapse
Affiliation(s)
- Nagarajan Muthukaman
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Sanjay Deshmukh
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Macchindra Tambe
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Dnyandeo Pisal
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Shital Tondlekar
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Mahamadhanif Shaikh
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Neelam Sarode
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Vidya G Kattige
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Pooja Sawant
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Monali Pisat
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Vikas Karande
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Srinivasa Honnegowda
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Abhay Kulkarni
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Dayanidhi Behera
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Satyawan B Jadhav
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Ramchandra R Sangana
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Girish S Gudi
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Neelima Khairatkar-Joshi
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Laxmikant A Gharat
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India.
| |
Collapse
|
22
|
Identification of multi-target inhibitors of leukotriene and prostaglandin E2 biosynthesis by structural tuning of the FLAP inhibitor BRP-7. Eur J Med Chem 2018; 150:876-899. [DOI: 10.1016/j.ejmech.2018.03.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 11/19/2022]
|
23
|
Structure-based discovery of mPGES-1 inhibitors suitable for preclinical testing in wild-type mice as a new generation of anti-inflammatory drugs. Sci Rep 2018; 8:5205. [PMID: 29581541 PMCID: PMC5979965 DOI: 10.1038/s41598-018-23482-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/09/2018] [Indexed: 12/24/2022] Open
Abstract
Human mPGES-1 is recognized as a promising target for next generation of anti-inflammatory drugs without the side effects of currently available anti-inflammatory drugs, and various inhibitors have been reported in the literature. However, none of the reported potent inhibitors of human mPGES-1 has shown to be also a potent inhibitor of mouse or rat mPGES-1, which prevents using the well-established mouse/rat models of inflammation-related diseases for preclinical studies. Hence, despite of extensive efforts to design and discover various human mPGES-1 inhibitors, the promise of mPGES-1 as a target for the next generation of anti-inflammatory drugs has never been demonstrated in any wild-type mouse/rat model using an mPGES-1 inhibitor. Here we report discovery of a novel type of selective mPGES-1 inhibitors potent for both human and mouse mPGES-1 enzymes through structure-based rational design. Based on in vivo studies using wild-type mice, the lead compound is indeed non-toxic, orally bioavailable, and more potent in decreasing the PGE2 (an inflammatory marker) levels compared to the currently available drug celecoxib. This is the first demonstration in wild-type mice that mPGES-1 is truly a promising target for the next generation of anti-inflammatory drugs.
Collapse
|
24
|
Structure-based discovery of mPGES-1 inhibitors suitable for preclinical testing in wild-type mice as a new generation of anti-inflammatory drugs. Sci Rep 2018. [PMID: 29581541 DOI: 10.1038/s41598-41018-23482-41594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Human mPGES-1 is recognized as a promising target for next generation of anti-inflammatory drugs without the side effects of currently available anti-inflammatory drugs, and various inhibitors have been reported in the literature. However, none of the reported potent inhibitors of human mPGES-1 has shown to be also a potent inhibitor of mouse or rat mPGES-1, which prevents using the well-established mouse/rat models of inflammation-related diseases for preclinical studies. Hence, despite of extensive efforts to design and discover various human mPGES-1 inhibitors, the promise of mPGES-1 as a target for the next generation of anti-inflammatory drugs has never been demonstrated in any wild-type mouse/rat model using an mPGES-1 inhibitor. Here we report discovery of a novel type of selective mPGES-1 inhibitors potent for both human and mouse mPGES-1 enzymes through structure-based rational design. Based on in vivo studies using wild-type mice, the lead compound is indeed non-toxic, orally bioavailable, and more potent in decreasing the PGE2 (an inflammatory marker) levels compared to the currently available drug celecoxib. This is the first demonstration in wild-type mice that mPGES-1 is truly a promising target for the next generation of anti-inflammatory drugs.
Collapse
|
25
|
Muthukaman N, Tambe M, Deshmukh S, Pisal D, Tondlekar S, Shaikh M, Sarode N, Kattige VG, Pisat M, Sawant P, Honnegowda S, Karande V, Kulkarni A, Behera D, Jadhav SB, Sangana RR, Gudi GS, Khairatkar-Joshi N, Gharat LA. Discovery of furan and dihydrofuran-fused tricyclic benzo[d]imidazole derivatives as potent and orally efficacious microsomal prostaglandin E synthase-1 (mPGES-1) inhibitors: Part-1. Bioorg Med Chem Lett 2017; 27:5131-5138. [PMID: 29100801 DOI: 10.1016/j.bmcl.2017.10.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 01/28/2023]
Abstract
This letter describes the synthesis and biological evaluation of furan and dihydrofuran-fused tricyclic benzo[d]imidazole derivatives as novel mPGES-1 inhibitors, capable of inhibiting an increased PGE2 production in the disease state. Structure-activity optimization afforded many potent mPGES-1 inhibitors having <50 nM potencies in the A549 cellular assay and adequate metabolic stability in liver microsomes. Lead compounds 8l and 8m demonstrated reasonable in vitro pharmacology and pharmacokinetic properties over other compounds. In particular, 8m revealed satisfactory oral pharmacokinetics and bioavailability in multiple species like rat, guinea pig, dog and cynomolgus monkey. In addition, the representative compound 8m showed in vivo efficacy by inhibiting LPS-induced thermal hyperalgesia with an ED50 of 14.3 mg/kg in guinea pig.
Collapse
Affiliation(s)
- Nagarajan Muthukaman
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Macchindra Tambe
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Sanjay Deshmukh
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Dnyandeo Pisal
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Shital Tondlekar
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Mahamadhanif Shaikh
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Neelam Sarode
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Vidya G Kattige
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Monali Pisat
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Pooja Sawant
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Srinivasa Honnegowda
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Vikas Karande
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Abhay Kulkarni
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Dayanidhi Behera
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Satyawan B Jadhav
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Ramchandra R Sangana
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Girish S Gudi
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Neelima Khairatkar-Joshi
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Laxmikant A Gharat
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India.
| |
Collapse
|
26
|
Di Micco S, Terracciano S, Cantone V, Fischer K, Koeberle A, Foglia A, Riccio R, Werz O, Bruno I, Bifulco G. Discovery of new potent molecular entities able to inhibit mPGES-1. Eur J Med Chem 2017; 143:1419-1427. [PMID: 29133047 DOI: 10.1016/j.ejmech.2017.10.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 12/22/2022]
Abstract
mPGES-1, a glutathione-dependent membrane protein is involved in the last step of PGE2 production and has been well recognized as a strategic target for the development of anti-inflammatory and anti-cancer agents. It has been proven to selectively control the PGE2 levels induced by inflammatory stimuli, with neither affecting PGE2 constitutively produced, nor homeostatic prostanoids, so that its modulation can represent a better strategy to control PGE2 related disorders, compared to the use of the classical anti-inflammatory drugs, endowed with severe side effects. Despite the intensive research on the identification of potent mPGES-1 inhibitors as attractive candidates for drug development, none of the disclosed molecules, except for LY3023705, which recently entered clinical trials, are available for clinical use, therefore the discovery of new effective mPGES-1 inhibitors with increased drug-like properties are urgently needed. Continuing our work aimed at identifying new chemical platforms able to interact with this enzyme, here we describe the discovery of potent mPGES-1 modulators, featuring a 1-fluoro-2,4-dinitro-biphenyl-based scaffold, by processing and docking a small collection of synthetically accessible molecules, built around two main fragments, disclosed in our in silico screening. The top scoring hits obtained have been synthesized and tested, and five of the predicted compounds showed to potently inhibit mPGES-1 enzyme, without affecting COX enzymes activities.
Collapse
Affiliation(s)
- Simone Di Micco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Vincenza Cantone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Katrin Fischer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Antonio Foglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Raffaele Riccio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Ines Bruno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy.
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy.
| |
Collapse
|
27
|
Saroj Devi N, Shanmugam R, Ghorai J, Ramanan M, Anbarasan P, Doble M. Ligand-based Modeling for the Prediction of Pharmacophore Features for Multi-targeted Inhibition of the Arachidonic Acid Cascade. Mol Inform 2017; 37. [PMID: 28991413 DOI: 10.1002/minf.201700073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/21/2017] [Indexed: 01/22/2023]
Abstract
The single-target drugs against the arachidonic acid inflammatory pathway are associated with serious side effects, hence, as a first step towards multi-target drugs, we have studied the pharmacophoric features common to the inhibitors of 5-lipoxygenase-activating protein (FLAP), microsomal prostaglandin E-synthase 1 (mPGES-1) and leukotriene A4 hydrolase (LTA4H). FLAP and mPGES-1 shared subfamily-specific positions (SSPs) and four mPGES-1 inhibitors binding to them mapped onto the pharmacophore derived from FLAP inhibitors (Ph-FLAP). The reactions of mPGES-1 and LTA4H had high structural similarity. The pharmacophore derived from two substrate mimic inhibitors of LTA4H (Ph-LTA4H) also mapped onto three mPGES-1 inhibitors. Screening of in-house database for Ph-FLAP and Ph-LTA4H identified one compound, C1. It inhibited the production of the mPGES-1 product, prostaglandin E2 (PGE2) by 97.8±1.6 % at 50 μM in HeLa cells and can be a starting point for designing molecules inhibiting all three targets simultaneously.
Collapse
Affiliation(s)
- Nisha Saroj Devi
- Bioengineering and Drug Design Lab, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036
| | - Rajasekar Shanmugam
- CYB 104A, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036
| | - Jayanta Ghorai
- CYB 104A, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036
| | - Meera Ramanan
- Bioengineering and Drug Design Lab, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036
| | - Pazhamalai Anbarasan
- CYB 104A, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036
| | - Mukesh Doble
- Bioengineering and Drug Design Lab, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036
| |
Collapse
|
28
|
Synthesis and Spectroscopic Studies of Phenanthroimidazole-Imine Derivatives and Evaluation of Their Antioxidant Activity. J Fluoresc 2017; 28:217-223. [PMID: 28986717 DOI: 10.1007/s10895-017-2184-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Abstract
The phenanthroimidazole derivatives are used in the drug industry in large scale. In this study four new phenanthroimidazole-imine derivatives were synthesized and their spectroscopic studies as well as their antioxidant behaviors were examined. Structural analyses were made by FT-IR, 1H-NMR, 13C-NMR, LC-MS spectroscopy techniques. UV-vis absorption and emission spectroscopy techniques have been used to determine the photophysical characteristics of four newly synthesized phenanthroimidazoles. The maximum absorption and emission wavelengths, molar extinction coefficients (ε), singlet energy levels (Es), Stokes' shift values (Δλ) of phenanthroimidazole-imine derivatives are given. Additionally, the antioxidant behavior of all compounds were investigated which the ascorbic acid used as standard molecule in present study.
Collapse
|
29
|
Martin EM, Jones SL. Inhibition of microsomal prostaglandin E-synthase-1 (mPGES-1) selectively suppresses PGE 2 in an in vitro equine inflammation model. Vet Immunol Immunopathol 2017; 192:33-40. [PMID: 29042013 DOI: 10.1016/j.vetimm.2017.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/13/2017] [Accepted: 09/30/2017] [Indexed: 01/13/2023]
Abstract
Inhibition of prostaglandin E2 (PGE2) production effectively limits inflammation in horses, however nonspecific prostaglandin blockade via cyclooxygenase (COX) inhibition elicits deleterious gastrointestinal side effects in equine patients. Thus, more selective PGE2 targeting therapeutics are needed to treat inflammatory disease in horses. One potential target is microsomal prostaglandin E-synthase-1 (mPGES-1), which is the terminal enzyme downstream of COX-2 in the inducible PGE2 synthesis cascade. This enzyme has yet to be studied in equine leukocytes, which play a pivotal role in equine inflammatory disease. The objective of this study was to determine if mPGES-1 is a PGE2-selective anti-inflammatory target in equine leukocytes. To evaluate this objective, leukocyte-rich plasma (LRP) was isolated from equine whole blood collected via jugular venipuncture of six healthy adult horses of mixed breeds and genders. LRP was primed with granulocyte-monocyte colony-stimulating factor (GM-CSF) and stimulated with lipopolysaccharide (LPS) in the presence or absence of an mPGES-1 inhibitor (MF63), a COX-2 inhibitor (NS-398), or a nonselective COX inhibitor (indomethacin). Following treatment, mPGES-1 and COX-2 mRNA and protein levels were measured via qPCR and western blot, respectively, and PGE2, thromboxane (TXA2) and prostacyclin (PGI2) levels were measured in cellular supernatants via ELISA. This study revealed that LPS significantly increased mPGES-1 mRNA, but not protein levels in equine LRP as measured by qPCR and western blot, respectively. In contrast, COX-2 mRNA and protein were coordinately induced by LPS. Importantly, treatment of LPS-stimulated leukocytes with indomethacin and NS-398 significantly reduced extracellular concentrations of multiple prostanoids (PGE2, TXA2 and PGI2), while the mPGES-1 inhibitor MF63 selectively inhibited PGE2 production only. mPGES-1 inhibition also preserved higher basal levels of PGE2 production when compared to either COX inhibitor, which might be beneficial in a clinical setting. In conclusion, this work identifies mPGES-1 as a key regulator of PGE2 production and a PGE2-selective target in equine leukocytes. This study demonstrates that mPGES-1 is a potentially safer and effective therapeutic target for treatment of equine inflammatory disease when compared to traditional non-steroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Emily M Martin
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Samuel L Jones
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
30
|
Zhou Z, Yuan Y, Zhou S, Ding K, Zheng F, Zhan CG. Selective inhibitors of human mPGES-1 from structure-based computational screening. Bioorg Med Chem Lett 2017; 27:3739-3743. [PMID: 28689972 DOI: 10.1016/j.bmcl.2017.06.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 06/28/2017] [Indexed: 12/13/2022]
Abstract
Human mPGES-1 is recognized as a promising target for next generation of anti-inflammatory drugs. Although various mPGES-1 inhibitors have been reported in literature, few have entered clinical trials and none has been proven clinically useful so far. It is highly desired for developing the next generation of therapeutics for inflammation-related diseases to design and discover novel inhibitors of mPGES-1 with new scaffolds. Here, we report the identification of a series of new, potent and selective inhibitors of human mPGES-1 with diverse scaffolds through combined computational and experimental studies. The computationally modeled binding structures of these new inhibitors of mPGES-1 provide some interesting clues for rational design of modified structures of the inhibitors to more favorably bind with mPGES-1.
Collapse
Affiliation(s)
- Ziyuan Zhou
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States
| | - Yaxia Yuan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States
| | - Shuo Zhou
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States
| | - Kai Ding
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506, United States
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States
| |
Collapse
|
31
|
Psarra A, Nikolaou A, Kokotou MG, Limnios D, Kokotos G. Microsomal prostaglandin E2 synthase-1 inhibitors: a patent review. Expert Opin Ther Pat 2017. [DOI: 10.1080/13543776.2017.1344218] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Anastasia Psarra
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Nikolaou
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Maroula G Kokotou
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Limnios
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
32
|
Tricyclic 4,4-dimethyl-3,4-dihydrochromeno[3,4- d ]imidazole derivatives as microsomal prostaglandin E 2 synthase-1 (mPGES-1) inhibitors: SAR and in vivo efficacy in hyperalgesia pain model. Bioorg Med Chem Lett 2017; 27:2594-2601. [DOI: 10.1016/j.bmcl.2017.03.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/08/2017] [Accepted: 03/23/2017] [Indexed: 01/25/2023]
|
33
|
Xia Z, Yan A. Computational models for the classification of mPGES-1 inhibitors with fingerprint descriptors. Mol Divers 2017; 21:661-675. [PMID: 28484935 DOI: 10.1007/s11030-017-9743-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 04/16/2017] [Indexed: 12/13/2022]
Abstract
Human microsomal prostaglandin [Formula: see text] synthase (mPGES)-1 is a promising drug target for inflammation and other diseases with inflammatory symptoms. In this work, we built classification models which were able to classify mPGES-1 inhibitors into two groups: highly active inhibitors and weakly active inhibitors. A dataset of 1910 mPGES-1 inhibitors was separated into a training set and a test set by two methods, by a Kohonen's self-organizing map or by random selection. The molecules were represented by different types of fingerprint descriptors including MACCS keys (MACCS), CDK fingerprints, Estate fingerprints, PubChem fingerprints, substructure fingerprints and 2D atom pairs fingerprint. First, we used a support vector machine (SVM) to build twelve models with six types of fingerprints and found that MACCS had some advantage over the other fingerprints in modeling. Next, we used naïve Bayes (NB), random forest (RF) and multilayer perceptron (MLP) methods to build six models with MACCS only and found that models using RF and MLP methods were better than NB. Finally, all the models with MACCS keys were used to make predictions on an external test set of 41 compounds. In summary, the models built with MACCS keys and using SVM, RF and MLP methods show good prediction performance on the test sets and the external test set. Furthermore, we made a structure-activity relationship analysis between mPGES-1 and its inhibitors based on the information gain of fingerprints and could pinpoint some key functional groups for mPGES-1 activity. It was found that highly active inhibitors usually contained an amide group, an aromatic ring or a nitrogen heterocyclic ring, and several heteroatoms substituents such as fluorine and chlorine. The carboxyl group and sulfur atom groups mainly appeared in weakly active inhibitors.
Collapse
Affiliation(s)
- Zhonghua Xia
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, P.O. Box 53, 15 BeiSanHuan East Road, Beijing, 100029, People's Republic of China
| | - Aixia Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, P.O. Box 53, 15 BeiSanHuan East Road, Beijing, 100029, People's Republic of China.
| |
Collapse
|
34
|
Shi X, Soulé JF, Doucet H. Synthesis of Phenanthrothiazoles and 1,2-Di(heteroaryl)benzenes through Successive Pd-Catalyzed Direct Arylations. J Org Chem 2017; 82:3886-3894. [DOI: 10.1021/acs.joc.6b03023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xinzhe Shi
- Institut
des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes “Organométalliques: Matériaux et Catalyse”, Campus de Beaulieu, 35042 Rennes, France
| | - Jean-François Soulé
- Institut
des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes “Organométalliques: Matériaux et Catalyse”, Campus de Beaulieu, 35042 Rennes, France
| | - Henri Doucet
- Institut
des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes “Organométalliques: Matériaux et Catalyse”, Campus de Beaulieu, 35042 Rennes, France
| |
Collapse
|
35
|
Bao H, Xu Z, Wu D, Zhang H, Jin H, Liu Y. Copper(0)/Selectfluor System-Promoted Oxidative Carbon-Carbon Bond Cleavage/Annulation of o-Aryl Chalcones: An Unexpected Synthesis of 9,10-Phenanthraquinone Derivatives. J Org Chem 2017; 82:109-118. [PMID: 27933862 DOI: 10.1021/acs.joc.6b02212] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A general and efficient protocol for the synthesis of 9,10-phenanthraquinone derivatives has been successfully developed involving a copper(0)/Selectfluor system-promoted oxidative carbon-carbon bond cleavage/annulation of o-aryl chalcones. A variety of substituted 9,10-phenanthraquinones were synthesized in moderate to good yields under mild reaction conditions.
Collapse
Affiliation(s)
- Hanyang Bao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology , Hangzhou 310014, People's Republic of China
| | - Zheng Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology , Hangzhou 310014, People's Republic of China
| | - Degui Wu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology , Hangzhou 310014, People's Republic of China
| | - Haifeng Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology , Hangzhou 310014, People's Republic of China
| | - Hongwei Jin
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology , Hangzhou 310014, People's Republic of China
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology , Hangzhou 310014, People's Republic of China
| |
Collapse
|
36
|
Pereira-Leite C, Nunes C, Jamal SK, Cuccovia IM, Reis S. Nonsteroidal Anti-Inflammatory Therapy: A Journey Toward Safety. Med Res Rev 2016; 37:802-859. [PMID: 28005273 DOI: 10.1002/med.21424] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/27/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023]
Abstract
The efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs) against inflammation, pain, and fever has been supporting their worldwide use in the treatment of painful conditions and chronic inflammatory diseases until today. However, the long-term therapy with NSAIDs was soon associated with high incidences of adverse events in the gastrointestinal tract. Therefore, the search for novel drugs with improved safety has begun with COX-2 selective inhibitors (coxibs) being straightaway developed and commercialized. Nevertheless, the excitement has fast turned to disappointment when diverse coxibs were withdrawn from the market due to cardiovascular toxicity. Such events have once again triggered the emergence of different strategies to overcome NSAIDs toxicity. Here, an integrative review is provided to address the breakthroughs of two main approaches: (i) the association of NSAIDs with protective mediators and (ii) the design of novel compounds to target downstream and/or multiple enzymes of the arachidonic acid cascade. To date, just one phosphatidylcholine-associated NSAID has already been approved for commercialization. Nevertheless, the preclinical and clinical data obtained so far indicate that both strategies may improve the safety of nonsteroidal anti-inflammatory therapy.
Collapse
Affiliation(s)
- Catarina Pereira-Leite
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Cláudia Nunes
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Sarah K Jamal
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Iolanda M Cuccovia
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Salette Reis
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
37
|
Discovery of 2-((2-chloro-6-fluorophenyl)amino)- N -(3-fluoro-5-(trifluoromethyl)phenyl)-1-methyl-7,8-dihydro-1 H -[1,4]dioxino[2′,3′:3,4]benzo[1,2- d ]imidazole-5-carboxamide as potent, selective and efficacious microsomal prostaglandin E 2 synthase-1 (mPGES-1) inhibitor. Bioorg Med Chem Lett 2016; 26:5977-5984. [DOI: 10.1016/j.bmcl.2016.10.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/03/2016] [Accepted: 10/27/2016] [Indexed: 02/04/2023]
|
38
|
Eren D, Betul YM. Revealing the effect of 6-gingerol, 6-shogaol and curcumin on mPGES-1, GSK-3β and β-catenin pathway in A549 cell line. Chem Biol Interact 2016; 258:257-65. [PMID: 27645308 DOI: 10.1016/j.cbi.2016.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/21/2016] [Accepted: 09/15/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND AIM In our study, anticancer effects of 6-gingerol, 6-shogaol from ginger and curcumin from turmeric were investigated and the results were compared with each other. We aimed to reveal their effects on microsomal prostaglandine E2 synthase 1 (mPGES-1) which is related with cancer progression and inflammation as well as β-catenin and glycogen synthase kinase 3β (GSK-3β) that are the main components of Wnt/GSK3 pathway. As it is known activation of GSK-3β and high levels of mPGES-1 pathway leads to cell proliferation and aggravates cancer progression. Therefore both of them are potential targets for cancer therapy. 6-shogaol and 6-gingerol' s effect on this pathway is not known very well up to now while curcumin that is known as an mPGES-1 inhibitor has anticancer properties via this pathway and many other pathways. Besides being in Zingiberaceae family, ginger's 6-gingerol and 6-shogaol have a molecular similarity with turmeric's curcumin. In our study we investigated their effects using a popular non small lung cancer cell line named A549 which expresses mPGES-1 and has active GSK3β pathway. IL-1β was used for inducing mPGES-1 and enabling the cancer characteristics such as cell proliferation. So compounds that inactivates or decreases the level of these components might be potential anticancer agents. MATERIALS AND METHODS A549 cells were incubated with interleukin 1β (IL-1β) for 24 h in order to maintain mPGES-1 enzyme induction. Experiments were performed both on IL-1β and non-IL-1β group. Real time cell analysis was performed to determine the cytotoxicity. Samples for western blotting and RT-PCR were collected after 24 h incubation with compounds to determine the amount of mPGES-1, GSK-3β, p-GSK-3β, β-catenin protein and mRNA. PGE2 which is the end product of mPGES-1 was measured by using ELISA kit. RESULTS As a result of cell profile assay, cells exposed to IL-1β proliferate faster than non-IL-1β ones. This shows that induced mPGES-1 might play a role through GSK3β pathway and 24 h IC50 value of 6-shogaol is 62 μM. IL-1β increased protein and mRNA levels of mPGES-1, p-GSK-3β, β-catenin and GSK-3β in control group. Effects of curcumin and 6-shogaol on these parameters were against IL-1β's effect while 6-gingerol was not effective at all. Furthermore, 6-shogaol and curcumin might be effective on GSK3β pathway via lowering PGE2 levels. CONCLUSION We saw that 6-shogaol is as effective as curcumin on this pathway and our study shows that 6-shogaol might show its anticancer properties via mPGES-1 and GSK3β pathway. May be these results might used for designing in vivo studies in future.
Collapse
Affiliation(s)
- Demirpolat Eren
- Erciyes University, Faculty of Pharmacy, Department of Pharmacology, Kayseri, Turkey.
| | - Yerer Mukerrem Betul
- Erciyes University, Faculty of Pharmacy, Department of Pharmacology, Kayseri, Turkey.
| |
Collapse
|
39
|
Koeberle A, Laufer SA, Werz O. Design and Development of Microsomal Prostaglandin E2 Synthase-1 Inhibitors: Challenges and Future Directions. J Med Chem 2016; 59:5970-86. [DOI: 10.1021/acs.jmedchem.5b01750] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Andreas Koeberle
- Chair
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Stefan A. Laufer
- Department
of Pharmaceutical Chemistry, Pharmaceutical Institute, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Oliver Werz
- Chair
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University Jena, Philosophenweg 14, 07743 Jena, Germany
| |
Collapse
|
40
|
Khurana P, Jachak SM. Chemistry and biology of microsomal prostaglandin E2 synthase-1 (mPGES-1) inhibitors as novel anti-inflammatory agents: recent developments and current status. RSC Adv 2016. [DOI: 10.1039/c5ra25186a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Prostaglandin (PG) E2, a key mediator of inflammatory pain and fever, is biosynthesized from PGH2 by mPGES-1.
Collapse
Affiliation(s)
- Puneet Khurana
- Department of Natural Products
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali-160062
- India
| | - Sanjay M. Jachak
- Department of Natural Products
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali-160062
- India
| |
Collapse
|
41
|
Kim M, Lee S, Park EB, Kim KJ, Lee HH, Shin JS, Fischer K, Koeberle A, Werz O, Lee KT, Lee JY. Hit-to-lead optimization of phenylsulfonyl hydrazides for a potent suppressor of PGE2 production: Synthesis, biological activity, and molecular docking study. Bioorg Med Chem Lett 2015; 26:94-9. [PMID: 26602278 DOI: 10.1016/j.bmcl.2015.11.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 10/22/2015] [Accepted: 11/09/2015] [Indexed: 12/28/2022]
Abstract
Preliminary hit-to-lead optimization of a novel series of phenylsulfonyl hydrazide derivatives, which were derived from the high throughput screening hit compound 1 (IC50=5700nM against PGE2 production), for a potent suppressor of PGE2 production is described. Subsequent optimization led to the identification of the potent lead compound 8n with IC50 values of 4.5 and 6.9nM, respectively, against LPS-induced PGE2 production and NO production in RAW 264.7 macrophage cells. In addition, 8n was about 30- and >150-fold more potent against mPGES-1 enzyme in a cell-free assay (IC50=70nM) than MK-886 and hit compound 1, respectively. Molecular docking suggests that compound 8n could inhibit PGE2 production by blocking the PGH2 binding site of human mPGES-1 enzyme.
Collapse
Affiliation(s)
- Minju Kim
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sunhoe Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Eun Beul Park
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Kwang Jong Kim
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hwi Ho Lee
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ji-Sun Shin
- Reactive Oxygen Species Medical Research Center, School of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Katrin Fischer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany.
| | - Kyung-Tae Lee
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Jae Yeol Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
42
|
Noha SM, Fischer K, Koeberle A, Garscha U, Werz O, Schuster D. Discovery of novel, non-acidic mPGES-1 inhibitors by virtual screening with a multistep protocol. Bioorg Med Chem 2015; 23:4839-4845. [PMID: 26088337 PMCID: PMC4528062 DOI: 10.1016/j.bmc.2015.05.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/13/2015] [Accepted: 05/19/2015] [Indexed: 11/22/2022]
Abstract
Microsomal prostaglandin E2 synthase-1 (mPGES-1) inhibitors are considered as potential therapeutic agents for the treatment of inflammatory pain and certain types of cancer. So far, several series of acidic as well as non-acidic inhibitors of mPGES-1 have been discovered. Acidic inhibitors, however, may have issues, such as loss of potency in human whole blood and in vivo, stressing the importance of the design and identification of novel, non-acidic chemical scaffolds of mPGES-1 inhibitors. Using a multistep virtual screening protocol, the Vitas-M compound library (∼1.3 million entries) was filtered and 16 predicted compounds were experimentally evaluated in a biological assay in vitro. This approach yielded two molecules active in the low micromolar range (IC50 values: 4.5 and 3.8 μM, respectively).
Collapse
Affiliation(s)
- Stefan M Noha
- Computer Aided Molecular Design (CAMD) Group, Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Katrin Fischer
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Andreas Koeberle
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Ulrike Garscha
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Daniela Schuster
- Computer Aided Molecular Design (CAMD) Group, Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria.
| |
Collapse
|
43
|
Koeberle A, Werz O. Perspective of microsomal prostaglandin E2 synthase-1 as drug target in inflammation-related disorders. Biochem Pharmacol 2015; 98:1-15. [PMID: 26123522 DOI: 10.1016/j.bcp.2015.06.022] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/23/2015] [Indexed: 02/07/2023]
Abstract
Prostaglandin (PG)E2 encompasses crucial roles in pain, fever, inflammation and diseases with inflammatory component, such as cancer, but is also essential for gastric, renal, cardiovascular and immune homeostasis. Cyclooxygenases (COX) convert arachidonic acid to the intermediate PGH2 which is isomerized to PGE2 by at least three different PGE2 synthases. Inhibitors of COX - non-steroidal anti-inflammatory drugs (NSAIDs) - are currently the only available therapeutics that target PGE2 biosynthesis. Due to adverse effects of COX inhibitors on the cardiovascular system (COX-2-selective), stomach and kidney (COX-1/2-unselective), novel pharmacological strategies are in demand. The inducible microsomal PGE2 synthase (mPGES)-1 is considered mainly responsible for the excessive PGE2 synthesis during inflammation and was suggested as promising drug target for suppressing PGE2 biosynthesis. However, 15 years after intensive research on the biology and pharmacology of mPGES-1, the therapeutic value of mPGES-1 as drug target is still vague and mPGES-1 inhibitors did not enter the market so far. This commentary will first shed light on the structure, mechanism and regulation of mPGES-1 and will then discuss its biological function and the consequence of its inhibition for the dynamic network of eicosanoids. Moreover, we (i) present current strategies for interfering with mPGES-1-mediated PGE2 synthesis, (ii) summarize bioanalytical approaches for mPGES-1 drug discovery and (iii) describe preclinical test systems for the characterization of mPGES-1 inhibitors. The pharmacological potential of selective mPGES-1 inhibitor classes as well as dual mPGES-1/5-lipoxygenase inhibitors is reviewed and pitfalls in their development, including species discrepancies and loss of in vivo activity, are discussed.
Collapse
Affiliation(s)
- Andreas Koeberle
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany.
| | - Oliver Werz
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany.
| |
Collapse
|
44
|
Cossette C, Gravel S, Reddy CN, Gore V, Chourey S, Ye Q, Snyder NW, Mesaros CA, Blair IA, Lavoie JP, Reinero CR, Rokach J, Powell WS. Biosynthesis and actions of 5-oxoeicosatetraenoic acid (5-oxo-ETE) on feline granulocytes. Biochem Pharmacol 2015; 96:247-55. [PMID: 26032638 DOI: 10.1016/j.bcp.2015.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/18/2015] [Indexed: 11/25/2022]
Abstract
The 5-lipoxygenase product 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is the most powerful human eosinophil chemoattractant among lipid mediators and could play a major pathophysiological role in eosinophilic diseases such as asthma. Its actions are mediated by the OXE receptor, orthologs of which are found in many species from humans to fish, but not rodents. The unavailability of rodent models to examine the pathophysiological roles of 5-oxo-ETE and the OXE receptor has substantially hampered progress in this area. As an alternative, we have explored the possibility that the cat could serve as an appropriate animal model to investigate the role of 5-oxo-ETE. We found that feline peripheral blood leukocytes synthesize 5-oxo-ETE and that physiologically relevant levels of 5-oxo-ETE are present in bronchoalveolar lavage fluid from cats with experimentally induced asthma. 5-Oxo-ETE (EC50, 0.7nM) is a much more potent activator of actin polymerization in feline eosinophils than various other eicosanoids, including leukotriene (LT) B4 and prostaglandin D2. 5-Oxo-ETE and LTB4 induce feline leukocyte migration to similar extents at low concentrations (1nM), but at higher concentrations the response to 5-oxo-ETE is much greater. Although high concentrations of selective human OXE receptor antagonists blocked 5-oxo-ETE-induced actin polymerization in feline granulocytes, their potencies were about 200 times lower than for human granulocytes. We conclude that feline leukocytes synthesize and respond to 5-oxo-ETE, which could potentially play an important role in feline asthma, a common condition in this species. The cat could serve as a useful animal model to investigate the pathophysiological role of 5-oxo-ETE.
Collapse
Affiliation(s)
- Chantal Cossette
- Meakins-Christie Laboratories, Centre for Translational Biology, McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada.
| | - Sylvie Gravel
- Meakins-Christie Laboratories, Centre for Translational Biology, McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada.
| | - Chintam Nagendra Reddy
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, Melbourne, FL 32901-6982, USA.
| | - Vivek Gore
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, Melbourne, FL 32901-6982, USA.
| | - Shishir Chourey
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, Melbourne, FL 32901-6982, USA.
| | - Qiuji Ye
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, Melbourne, FL 32901-6982, USA.
| | - Nathaniel W Snyder
- Center for Cancer Pharmacology, University of Pennsylvania, 854 BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104-6160, USA.
| | - Clementina A Mesaros
- Center for Cancer Pharmacology, University of Pennsylvania, 854 BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104-6160, USA.
| | - Ian A Blair
- Center for Cancer Pharmacology, University of Pennsylvania, 854 BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104-6160, USA.
| | - Jean-Pierre Lavoie
- Dept. of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe J2S 6C7, QC, Canada.
| | - Carol R Reinero
- Department of Veterinary Medicine and Surgery, University of Missouri, 900 E Campus Drive, Columbia, MO 65211, USA.
| | - Joshua Rokach
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, Melbourne, FL 32901-6982, USA.
| | - William S Powell
- Meakins-Christie Laboratories, Centre for Translational Biology, McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
45
|
Luz JG, Antonysamy S, Kuklish SL, Condon B, Lee MR, Allison D, Yu XP, Chandrasekhar S, Backer R, Zhang A, Russell M, Chang SS, Harvey A, Sloan AV, Fisher MJ. Crystal Structures of mPGES-1 Inhibitor Complexes Form a Basis for the Rational Design of Potent Analgesic and Anti-Inflammatory Therapeutics. J Med Chem 2015; 58:4727-37. [DOI: 10.1021/acs.jmedchem.5b00330] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- John Gately Luz
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Stephen Antonysamy
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Steven L. Kuklish
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| | - Bradley Condon
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Matthew R. Lee
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Dagart Allison
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Xiao-Peng Yu
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| | - Srinivasan Chandrasekhar
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| | - Ryan Backer
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| | - Aiping Zhang
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Marijane Russell
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Shawn S. Chang
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Anita Harvey
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| | - Ashley V. Sloan
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| | - Matthew J. Fisher
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| |
Collapse
|
46
|
Chen YR, Tseng CH, Chen YL, Hwang TL, Tzeng CC. Discovery of benzo[f]indole-4,9-dione derivatives as new types of anti-inflammatory agents. Int J Mol Sci 2015; 16:6532-44. [PMID: 25807261 PMCID: PMC4394546 DOI: 10.3390/ijms16036532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/06/2015] [Accepted: 03/13/2015] [Indexed: 11/21/2022] Open
Abstract
Certain benzo[f]indole-4,9-dione derivatives were synthesized and evaluated for their inhibitory effects on superoxide anion generation and neutrophil elastase (NE) release in formyl-l-methionyl-l-leucyl-l-phenylalanine (fMLF)-activated human neutrophils. Results indicated that (Z)-1-benzyl-4-(hydroxyimino)-1H-benzo[f]indol-9(4H)-one (10) showed a potent dual inhibitory effect on NE release and superoxide anion generation with IC50 value of 2.78 and 2.74 μM respectively. The action mechanisms of 10 in human neutrophils were further investigated. Our results showed that compound 10 did not alter fMLF-induced phosphorylation of Src (Src family Y416). Notably, phosphorylation of Akt (S473) and mobilization of [Ca2+]i caused by fMLF was inhibited by compound 10. Further structural optimization of 10 is ongoing.
Collapse
Affiliation(s)
- You-Ren Chen
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chih-Hua Tseng
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yeh-Long Chen
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan.
- Immunology Consortium, Chang Gung Memorial Hospital, Kweishan, Taoyuan 333, Taiwan.
| | - Cherng-Chyi Tzeng
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
47
|
Chen Y, Liu H, Xu S, Wang T, Li W. Targeting microsomal prostaglandin E2synthase-1 (mPGES-1): the development of inhibitors as an alternative to non-steroidal anti-inflammatory drugs (NSAIDs). MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00278h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AA cascade and several key residues in the 3D structure of mPGES-1.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | | | - Shuang Xu
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Tianlin Wang
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| |
Collapse
|
48
|
Shiro T, Fukaya T, Tobe M. The chemistry and biological activity of heterocycle-fused quinolinone derivatives: A review. Eur J Med Chem 2014; 97:397-408. [PMID: 25532473 DOI: 10.1016/j.ejmech.2014.12.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/25/2014] [Accepted: 12/03/2014] [Indexed: 11/27/2022]
Abstract
Among all heterocycles, the heterocycle-fused quinolinone scaffold is one of the privileged structures in drug discovery as heterocycle-fused quinolinone derivatives exhibit various biological activities allowing them to act as anti-inflammatory, anticancer, antidiabetic, and antipsychotic agents. This wide spectrum of biological activity has attracted a great deal of attention in the field of medicinal chemistry. In this review, we provide a comprehensive description of the biological and pharmacological properties of various heterocycle-fused quinolinone scaffolds and discuss the synthetic methods of some of their derivatives.
Collapse
Affiliation(s)
- Tomoya Shiro
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., Enoki 33-94, Suita, Osaka 564-0053, Japan
| | - Takayuki Fukaya
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., Enoki 33-94, Suita, Osaka 564-0053, Japan
| | - Masanori Tobe
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., Enoki 33-94, Suita, Osaka 564-0053, Japan.
| |
Collapse
|
49
|
Kang SM, Lee J, Jin JH, Kim M, Lee S, Lee HH, Shin JS, Lee KT, Lee JY. Synthesis and PGE2 production inhibition of s-triazine derivatives as a novel scaffold in RAW 264.7 macrophage cells. Bioorg Med Chem Lett 2014; 24:5418-22. [DOI: 10.1016/j.bmcl.2014.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/04/2014] [Accepted: 10/09/2014] [Indexed: 10/24/2022]
|
50
|
Paragi Vedanthi PP, Doble M. Inhibition of microsomal prostaglandin E synthase-1 by phenanthrene imidazoles: a QSAR study. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1290-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|