1
|
Clark AB, Conzen SD. Glucocorticoid receptor-mediated oncogenic activity is dependent on breast cancer subtype. J Steroid Biochem Mol Biol 2024; 243:106518. [PMID: 38734115 DOI: 10.1016/j.jsbmb.2024.106518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/23/2024] [Accepted: 04/08/2024] [Indexed: 05/13/2024]
Abstract
Breast cancer incidence has been steadily rising and is the leading cause of cancer death in women due to its high metastatic potential. Individual breast cancer subtypes are classified by both cell type of origin and receptor expression, namely estrogen, progesterone and human epidermal growth factor receptors (ER, PR and HER2). Recently, the importance and context-dependent role of glucocorticoid receptor (GR) expression in the natural history and prognosis of breast cancer subtypes have been uncovered. In ER-positive breast cancer, GR expression is associated with a better prognosis as a result of ER-GR crosstalk. GR appears to modulate ER-mediated gene expression resulting in decreased tumor cell proliferation and a more indolent cancer phenotype. In ER-negative breast cancer, including GR-positive triple-negative breast cancer (TNBC), GR expression enhances migration, chemotherapy resistance and cell survival. In invasive lobular carcinoma, GR function is relatively understudied, and more work is required to determine whether lobular subtypes behave similarly to their invasive ductal carcinoma counterparts. Importantly, understanding GR signaling in individual breast cancer subtypes has potential clinical implications because of the recent development of highly selective GR non-steroidal ligands, which represent a therapeutic approach for modulating GR activity systemically.
Collapse
Affiliation(s)
- Abigail B Clark
- Depatment of Internal Medicine, Division of Hematology and Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Suzanne D Conzen
- Depatment of Internal Medicine, Division of Hematology and Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Wei W, Xu Q, Wu L, Gong G, Tian Y, Huang H, Li Z. Drug development and potential targets for Cushing's syndrome. Eur J Med Chem 2024; 270:116333. [PMID: 38569434 DOI: 10.1016/j.ejmech.2024.116333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
Cushing's syndrome (CS) is a complex disorder characterized by the excessive secretion of cortisol, with Cushing's disease (CD), particularly associated with pituitary tumors, exhibiting heightened morbidity and mortality. Although transsphenoidal pituitary surgery (TSS) stands as the primary treatment for CD, there is a crucial need to optimize patient prognosis. Current medical therapy serves as an adjunctive measure due to its unsatisfactory efficacy and unpredictable side effects. In this comprehensive review, we delve into recent advances in understanding the pathogenesis of CS and explore therapeutic options by conducting a critical analysis of potential drug targets and candidates. Additionally, we provide an overview of the design strategy employed in previously reported candidates, along with a summary of structure-activity relationship (SAR) analyses and their biological efficacy. This review aims to contribute valuable insights to the evolving landscape of CS research, shedding light on potential avenues for therapeutic development.
Collapse
Affiliation(s)
- Wei Wei
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Qianqian Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Liuyi Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Guangyue Gong
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yucheng Tian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Huidan Huang
- Center of Drug Screening & Evaluation, Wannan Medical College, Wuhu, Anhui, 241000, PR China.
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
3
|
Chellian R, Behnood-Rod A, Bruijnzeel AW. Mifepristone decreases nicotine intake in dependent and non-dependent adult rats. J Psychopharmacol 2024; 38:280-296. [PMID: 38332661 PMCID: PMC11061865 DOI: 10.1177/02698811241230255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
BACKGROUND Addiction to tobacco and nicotine products has adverse health effects and afflicts more than a billion people worldwide. Therefore, there is an urgent need for new treatments to reduce tobacco and nicotine use. Glucocorticoid receptor blockade shows promise as a novel treatment for drug abuse and stress-related disorders. AIM These studies aim to investigate whether glucocorticoid receptor blockade with mifepristone diminishes the reinforcing properties of nicotine in rats with intermittent or daily long access to nicotine. METHODS The rats self-administered 0.06 mg/kg/inf of nicotine for 6 h per day, with either intermittent or daily access for 4 weeks before treatment with mifepristone. Daily nicotine self-administration models regular smoking, while intermittent nicotine self-administration models occasional smoking. To determine whether the rats were dependent, they were treated with the nicotinic acetylcholine receptor antagonist mecamylamine, and somatic signs were recorded. RESULTS The rats with intermittent access to nicotine had a higher level of nicotine intake per session than those with daily access but only the rats with daily access to nicotine showed signs of physical dependence. Furthermore, mecamylamine increased nicotine intake during the first hour of access in rats with daily access but not in those with intermittent access. Mifepristone decreased total nicotine intake in rats with intermittent and daily access to nicotine. Moreover, mifepristone decreased the distance traveled and rearing in the open field test and operant responding for food pellets. CONCLUSION These findings indicate that mifepristone decreases nicotine intake but this effect may be partially attributed to the sedative effects of mifepristone.
Collapse
Affiliation(s)
| | - Azin Behnood-Rod
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
4
|
Ruiz Puentes P, Rueda-Gensini L, Valderrama N, Hernández I, González C, Daza L, Muñoz-Camargo C, Cruz JC, Arbeláez P. Predicting target-ligand interactions with graph convolutional networks for interpretable pharmaceutical discovery. Sci Rep 2022; 12:8434. [PMID: 35589824 PMCID: PMC9119967 DOI: 10.1038/s41598-022-12180-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/05/2022] [Indexed: 02/08/2023] Open
Abstract
Drug Discovery is an active research area that demands great investments and generates low returns due to its inherent complexity and great costs. To identify potential therapeutic candidates more effectively, we propose protein–ligand with adversarial augmentations network (PLA-Net), a deep learning-based approach to predict target–ligand interactions. PLA-Net consists of a two-module deep graph convolutional network that considers ligands’ and targets’ most relevant chemical information, successfully combining them to find their binding capability. Moreover, we generate adversarial data augmentations that preserve relevant biological backgrounds and improve the interpretability of our model, highlighting the relevant substructures of the ligands reported to interact with the protein targets. Our experiments demonstrate that the joint ligand–target information and the adversarial augmentations significantly increase the interaction prediction performance. PLA-Net achieves 86.52% in mean average precision for 102 target proteins with perfect performance for 30 of them, in a curated version of actives as decoys dataset. Lastly, we accurately predict pharmacologically-relevant molecules when screening the ligands of ChEMBL and drug repurposing Hub datasets with the perfect-scoring targets.
Collapse
Affiliation(s)
- Paola Ruiz Puentes
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia.,Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Laura Rueda-Gensini
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia.,Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Natalia Valderrama
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia.,Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Isabela Hernández
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia.,Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Cristina González
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia.,Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Laura Daza
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia.,Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Juan C Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Pablo Arbeláez
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia. .,Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia.
| |
Collapse
|
5
|
Wulsin AC, Kraus KL, Gaitonde KD, Suru V, Arafa SR, Packard BA, Herman JP, Danzer SC. The glucocorticoid receptor specific modulator CORT108297 reduces brain pathology following status epilepticus. Exp Neurol 2021; 341:113703. [PMID: 33745919 PMCID: PMC8169587 DOI: 10.1016/j.expneurol.2021.113703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Glucocorticoid levels rise rapidly following status epilepticus and remain elevated for weeks after the injury. To determine whether glucocorticoid receptor activation contributes to the pathological sequelae of status epilepticus, mice were treated with a novel glucocorticoid receptor modulator, C108297. METHODS Mice were treated with either C108297 or vehicle for 10 days beginning one day after pilocarpine-induced status epilepticus. Baseline and stress-induced glucocorticoid secretion were assessed to determine whether hypothalamic-pituitary-adrenal axis hyperreactivity could be controlled. Status epilepticus-induced pathology was assessed by quantifying ectopic hippocampal granule cell density, microglial density, astrocyte density and mossy cell loss. Neuronal network function was examined indirectly by determining the density of Fos immunoreactive neurons following restraint stress. RESULTS Treatment with C108297 attenuated corticosterone hypersecretion after status epilepticus. Treatment also decreased the density of hilar ectopic granule cells and reduced microglial proliferation. Mossy cell loss, on the other hand, was not prevented in treated mice. C108297 altered the cellular distribution of Fos protein but did not restore the normal pattern of expression. INTERPRETATION Results demonstrate that baseline corticosterone levels can be normalized with C108297, and implicate glucocorticoid signaling in the development of structural changes following status epilepticus. These findings support the further development of glucocorticoid receptor modulators as novel therapeutics for the prevention of brain pathology following status epilepticus.
Collapse
Affiliation(s)
- Aynara C Wulsin
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA; Cincinnati Children's Hospital Medical Center, Department of Pediatrics, USA; University of Cincinnati, Medical Scientist Training Program, USA; University of Cincinnati, Neuroscience Graduate Program, USA
| | - Kimberly L Kraus
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA; University of Cincinnati, Medical Scientist Training Program, USA; University of Cincinnati, Neuroscience Graduate Program, USA
| | - Kevin D Gaitonde
- University of Cincinnati, Medical Scientist Training Program, USA
| | - Venkat Suru
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA
| | - Salwa R Arafa
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA
| | - Benjamin A Packard
- University of Cincinnati, Department of Pharmacology & Systems Physiology
| | - James P Herman
- University of Cincinnati, Department of Pharmacology & Systems Physiology
| | - Steve C Danzer
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA; Cincinnati Children's Hospital Medical Center, Department of Pediatrics, USA; University of Cincinnati, Medical Scientist Training Program, USA; University of Cincinnati, Neuroscience Graduate Program, USA.
| |
Collapse
|
6
|
McGinn MA, Tunstall BJ, Schlosburg JE, Gregory-Flores A, George O, de Guglielmo G, Mason BJ, Hunt HJ, Koob GF, Vendruscolo LF. Glucocorticoid receptor modulators decrease alcohol self-administration in male rats. Neuropharmacology 2021; 188:108510. [PMID: 33647278 PMCID: PMC8099171 DOI: 10.1016/j.neuropharm.2021.108510] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 02/09/2023]
Abstract
Alcohol use disorder (AUD) is associated with the dysregulation of brain stress and reward systems, including glucocorticoid receptors (GRs). The mixed glucocorticoid/progesterone receptor antagonist mifepristone and selective GR antagonist CORT113176 have been shown to selectively reduce alcohol consumption in alcohol-dependent rats. Mifepristone has also been shown to decrease alcohol consumption and craving for alcohol in humans with AUD. The present study tested the effects of the GR modulators CORT118335, CORT122928, CORT108297, and CORT125134 on alcohol self-administration in nondependent (air-exposed) and alcohol-dependent (alcohol vapor-exposed) adult male rats. Different GR modulators recruit different GR-associated transcriptional cofactors. Thus, we hypothesized that these GR modulators would vary in their effects on alcohol drinking. CORT118335, CORT122928, and CORT125134 significantly reduced alcohol self-administration in both alcohol-dependent and nondependent rats. CORT108297 had no effect on alcohol self-administration in either group. The present results support the potential of GR modulators for the development of treatments for AUD. Future studies that characterize genomic and nongenomic effects of these GR modulators will elucidate potential molecular mechanisms that underlie alcohol drinking in alcohol-dependent and nondependent states.
Collapse
Affiliation(s)
- M Adrienne McGinn
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | - Brendan J Tunstall
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, USA
| | - Joel E Schlosburg
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Olivier George
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Giordano de Guglielmo
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Barbara J Mason
- Department of Molecular Medicine and Pearson Center for Alcoholism and Addiction Research, The Scripps Research Institute, La Jolla, CA, USA
| | | | - George F Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
7
|
Choi D, Kang W, Park S, Son B, Park T. β-Ionone Attenuates Dexamethasone-Induced Suppression of Collagen and Hyaluronic Acid Synthesis in Human Dermal Fibroblasts. Biomolecules 2021; 11:619. [PMID: 33919331 PMCID: PMC8143342 DOI: 10.3390/biom11050619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/02/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Stress is a major contributing factor of skin aging, which is clinically characterized by wrinkles, loss of elasticity, and dryness. In particular, glucocorticoids are generally considered key hormones for promoting stress-induced skin aging through binding to glucocorticoid receptors (GRs). In this work, we aimed to investigate whether β-ionone (a compound occurring in various foods such as carrots and almonds) attenuates dexamethasone-induced suppression of collagen and hyaluronic acid synthesis in human dermal fibroblasts, and to explore the mechanisms involved. We found that β-ionone promoted collagen production dose-dependently and increased mRNA expression levels, including collagen type I α 1 chain (COL1A1) and COL1A2 in dexamethasone-treated human dermal fibroblasts. It also raised hyaluronic acid synthase mRNA expression and hyaluronic acid levels. Notably, β-ionone inhibited cortisol binding to GR, subsequent dexamethasone-induced GR signaling, and the expression of several GR target genes. Our results reveal the strong potential of β-ionone for preventing stress-induced skin aging and suggest that its effects are related to the inhibition of GR signaling in human dermal fibroblasts.
Collapse
Affiliation(s)
| | | | | | | | - Taesun Park
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea; (D.C.); (W.K.); (S.P.); (B.S.)
| |
Collapse
|
8
|
Lucafò M, Franzin M, Decorti G, Stocco G. A patent review of anticancer glucocorticoid receptor modulators (2014-present). Expert Opin Ther Pat 2020; 30:313-324. [PMID: 32148111 DOI: 10.1080/13543776.2020.1740206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Introduction: Natural and synthetic glucocorticoids are widely employed in different diseases, among which are hematological and solid tumors. Their use is however associated with a number of serious side effects and by the occurrence of resistance. With the aim of separating their gene transactivating effect, more linked to side effects, from transrepressive properties, associated with therapeutic efficacy, a number of selective glucocorticoid modulators have been identified.Areas covered: This review summarizes the patent applications from 2014 to present in the field of selective glucocorticoid receptor modulators employed in cancer therapy. Only few patents have been identified, that concern the identification of new molecules or the method of use of already patented compounds. In addition, a discussion of the mechanism of action of these compounds is included.Expert opinion: Only a very limited number of patents have been applied that concern selective glucocorticoid receptor modulators and their use in cancer. Biological information is scarce for most of these patents; more research is necessary in this field in particular concerning clinical data in order to understand whether it is actually possible to improve the efficacy and therapeutic index of these compounds in cancer therapy.
Collapse
Affiliation(s)
- Marianna Lucafò
- Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - Martina Franzin
- PhD Course in Reproductive and Developmental Sciences, University of Trieste, Trieste, Italy
| | - Giuliana Decorti
- Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
9
|
Kumar R. Emerging role of glucocorticoid receptor in castration resistant prostate cancer: A potential therapeutic target. J Cancer 2020; 11:696-701. [PMID: 31942193 PMCID: PMC6959034 DOI: 10.7150/jca.32497] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 09/24/2019] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids are used as co-medication with chemotherapy for solid tumors to reduce inflammation as well as cytotoxic side effects and are effective in easing symptoms related to chemotherapy. However, emerging evidence suggests that glucocorticoids may contribute to failure of chemotherapy and tumor progression of castration resistant prostate cancer (CRPC). Thus, in recent years, glucocorticoid signaling pathway has become an important therapeutic target for CRPC. Understanding the exact mechanism of GR actions in CRPC is still work in progress. There are studies suggesting that GR expression can be upregulated following antiandrogen therapy and can contribute to resistance to hormone therapies. Therefore, attempts are being made to develop selective glucocorticoid receptor modulators that specifically antagonize GR activity in CRPC, and thereby provide clinical benefit by blocking the GR mechanism for tumor growth. However, more targeted approaches are needed to understand the role of the GR-mediated target gene expressions in the CRPC that could in near future lead to better therapeutic options for patients with CRPC. This review highlights current perspectives on the actions of glucocorticoids during tumor progression and metastasis of CRPC.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Biomedical Sciences, College of Medicine, University of Houston, Houston, TX, USA
| |
Collapse
|
10
|
Canet G, Pineau F, Zussy C, Hernandez C, Hunt H, Chevallier N, Perrier V, Torrent J, Belanoff JK, Meijer OC, Desrumaux C, Givalois L. Glucocorticoid receptors signaling impairment potentiates amyloid-β oligomers-induced pathology in an acute model of Alzheimer's disease. FASEB J 2019; 34:1150-1168. [PMID: 31914623 DOI: 10.1096/fj.201900723rrr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 02/01/2023]
Abstract
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis occurs early in Alzheimer's disease (AD), associated with elevated circulating glucocorticoids (GC) and glucocorticoid receptors (GR) signaling impairment. However, the precise role of GR in the pathophysiology of AD remains unclear. Using an acute model of AD induced by the intracerebroventricular injection of amyloid-β oligomers (oAβ), we analyzed cellular and behavioral hallmarks of AD, GR signaling pathways, processing of amyloid precursor protein, and enzymes involved in Tau phosphorylation. We focused on the prefrontal cortex (PFC), particularly rich in GR, early altered in AD and involved in HPA axis control and cognitive functions. We found that oAβ impaired cognitive and emotional behaviors, increased plasma GC levels, synaptic deficits, apoptosis and neuroinflammatory processes. Moreover, oAβ potentiated the amyloidogenic pathway and enzymes involved both in Tau hyperphosphorylation and GR activation. Treatment with a selective GR modulator (sGRm) normalized plasma GC levels and all behavioral and biochemical parameters analyzed. GR seems to occupy a central position in the pathophysiology of AD. Deregulation of the HPA axis and a feed-forward effect on PFC GR sensitivity could participate in the etiology of AD, in perturbing Aβ and Tau homeostasis. These results also reinforce the therapeutic potential of sGRm in AD.
Collapse
Affiliation(s)
- Geoffrey Canet
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Fanny Pineau
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Charleine Zussy
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Célia Hernandez
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, CA, USA
| | - Nathalie Chevallier
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Véronique Perrier
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Joan Torrent
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | | | - Onno C Meijer
- Einthoven Laboratory, Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Catherine Desrumaux
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Laurent Givalois
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| |
Collapse
|
11
|
Meyer M, Kruse MS, Garay L, Lima A, Roig P, Hunt H, Belanoff J, de Kloet ER, Deniselle MCG, De Nicola AF. Long-term effects of the glucocorticoid receptor modulator CORT113176 in murine motoneuron degeneration. Brain Res 2019; 1727:146551. [PMID: 31726042 DOI: 10.1016/j.brainres.2019.146551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/31/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023]
Abstract
The Wobbler mouse spinal cord shows vacuolated motoneurons, glial reaction, inflammation and abnormal glutamatergic parameters. Wobblers also show deficits of motor performance. These conditions resemble amyotrophic lateral sclerosis (ALS). Wobbler mice also show high levels of corticosterone in blood, adrenals and brain plus adrenal hypertrophy, suggesting that chronically elevated glucocorticoids prime spinal cord neuroinflammation. Therefore, we analyzed if treatment of Wobbler mice with the glucocorticoid receptor (GR) antagonist CORT113176 mitigated the mentioned abnormalities. 30 mg/kg CORT113176 given daily for 3 weeks reduced motoneuron vacuolation, decreased astro and microgliosis, lowered the inflammatory mediators high mobility group box 1 protein (HMGB1), toll-like receptor 4, myeloid differentiation primary response 88 (MyD88), p50 subunit of nuclear factor kappa B (NFκB), tumor necrosis factor (TNF) receptor, and interleukin 18 (IL18) compared to untreated Wobblers. CORT113176 increased the survival signal pAKT (serine-threonine kinase) and decreased the death signal phosphorylated Junk-N-terminal kinase (pJNK), symptomatic of antiapoptosis. There was a moderate positive effect on glutamine synthase and astrocyte glutamate transporters, suggesting decreased glutamate excitotoxicity. In this pre-clinical study, Wobblers receiving CORT113176 showed enhanced resistance to fatigue in the rota rod test and lower forelimb atrophy at weeks 2-3. Therefore, long-term treatment with CORT113176 attenuated degeneration and inflammation, increased motor performance and decreased paw deformity. Antagonism of the GR may be of potential therapeutic value for neurodegenerative diseases.
Collapse
Affiliation(s)
- Maria Meyer
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Maria Sol Kruse
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Laura Garay
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Dept. of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425 Buenos Aires, Argentina
| | - Analia Lima
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Paulina Roig
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Hazel Hunt
- CORCEPT Therapeutics, 149 Commonwealth Dr, Menlo Park, CA 94025, USA
| | - Joseph Belanoff
- CORCEPT Therapeutics, 149 Commonwealth Dr, Menlo Park, CA 94025, USA
| | - E Ronald de Kloet
- Division of Endocrinology, Dept. of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Maria Claudia Gonzalez Deniselle
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Dept. of Physiology, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425 Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Dept. of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425 Buenos Aires, Argentina.
| |
Collapse
|
12
|
Canet G, Hernandez C, Zussy C, Chevallier N, Desrumaux C, Givalois L. Is AD a Stress-Related Disorder? Focus on the HPA Axis and Its Promising Therapeutic Targets. Front Aging Neurosci 2019; 11:269. [PMID: 31611783 PMCID: PMC6776918 DOI: 10.3389/fnagi.2019.00269] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/18/2019] [Indexed: 01/04/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that has important health and economic impacts in the elderly. Despite a better understanding of the molecular mechanisms leading to the appearance of major pathological hallmarks (senile plaques and neurofibrillary tangles), effective treatments are still lacking. Sporadic AD forms (98% of all cases) are multifactorial, and a panoply of risk factors have been identified. While the major risk factor is aging, growing evidence suggests that chronic stress or stress-related disorders increase the probability to develop AD. An early dysregulation of the hypothalamic-pituitary-adrenal axis (HPA axis or stress axis) has been observed in patients. The direct consequence of such perturbation is an oversecretion of glucocorticoids (GC) associated with an impairment of its receptors (glucocorticoid receptors, GR). These steroids hormones easily penetrate the brain and act in synergy with excitatory amino acids. An overexposure could be highly toxic in limbic structures (prefrontal cortex and hippocampus) and contribute in the cognitive decline occurring in AD. GC and GR dysregulations seem to be involved in lots of functions disturbed in AD and a vicious cycle appears, where AD induces HPA axis dysregulation, which in turn potentiates the pathology. This review article presents some preclinical and clinical studies focusing on the HPA axis hormones and their receptors to fight AD. Due to its primordial role in the maintenance of homeostasis, the HPA axis appears as a key-actor in the etiology of AD and a prime target to tackle AD by offering multiple angles of action.
Collapse
Affiliation(s)
- Geoffrey Canet
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory (MMDN), INSERM, U1198, Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz) Team, EPHE, University of Montpellier, Paris, France
| | - Célia Hernandez
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory (MMDN), INSERM, U1198, Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz) Team, EPHE, University of Montpellier, Paris, France
| | - Charleine Zussy
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory (MMDN), INSERM, U1198, Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz) Team, EPHE, University of Montpellier, Paris, France
| | - Nathalie Chevallier
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory (MMDN), INSERM, U1198, Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz) Team, EPHE, University of Montpellier, Paris, France
| | - Catherine Desrumaux
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory (MMDN), INSERM, U1198, Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz) Team, EPHE, University of Montpellier, Paris, France
| | - Laurent Givalois
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory (MMDN), INSERM, U1198, Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz) Team, EPHE, University of Montpellier, Paris, France
| |
Collapse
|
13
|
Tonsing-Carter E, Hernandez KM, Kim CR, Harkless RV, Oh A, Bowie KR, West-Szymanski DC, Betancourt-Ponce MA, Green BD, Lastra RR, Fleming GF, Chandarlapaty S, Conzen SD. Glucocorticoid receptor modulation decreases ER-positive breast cancer cell proliferation and suppresses wild-type and mutant ER chromatin association. Breast Cancer Res 2019; 21:82. [PMID: 31340854 PMCID: PMC6651939 DOI: 10.1186/s13058-019-1164-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/25/2019] [Indexed: 12/25/2022] Open
Abstract
Background Non-ER nuclear receptor activity can alter estrogen receptor (ER) chromatin association and resultant ER-mediated transcription. Consistent with GR modulation of ER activity, high tumor glucocorticoid receptor (GR) expression correlates with improved relapse-free survival in ER+ breast cancer (BC) patients. Methods In vitro cell proliferation assays were used to assess ER-mediated BC cell proliferation following GR modulation. ER chromatin association following ER/GR co-liganding was measured using global ChIP sequencing and directed ChIP analysis of proliferative gene enhancers. Results We found that GR liganding with either a pure agonist or a selective GR modulator (SGRM) slowed estradiol (E2)-mediated proliferation in ER+ BC models. SGRMs that antagonized transcription of GR-unique genes both promoted GR chromatin association and inhibited ER chromatin localization at common DNA enhancer sites. Gene expression analysis revealed that ER and GR co-activation decreased proliferative gene activation (compared to ER activation alone), specifically reducing CCND1, CDK2, and CDK6 gene expression. We also found that ligand-dependent GR occupancy of common ER-bound enhancer regions suppressed both wild-type and mutant ER chromatin association and decreased corresponding gene expression. In vivo, treatment with structurally diverse SGRMs also reduced MCF-7 Y537S ER-expressing BC xenograft growth. Conclusion These studies demonstrate that liganded GR can suppress ER chromatin occupancy at shared ER-regulated enhancers, including CCND1 (Cyclin D1), regardless of whether the ligand is a classic GR agonist or antagonist. Resulting GR-mediated suppression of ER+ BC proliferative gene expression and cell division suggests that SGRMs could decrease ER-driven gene expression. Electronic supplementary material The online version of this article (10.1186/s13058-019-1164-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eva Tonsing-Carter
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Kyle M Hernandez
- Center for Research Informatics, The University of Chicago, Chicago, IL, 60637, USA.,Department of Pediatrics, The University of Chicago, Chicago, IL, 60637, USA
| | - Caroline R Kim
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Ryan V Harkless
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Alyce Oh
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Kathleen R Bowie
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | | | | | - Bradley D Green
- Ben May Department for Cancer Research, The University of Chicago, 900 E 57th St, Chicago, IL, 60637, USA
| | - Ricardo R Lastra
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - Gini F Fleming
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Suzanne D Conzen
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA. .,Ben May Department for Cancer Research, The University of Chicago, 900 E 57th St, Chicago, IL, 60637, USA.
| |
Collapse
|
14
|
Harrison KS, Zhu L, Thunuguntla P, Jones C. Antagonizing the Glucocorticoid Receptor Impairs Explant-Induced Reactivation in Mice Latently Infected with Herpes Simplex Virus 1. J Virol 2019; 93:e00418-19. [PMID: 30971470 PMCID: PMC6580953 DOI: 10.1128/jvi.00418-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) establishes lifelong latent infections in neurons. Reactivation from latency can lead to serious recurrent disease, including stromal keratitis, corneal scarring, blindness, and encephalitis. Although numerous studies link stress to an increase in the incidence of reactivation from latency and recurrent disease, the mechanism of action is not well understood. We hypothesized that stress, via corticosteroid-mediated activation of the glucocorticoid receptor (GR), stimulates viral gene expression and productive infection during reactivation from latency. Consequently, we tested whether GR activation by the synthetic corticosteroid dexamethasone influenced virus shedding during reactivation from latency using trigeminal ganglion (TG) explants from Swiss Webster mice latently infected with HSV-1, strain McKrae. TG explants from the latently infected mice shed significantly higher levels of virus when treated with dexamethasone. Conversely, virus shedding from TG explants was significantly impaired when they were incubated with medium containing a GR-specific antagonist (CORT-108297) or stripped fetal bovine serum, which lacks nuclear hormones and other growth factors. TG explants from latently infected, but not uninfected, TG contained significantly more GR-positive neurons following explant when treated with dexamethasone. Strikingly, VP16 protein expression was detected in TG neurons at 8 hours after explant whereas infected-cell protein 0 (ICP0) and ICP4 protein expression was not readily detected until 16 hours after explant. Expression of all three viral regulatory proteins was stimulated by dexamethasone. These studies indicated corticosteroid-mediated GR activation increased the number of TG neurons expressing viral regulatory proteins, which enhanced virus shedding during explant-induced reactivation from latency.IMPORTANCE Herpes simplex virus 1 (HSV-1) establishes lifelong latent infections in neurons within trigeminal ganglia (TG); periodically, reactivation from latency occurs, leading to virus transmission and recurrent disease. Chronic or acute stress increases the frequency of reactivation from latency; how this occurs is not well understood. Here, we demonstrate that the synthetic corticosteroid dexamethasone stimulated explant-induced reactivation from latency. Conversely, a glucocorticoid receptor (GR) antagonist significantly impaired reactivation from latency, indicating that GR activation stimulated explant-induced reactivation. The viral regulatory protein VP16 was readily detected in TG neurons prior to infected-cell protein 0 (ICP0) and ICP4 during explant-induced reactivation. Dexamethasone induced expression of all three viral regulatory proteins following TG explant. Whereas the immunosuppressive properties of corticosteroids would facilitate viral spread during reactivation from latency, these studies indicate GR activation increases the number of TG neurons that express viral regulatory proteins during early stages of explant-induced reactivation.
Collapse
Affiliation(s)
- Kelly S Harrison
- Oklahoma State University Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Liqian Zhu
- Oklahoma State University Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
- Yangzhou University, College of Veterinary Medicine and Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China
| | - Prasanth Thunuguntla
- Oklahoma State University Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Clinton Jones
- Oklahoma State University Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
15
|
Ostler JB, Harrison KS, Schroeder K, Thunuguntla P, Jones C. The Glucocorticoid Receptor (GR) Stimulates Herpes Simplex Virus 1 Productive Infection, in Part Because the Infected Cell Protein 0 (ICP0) Promoter Is Cooperatively Transactivated by the GR and Krüppel-Like Transcription Factor 15. J Virol 2019; 93:e02063-18. [PMID: 30602606 PMCID: PMC6401466 DOI: 10.1128/jvi.02063-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Following acute infection, herpes simplex virus 1 (HSV-1) establishes lifelong latency in neurons. Physical, emotional, and chemical stresses are linked to increasing the incidence of reactivation from latency, but the mechanism of action is not well understood. In general, stress increases corticosteroid levels, leading to activation of the glucocorticoid receptor (GR), a pioneer transcription factor. Consequently, we hypothesized that stress-mediated activation of the GR can stimulate productive infection and viral gene expression. New studies demonstrated that the GR-specific antagonist (CORT-108297) significantly reduced HSV-1 productive infection in mouse neuroblastoma cells (Neuro-2A). Additional studies demonstrated that the activated GR and Krüppel-like transcription factor 15 (KLF15) cooperatively transactivated the infected cell protein 0 (ICP0) promoter, a crucial viral regulatory protein. Interestingly, the synthetic corticosteroid dexamethasone and GR or KLF15 alone had little effect on ICP0 promoter activity in transfected Neuro-2A or Vero cells. Chromatin immunoprecipitation (ChIP) studies revealed that the GR and KLF15 occupied ICP0 promoter sequences important for transactivation at 2 and 4 h after infection; however, binding was not readily detected at 6 h after infection. Similar results were obtained for cells transfected with the full-length ICP0 promoter. ICP0 promoter sequences lack a consensus "whole" GR response element (GRE) but contain putative half-GREs that were important for dexamethasone induced promoter activity. The activated GR stimulates expression of, and interacts with, KLF15; consequently, these data suggest KLF15 and the GR form a feed-forward loop that activates viral gene expression and productive infection following stressful stimuli.IMPORTANCE The ability of herpes simplex virus 1 (HSV-1) to periodically reactivate from latency results in virus transmission and recurrent disease. The incidence of reactivation from latency is increased by chronic or acute stress. Stress increases the levels of corticosteroids, which bind and activate the glucocorticoid receptor (GR). Since GR activation is an immediate early response to stress, we tested whether the GR influences productive infection and the promoter that drives infected cell protein 0 (ICP0) expression. Pretreatment of cells with a GR-specific antagonist (CORT-108297) significantly reduced virus replication. Although the GR had little effect on ICP0 promoter activity alone, the Krüppel-like transcription factor 15 (KLF15) cooperated with the GR to stimulate promoter activity in transfected cells. In transfected or infected cells, the GR and KLF15 occupied ICP0 sequences important for transactivation. Collectively, these studies provide insight into how stress can directly stimulate productive infection and viral gene expression.
Collapse
Affiliation(s)
- Jeffery B Ostler
- Oklahoma State University Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Kelly S Harrison
- Oklahoma State University Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Kayla Schroeder
- Oklahoma State University Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Prasanth Thunuguntla
- Oklahoma State University Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Clinton Jones
- Oklahoma State University Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
16
|
Viho EMG, Buurstede JC, Mahfouz A, Koorneef LL, van Weert LTCM, Houtman R, Hunt HJ, Kroon J, Meijer OC. Corticosteroid Action in the Brain: The Potential of Selective Receptor Modulation. Neuroendocrinology 2019; 109:266-276. [PMID: 30884490 PMCID: PMC6878852 DOI: 10.1159/000499659] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/17/2019] [Indexed: 12/15/2022]
Abstract
Glucocorticoid hormones have important effects on brain function in the context of acute and chronic stress. Many of these are mediated by the glucocorticoid receptor (GR). GR has transcriptional activity which is highly context-specific and differs between tissues and even between cell types. The outcome of GR-mediated transcription depends on the interactome of associated coregulators. Selective GR modulators (SGRMs) are a class of GR ligands that can be used to activate only a subset of GR-coregulator interactions, thereby giving the possibility to induce a unique combination of agonistic and antagonistic GR properties. We describe SGRM action in animal models of brain function and pathology, and argue for their utility as molecular filters, to characterize context-specific GR interactome and transcriptional activity that are responsible for particular glucocorticoid-driven effects in cognitive processes such as memory consolidation. The ultimate objective of this approach is to identify molecular processes that are responsible for adaptive and maladaptive effects of glucocorticoids in the brain.
Collapse
Affiliation(s)
- Eva M G Viho
- Division of Endocrinology, Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacobus C Buurstede
- Division of Endocrinology, Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ahmed Mahfouz
- Delft Bioinformatics Laboratory, Delft University of Technology, Delft, The Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa L Koorneef
- Division of Endocrinology, Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa T C M van Weert
- Division of Endocrinology, Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Hazel J Hunt
- Corcept Therapeutics, Menlo Park, California, USA
| | - Jan Kroon
- Division of Endocrinology, Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Onno C Meijer
- Division of Endocrinology, Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands,
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands,
| |
Collapse
|
17
|
Canet G, Chevallier N, Zussy C, Desrumaux C, Givalois L. Central Role of Glucocorticoid Receptors in Alzheimer's Disease and Depression. Front Neurosci 2018; 12:739. [PMID: 30459541 PMCID: PMC6232776 DOI: 10.3389/fnins.2018.00739] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/25/2018] [Indexed: 01/21/2023] Open
Abstract
Alzheimer’s disease (AD) is the principal neurodegenerative pathology in the world displaying negative impacts on both the health and social ability of patients and inducing considerable economic costs. In the case of sporadic forms of AD (more than 95% of patients), even if mechanisms are unknown, some risk factors were identified. The principal risk is aging, but there is growing evidence that lifetime events like chronic stress or stress-related disorders may increase the probability to develop AD. This mini-review reinforces the rationale to consider major depressive disorder (MDD) as an important risk factor to develop AD and points the central role played by the hypothalamic-pituitary-adrenal (HPA) axis, glucocorticoids (GC) and their receptors (GR) in the etiology of MDD and AD. Several strategies directly targeting GR were tested to neutralize the HPA axis dysregulation and GC overproduction. Given the ubiquitous expression of GR, antagonists have many undesired side effects, limiting their therapeutic potential. However, a new class of molecules was developed, highly selective and acting as modulators. They present the advantage to selectively abrogate pathogenic GR-dependent processes, while retaining beneficial aspects of GR signaling. In fact, these “selective GR modulators” induce a receptor conformation that allows activation of only a subset of downstream signaling pathways, explaining their capacity to combine agonistic and antagonistic properties. Thus, targeting GR with selective modulators, alone or in association with current strategies, becomes particularly attractive and relevant to develop novel preventive and/or therapeutic strategies to tackle disorders associated with a dysregulation of the HPA axis.
Collapse
Affiliation(s)
- Geoffrey Canet
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, INSERM, U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Nathalie Chevallier
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, INSERM, U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Charleine Zussy
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, INSERM, U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Catherine Desrumaux
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, INSERM, U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Laurent Givalois
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, INSERM, U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| |
Collapse
|
18
|
Wachtendorf D, Geibel I, Schmidtmann M, Christoffers J. Octahydrocyclopenta[c
]pyridine Scaffold - Enantioselective Synthesis and Indole Annulation. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Daniel Wachtendorf
- Institut für Chemie; Carl von Ossietzky Universität Oldenburg; 26111 Oldenburg Germany
| | - Irina Geibel
- Institut für Chemie; Carl von Ossietzky Universität Oldenburg; 26111 Oldenburg Germany
- Division of Chemistry and Chemical Engineering; California Institute of Technology; 91125 Pasadena CA USA
| | - Marc Schmidtmann
- Institut für Chemie; Carl von Ossietzky Universität Oldenburg; 26111 Oldenburg Germany
| | - Jens Christoffers
- Institut für Chemie; Carl von Ossietzky Universität Oldenburg; 26111 Oldenburg Germany
| |
Collapse
|
19
|
Rew Y, Du X, Eksterowicz J, Zhou H, Jahchan N, Zhu L, Yan X, Kawai H, McGee LR, Medina JC, Huang T, Chen C, Zavorotinskaya T, Sutimantanapi D, Waszczuk J, Jackson E, Huang E, Ye Q, Fantin VR, Sun D. Discovery of a Potent and Selective Steroidal Glucocorticoid Receptor Antagonist (ORIC-101). J Med Chem 2018; 61:7767-7784. [PMID: 30091920 DOI: 10.1021/acs.jmedchem.8b00743] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The glucocorticoid receptor (GR) has been linked to therapy resistance across a wide range of cancer types. Preclinical data suggest that antagonists of this nuclear receptor may enhance the activity of anticancer therapy. The first-generation GR antagonist mifepristone is currently undergoing clinical evaluation in various oncology settings. Structure-based modification of mifepristone led to the discovery of ORIC-101 (28), a highly potent steroidal GR antagonist with reduced androgen receptor (AR) agonistic activity amenable for dosing in androgen receptor positive tumors and with improved CYP2C8 and CYP2C9 inhibition profile to minimize drug-drug interaction potential. Unlike mifepristone, 28 could be codosed with chemotherapeutic agents readily metabolized by CYP2C8 such as paclitaxel. Furthermore, 28 demonstrated in vivo antitumor activity by enhancing response to chemotherapy in the GR+ OVCAR5 ovarian cancer xenograft model. Clinical evaluation of safety and therapeutic potential of 28 is underway.
Collapse
Affiliation(s)
- Yosup Rew
- ORIC Pharmaceuticals , 240 East Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Xiaohui Du
- ORIC Pharmaceuticals , 240 East Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - John Eksterowicz
- ORIC Pharmaceuticals , 240 East Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Haiying Zhou
- ORIC Pharmaceuticals , 240 East Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Nadine Jahchan
- ORIC Pharmaceuticals , 240 East Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Liusheng Zhu
- ORIC Pharmaceuticals , 240 East Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Xuelei Yan
- ORIC Pharmaceuticals , 240 East Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Hiroyuki Kawai
- ORIC Pharmaceuticals , 240 East Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Lawrence R McGee
- ORIC Pharmaceuticals , 240 East Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Julio C Medina
- ORIC Pharmaceuticals , 240 East Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Tom Huang
- ORIC Pharmaceuticals , 240 East Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Chelsea Chen
- ORIC Pharmaceuticals , 240 East Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Tatiana Zavorotinskaya
- ORIC Pharmaceuticals , 240 East Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Dena Sutimantanapi
- ORIC Pharmaceuticals , 240 East Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Joanna Waszczuk
- ORIC Pharmaceuticals , 240 East Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Erica Jackson
- ORIC Pharmaceuticals , 240 East Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Elizabeth Huang
- ORIC Pharmaceuticals , 240 East Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Qiuping Ye
- ORIC Pharmaceuticals , 240 East Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Valeria R Fantin
- ORIC Pharmaceuticals , 240 East Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Daqing Sun
- ORIC Pharmaceuticals , 240 East Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| |
Collapse
|
20
|
Schäfer B, Schmidtmann M, Christoffers J. Aminodecalone Scaffolds - Enantioselective Synthesis, Indole and Quinoline Annulation. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Benjamin Schäfer
- Institut für Chemie; Carl von Ossietzky Universität Oldenburg; 26111 Oldenburg Germany
| | - Marc Schmidtmann
- Institut für Chemie; Carl von Ossietzky Universität Oldenburg; 26111 Oldenburg Germany
| | - Jens Christoffers
- Institut für Chemie; Carl von Ossietzky Universität Oldenburg; 26111 Oldenburg Germany
| |
Collapse
|
21
|
Meyer M, Lara A, Hunt H, Belanoff J, de Kloet ER, Gonzalez Deniselle MC, De Nicola AF. The Selective Glucocorticoid Receptor Modulator Cort 113176 Reduces Neurodegeneration and Neuroinflammation in Wobbler Mice Spinal Cord. Neuroscience 2018; 384:384-396. [PMID: 29890290 DOI: 10.1016/j.neuroscience.2018.05.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/18/2018] [Accepted: 05/29/2018] [Indexed: 12/20/2022]
Abstract
Wobbler mice are experimental models for amyotrophic lateral sclerosis. As such they show motoneuron degeneration, motor deficits, and astrogliosis and microgliosis of the spinal cord. Additionally, Wobbler mice show increased plasma, spinal cord and brain corticosterone levels and focal adrenocortical hyperplasia, suggesting a pathogenic role for glucocorticoids in this disorder. Considering this endocrine background, we examined whether the glucocorticoid receptor (GR) modulator CORT 113176 prevents spinal cord neuropathology of Wobblers. CORT 113176 shows high affinity for the GR, with low or null affinity for other steroid receptors. We employed five-month-old genotyped Wobbler mice that received s.c. vehicle or 30 mg/kg/day for 4 days of CORT 113176 dissolved in sesame oil. The mice were used on the 4th day, 2 h after the last dose of CORT 113176. Vehicle-treated Wobbler mice presented vacuolated motoneurons, increased glial fibrillary acidic protein (GFAP)+ astrocytes and decreased glutamine synthase (GS)+ cells. There was strong neuroinflammation, shown by increased staining for IBA1+ microglia and CD11b mRNA, enhanced expression of tumor necrosis factor-α, its cognate receptor TNFR1, toll-like receptor 4, the inducible nitric oxide synthase, NFkB and the high-mobility group box 1 protein (HMGB1). Treatment of Wobbler mice with CORT 113176 reversed the abnormalities of motoneurons and down-regulated proinflammatory mediators and glial reactivity. Expression of glutamate transporters GLT1 and GLAST mRNAs and GLT1 protein was significantly enhanced over untreated Wobblers. In summary, antagonism of GR with CORT 113176 prevented neuropathology and showed anti-inflammatory and anti-glutamatergic effects in the spinal cord of Wobbler mice.
Collapse
Affiliation(s)
- Maria Meyer
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Agustina Lara
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Hazel Hunt
- CORCEPT Therapeutics, Menlo Park, CA, USA
| | | | - E Ronald de Kloet
- Division of Endocrinology, Dept. of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria Claudia Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Obligado 2490, 1428 Buenos Aires, Argentina; Dept. of Physiology, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425 Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Obligado 2490, 1428 Buenos Aires, Argentina; Dept. of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425 Buenos Aires, Argentina.
| |
Collapse
|
22
|
Abstract
The glucocorticoid hormone cortisol acts throughout the body to support circadian processes and adaptation to stress. The glucocorticoid receptor is the target of cortisol and of synthetic glucocorticoids, which are used widely in the clinic. Both agonism and antagonism of the glucocorticoid receptor may be beneficial in disease, but given the wide expression of the receptor and involvement in various processes, beneficial effects are often accompanied by unwanted side effects. Selective glucocorticoid receptor modulators are ligands that induce a receptor conformation that allows activation of only a subset of downstream signaling pathways. Such molecules thereby combine agonistic and antagonistic properties. Here we discuss the mechanisms underlying selective receptor modulation and their promise in treating diseases in several organ systems where cortisol signaling plays a role.
Collapse
|
23
|
West DC, Kocherginsky M, Tonsing-Carter EY, Dolcen DN, Hosfield DJ, Lastra RR, Sinnwell JP, Thompson KJ, Bowie KR, Harkless RV, Skor MN, Pierce CF, Styke SC, Kim CR, de Wet L, Greene GL, Boughey JC, Goetz MP, Kalari KR, Wang L, Fleming GF, Györffy B, Conzen SD. Discovery of a Glucocorticoid Receptor (GR) Activity Signature Using Selective GR Antagonism in ER-Negative Breast Cancer. Clin Cancer Res 2018; 24:3433-3446. [PMID: 29636357 DOI: 10.1158/1078-0432.ccr-17-2793] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/14/2018] [Accepted: 04/04/2018] [Indexed: 12/30/2022]
Abstract
Purpose: Although high glucocorticoid receptor (GR) expression in early-stage estrogen receptor (ER)-negative breast cancer is associated with shortened relapse-free survival (RFS), how associated GR transcriptional activity contributes to aggressive breast cancer behavior is not well understood. Using potent GR antagonists and primary tumor gene expression data, we sought to identify a tumor-relevant gene signature based on GR activity that would be more predictive than GR expression alone.Experimental Design: Global gene expression and GR ChIP-sequencing were performed to identify GR-regulated genes inhibited by two chemically distinct GR antagonists, mifepristone and CORT108297. Differentially expressed genes from MDA-MB-231 cells were cross-evaluated with significantly expressed genes in GR-high versus GR-low ER-negative primary breast cancers. The resulting subset of GR-targeted genes was analyzed in two independent ER-negative breast cancer cohorts to derive and then validate the GR activity signature (GRsig).Results: Gene expression pathway analysis of glucocorticoid-regulated genes (inhibited by GR antagonism) revealed cell survival and invasion functions. GR ChIP-seq analysis demonstrated that GR antagonists decreased GR chromatin association for a subset of genes. A GRsig that comprised n = 74 GR activation-associated genes (also reversed by GR antagonists) was derived from an adjuvant chemotherapy-treated Discovery cohort and found to predict probability of relapse in a separate Validation cohort (HR = 1.9; P = 0.012).Conclusions: The GRsig discovered herein identifies high-risk ER-negative/GR-positive breast cancers most likely to relapse despite administration of adjuvant chemotherapy. Because GR antagonism can reverse expression of these genes, we propose that addition of a GR antagonist to chemotherapy may improve outcome for these high-risk patients. Clin Cancer Res; 24(14); 3433-46. ©2018 AACR.
Collapse
Affiliation(s)
- Diana C West
- Department of Medicine, The University of Chicago, Chicago, Illinois.,Department of Chemistry and Physics, Ave Maria University, Ave Maria, Florida
| | - Masha Kocherginsky
- Department of Preventive Medicine, Northwestern University, Chicago, Illinois
| | | | - D Nesli Dolcen
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - David J Hosfield
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois
| | - Ricardo R Lastra
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Jason P Sinnwell
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Kevin J Thompson
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Kathleen R Bowie
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Ryan V Harkless
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Maxwell N Skor
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Charles F Pierce
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Sarah C Styke
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Caroline R Kim
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Larischa de Wet
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Geoffrey L Greene
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois
| | - Judy C Boughey
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Matthew P Goetz
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.,Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Krishna R Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Gini F Fleming
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Balázs Györffy
- MTA-TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary.,Semmelweis University, Second Department of Pediatrics, Budapest, Hungary
| | - Suzanne D Conzen
- Department of Medicine, The University of Chicago, Chicago, Illinois. .,Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois
| |
Collapse
|
24
|
Kach J, Long TM, Selman P, Tonsing-Carter EY, Bacalao MA, Lastra RR, de Wet L, Comiskey S, Gillard M, VanOpstall C, West DC, Chan WC, Griend DV, Conzen SD, Szmulewitz RZ. Selective Glucocorticoid Receptor Modulators (SGRMs) Delay Castrate-Resistant Prostate Cancer Growth. Mol Cancer Ther 2017; 16:1680-1692. [PMID: 28428441 DOI: 10.1158/1535-7163.mct-16-0923] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/29/2017] [Accepted: 04/14/2017] [Indexed: 01/26/2023]
Abstract
Increased glucocorticoid receptor (GR) expression and activity following androgen blockade can contribute to castration-resistant prostate cancer (CRPC) progression. Therefore, we hypothesized that GR antagonism will have therapeutic benefit in CRPC. However, the FDA-approved nonselective, steroidal GR antagonist, mifepristone, lacks GR specificity, reducing its therapeutic potential. Here, we report that two novel nonsteroidal and highly selective GR modulators (SGRM), CORT118335 and CORT108297, have the ability to block GR activity in prostate cancer and slow CRPC progression. In contrast to mifepristone, these novel SGRMs did not affect androgen receptor (AR) signaling, but potently inhibited GR transcriptional activity. Importantly, SGRMs decreased GR-mediated tumor cell viability following AR blockade. In vivo, SGRMs significantly inhibited CRPC progression in high GR-expressing, but not in low GR-expressing xenograft models. Transcriptome analysis following AR blockade and GR activation revealed that these SGRMs block GR-mediated proliferative gene expression pathways. Furthermore, GR-regulated proliferation-associated genes AKAP12, FKBP5, SGK1, CEBPD, and ZBTB16 are inhibited by CORT108297 treatment in vivo Together, these data suggest that GR-selective nonsteroidal SGRMs potently inhibit GR activity and prostate cancer growth despite AR pathway inhibition, demonstrating the therapeutic potential of SGRMs in GR-expressing CRPC. Mol Cancer Ther; 16(8); 1680-92. ©2017 AACR.
Collapse
Affiliation(s)
- Jacob Kach
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Tiha M Long
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Phillip Selman
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | | | - Maria A Bacalao
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Ricardo R Lastra
- Department of Anatomical Pathology, The University of Chicago, Chicago, Illinois
| | - Larischa de Wet
- Department of Surgery, The University of Chicago, Chicago, Illinois
| | - Shane Comiskey
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Marc Gillard
- Department of Surgery, The University of Chicago, Chicago, Illinois
| | | | - Diana C West
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Wen-Ching Chan
- Center for Research Informatics, The University of Chicago, Chicago, Illinois
| | | | - Suzanne D Conzen
- Department of Medicine, The University of Chicago, Chicago, Illinois.,Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois
| | | |
Collapse
|
25
|
Hunt HJ, Belanoff JK, Walters I, Gourdet B, Thomas J, Barton N, Unitt J, Phillips T, Swift D, Eaton E. Identification of the Clinical Candidate (R)-(1-(4-Fluorophenyl)-6-((1-methyl-1H-pyrazol-4-yl)sulfonyl)-4,4a,5,6,7,8-hexahydro-1H-pyrazolo[3,4-g]isoquinolin-4a-yl)(4-(trifluoromethyl)pyridin-2-yl)methanone (CORT125134): A Selective Glucocorticoid Receptor (GR) Antagonist. J Med Chem 2017; 60:3405-3421. [PMID: 28368581 DOI: 10.1021/acs.jmedchem.7b00162] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nonselective glucocorticoid receptor (GR) antagonist mifepristone has been approved in the U.S. for the treatment of selected patients with Cushing's syndrome. While this drug is highly effective, lack of selectivity for GR leads to unwanted side effects in some patients. Optimization of the previously described fused azadecalin series of selective GR antagonists led to the identification of CORT125134, which is currently being evaluated in a phase 2 clinical study in patients with Cushing's syndrome.
Collapse
Affiliation(s)
- Hazel J Hunt
- Corcept Therapeutics , 149 Commonwealth Drive, Menlo Park, California 94025, United States
| | - Joseph K Belanoff
- Corcept Therapeutics , 149 Commonwealth Drive, Menlo Park, California 94025, United States
| | - Iain Walters
- Sygnature Discovery , BioCity, Pennyfoot Street, Nottingham, NG1 1GF, U.K
| | - Benoit Gourdet
- Sygnature Discovery , BioCity, Pennyfoot Street, Nottingham, NG1 1GF, U.K
| | - Jennifer Thomas
- Sygnature Discovery , BioCity, Pennyfoot Street, Nottingham, NG1 1GF, U.K
| | - Naomi Barton
- Sygnature Discovery , BioCity, Pennyfoot Street, Nottingham, NG1 1GF, U.K
| | - John Unitt
- Sygnature Discovery , BioCity, Pennyfoot Street, Nottingham, NG1 1GF, U.K
| | - Timothy Phillips
- Sygnature Discovery , BioCity, Pennyfoot Street, Nottingham, NG1 1GF, U.K
| | - Denise Swift
- Sygnature Discovery , BioCity, Pennyfoot Street, Nottingham, NG1 1GF, U.K
| | - Emily Eaton
- Sygnature Discovery , BioCity, Pennyfoot Street, Nottingham, NG1 1GF, U.K
| |
Collapse
|
26
|
New selective glucocorticoid receptor modulators reverse amyloid-β peptide–induced hippocampus toxicity. Neurobiol Aging 2016; 45:109-122. [DOI: 10.1016/j.neurobiolaging.2016.05.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 12/11/2022]
|
27
|
van den Heuvel JK, Boon MR, van Hengel I, Peschier-van der Put E, van Beek L, van Harmelen V, van Dijk KW, Pereira AM, Hunt H, Belanoff JK, Rensen PCN, Meijer OC. Identification of a selective glucocorticoid receptor modulator that prevents both diet-induced obesity and inflammation. Br J Pharmacol 2016; 173:1793-804. [PMID: 26990179 DOI: 10.1111/bph.13477] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 02/14/2016] [Accepted: 02/16/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE High-fat diet consumption results in obesity and chronic low-grade inflammation in adipose tissue. Whereas glucocorticoid receptor (GR) antagonism reduces diet-induced obesity, GR agonism reduces inflammation, the combination of which would be desired in a strategy to combat the metabolic syndrome. The purpose of this study was to assess the beneficial effects of the selective GR modulator C108297 on both diet-induced weight gain and inflammation in mice and to elucidate underlying mechanisms. EXPERIMENTAL APPROACH Ten-week-old C57Bl/6 J mice were fed a high-fat diet for 4 weeks while being treated with the selective GR modulator C108297, a full GR antagonist (RU486/mifepristone) or vehicle. KEY RESULTS C108297 and, to a lesser extent, mifepristone reduced body weight gain and fat mass. C108297 decreased food and fructose intake and increased lipolysis in white adipose tissue (WAT) and free fatty acid levels in plasma, resulting in decreased fat cell size and increased fatty acid oxidation. Furthermore, C108297 reduced macrophage infiltration and pro-inflammatory cytokine expression in WAT, as well as in vitro LPS-stimulated TNF-α secretion in macrophage RAW 264.7 cells. However, mifepristone also increased energy expenditure, as measured by fully automatic metabolic cages, and enhanced expression of thermogenic markers in energy-combusting brown adipose tissue (BAT) but did not affect inflammation. CONCLUSIONS AND IMPLICATIONS C108297 attenuates obesity by reducing caloric intake and increasing lipolysis and fat oxidation, and in addition attenuates inflammation. These data suggest that selective GR modulation may be a viable strategy for the reduction of diet-induced obesity and inflammation.
Collapse
Affiliation(s)
- José K van den Heuvel
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëtte R Boon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingmar van Hengel
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Emma Peschier-van der Put
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lianne van Beek
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Vanessa van Harmelen
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ko Willems van Dijk
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Alberto M Pereira
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, California, USA
| | | | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
28
|
Zhou Y, Ma J, Chen K, Jiang H, Zhu S. Selectivity-switchable oxidation of tetraarylethylenes to fused polycyclic compounds. Chem Commun (Camb) 2016; 52:13345-13348. [DOI: 10.1039/c6cc08155j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Selectivity-switchable oxidation of furan-containing tetraarylethylenes is reported.
Collapse
Affiliation(s)
- Yuefeng Zhou
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Jun Ma
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Kai Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| |
Collapse
|
29
|
1H-Pyrazolo[3,4-g]hexahydro-isoquinolines as potent GR antagonists with reduced hERG inhibition and an improved pharmacokinetic profile. Bioorg Med Chem Lett 2015; 25:5720-5. [DOI: 10.1016/j.bmcl.2015.10.097] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/20/2022]
|
30
|
Sundahl N, Bridelance J, Libert C, De Bosscher K, Beck IM. Selective glucocorticoid receptor modulation: New directions with non-steroidal scaffolds. Pharmacol Ther 2015; 152:28-41. [PMID: 25958032 DOI: 10.1016/j.pharmthera.2015.05.001] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/23/2015] [Indexed: 12/22/2022]
Abstract
Glucocorticoids remain the frontline treatment for inflammatory disorders, yet represent a double-edged sword with beneficial therapeutic actions alongside adverse effects, mainly in metabolic regulation. Considerable efforts were made to improve this balance by attempting to amplify therapeutic beneficial anti-inflammatory actions and to minimize adverse metabolic actions. Most attention has focused on the development of novel compounds favoring the transrepressing actions of the glucocorticoid receptor, assumed to be important for anti-inflammatory actions, over the transactivating actions, assumed to underpin the undesirable actions. These compounds are classified as selective glucocorticoid receptor agonists (SEGRAs) or selective glucocorticoid receptor modulators (SEGRMs). The latter class is able to modulate the activity of a GR agonist and/or may not classically bind the glucocorticoid receptor ligand-binding pocket. SEGRAs and SEGRMs are collectively denominated SEGRAMs (selective glucocorticoid receptor agonists and modulators). Although this transrepression vs transactivation concept proved to be too simplistic, the developed SEGRAMs were helpful in elucidating various molecular actions of the glucocorticoid receptor, but have also raised many novel questions. We discuss lessons learned from recent mechanistic studies of selective glucocorticoid receptor modulators. This is approached by analyzing recent experimental insights in comparison with knowledge obtained using mutant GR research, thus clarifying the current view on the SEGRAM field. These insights also contribute to our understanding of the processes controlling glucocorticoid-mediated side effects as well as glucocorticoid resistance. Our perspective on non-steroidal SEGRAs and SEGRMs considers remaining opportunities to address research gaps in order to harness the potential for more safe and effective glucocorticoid receptor therapies.
Collapse
Affiliation(s)
- Nora Sundahl
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium
| | - Jolien Bridelance
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium
| | - Claude Libert
- Department for Molecular Biomedical Research, VIB, Gent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Gent, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL), VIB Department of Medical Protein Research, Ghent University, Gent, Belgium.
| | - Ilse M Beck
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium
| |
Collapse
|
31
|
Meyer M, Gonzalez Deniselle MC, Hunt H, de Kloet ER, De Nicola AF. The selective glucocorticoid receptor modulator CORT108297 restores faulty hippocampal parameters in Wobbler and corticosterone-treated mice. J Steroid Biochem Mol Biol 2014; 143:40-8. [PMID: 24565565 DOI: 10.1016/j.jsbmb.2014.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 12/12/2022]
Abstract
Mutant Wobbler mice are models for human amyotrophic lateral sclerosis (ALS). In addition to spinal cord degeneration, Wobbler mice show high levels of blood corticosterone, hyperactivity of the hypothalamic-pituitary-adrenal axis and abnormalities of the hippocampus. Hypersecretion of glucocorticoids increase hippocampus vulnerability, a process linked to an enriched content of glucocorticoid receptors (GR). Hence, we studied if a selective GR antagonist (CORT108297) with null affinity for other steroid receptors restored faulty hippocampus parameters of Wobbler mice. Three months old genotyped Wobbler mice received s.c. vehicle or CORT108297 during 4 days. We compared the response of doublecortin (DCX)+ neuroblasts in the subgranular layer of the dentate gyrus (DG), NeuN+ cells in the hilus of the DG, glial fibrillary acidic protein (GFAP)+ astrocytes and the phenotype of Iba1+ microglia in CORT108297-treated and vehicle-treated Wobblers. The number of DCX+ cells in Wobblers was lower than in control mice, whereas CORT108297 restored this parameter. After CORT108297 treatment, Wobblers showed diminished astrogliosis, and changed the phenotype of Iba1+ microglia from an activated to a quiescent form. These changes occurred without alterations in the hypercorticosteronemia or the number of NeuN+ cells of the Wobblers. In a separate experiment employing control NFR/NFR mice, treatment with corticosterone for 5 days reduced DCX+ neuroblasts and induced astrocyte hypertrophy, whereas treatment with CORT108297 antagonized these effects. Normalization of neuronal progenitors, astrogliosis and microglial phenotype by CORT108297 indicates the usefulness of this antagonist to normalize hippocampus parameters of Wobbler mice. Thus, CORT108297 opens new therapeutic options for the brain abnormalities of ALS patients and hyperadrenocorticisms.
Collapse
Affiliation(s)
- Maria Meyer
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Maria Claudia Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Dept. of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425 Buenos Aires, Argentina
| | - Hazel Hunt
- Corcept Therapeutics, 149 Commonwealth Drive, Menlo Park, CA 94025, USA
| | - E Ronald de Kloet
- LACDR/LUMC, Leiden University, Einstein weg 55, 2333 CC Leiden, The Netherlands
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Dept. of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425 Buenos Aires, Argentina.
| |
Collapse
|
32
|
Robinson RP, Casimiro-Garcia A, Liang S, Anderson DP, Flick AC. A tandem hetero Diels–Alder/Mannich approach for the synthesis of a versatile hexahydro-2H-pyrano[3,2-c]pyridin-4(3H)-one core. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.08.105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Differential targeting of brain stress circuits with a selective glucocorticoid receptor modulator. Proc Natl Acad Sci U S A 2013; 110:7910-5. [PMID: 23613579 DOI: 10.1073/pnas.1219411110] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Glucocorticoid receptor (GR) antagonism may be of considerable therapeutic value in stress-related psychopathology such as depression. However, blockade of all GR-dependent processes in the brain will lead to unnecessary and even counteractive effects, such as elevated endogenous cortisol levels. Selective GR modulators are ligands that can act both as agonist and as antagonist and may be used to separate beneficial from harmful treatment effects. We have discovered that the high-affinity GR ligand C108297 is a selective modulator in the rat brain. We first demonstrate that C108297 induces a unique interaction profile between GR and its downstream effector molecules, the nuclear receptor coregulators, compared with the full agonist dexamethasone and the antagonist RU486 (mifepristone). C108297 displays partial agonistic activity for the suppression of hypothalamic corticotropin-releasing hormone (CRH) gene expression and potently enhances GR-dependent memory consolidation of training on an inhibitory avoidance task. In contrast, it lacks agonistic effects on the expression of CRH in the central amygdala and antagonizes GR-mediated reduction in hippocampal neurogenesis after chronic corticosterone exposure. Importantly, the compound does not lead to disinhibition of the hypothalamus-pituitary-adrenal axis. Thus, C108297 represents a class of ligands that has the potential to more selectively abrogate pathogenic GR-dependent processes in the brain, while retaining beneficial aspects of GR signaling.
Collapse
|
34
|
Andrade C, Shaikh SA, Narayan L, Blasey C, Belanoff J. Administration of a selective glucocorticoid antagonist attenuates electroconvulsive shock-induced retrograde amnesia. J Neural Transm (Vienna) 2011; 119:337-44. [PMID: 21922193 DOI: 10.1007/s00702-011-0712-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 08/23/2011] [Indexed: 11/29/2022]
Abstract
Mifepristone, a glucocorticoid and progesterone receptor antagonist, has been shown to attenuate retrograde amnesia induced by repeated electroconvulsive shocks (ECS). We examined the efficacy of CORT 108297, a selective glucocorticoid antagonist, in this regard. Adult, male, Wistar rats (n = 69) received either vehicle or CORT 108297 (1 mg/kg) 2 h before each of 5 once-daily true or sham 30 mC ECS. Recall of previous exposure to a noxious stimulus in a passive avoidance (step-through) paradigm was tested 1 day after the 5-ECS course. Analyses were conducted using recall operationalized in different ways: using the absolute final latency scores; defining adequate recall as a final latency of 30 s or greater; defining perfect recall as a final latency of 180 s; and using visual, subjective assessments of animal behavior. ECS was associated with significant impairment of recall, and this impairment was significantly attenuated by CORT 108297 on all outcome measures (with the exception of the perfect recall analyses, where outcomes narrowly missed statistical significance). In conclusion, these findings strengthen previous data from our laboratory implicating glucocorticoid mechanisms in ECS-induced retrograde amnesia. We suggest that the administration of a selective glucocorticoid receptor antagonist shortly before electroconvulsive therapy (ECT) treatments may attenuate the deleterious effect of ECT-induced acute hypercortisolemia on neural mechanisms involved in learning and memory.
Collapse
Affiliation(s)
- Chittaranjan Andrade
- Department of Psychopharmacology, National Institute of Mental Health and Neurosciences, Bangalore 560 029, India.
| | | | | | | | | |
Collapse
|
35
|
Betageri R, Gilmore T, Kuzmich D, Kirrane TM, Bentzien J, Wiedenmayer D, Bekkali Y, Regan J, Berry A, Latli B, Kukulka AJ, Fadra TN, Nelson RM, Goldrick S, Zuvela-Jelaska L, Souza D, Pelletier J, Dinallo R, Panzenbeck M, Torcellini C, Lee H, Pack E, Harcken C, Nabozny G, Thomson DS. Non-steroidal dissociated glucocorticoid agonists: indoles as A-ring mimetics and function-regulating pharmacophores. Bioorg Med Chem Lett 2011; 21:6842-51. [PMID: 21963986 DOI: 10.1016/j.bmcl.2011.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 09/01/2011] [Accepted: 09/06/2011] [Indexed: 11/30/2022]
Abstract
We report a SAR of non-steroidal glucocorticoid mimetics that utilize indoles as A-ring mimetics. Detailed SAR is discussed with a focus on improving PR and MR selectivity, GR agonism, and in vitro dissociation profile. SAR analysis led to compound (R)-33 which showed high PR and MR selectivity, potent agonist activity, and reduced transactivation activity in the MMTV and aromatase assays. The compound is equipotent to prednisolone in the LPS-TNF model of inflammation. In mouse CIA, at 30 mg/kg compound (R)-33 inhibited disease progression with an efficacy similar to the 3 mg/kg dose of prednisolone.
Collapse
Affiliation(s)
- Raj Betageri
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Selective Glucocorticoid Receptor (GR-II) Antagonist Reduces Body Weight Gain in Mice. J Nutr Metab 2011; 2011:235389. [PMID: 21811679 PMCID: PMC3146995 DOI: 10.1155/2011/235389] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 01/24/2023] Open
Abstract
Previous research has shown that mifepristone can prevent and reverse weight gain in animals and human subjects taking antipsychotic medications. This proof-of-concept study tested whether a more potent and selective glucocorticoid receptor antagonist could block dietary-induced weight gain and increase insulin sensitivity in mice. Ten-week-old, male, C57BL/6J mice were fed a diet containing 60% fat calories and water supplemented with 11% sucrose for 4 weeks. Groups (n = 8) received one of the following: CORT 108297 (80 mg/kg QD), CORT 108297 (40 mg/kg BID), mifepristone (30 mg/kg BID), rosiglitazone (10 mg/kg QD), or vehicle. Compared to mice receiving a high-fat, high-sugar diet plus vehicle, mice receiving a high-fat, high-sugar diet plus either mifepristone or CORT 108297 gained significantly less weight. At the end of the four week treatment period, mice receiving CORT 108297 40 mg/kg BID or CORT 108297 80 mg/kg QD also had significantly lower steady plasma glucose than mice receiving vehicle. However, steady state plasma glucose after treatment was not highly correlated with reduced weight gain, suggesting that the effect of the glucocorticoid receptor antagonist on insulin sensitivity may be independent of its mitigating effect on weight gain.
Collapse
|
37
|
Rational ligand-based virtual screening and structure-activity relationship studies in the ligand-binding domain of the glucocorticoid receptor-α. Future Med Chem 2011; 1:483-99. [PMID: 21426128 DOI: 10.4155/fmc.09.39] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The interest in developing synthetic glucocorticoids (GCs) arises from the utility of endogenous steroids as potent anti-inflammatory and immunosuppressant agents. The first GCs to be discovered, such as cortisol or dexamethasone, still represent the main treatment for conditions of the inflammatory process, despite the fact that they carry a significant risk of side effects. Hence, there is a continuing need to find drugs that preserve the immune effects of GCs without the side effects, such as those on metabolism (diabetes), bone tissue (osteoporosis), muscles (myopathy), eyes and skin. In this review, we focus on the recent use of ligand-based computational approaches in glucocorticoid receptor (GR) drug-design efforts for the determination of novel GR ligands. We examine a number of ligand-based (similarity searches, pharmacophore screens and quantitative structure-activity relationships) approaches that have been implemented in recent years. A recent virtual high-throughput screening similarity search was successful in developing a novel series of nonsteroidal GR antagonists. Additionally, there has been considerable success in ligand-based structure-analysis relationship generation and lead optimization studies for the GR. Future trends toward integrated GR ligand design incorporating ligand- and structure-based methodologies are inevitable.
Collapse
|
38
|
Agrawal S, Guess AJ, Benndorf R, Smoyer WE. Comparison of direct action of thiazolidinediones and glucocorticoids on renal podocytes: protection from injury and molecular effects. Mol Pharmacol 2011; 80:389-99. [PMID: 21636793 DOI: 10.1124/mol.111.071654] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The U.S. Food and Drug Administration-approved thiazolidinediones pioglitazone and rosiglitazone are peroxisome proliferator-activated receptor-γ (PPARγ) agonists developed to control serum glucose in patients with diabetes. They have been found to reduce proteinuria and microalbuminuria in both diabetic nephropathy and nondiabetic glomerulosclerosis. We hypothesized that the renal protective effects of thiazolidinediones result, at least in part, from their direct action on podocytes, similar to glucocorticoids. Treatment with pioglitazone, rosiglitazone, or dexamethasone significantly protected podocytes against puromycin aminonucleoside-induced injury (designed to mimic nephrotic syndrome-related injury), as determined by both cell survival and actin cytoskeletal integrity. Furthermore, we compared the ability of these drugs to modulate key signaling pathways in podocytes that may be critical to their protective effects. Rosiglitazone deactivated the mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinases 1/2, p38 MAPK, and stress-activated protein kinase/c-Jun NH₂-terminal kinase, whereas pioglitazone did not, and dexamethasone deactivated to some extent. Similar to dexamethasone, both thiazolidinediones increased the glucocorticoid receptor phosphorylation, and this response to rosiglitazone and possibly to pioglitazone was PPARγ-dependent. Furthermore, both drugs mimicked or enhanced the effects of dexamethasone on glucocorticoid-responsive genes in a PPARγ- and glucocorticoid receptor-dependent manner. In addition, both thiazolidinediones mimicked dexamethasone-induced effects on calcineurin activity. In summary, thiazolidinediones are able to modulate the glucocorticoid pathway and exert direct protective effects on podocytes, similar to glucocorticoids. This suggests that thiazolidinediones may have potential clinical utility as either primary or adjunctive therapy for nephrotic syndrome or other diseases treated with glucocorticoids. These findings may also lend mechanistic insight into the well established but poorly understood renal protective effects of thiazolidinediones in diabetic nephropathy.
Collapse
Affiliation(s)
- Shipra Agrawal
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | | |
Collapse
|
39
|
Belanoff JK, Blasey CM, Clark RD, Roe RL. Selective glucocorticoid receptor (type II) antagonists prevent weight gain caused by olanzapine in rats. Eur J Pharmacol 2011; 655:117-20. [DOI: 10.1016/j.ejphar.2011.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/09/2010] [Accepted: 01/07/2011] [Indexed: 01/22/2023]
|
40
|
Belanoff JK, Blasey CM, Clark RD, Roe RL. Selective glucocorticoid receptor (type II) antagonist prevents and reverses olanzapine-induced weight gain. Diabetes Obes Metab 2010; 12:545-7. [PMID: 20518810 DOI: 10.1111/j.1463-1326.2009.01185.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Use of antipsychotic medications has been associated consistently with weight gain and metabolic disturbances, and a subsequent increased risk for diabetes and cardiovascular disease. Two experiments tested whether CORT 108297, a newly identified selective glucocorticoid antagonist could (i) reduce and (ii) prevent olanzapine-induced weight gain in rats. In the first experiment, rats dosed only with olanzapine gained a statistically significant amount of weight. When vehicle was added to their olanzapine dose, they continued to gain weight; when CORT 108297 was added to their regimen, they lost a significant amount of weight. Rats administered CORT 108297 plus olanzapine had significantly less abdominal fat than those who received olanzapine alone. In the second experiment, rats receiving olanzapine plus CORT 108297 gained significantly less weight than rats receiving only olanzapine. Increasing doses of CORT 108297 were associated with less weight gain.
Collapse
|
41
|
The identification a novel, selective, non-steroidal, functional glucocorticoid receptor antagonist. Bioorg Med Chem Lett 2010; 20:2340-3. [DOI: 10.1016/j.bmcl.2010.01.133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/26/2010] [Accepted: 01/27/2010] [Indexed: 11/24/2022]
|