1
|
Feder D, Mohd-Pahmi SH, Adibi H, Guddat LW, Schenk G, McGeary RP, Hussein WM. Optimization of an α-aminonaphthylmethylphosphonic acid inhibitor of purple acid phosphatase using rational structure-based design approaches. Eur J Med Chem 2023; 254:115383. [PMID: 37087894 DOI: 10.1016/j.ejmech.2023.115383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
Purple acid phosphatases (PAPs) are ubiquitous binuclear metallohydrolases that have been isolated from various animals, plants and some types of fungi. In humans and mice, elevated PAP activity in osteoclasts is associated with osteoporosis, making human PAP an attractive target for the development of anti-osteoporotic drugs. Based on previous studies focusing on phosphonate scaffolds, as well as a new crystal structure of a PAP in complex with a derivative of a previously synthesized α-aminonaphthylmethylphosphonic acid, phosphonates 24-40 were designed as new PAP inhibitor candidates. Subsequent docking studies predicted that all of these compounds are likely to interact strongly with the active site of human PAP and most are likely to interact strongly with the active site of pig PAP. The seventeen candidates were synthesized with good yields and nine of them (26-28, 30, 33-36 and 38) inhibit in the sub-micromolar to nanomolar range against pig PAP, with 28 and 35 being the most potent mammalian PAP inhibitors reported with Ki values of 168 nM and 186 nM, respectively. This study thus paves the way for the next stage of drug development for phosphonate inhibitors of PAPs as anti-osteoporotic agents.
Collapse
Affiliation(s)
- Daniel Feder
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, QLD, 4072, Australia
| | - Siti Hajar Mohd-Pahmi
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, QLD, 4072, Australia
| | - Hadi Adibi
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, QLD, 4072, Australia; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Luke W Guddat
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, QLD, 4072, Australia
| | - Gerhard Schenk
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, QLD, 4072, Australia; The University of Queensland, Sustainable Minerals Institute, Brisbane, QLD, 4072, Australia; The University of Queensland, Australian Institute of Bioengineering and Nanotechnology, Brisbane, QLD, 4072, Australia
| | - Ross P McGeary
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, QLD, 4072, Australia
| | - Waleed M Hussein
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, QLD, 4072, Australia; Helwan University, Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Ein Helwan, Helwan, Egypt.
| |
Collapse
|
2
|
Böhme T, Egeland M, Lorentzen M, Mady MF, Solbakk MF, Sæbø KS, Jørgensen KB. Regiospecific Photochemical Synthesis of Methylchrysenes. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010237. [PMID: 36615430 PMCID: PMC9822284 DOI: 10.3390/molecules28010237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Methylated polycyclic aromatic hydrocarbons (PAHs) are suspected to be some of the toxic compounds in crude oil towards marine life and are needed as single compounds for environmental studies. 1-, 3- and 6-methylchrysene (3a,b,c) were prepared as single isomers by photochemical cyclization of the corresponding stilbenoids in the Mallory reaction using stoichiometric amounts of iodine in 82-88% yield. 2-methylchrysene (3d) was prepared by photochemical cyclization where the regioselectivity was controlled by elimination of an ortho-methoxy group under acidic oxygen free conditions in 72% yield. These conditions failed to form 4-methylchrysene from the corresponding stilbenoid. All stilbenoids were made from a common naphthyl Wittig salt and suitably substituted benzaldehydes. We have also demonstrated that methylchrysenes can be oxidized to the corresponding chrysenecarboxylic acids by KMnO4 in modest yields.
Collapse
Affiliation(s)
- Thomas Böhme
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, P.O. Box 8600, N-4036 Stavanger, Norway
| | - Mari Egeland
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, P.O. Box 8600, N-4036 Stavanger, Norway
| | - Marianne Lorentzen
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, P.O. Box 8600, N-4036 Stavanger, Norway
| | - Mohamed F. Mady
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Michelle F. Solbakk
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, P.O. Box 8600, N-4036 Stavanger, Norway
| | - Krister S. Sæbø
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, P.O. Box 8600, N-4036 Stavanger, Norway
| | - Kåre B. Jørgensen
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, P.O. Box 8600, N-4036 Stavanger, Norway
- Correspondence: ; Tel.: +47-51-83-23-06
| |
Collapse
|
3
|
Feder D, Mohd-Pahmi SH, Hussein WM, Guddat LW, McGeary RP, Schenk G. Rational Design of Potent Inhibitors of a Metallohydrolase Using a Fragment-Based Approach. ChemMedChem 2021; 16:3342-3359. [PMID: 34331400 DOI: 10.1002/cmdc.202100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Indexed: 11/08/2022]
Abstract
Metallohydrolases form a large group of enzymes that have fundamental importance in a broad range of biological functions. Among them, the purple acid phosphatases (PAPs) have gained attention due to their crucial role in the acquisition and use of phosphate by plants and also as a promising target for novel treatments of bone-related disorders and cancer. To date, no crystal structure of a mammalian PAP with drug-like molecules bound near the active site is available. Herein, we used a fragment-based design approach using structures of a mammalian PAP in complex with the MaybridgeTM fragment CC063346, the amino acid L-glutamine and the buffer molecule HEPES, as well as various solvent molecules to guide the design of highly potent and efficient mammalian PAP inhibitors. These inhibitors have improved aqueous solubility when compared to the clinically most promising PAP inhibitors available to date. Furthermore, drug-like fragments bound in newly discovered binding sites mapped out additional scaffolds for further inhibitor discovery, as well as scaffolds for the design of inhibitors with novel modes of action.
Collapse
Affiliation(s)
- Daniel Feder
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.,Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Siti H Mohd-Pahmi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ross P McGeary
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.,Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
4
|
Hou F, Du X, Alduma AI, Li Z, Huo C, Wang X, Wu X, Quan Z. Disulfide Promoted C−P Bond Cleavage of Phosphoramide: “P” Surrogates to Synthesize Phosphonates and Phosphinates. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Fei Hou
- International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 People's Republic of China
| | - Xing‐Peng Du
- International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 People's Republic of China
| | - Anwar I. Alduma
- International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 People's Republic of China
| | - Zhi‐Feng Li
- College of Chemical Engineering and Technology Key Laboratory for New Molecule Design and Function of Gansu Universities Tianshui Normal University Tianshui 741001 People's Republic of China
| | - Cong‐De Huo
- International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 People's Republic of China
| | - Xi‐Cun Wang
- International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 People's Republic of China
| | - Xiao‐Feng Wu
- International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 People's Republic of China
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Zheng‐Jun Quan
- International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 People's Republic of China
| |
Collapse
|
5
|
Rádai Z, Szabó R, Szigetvári Á, Kiss NZ, Mucsi Z, Keglevich G. A Study on the Rearrangement of Dialkyl 1-Aryl-1-hydroxymethylphosphonates to Benzyl Phosphates. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200226114306] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phospha-Brook rearrangement of dialkyl 1-aryl-1-hydroxymethylphosphonates (HPs) to the corresponding benzyl phosphates (BPs) has been elaborated under solid-liquid phase transfer catalytic conditions. The best procedure involved the use of triethylbenzylammonium chloride as the catalyst and Cs2CO3 as the base in acetonitrile as the solvent at room temperature. The substrate dependence of the rearrangement has been studied, and the mechanism of the transformation under discussion was explored by quantum chemical calculations. The key intermediate is an oxaphosphirane. The one-pot version starting with the Pudovik reaction has also been developed. The conditions of this tandem transformation were the same, as those for the one-step HP→BP conversion.
Collapse
Affiliation(s)
- Zita Rádai
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Réka Szabó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Áron Szigetvári
- Spectroscopy Research Department, Gedeon Richter Plc., 1103 Budapest, Gyömrői út 19-21, Hungary
| | - Nóra Zsuzsa Kiss
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Zoltán Mucsi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| |
Collapse
|
6
|
Zhou S, Huang G, Chen G. Synthesis and biological activities of drugs for the treatment of osteoporosis. Eur J Med Chem 2020; 197:112313. [PMID: 32335412 DOI: 10.1016/j.ejmech.2020.112313] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022]
Abstract
Osteoporosis is an asymptomatic progressive disease. With the improvement of people's living standard and the aging of population, osteoporosis and its fracture have become one of the main diseases threatening the aging society. The serious medical and social burden caused by this has aroused wide public concern. Osteoporosis is listed as one of the three major diseases of the elderly. At present, the drugs for osteoporosis include bone resorption inhibitors and bone formation promoters. The purpose of these anti-osteoporosis drugs is to balance osteoblast bone formation and osteoclast bone resorption. With the development of anti-osteoporosis drugs, new anti osteoporosis drugs have been designed and synthesized. There are many kinds of new compounds with anti osteoporosis activity, but most of them are concentrated on the original drugs with anti osteoporosis activity, or the natural products with anti-osteoporosis activity are extracted from the natural products for structural modification to obtain the corresponding derivatives or analogues. These target compounds showed good ALP activity in vitro and in vivo, promoted osteoblast differentiation and mineralization, or had anti TRAP activity, inhibited osteoclast absorption. This work attempts to systematically review the studies on the synthesis and bioactivity of anti-osteoporosis drugs in the past 10 years. The structure-activity relationship was discussed, which provided a reasonable idea for the design and development of new anti-osteoporosis drugs.
Collapse
Affiliation(s)
- Shiyang Zhou
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Green Synthesis and Application, College of Chemistry, Chongqing Normal University, Chongqing, 401331, China.
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
7
|
Synthesis, evaluation and structural investigations of potent purple acid phosphatase inhibitors as drug leads for osteoporosis. Eur J Med Chem 2019; 182:111611. [DOI: 10.1016/j.ejmech.2019.111611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/31/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022]
|
8
|
Longwitz L, Jopp S, Werner T. Organocatalytic Chlorination of Alcohols by P(III)/P(V) Redox Cycling. J Org Chem 2019; 84:7863-7870. [DOI: 10.1021/acs.joc.9b00741] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lars Longwitz
- Leibniz Institute for Catalysis at the University of Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Stefan Jopp
- Leibniz Institute for Catalysis at the University of Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Thomas Werner
- Leibniz Institute for Catalysis at the University of Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
9
|
Affiliation(s)
- Zita Rádai
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Hungary
| |
Collapse
|
10
|
Hussein WM, Feder D, Schenk G, Guddat LW, McGeary RP. Synthesis and evaluation of novel purple acid phosphatase inhibitors. MEDCHEMCOMM 2018; 10:61-71. [PMID: 30774855 DOI: 10.1039/c8md00491a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/09/2018] [Indexed: 11/21/2022]
Abstract
Transgenic studies in animals have demonstrated a direct association between the level of expression of purple acid phosphatase (PAP; also known as tartrate-resistant acid phosphatase) and the progression of osteoporosis. Consequently, PAP has emerged as a promising target for the development of novel therapeutic agents to treat this debilitating disorder. PAPs are binuclear hydrolases that catalyse the hydrolysis of phosphorylated substrates under acidic to neutral conditions. A series of phenyltriazole carboxylic acids, prepared by the reactions of azide derivatives with propiolic acid through copper(i)-catalysed azide-alkyne cycloaddition click reactions, has been assessed for their inhibitory effect on the catalytic activity of pig and red kidney bean PAPs. The binding mode of most of these compounds is purely uncompetitive with K iuc values as low as ∼23 μM for the mammalian enzyme. Molecular modelling has been used to examine the binding modes of these triazole compounds in the presence of a substrate in the active site of the enzyme in order to rationalise their activities and to design more potent and specific derivatives.
Collapse
Affiliation(s)
- Waleed M Hussein
- The University of Queensland , School of Chemistry and Molecular Biosciences , Brisbane , QLD 4072 , Australia . ; Tel: +61 7 33653955.,Helwan University , Pharmaceutical Organic Chemistry Department , Faculty of Pharmacy , Ein Helwan , Helwan , Egypt
| | - Daniel Feder
- The University of Queensland , School of Chemistry and Molecular Biosciences , Brisbane , QLD 4072 , Australia . ; Tel: +61 7 33653955
| | - Gerhard Schenk
- The University of Queensland , School of Chemistry and Molecular Biosciences , Brisbane , QLD 4072 , Australia . ; Tel: +61 7 33653955.,The University of Queensland , Australian Centre for Ecogenomics , Brisbane , QLD 4072 , Australia
| | - Luke W Guddat
- The University of Queensland , School of Chemistry and Molecular Biosciences , Brisbane , QLD 4072 , Australia . ; Tel: +61 7 33653955
| | - Ross P McGeary
- The University of Queensland , School of Chemistry and Molecular Biosciences , Brisbane , QLD 4072 , Australia . ; Tel: +61 7 33653955
| |
Collapse
|
11
|
Hussein WM, Feder D, Schenk G, Guddat LW, McGeary RP. Purple acid phosphatase inhibitors as leads for osteoporosis chemotherapeutics. Eur J Med Chem 2018; 157:462-479. [DOI: 10.1016/j.ejmech.2018.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/14/2018] [Accepted: 08/01/2018] [Indexed: 11/24/2022]
|
12
|
Rádai Z, Keglevich G. Synthesis and Reactions of α-Hydroxyphosphonates. Molecules 2018; 23:E1493. [PMID: 29925805 PMCID: PMC6099812 DOI: 10.3390/molecules23061493] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/11/2018] [Accepted: 06/16/2018] [Indexed: 12/18/2022] Open
Abstract
This review summarizes the main synthetic routes towards α-hydroxyphosphonates that are known as enzyme inhibitors, herbicides and antioxidants, moreover, a number of representatives express antibacterial or antifungal effect. Special attention is devoted to green chemical aspects. α-Hydroxyphosphonates are also versatile intermediates for other valuable derivatives. O-Alkylation and O-acylation are typical reactions to afford α-alkoxy-, or α-acyloxyphosphonates, respectively. The oxidation of hydroxyphosphonates leads to ketophosphonates. The hydroxy function at the α carbon atom of hydroxyphosphonates may be replaced by a halogen atom. α-Aminophosphonates formed in the nucleophilic substitution reaction of α-hydroxyphosphonates with primary or secondary amines are also potentially bioactive compounds. Another typical reaction is the base-catalyzed rearrangement of α-hydroxy-phosphonates to phosphates. Hydrolysis of the ester function of hydroxyphosphonates leads to the corresponding phosphonic acids.
Collapse
Affiliation(s)
- Zita Rádai
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary.
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary.
| |
Collapse
|
13
|
Reithmeier A, Lundbäck T, Haraldsson M, Frank M, Ek-Rylander B, Nyholm PG, Gustavsson AL, Andersson G. Identification of inhibitors of Tartrate-resistant acid phosphatase (TRAP/ACP5) activity by small-molecule screening. Chem Biol Drug Des 2018; 92:1255-1271. [PMID: 29500863 DOI: 10.1111/cbdd.13187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/29/2018] [Accepted: 02/21/2018] [Indexed: 12/28/2022]
Abstract
Tartrate-resistant acid phosphatase (TRAP/ACP5) occurs as two isoforms-TRAP 5a with low enzymatic activity due to a loop interacting with the active site and the more active TRAP isoform 5b generated upon proteolytic cleavage of this loop. TRAP has been implicated in several diseases, including cancer. Thus, this study set out to identify small-molecule inhibitors of TRAP activity. A microplate-based enzymatic assay for TRAP 5b was applied in a screen of 30,315 compounds, resulting in the identification of 90 primary hits. After removal of promiscuous compounds, unwanted groups, and false positives by orthogonal assays and three-concentration validation, the properties of 52 compounds were further investigated to better understand their mechanism of action. Full-concentration-response curves for these compounds were established under different enzyme concentrations and (pre)incubation times to remove compounds with inconsistent results and low potencies. Full-concentration-response curves were also performed for both isoforms, to examine isoform prevalence. Filtering led to six prioritized compounds, representing different clusters. One of these, CBK289001 or (6S)-6-[3-(2H-1,3-benzodioxol-5-yl)-1,2,4-oxadiazol-5-yl]-N-(propan-2-yl)-1H,4H,5H,6H,7H-imidazo[4,5-c]pyridine-5-carboxamide, demonstrated efficacy in a migration assay and IC50 values from 4 to 125 μm. Molecular docking studies and analog testing were performed around CBK289001 to provide openings for further improvement toward more potent blockers of TRAP activity.
Collapse
Affiliation(s)
- Anja Reithmeier
- Department of Laboratory Medicine (LABMED), H5, Division of Pathology, F46, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Haraldsson
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Barbro Ek-Rylander
- Department of Laboratory Medicine (LABMED), H5, Division of Pathology, F46, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | | | - Anna-Lena Gustavsson
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Göran Andersson
- Department of Laboratory Medicine (LABMED), H5, Division of Pathology, F46, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| |
Collapse
|
14
|
Alimoradi N, Ashrafi-Kooshk MR, Shahlaei M, Maghsoudi S, Adibi H, McGeary RP, Khodarahmi R. Diethylalkylsulfonamido(4-methoxyphenyl)methyl)phosphonate/phosphonic acid derivatives act as acid phosphatase inhibitors: synthesis accompanied by experimental and molecular modeling assessments. J Enzyme Inhib Med Chem 2016; 32:20-28. [PMID: 27766897 PMCID: PMC6010023 DOI: 10.1080/14756366.2016.1230109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Purple acid phosphatases (PAPs) are binuclear metallo-hydrolases that have been isolated from various mammals, plants, fungi and bacteria. In mammals, PAP activity is associated with bone resorption and can lead to bone metabolic disorders such as osteoporosis; thus human PAP is an attractive target to develop anti-osteoporotic drugs. The aim of the present study was to investigate inhibitory effect of synthesized diethylalkylsulfonamido(4-methoxyphenyl)methyl)phosphonate/phosphonic acid derivatives as potential red kidney bean PAP (rkbPAP) inhibitors accompanied by experimental and molecular modeling assessments. Enzyme kinetic data showed that they are good rkbPAP inhibitors whose potencies improve with increasing alkyl chain length. Hexadecyl derivatives, as most potent compounds (Ki = 1.1 µM), inhibit rkbPAP in the mixed manner, while dodecyl derivatives act as efficient noncompetitive inhibitor. Also, analysis by molecular modeling of the structure of the rkbPAP-inhibitor complexes reveals factors, which may be important for the determination of inhibition specificity.
Collapse
Affiliation(s)
- Nahid Alimoradi
- a Student Research Committee , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | | | - Mohsen Shahlaei
- c Nano Drug Delivery Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Shabnam Maghsoudi
- b Medical Biology Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Hadi Adibi
- d Pharmaceutical Sciences Research Center, Faculty of Pharmacy , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Ross P McGeary
- e The University of Queensland, School of Chemistry and Molecular Biosciences , St. Lucia , QLD , Australia
| | - Reza Khodarahmi
- b Medical Biology Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| |
Collapse
|
15
|
Zubair Khalid M, Pallikonda G, Prasad Tulichala R, Chakravarty M. Oxy-Wittig reactions of 1-naphthyl(aryl)methylphosphonates: a new approach to naphthylarylketones. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.02.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Krumpel M, Reithmeier A, Senge T, Baeumler TA, Frank M, Nyholm PG, Ek-Rylander B, Andersson G. The small chemical enzyme inhibitor 5-phenylnicotinic acid/CD13 inhibits cell migration and invasion of tartrate-resistant acid phosphatase/ACP5-overexpressing MDA-MB-231 breast cancer cells. Exp Cell Res 2015; 339:154-62. [PMID: 26428664 DOI: 10.1016/j.yexcr.2015.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/22/2015] [Accepted: 09/26/2015] [Indexed: 01/17/2023]
Abstract
Tartrate-resistant acid phosphatase (TRAP/ACP5/uteroferrin/purple acid phosphatase/PP5) has received considerable attention as a newly discovered proinvasion metastasis driver associated with different malignancies. This renders TRAP an interesting target for novel anti-cancer therapy approaches. TRAP exists as two isoforms, 5a and 5b, where the 5a isoform represents an enzymatically less active monomeric precursor to the more enzymatically active 5b isoform generated by proteolytic excision of a repressive loop domain. Recently, three novel lead compounds were identified by fragment-based screening and demonstrated to be efficient TRAP enzyme inhibitors in vitro. We conclude that one of the three compounds i.e. 5-phenylnicotinic acid (CD13) was efficient as a TRAP inhibitor with Kic values in the low micromolar range towards the TRAP 5b isoform, but was not able to inhibit the TRAP 5a isoform. Structure-based docking revealed similar interactions of CD13 with the active site in both TRAP isoforms. In stably TRAP-overexpressing MDA-MB-231 breast cancer cells, CD13 inhibited intracellular TRAP activity and showed no cytotoxicity at 200 µM. Furthermore, CD13 selectively blocked the TRAP 5b isoform compared to the TRAP 5a in cultured cells, indicating the usefulness of CD13 for assessing the different biological functions of the two TRAP isoforms 5a and 5b in cell systems. Moreover, inhibition of cell migration and invasion of stably TRAP-overexpressing MDA-MB-231 by CD13 was observed. These data establish a proof of principle that a small chemical inhibitor of the TRAP enzyme can block TRAP-dependent functions in cancer cells.
Collapse
Affiliation(s)
- Michael Krumpel
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden.
| | - Anja Reithmeier
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden.
| | - Teresa Senge
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden.
| | - Toni Andreas Baeumler
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden.
| | - Martin Frank
- Biognos AB, PO Box 8963, SE-402 74 Gothenburg, Sweden.
| | | | - Barbro Ek-Rylander
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden.
| | - Göran Andersson
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden.
| |
Collapse
|
17
|
McGeary RP, Schenk G, Guddat LW. The applications of binuclear metallohydrolases in medicine: Recent advances in the design and development of novel drug leads for purple acid phosphatases, metallo-β-lactamases and arginases. Eur J Med Chem 2014; 76:132-44. [DOI: 10.1016/j.ejmech.2014.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 01/28/2014] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
|
18
|
Boobalan R, Chen C. Catalytic Enantioselective Hydrophosphonylation of Aldehydes Using the Iron Complex of a Camphor-Based Tridentate Schiff Base [FeCl(SBAIB-d)]2. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201300653] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Zhang A, Cai L, Yao Z, Xu F, Shen Q. Lanthanide-Catalyzed Selective Addition of Diethyl Phosphite to Chalcones. HETEROATOM CHEMISTRY 2013. [DOI: 10.1002/hc.21099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Aijiao Zhang
- College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou; 215123; People's Republic of China
| | - Lijian Cai
- College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou; 215123; People's Republic of China
| | - Zhigang Yao
- College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou; 215123; People's Republic of China
| | - Fan Xu
- College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou; 215123; People's Republic of China
| | - Qi Shen
- College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou; 215123; People's Republic of China
| |
Collapse
|
20
|
|
21
|
Schenk G, Mitić N, Gahan LR, Ollis DL, McGeary RP, Guddat LW. Binuclear metallohydrolases: complex mechanistic strategies for a simple chemical reaction. Acc Chem Res 2012; 45:1593-603. [PMID: 22698580 DOI: 10.1021/ar300067g] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Binuclear metallohydrolases are a large family of enzymes that require two closely spaced transition metal ions to carry out a plethora of hydrolytic reactions. Representatives include purple acid phosphatases (PAPs), enzymes that play a role in bone metabolism and are the only member of this family with a heterovalent binuclear center in the active form (Fe(3+)-M(2+), M = Fe, Zn, Mn). Other members of this family are urease, which contains a di-Ni(2+) center and catalyzes the breakdown of urea, arginase, which contains a di-Mn(2+) center and catalyzes the final step in the urea cycle, and the metallo-β-lactamases, which contain a di-Zn(2+) center and are virulence factors contributing to the spread of antibiotic-resistant pathogens. Binuclear metallohydrolases catalyze numerous vital reactions and are potential targets of drugs against a wide variety of human disorders including osteoporosis, various cancers, antibiotic resistance, and erectile dysfunctions. These enzymes also tend to catalyze more than one reaction. An example is an organophosphate (OP)-degrading enzyme from Enterobacter aerogenes (GpdQ). Although GpdQ is part of a pathway that is used by bacteria to degrade glycerolphosphoesters, it hydrolyzes a variety of other phosphodiesters and displays low levels of activity against phosphomono- and triesters. Such a promiscuous nature may have assisted the apparent recent evolution of some binuclear metallohydrolases to deal with situations created by human intervention such as OP pesticides in the environment. OP pesticides were first used approximately 70 years ago, and therefore the enzymes that bacteria use to degrade them must have evolved very quickly on the evolutionary time scale. The promiscuous nature of enzymes such as GpdQ makes them ideal candidates for the application of directed evolution to produce new enzymes that can be used in bioremediation and against chemical warfare. In this Account, we review the mechanisms employed by binuclear metallohydrolases and use PAP, the OP-degrading enzyme from Agrobacterium radiobacter (OPDA), and GpdQ as representative systems because they illustrate both the diversity and similarity of the reactions catalyzed by this family of enzymes. The majority of binuclear metallohydrolases utilize metal ion-activated water molecules as nucleophiles to initiate hydrolysis, while some, such as alkaline phosphatase, employ an intrinsic polar amino acid. Here we only focus on catalytic strategies applied by the former group.
Collapse
Affiliation(s)
- Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Chemistry, National University of Ireland—Maynooth, Maynooth, County Kildare, Ireland
| | - Nataša Mitić
- Department of Chemistry, National University of Ireland—Maynooth, Maynooth, County Kildare, Ireland
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David L. Ollis
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Ross P. McGeary
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Luke W. Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
22
|
Feder D, Hussein WM, Clayton DJ, Kan MW, Schenk G, McGeary RP, Guddat LW. Identification of Purple Acid Phosphatase Inhibitors by Fragment-Based Screening: Promising New Leads for Osteoporosis Therapeutics. Chem Biol Drug Des 2012; 80:665-74. [DOI: 10.1111/cbdd.12001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Brücher K, Illarionov B, Held J, Tschan S, Kunfermann A, Pein MK, Bacher A, Gräwert T, Maes L, Mordmüller B, Fischer M, Kurz T. α-Substituted β-oxa isosteres of fosmidomycin: synthesis and biological evaluation. J Med Chem 2012; 55:6566-75. [PMID: 22731758 DOI: 10.1021/jm300652f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Specific inhibition of enzymes of the non-mevalonate pathway is a promising strategy for the development of novel antiplasmodial drugs. α-Aryl-substituted β-oxa isosteres of fosmidomycin with a reverse orientation of the hydroxamic acid group were synthesized and evaluated for their inhibitory activity against recombinant 1-deoxy-d-xylulose 5-phosphate reductoisomerase (IspC) of Plasmodium falciparum and for their in vitro antiplasmodial activity against chloroquine-sensitive and resistant strains of P. falciparum . The most active derivative inhibits IspC protein of P. falciparum (PfIspC) with an IC(50) value of 12 nM and shows potent in vitro antiplasmodial activity. In addition, lipophilic ester prodrugs demonstrated improved P. falciparum growth inhibition in vitro.
Collapse
Affiliation(s)
- Karin Brücher
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Faridoon, Hussein WM, Ul Islam N, Guddat LW, Schenk G, McGeary RP. Penicillin inhibitors of purple acid phosphatase. Bioorg Med Chem Lett 2012; 22:2555-9. [DOI: 10.1016/j.bmcl.2012.01.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 10/14/2022]
|
25
|
Rout L, Regati S, Zhao CG. Synthesis of α-Arylphosphonates Using Copper-Catalyzed α-Arylation and Deacylative α-Arylation of β-Ketophosphonates. Adv Synth Catal 2011; 353:3340-3346. [PMID: 22505878 PMCID: PMC3324819 DOI: 10.1002/adsc.201100605] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Efficient methods for the direct arylation and deacylative arylation of β-ketophosphonates with iodoarenes in presence of a copper(I) or a copper(II) salt as the catalysts were developed. The corresponding α-arylphosphonates were obtained in high yields. A tentative mechanism for the deacylative arylation reaction was proposed on the basis of the experimental data.
Collapse
Affiliation(s)
- Laxmidhar Rout
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | | | | |
Collapse
|
26
|
Demmer CS, Krogsgaard-Larsen N, Bunch L. Review on modern advances of chemical methods for the introduction of a phosphonic acid group. Chem Rev 2011; 111:7981-8006. [PMID: 22010799 DOI: 10.1021/cr2002646] [Citation(s) in RCA: 409] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Charles S Demmer
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | |
Collapse
|
27
|
Mohd-Pahmi SH, Hussein WM, Schenk G, McGeary RP. Synthesis, modelling and kinetic assays of potent inhibitors of purple acid phosphatase. Bioorg Med Chem Lett 2011; 21:3092-4. [DOI: 10.1016/j.bmcl.2011.03.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 11/26/2022]
|
28
|
Zhou X, Zhang Q, Hui Y, Chen W, Jiang J, Lin L, Liu X, Feng X. Catalytic Asymmetric Synthesis of Quaternary α-Hydroxy Trifluoromethyl Phosphonate via Chiral Aluminum(III) Catalyzed Hydrophosphonylation of Trifluoromethyl Ketones. Org Lett 2010; 12:4296-9. [DOI: 10.1021/ol101737b] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xin Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Qi Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Yonghai Hui
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Weiliang Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Jun Jiang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
29
|
Mitić N, Noble CJ, Gahan LR, Hanson GR, Schenk G. Metal-Ion Mutagenesis: Conversion of a Purple Acid Phosphatase from Sweet Potato to a Neutral Phosphatase with the Formation of an Unprecedented Catalytically Competent MnIIMnII Active Site. J Am Chem Soc 2009; 131:8173-9. [DOI: 10.1021/ja900797u] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nataša Mitić
- School of Chemistry and Molecular Biosciences, and Centre of Magnetic Resonance, The University of Queensland, Queensland, Australia, 4072
| | - Christopher J. Noble
- School of Chemistry and Molecular Biosciences, and Centre of Magnetic Resonance, The University of Queensland, Queensland, Australia, 4072
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences, and Centre of Magnetic Resonance, The University of Queensland, Queensland, Australia, 4072
| | - Graeme R. Hanson
- School of Chemistry and Molecular Biosciences, and Centre of Magnetic Resonance, The University of Queensland, Queensland, Australia, 4072
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, and Centre of Magnetic Resonance, The University of Queensland, Queensland, Australia, 4072
| |
Collapse
|