1
|
Gao D, Zuo Z. The crystal structure of 4-(2-bromoethoxy)-2-hydroxybenzaldehyde, C 9H 9BrO 3. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C9H9BrO3, monoclinic, P21
n (no. 14), a = 10.8914(4) Å, b = 4.6335(2) Å, c = 18.4554(8) Å, β = 97.278(2)°, V = 923.85(7) Å3, Z = 4, T = 225 K, R
gt
(F) = 0.0385, wR
ref
(F
2) = 0.0902.
Collapse
Affiliation(s)
- Dongmei Gao
- Yangling Vocational and Technical College , Yangling 712100 , China
| | - Zhenyu Zuo
- College of Pharmacy, Shaanxi University of Chinese Medicine , Xi’an , Shaanxi , 712046 , China
| |
Collapse
|
2
|
Brandli A, Khong FL, Kong RCK, Kelly DJ, Fletcher EL. Transcriptomic analysis of choroidal neovascularization reveals dysregulation of immune and fibrosis pathways that are attenuated by a novel anti-fibrotic treatment. Sci Rep 2022; 12:859. [PMID: 35039609 PMCID: PMC8764037 DOI: 10.1038/s41598-022-04845-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/15/2021] [Indexed: 02/05/2023] Open
Abstract
Neovascular AMD (nAMD) leads to vision loss and is a leading cause of visual impairment in the industrialised world. Current treatments that target blood vessel growth have not been able to treat subretinal fibrosis and nAMD patients continue to lose vision. The molecular mechanisms involved in the development of fibrotic lesions in nAMD are not well understood. The aim of this study was to further understand subretinal fibrosis in the laser photocoagulation model of choroidal neovascularization (CNV) by studying the whole transcriptome of the RPE/choroid following CNV and the application of an anti-fibrotic following CNV. Seven days after laser induced CNV, RPE and choroid tissue was separated and underwent RNAseq. Differential expression analysis and pathway analysis revealed an over representation of immune signalling and fibrotic associated pathways in CNV compared to control RPE/choroid tissue. Comparisons between the mouse CNV model to human CNV revealed an overlap in upregulated expression for immune genes (Ccl2, Ccl8 and Cxcl9) and extracellular matrix remodeling genes (Comp, Lrcc15, Fndc1 and Thbs2). Comparisons between the CNV model and other fibrosis models showed an overlap of over 60% of genes upregulated in either lung or kidney mouse models of fibrosis. Treatment of CNV using a novel cinnamoyl anthranilate anti-fibrotic (OCX063) in the laser induced CNV model was selected as this class of drugs have previously been shown to target fibrosis. CNV lesion leakage and fibrosis was found to be reduced using OCX063 and gene expression of genes within the TGF-beta signalling pathway. Our findings show the presence of fibrosis gene expression pathways present in the laser induced CNV mouse model and that anti-fibrotic treatments offer the potential to reduce subretinal fibrosis in AMD.
Collapse
Affiliation(s)
- Alice Brandli
- Department of Anatomy and Physiology, The University of Melbourne, Grattan St, Parkville, VIC, 3010, Australia
| | - Fay L Khong
- Department of Medicine, The University of Melbourne, St Vincent's Hospital, Fitzroy, VIC, 3065, Australia
- Occurx Pty Ltd, 31 Queen St, Melbourne, VIC, 3000, Australia
| | - Roy C K Kong
- Department of Medicine, The University of Melbourne, St Vincent's Hospital, Fitzroy, VIC, 3065, Australia
- Occurx Pty Ltd, 31 Queen St, Melbourne, VIC, 3000, Australia
| | - Darren J Kelly
- Department of Medicine, The University of Melbourne, St Vincent's Hospital, Fitzroy, VIC, 3065, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Grattan St, Parkville, VIC, 3010, Australia.
| |
Collapse
|
3
|
Gerckens M, Schorpp K, Pelizza F, Wögrath M, Reichau K, Ma H, Dworsky AM, Sengupta A, Stoleriu MG, Heinzelmann K, Merl-Pham J, Irmler M, Alsafadi HN, Trenkenschuh E, Sarnova L, Jirouskova M, Frieß W, Hauck SM, Beckers J, Kneidinger N, Behr J, Hilgendorff A, Hadian K, Lindner M, Königshoff M, Eickelberg O, Gregor M, Plettenburg O, Yildirim AÖ, Burgstaller G. Phenotypic drug screening in a human fibrosis model identified a novel class of antifibrotic therapeutics. SCIENCE ADVANCES 2021; 7:eabb3673. [PMID: 34936468 PMCID: PMC8694600 DOI: 10.1126/sciadv.abb3673] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Fibrogenic processes instigate fatal chronic diseases leading to organ failure and death. Underlying biological processes involve induced massive deposition of extracellular matrix (ECM) by aberrant fibroblasts. We subjected diseased primary human lung fibroblasts to an advanced three-dimensional phenotypic high-content assay and screened a repurposing drug library of small molecules for inhibiting ECM deposition. Fibrotic Pattern Detection by Artificial Intelligence identified tranilast as an effective inhibitor. Structure-activity relationship studies confirmed N-(2-butoxyphenyl)-3-(phenyl)acrylamides (N23Ps) as a novel and highly potent compound class. N23Ps suppressed myofibroblast transdifferentiation, ECM deposition, cellular contractility, and altered cell shapes, thus advocating a unique mode of action. Mechanistically, transcriptomics identified SMURF2 as a potential therapeutic target network. Antifibrotic activity of N23Ps was verified by proteomics in a human ex vivo tissue fibrosis disease model, suppressing profibrotic markers SERPINE1 and CXCL8. Conclusively, N23Ps are a novel class of highly potent compounds inhibiting organ fibrosis in patients.
Collapse
Affiliation(s)
- Michael Gerckens
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Kenji Schorpp
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Francesco Pelizza
- Chemical and Process Engineering, Strathclyde University, Glasgow, Scotland, UK
| | - Melanie Wögrath
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
| | - Kora Reichau
- Institute of Medicinal Chemistry, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Leibniz Universität Hannover, Institute of Organic Chemistry and Center for Biomolecular Drug Research (BMWZ), Hannover, Germany
| | - Huilong Ma
- Institute of Medicinal Chemistry, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Leibniz Universität Hannover, Institute of Organic Chemistry and Center for Biomolecular Drug Research (BMWZ), Hannover, Germany
| | - Armando-Marco Dworsky
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
| | - Arunima Sengupta
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Mircea Gabriel Stoleriu
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
- Asklepios Fachkliniken Munich-Gauting, Munich, Germany
| | - Katharina Heinzelmann
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Comprehensive Pneumology Center (CPC), Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Hani N. Alsafadi
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
- Comprehensive Pneumology Center (CPC), Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Wallenberg Center for Molecular Medicine (WCMM), Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Eduard Trenkenschuh
- Department of Pharmacy–Center for Drug Research, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximillians University of Munich, Munich, Germany
| | - Lenka Sarnova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marketa Jirouskova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Wolfgang Frieß
- Department of Pharmacy–Center for Drug Research, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximillians University of Munich, Munich, Germany
| | - Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Chair of Experimental Genetics, Technische Universität München, 85354 Freising, Germany
| | - Nikolaus Kneidinger
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
- Department of Internal Medicine V, Ludwig-Maximillians University of Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Jürgen Behr
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
- Asklepios Fachkliniken Munich-Gauting, Munich, Germany
- Department of Internal Medicine V, Ludwig-Maximillians University of Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Anne Hilgendorff
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
| | - Kamyar Hadian
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael Lindner
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
- Asklepios Fachkliniken Munich-Gauting, Munich, Germany
- Paracelsus Medical Private University, Salzburg, Austria
| | - Melanie Königshoff
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Comprehensive Pneumology Center (CPC), Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Oliver Plettenburg
- Institute of Medicinal Chemistry, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Leibniz Universität Hannover, Institute of Organic Chemistry and Center for Biomolecular Drug Research (BMWZ), Hannover, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Ali Önder Yildirim
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Gerald Burgstaller
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
- Corresponding author.
| |
Collapse
|
4
|
Zhang H, Yu P, Lin H, Jin Z, Zhao S, Zhang Y, Xu Q, Jin H, Liu Z, Yang W, Zhang L. The Discovery of Novel ACA Derivatives as Specific TRPM2 Inhibitors that Reduce Ischemic Injury Both In Vitro and In Vivo. J Med Chem 2021; 64:3976-3996. [PMID: 33784097 DOI: 10.1021/acs.jmedchem.0c02129] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The transient receptor potential melastatin 2 (TRPM2) channel is associated with ischemia/reperfusion injury, inflammation, cancer, and neurodegenerative diseases. However, the limit of specific inhibitors impedes the development of TRPM2-targeted therapeutic agents. To discover more potent and selective TRPM2 inhibitors, 59 N-(p-amylcinnamoyl) anthranilic acid (ACA) derivatives were synthesized and evaluated using calcium imaging and electrophysiology approaches. Systematic structure-activity relationship studies resulted in some potent compounds inhibiting the TRPM2 channel with sub-micromolar half-maximal inhibitory concentration values. Among them, the preferred compound A23 exhibited TRPM2 selectivity over TRPM8 and TRPV1 channels as well as phospholipase A2 and showed neuroprotective activity in vitro. Following pharmacokinetic studies, A23 was further evaluated in a transient middle cerebral artery occlusion model in vivo, which significantly reduced cerebral infarction. These data indicate that A23 might serve as a useful tool for TRPM2-related research as well as a lead compound for the development of therapeutic agents for ischemic injury.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Peilin Yu
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, P. R. China
| | - Hongwei Lin
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Zefang Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Siqi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Yi Zhang
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Qingxia Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Wei Yang
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
5
|
Abstract
Diabetic heart disease is a growing and important public health risk. Apart from the risk of coronary artery disease or hypertension, diabetes mellitus (DM) is a well-known risk factor for heart failure in the form of diabetic cardiomyopathy (DiaCM). Currently, DiaCM is defined as myocardial dysfunction in patients with DM in the absence of coronary artery disease and hypertension. The underlying pathomechanism of DiaCM is partially understood, but accumulating evidence suggests that metabolic derangements, oxidative stress, increased myocardial fibrosis and hypertrophy, inflammation, enhanced apoptosis, impaired intracellular calcium handling, activation of the renin-angiotensin-aldosterone system, mitochondrial dysfunction, and dysregulation of microRNAs, among other factors, are involved. Numerous animal models have been used to investigate the pathomechanisms of DiaCM. Despite some limitations, animal models for DiaCM have greatly advanced our understanding of pathomechanisms and have helped in the development of successful disease management strategies. In this review, we summarize the current pathomechanisms of DiaCM and provide animal models for DiaCM according to its pathomechanisms, which may contribute to broadening our understanding of the underlying mechanisms and facilitating the identification of possible new therapeutic targets.
Collapse
Affiliation(s)
- Wang-Soo Lee
- Division of Cardiology, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Corresponding authors: Wang-Soo Lee https://orcid.org/0000-0002-8264-0866 Division of Cardiology, Department of Internal Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea E-mail:
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Corresponding authors: Wang-Soo Lee https://orcid.org/0000-0002-8264-0866 Division of Cardiology, Department of Internal Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea E-mail:
| |
Collapse
|
6
|
Webber M, Jackson SP, Moon JC, Captur G. Myocardial Fibrosis in Heart Failure: Anti-Fibrotic Therapies and the Role of Cardiovascular Magnetic Resonance in Drug Trials. Cardiol Ther 2020; 9:363-376. [PMID: 32862327 PMCID: PMC7584719 DOI: 10.1007/s40119-020-00199-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
All heart muscle diseases that cause chronic heart failure finally converge into one dreaded pathological process that is myocardial fibrosis. Myocardial fibrosis predicts major adverse cardiovascular events and death, yet we are still missing the targeted therapies capable of halting and/or reversing its progression. Fundamentally it is a problem of disproportionate extracellular collagen accumulation that is part of normal myocardial ageing and accentuated in certain disease states. In this article we discuss the role of cardiovascular magnetic resonance (CMR) imaging biomarkers to track fibrosis and collate results from the most promising animal and human trials of anti-fibrotic therapies to date. We underscore the ever-growing role of CMR in determining the efficacy of such drugs and encourage future trialists to turn to CMR when designing their surrogate study endpoints.
Collapse
Affiliation(s)
- Matthew Webber
- UCL MRC Unit for Lifelong Health and Ageing, University College London, Fitzrovia, London, WC1E 7HB, UK
- Cardiology Department, Centre for Inherited Heart Muscle Conditions, The Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK
- UCL Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Stephen P Jackson
- Department of Biochemistry, The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - James C Moon
- UCL Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
- Cardiovascular Magnetic Resonance Unit, Barts Heart Centre, West Smithfield, London, UK
| | - Gabriella Captur
- UCL MRC Unit for Lifelong Health and Ageing, University College London, Fitzrovia, London, WC1E 7HB, UK.
- Cardiology Department, Centre for Inherited Heart Muscle Conditions, The Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK.
- UCL Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
7
|
Synthesis and neuroprotective effects of novel chalcone-triazole hybrids. Bioorg Chem 2020; 105:104384. [DOI: 10.1016/j.bioorg.2020.104384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/16/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
|
8
|
Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol 2020; 17:585-607. [PMID: 32080423 PMCID: PMC7849055 DOI: 10.1038/s41569-020-0339-2] [Citation(s) in RCA: 428] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
The pathogenesis and clinical features of diabetic cardiomyopathy have been well-studied in the past decade, but effective approaches to prevent and treat this disease are limited. Diabetic cardiomyopathy occurs as a result of the dysregulated glucose and lipid metabolism associated with diabetes mellitus, which leads to increased oxidative stress and the activation of multiple inflammatory pathways that mediate cellular and extracellular injury, pathological cardiac remodelling, and diastolic and systolic dysfunction. Preclinical studies in animal models of diabetes have identified multiple intracellular pathways involved in the pathogenesis of diabetic cardiomyopathy and potential cardioprotective strategies to prevent and treat the disease, including antifibrotic agents, anti-inflammatory agents and antioxidants. Some of these interventions have been tested in clinical trials and have shown favourable initial results. In this Review, we discuss the mechanisms underlying the development of diabetic cardiomyopathy and heart failure in type 1 and type 2 diabetes mellitus, and we summarize the evidence from preclinical and clinical studies that might provide guidance for the development of targeted strategies. We also highlight some of the novel pharmacological therapeutic strategies for the treatment and prevention of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Zhiguo Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Chao Zheng
- The Second Affiliated Hospital Center of Chinese-American Research Institute for Diabetic Complications, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kupper A Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA
- Division of Endocrinology, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Bradley B Keller
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
9
|
Bingul M, Arndt GM, Marshall GM, Cheung BB, Kumar N, Black DS. Synthesis, Characterization and Biological Evaluation of Novel Dihydropyranoindoles Improving the Anticancer Effects of HDAC Inhibitors. Molecules 2020; 25:molecules25061377. [PMID: 32197360 PMCID: PMC7144403 DOI: 10.3390/molecules25061377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/03/2022] Open
Abstract
The dihydropyranoindole scaffold was identified as a promising target for improving the anti-cancer activity of HDAC inhibitors from the preliminary screening of a library of compounds. A suitable methodology has been developed for the preparation of novel dihydropyranoindoles via the Hemetsberger indole synthesis using azido-phenylacrylates, derived from the reaction of corresponding alkynyl-benzaldehydes with methyl azidoacetate, followed by thermal cyclization in high boiling solvents. Anti-cancer activity of all the newly synthesized compounds was evaluated against the SH-SY5Y and Kelly neuroblastoma cells as well as the MDA-MB-231 and MCF-7 breast adenocarcinoma cell lines. Biological studies showed that the tetracyclic systems had significant cytotoxic activity at higher concentration against the neuroblastoma cancer cells. More importantly, these systems, at the lower concentration, considerably enhanced the SAHA toxicity. In addition to that, the toxicity of designated systems on the healthy human cells was found to be significantly less than the cancer cells.
Collapse
Affiliation(s)
- Murat Bingul
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia;
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (G.M.A.); (G.M.M.)
- School of Pharmacy, Dicle University, 21280 Diyarbakır, Turkey
| | - Greg M. Arndt
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (G.M.A.); (G.M.M.)
- ACRF Drug Discovery Centre for Childhood Cancer, Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Glenn M. Marshall
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (G.M.A.); (G.M.M.)
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
| | - Belamy B. Cheung
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (G.M.A.); (G.M.M.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Correspondence: (B.B.C.); (N.K.); (D.S.B.); Tel.: +61-2-9385-2450 (B.B.C.); +61-2-9385-4698 (N.K.); +61-2-9385-4657 (D.S.B.)
| | - Naresh Kumar
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia;
- Correspondence: (B.B.C.); (N.K.); (D.S.B.); Tel.: +61-2-9385-2450 (B.B.C.); +61-2-9385-4698 (N.K.); +61-2-9385-4657 (D.S.B.)
| | - David StC. Black
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia;
- Correspondence: (B.B.C.); (N.K.); (D.S.B.); Tel.: +61-2-9385-2450 (B.B.C.); +61-2-9385-4698 (N.K.); +61-2-9385-4657 (D.S.B.)
| |
Collapse
|
10
|
Karataş S, Çapan İ, Servi S. Synthesis of Indole and Benzimidazole Substituted Novel 16-Arylidene Steroid Derivatives. LETT ORG CHEM 2019. [DOI: 10.2174/1570178616666190305130217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Novel aza-heterocyclic substituted dehydroepiandrosterone derivatives were synthesized
through a three-step reaction sequence. Some new O-alkylated 4-hydroxybenzaldehydes were synthesized
from the reaction of substituted benzaldehydes with dihalogen compounds which have different
chain lengths. 16-Arylidene steroids were synthesized from the base-catalyzed aldol condensation of
O-alkylated 4-hydroxybenzaldehydes and dehydroepiandrosterone. New indolyl and benzimidazolyl
substituted steroid derivatives as hybrid molecules were obtained from the reaction of 16-arylidene
steroids with indole or benzimidazole.
Collapse
Affiliation(s)
- Semra Karataş
- Department of Chemistry, Faculty of Science, Firat University, Elazıg, Turkey
| | - İrfan Çapan
- Department of Polymer Technology, Technical Sciences Vocational College, Gazi University, Ankara, Turkey
| | - Süleyman Servi
- Department of Chemistry, Faculty of Science, Firat University, Elazıg, Turkey
| |
Collapse
|
11
|
Affiliation(s)
- Michael J. Zacuto
- Drug Substance Development, Celgene Corporation, 556 Morris Avenue, Summit, New Jersey 07901, United States
| |
Collapse
|
12
|
An alternative way to analogues of avenanthramides and their antiradical activity. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2288-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Vendrusculo V, de Souza VP, M Fontoura LA, M D'Oca MG, Banzato TP, Monteiro PA, Pilli RA, de Carvalho JE, Russowsky D. Synthesis of novel perillyl-dihydropyrimidinone hybrids designed for antiproliferative activity. MEDCHEMCOMM 2018; 9:1553-1564. [PMID: 30288229 PMCID: PMC6151448 DOI: 10.1039/c8md00270c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/27/2018] [Indexed: 12/29/2022]
Abstract
A series of fifteen novel dihydropyrimidinone hybrid compounds were synthesized in good yields via a multicomponent reaction combined with the Huisgen reaction. The antiproliferative activity was investigated against nine tumor cell lines, and four hybrid compounds (TGI < 10 μM) showed promising antiproliferative activity against the tumor cell lines OVCAR-3 (ovarian), UACC-62 (melanoma) and U251 (glioma). Several hybrid compounds assayed have high TGI values (TGI 147.92-507.82) for the human keratinocyte cell line (HaCat), which reveals selectivity to cancer cells.
Collapse
Affiliation(s)
- Vinicius Vendrusculo
- Instituto de Química , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil .
| | - Vanessa P de Souza
- Instituto de Química , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil .
| | - Luiz Antônio M Fontoura
- Fundação da Ciência e Tecnologia do Estado do Rio Grande do Sul , Porto Alegre , RS , Brazil
- PPGEMPS , Universidade Luterana do Brasil , Canoas , RS , Brazil
| | - Marcelo G M D'Oca
- Escola de Química e Alimentos , Universidade Federal do Rio Grande , Rio Grande , RS , Brazil
| | - Thais P Banzato
- Instituto de Biologia , Universidade Estadual Campinas , Campinas , SP , Brazil
- Centro de Pesquisas Químicas , Biológicas e Agrícolas , Universidade Estadual de Campinas , Campinas , SP , Brazil
| | - Paula A Monteiro
- Instituto de Biologia , Universidade Estadual Campinas , Campinas , SP , Brazil
- Centro de Pesquisas Químicas , Biológicas e Agrícolas , Universidade Estadual de Campinas , Campinas , SP , Brazil
| | - Ronaldo A Pilli
- Instituto de Química , Universidade Estadual de Campinas , Campinas , SP , Brazil
| | - João Ernesto de Carvalho
- Instituto de Biologia , Universidade Estadual Campinas , Campinas , SP , Brazil
- Centro de Pesquisas Químicas , Biológicas e Agrícolas , Universidade Estadual de Campinas , Campinas , SP , Brazil
| | - Dennis Russowsky
- Instituto de Química , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil .
| |
Collapse
|
14
|
Lee SJ, Sim GY, Kang H, Yeo WS, Kim BG, Ahn JH. Synthesis of avenanthramides using engineered Escherichia coli. Microb Cell Fact 2018; 17:46. [PMID: 29566686 PMCID: PMC5863376 DOI: 10.1186/s12934-018-0896-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/19/2018] [Indexed: 11/22/2022] Open
Abstract
Background Hydroxycinnamoyl anthranilates, also known as avenanthramides (avns), are a group of phenolic alkaloids with anti-inflammatory, antioxidant, anti-itch, anti-irritant, and antiatherogenic activities. Some avenanthramides (avn A–H and avn K) are conjugates of hydroxycinnamic acids (HC), including p-coumaric acid, caffeic acid, and ferulic acid, and anthranilate derivatives, including anthranilate, 4-hydroxyanthranilate, and 5-hydroxyanthranilate. Avns are primarily found in oat grain, in which they were originally designated as phytoalexins. Knowledge of the avns biosynthesis pathway has now made it possible to synthesize avns through a genetic engineering strategy, which would help to further elucidate their properties and exploit their beneficial biological activities. The aim of the present study was to synthesize natural avns in Escherichia coli to serve as a valuable resource. Results We synthesized nine avns in E. coli. We first synthesized avn D from glucose in E. coli harboring tyrosine ammonia lyase (TAL), 4-coumarate:coenzyme A ligase (4CL), anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT), and anthranilate synthase (trpEG). A trpD deletion mutant was used to increase the amount of anthranilate in E. coli. After optimizing the incubation temperature and cell density, approximately 317.2 mg/L of avn D was synthesized. Avn E and avn F were then synthesized from avn D, using either E. coli harboring HpaBC and SOMT9 or E. coli harboring HapBC alone, respectively. Avn A and avn G were synthesized by feeding 5-hydroxyanthranilate or 4-hydroxyanthranilate to E. coli harboring TAL, 4CL, and HCBT. Avn B, avn C, avn H, and avn K were synthesized from avn A or avn G, using the same approach employed for the synthesis of avn E and avn F from avn D. Conclusions Using different HCs, nine avns were synthesized, three of which (avn D, avn E, and avn F) were synthesized from glucose in E. coli. These diverse avns provide a strategy to synthesize both natural and unnatural avns, setting a foundation for exploring the biological activities of diverse avns. Electronic supplementary material The online version of this article (10.1186/s12934-018-0896-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Geun Young Sim
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyunook Kang
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Won Seok Yeo
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Bong-Gyu Kim
- Department of Forest Resources, Gyeongnam National University of Science and Technology, 33 Dongjin-ro, Jinju-si, Gyeongsangman-do, 52725, South Korea
| | - Joong-Hoon Ahn
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
15
|
Weiss H, Reichel J, Görls H, Schneider KRA, Micheel M, Pröhl M, Gottschaldt M, Dietzek B, Weigand W. Curcuminoid-BF 2 complexes: Synthesis, fluorescence and optimization of BF 2 group cleavage. Beilstein J Org Chem 2017; 13:2264-2272. [PMID: 29114330 PMCID: PMC5669223 DOI: 10.3762/bjoc.13.223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/28/2017] [Indexed: 12/16/2022] Open
Abstract
Eight difluoroboron complexes of curcumin derivatives carrying alkyne groups containing substituents have been synthesized following an optimised reaction pathway. The complexes were received in yields up to 98% and high purities. Their properties as fluorescent dyes have been investigated. Furthermore, a strategy for the hydrolysis of the BF2 group has been established using aqueous methanol and sodium hydroxide or triethylamine.
Collapse
Affiliation(s)
- Henning Weiss
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-Universität Jena, Humboldtstrasse 8, 07743 Jena, Germany
| | - Jeannine Reichel
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-Universität Jena, Humboldtstrasse 8, 07743 Jena, Germany
| | - Helmar Görls
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-Universität Jena, Humboldtstrasse 8, 07743 Jena, Germany
| | | | - Mathias Micheel
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Michael Pröhl
- Jena Center of Soft Matter, Friedrich-Schiller-Universität Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Michael Gottschaldt
- Jena Center of Soft Matter, Friedrich-Schiller-Universität Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Benjamin Dietzek
- Institute for Physical Chemistry, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, 07743 Jena, Germany.,Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Wolfgang Weigand
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-Universität Jena, Humboldtstrasse 8, 07743 Jena, Germany.,Jena Center of Soft Matter, Friedrich-Schiller-Universität Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
16
|
Troshin K, Hartwig JF. Snap deconvolution: An informatics approach to high-throughput discovery of catalytic reactions. Science 2017; 357:175-181. [DOI: 10.1126/science.aan1568] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/30/2017] [Indexed: 12/27/2022]
|
17
|
Fang L, Murphy AJ, Dart AM. A Clinical Perspective of Anti-Fibrotic Therapies for Cardiovascular Disease. Front Pharmacol 2017; 8:186. [PMID: 28428753 PMCID: PMC5382201 DOI: 10.3389/fphar.2017.00186] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/22/2017] [Indexed: 12/13/2022] Open
Abstract
Cardiac fibrosis are central to various cardiovascular diseases. Research on the mechanisms and therapeutic targets for cardiac fibrosis has advanced greatly in recent years. However, while many anti-fibrotic treatments have been studied in animal models and seem promising, translation of experimental findings into human patients has been rather limited. Thus, several potential new treatments which have shown to reduce cardiac fibrosis in animal models have either not been tested in humans or proved to be disappointing in clinical trials. A majority of clinical studies are of small size or have not been maintained for long enough periods. In addition, although some conventional therapies, such as renin-angiotensin-aldosterone system (RAAS) inhibitors, have been shown to reduce cardiac fibrosis in humans, cardiac fibrosis persists in patients with heart failure even when treated with these conventional therapies, indicating a need to develop novel and effective anti-fibrotic therapies in cardiovascular disease. In this review article, we summarize anti-fibrotic therapies for cardiovascular disease in humans, discuss the limitations of currently used therapies, along with possible reasons for the failure of so many anti-fibrotic drugs at the clinical level. We will then explore the future directions of anti-fibrotic therapies on cardiovascular disease, and this will include emerging anti-fibrotics that show promise, such as relaxin. A better understanding of the differences between animal models and human pathology, and improved insight into carefully designed trials on appropriate end-points and appropriate dosing need to be considered to identify more effective anti-fibrotics for treating cardiovascular fibrosis in human patients.
Collapse
Affiliation(s)
- Lu Fang
- Baker IDI Heart and Diabetes InstituteMelbourne, VIC, Australia
| | - Andrew J Murphy
- Baker IDI Heart and Diabetes InstituteMelbourne, VIC, Australia
| | - Anthony M Dart
- Baker IDI Heart and Diabetes InstituteMelbourne, VIC, Australia.,Department of Cardiovascular Medicine, The Alfred HospitalMelbourne, VIC, Australia
| |
Collapse
|
18
|
Liu Z, Liu B, Zhao XF, Wu YB, Bi X. Silver-Catalyzed Cross-Olefination of Donor and Acceptor Diazo Compounds: Use ofN-Nosylhydrazones as Diazo Surrogate. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601610] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhaohong Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis; Department of Chemistry; Northeast Normal University; 130024 Changchun China
| | - Binbin Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis; Department of Chemistry; Northeast Normal University; 130024 Changchun China
| | - Xue-Feng Zhao
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province; Institute of Molecular Science; Shanxi University; 030006 Taiyuan China
| | - Yan-Bo Wu
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province; Institute of Molecular Science; Shanxi University; 030006 Taiyuan China
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis; Department of Chemistry; Northeast Normal University; 130024 Changchun China
- State Key Laboratory of Elemento-Organic Chemistry; Nankai University; 300071 Tianjin China
| |
Collapse
|
19
|
Combinatorial Synthesis of Structurally Diverse Triazole-Bridged Flavonoid Dimers and Trimers. Molecules 2016; 21:molecules21091230. [PMID: 27649131 PMCID: PMC6273872 DOI: 10.3390/molecules21091230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/26/2016] [Accepted: 09/08/2016] [Indexed: 12/16/2022] Open
Abstract
Flavonoids are a large family of compounds associated with a broad range of biologically useful properties. In recent years, synthetic compounds that contain two flavonoid units linked together have attracted attention in drug discovery and development projects. Numerous flavonoid dimer systems, incorporating a range of monomers attached via different linkers, have been reported to exhibit interesting bioactivities. From a medicinal chemistry perspective, the 1,2,3-triazole ring system has been identified as a particularly attractive linker moiety in dimeric derivatives (owing to several favourable attributes including proven biological relevance and metabolic stability) and triazole-bridged flavonoid dimers possessing anticancer and antimalarial activities have recently been reported. However, there are relatively few examples of libraries of triazole-bridged flavonoid dimers and the diversity of flavonoid subunits present within these is typically limited. Thus, this compound type arguably remains underexplored within drug discovery. Herein, we report a modular strategy for the synthesis of novel and biologically interesting triazole-bridged flavonoid heterodimers and also very rare heterotrimers from readily available starting materials. Application of this strategy has enabled step-efficient and systematic access to a library of structurally diverse compounds of this sort, with a variety of monomer units belonging to six different structural subclasses of flavonoid successfully incorporated.
Collapse
|
20
|
Flexible double-headed cytosine-linked 2'-deoxycytidine nucleotides. Synthesis, polymerase incorporation to DNA and interaction with DNA methyltransferases. Bioorg Med Chem 2016; 24:1268-76. [PMID: 26899597 DOI: 10.1016/j.bmc.2016.01.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/25/2016] [Accepted: 01/29/2016] [Indexed: 12/31/2022]
Abstract
New types of double-headed 2'-deoxycytidine 5'-O-triphosphates (dC(XC)TPs) bearing another cytosine or 5-fluorocytosine linked through a flexible propargyl, homopropargyl or pent-1-ynyl linker to position 5 were prepared by the aqueous Sonogashira cross-coupling reactions of 5-iodo-dCTP with the corresponding (fluoro)cytosine-alkynes. The modified dC(XC)TPs were good substrates for DNA polymerases and were used for enzymatic synthesis of cytosine-functionalized DNA by primer extension or PCR. The cytosine- or fluorocytosine-linked DNA probes did not significantly inhibit DNA methyltransferases and did not cross-link to these proteins.
Collapse
|
21
|
Eudes A, Teixeira Benites V, Wang G, Baidoo EEK, Lee TS, Keasling JD, Loqué D. Precursor-Directed Combinatorial Biosynthesis of Cinnamoyl, Dihydrocinnamoyl, and Benzoyl Anthranilates in Saccharomyces cerevisiae. PLoS One 2015; 10:e0138972. [PMID: 26430899 PMCID: PMC4591981 DOI: 10.1371/journal.pone.0138972] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/07/2015] [Indexed: 01/23/2023] Open
Abstract
Biological synthesis of pharmaceuticals and biochemicals offers an environmentally friendly alternative to conventional chemical synthesis. These alternative methods require the design of metabolic pathways and the identification of enzymes exhibiting adequate activities. Cinnamoyl, dihydrocinnamoyl, and benzoyl anthranilates are natural metabolites which possess beneficial activities for human health, and the search is expanding for novel derivatives that might have enhanced biological activity. For example, biosynthesis in Dianthus caryophyllus is catalyzed by hydroxycinnamoyl/benzoyl-CoA:anthranilate N-hydroxycinnamoyl/ benzoyltransferase (HCBT), which couples hydroxycinnamoyl-CoAs and benzoyl-CoAs to anthranilate. We recently demonstrated the potential of using yeast (Saccharomyces cerevisiae) for the biological production of a few cinnamoyl anthranilates by heterologous co-expression of 4-coumaroyl:CoA ligase from Arabidopsis thaliana (4CL5) and HCBT. Here we report that, by exploiting the substrate flexibility of both 4CL5 and HCBT, we achieved rapid biosynthesis of more than 160 cinnamoyl, dihydrocinnamoyl, and benzoyl anthranilates in yeast upon feeding with both natural and non-natural cinnamates, dihydrocinnamates, benzoates, and anthranilates. Our results demonstrate the use of enzyme promiscuity in biological synthesis to achieve high chemical diversity within a defined class of molecules. This work also points to the potential for the combinatorial biosynthesis of diverse and valuable cinnamoylated, dihydrocinnamoylated, and benzoylated products by using the versatile biological enzyme 4CL5 along with characterized cinnamoyl-CoA- and benzoyl-CoA-utilizing transferases.
Collapse
Affiliation(s)
- Aymerick Eudes
- Joint BioEnergy Institute, Emery Station East, 5885 Hollis St, 4 Floor, Emeryville, California, 94608, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States of America
| | - Veronica Teixeira Benites
- Joint BioEnergy Institute, Emery Station East, 5885 Hollis St, 4 Floor, Emeryville, California, 94608, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States of America
- Graduate Program, San Francisco State University, San Francisco, California, 94132, United States of America
| | - George Wang
- Joint BioEnergy Institute, Emery Station East, 5885 Hollis St, 4 Floor, Emeryville, California, 94608, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States of America
| | - Edward E. K. Baidoo
- Joint BioEnergy Institute, Emery Station East, 5885 Hollis St, 4 Floor, Emeryville, California, 94608, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States of America
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emery Station East, 5885 Hollis St, 4 Floor, Emeryville, California, 94608, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States of America
| | - Jay D. Keasling
- Joint BioEnergy Institute, Emery Station East, 5885 Hollis St, 4 Floor, Emeryville, California, 94608, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States of America
- Department of Bioengineering & Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California, 94720, United States of America
| | - Dominique Loqué
- Joint BioEnergy Institute, Emery Station East, 5885 Hollis St, 4 Floor, Emeryville, California, 94608, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States of America
- * E-mail:
| |
Collapse
|
22
|
Deliyanti D, Zhang Y, Khong F, Berka DR, Stapleton DI, Kelly DJ, Wilkinson-Berka JL. FT011, a Novel Cardiorenal Protective Drug, Reduces Inflammation, Gliosis and Vascular Injury in Rats with Diabetic Retinopathy. PLoS One 2015. [PMID: 26222724 PMCID: PMC4519240 DOI: 10.1371/journal.pone.0134392] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Diabetic retinopathy features inflammation as well as injury to glial cells and the microvasculature, which are influenced by hypertension and overactivity of the renin-angiotensin system. FT011 is an anti-inflammatory and anti-fibrotic agent that has been reported to attenuate organ damage in diabetic rats with cardiomyopathy and nephropathy. However, the potential therapeutic utility of FT011 for diabetic retinopathy has not been evaluated. We hypothesized that FT011 would attenuate retinopathy in diabetic Ren-2 rats, which exhibit hypertension due to an overactive extra-renal renin-angiotensin system. Diabetic rats were studied for 8 and 32 weeks and received intravitreal injections of FT011 (50 μM) or vehicle (0.9% NaCl). Comparisons were to age-matched controls. In the 8-week study, retinal inflammation was examined by quantitating vascular leukocyte adherence, microglial/macrophage density and the expression of inflammatory mediators. Macroglial Müller cells, which exhibit a pro-inflammatory and pro-angiogenic phenotype in diabetes, were evaluated in the 8-week study as well as in culture following exposure to hyperglycaemia and FT011 (10, 30, 100 μM) for 72 hours. In the 32-week study, severe retinal vasculopathy was examined by quantitating acellular capillaries and extracellular matrix proteins. In diabetic rats, FT011 reduced retinal leukostasis, microglial density and mRNA levels of intercellular adhesion molecule-1 (ICAM-1). In Müller cells, FT011 reduced diabetes-induced gliosis and vascular endothelial growth factor (VEGF) immunolabeling and the hyperglycaemic-induced increase in ICAM-1, monocyte chemoattractant protein-1, CCL20, cytokine-induced neutrophil chemoattractant-1, VEGF and IL-6. Late intervention with FT011 reduced acellular capillaries and the elevated mRNA levels of collagen IV and fibronectin in diabetic rats. In conclusion, the protective effects of FT011 in cardiorenal disease extend to key elements of diabetic retinopathy and highlight its potential as a treatment approach.
Collapse
Affiliation(s)
- Devy Deliyanti
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia, 3004
| | - Yuan Zhang
- Department of Medicine, St Vincent’s Hospital, The University of Melbourne, Fitzroy, Victoria, Australia, 3065
| | - Fay Khong
- Department of Medicine, St Vincent’s Hospital, The University of Melbourne, Fitzroy, Victoria, Australia, 3065
| | - David R. Berka
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia, 3004
| | - David I. Stapleton
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia, 3052
| | - Darren J. Kelly
- Department of Medicine, St Vincent’s Hospital, The University of Melbourne, Fitzroy, Victoria, Australia, 3065
| | | |
Collapse
|
23
|
Chavez-Acevedo L, Miranda LD. Synthesis of novel tryptamine-based macrocycles using an Ugi 4-CR/microwave assisted click-cycloaddition reaction protocol. Org Biomol Chem 2015; 13:4408-12. [DOI: 10.1039/c5ob00067j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A practical synthesis of novel tryptamine-based macrocycles using an Ugi 4-CR/click-cycloaddition sequential reaction protocol is described.
Collapse
Affiliation(s)
- Lizbeth Chavez-Acevedo
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior S.N
- Ciudad Universitaria
- Coyoacán
| | - Luis D. Miranda
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior S.N
- Ciudad Universitaria
- Coyoacán
| |
Collapse
|
24
|
Gentile G, Mastroluca D, Ruggenenti P, Remuzzi G. Novel effective drugs for diabetic kidney disease? or not? Expert Opin Emerg Drugs 2014; 19:571-601. [PMID: 25376947 DOI: 10.1517/14728214.2014.979151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Diabetes mellitus is increasingly common worldwide and is expected to affect 592 million people by 2035. The kidney is often involved. A key goal in treating diabetes is to reduce the risk of development of kidney disease and, if kidney disease is already present, to delay the progression to end-stage renal disease (ESRD). This represents a social and ethical issue, as a significant proportion of patients reaching ESRD in developing countries do not have access to renal replacement therapy. AREAS COVERED The present review focuses on novel therapeutic approaches for diabetic nephropathy (DN), implemented on the basis of recent insights on its pathophysiology, which might complement the effects of single inhibition of the renin-angiotensin-aldosterone system (RAAS), the cornerstone of renoprotective interventions in diabetes, along with glycemic and blood pressure control. EXPERT OPINION Although a plethora of new treatment options has arisen from experimental studies, the number of novel renoprotective molecules successfully implemented in clinical practice over the last two decades is disappointingly low. Thus, new investigational strategies and diagnostic tools - including the appropriate choice of relevant renal end points and the study of urinary proteome of patients - will be as important as new therapeutic interventions to fight DN. Finally, in spite of huge financial interests in replacing the less expensive ACE inhibitors and angiotensin II receptor blockers with newer drugs, any future therapeutic approach has to be tested on top of - rather than instead of - optimal RAAS blockade.
Collapse
Affiliation(s)
- Giorgio Gentile
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Clinical Research Center for Rare Diseases "Aldo e Cele Daccò" , Villa Camozzi, Via Giambattista Camozzi 3, 24020, Ranica, Bergamo , Italy +39 03545351 ; +39 0354535371 ;
| | | | | | | |
Collapse
|
25
|
MMI-0100 inhibits cardiac fibrosis in myocardial infarction by direct actions on cardiomyocytes and fibroblasts via MK2 inhibition. J Mol Cell Cardiol 2014; 77:86-101. [PMID: 25257914 DOI: 10.1016/j.yjmcc.2014.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 09/07/2014] [Accepted: 09/10/2014] [Indexed: 12/12/2022]
Abstract
The cell-permeant peptide inhibitor of MAPKAP kinase 2 (MK2), MMI-0100, inhibits MK2 and downstream fibrosis and inflammation. Recent studies have demonstrated that MMI-0100 reduces intimal hyperplasia in a mouse vein graft model, pulmonary fibrosis in a murine bleomycin-induced model and development of adhesions in conjunction with abdominal surgery. MK2 is critical to the pathogenesis of ischemic heart injury as MK2(-/-) mice are resistant to ischemic remodeling. Therefore, we tested the hypothesis that inhibiting MK2 with MMI-0100 would protect the heart after acute myocardial infarction (AMI) in vivo. AMI was induced by placing a permanent LAD coronary ligation. When MMI-0100 peptide was given 30 min after permanent LAD coronary artery ligation, the resulting fibrosis was reduced/prevented ~50% at a 2 week time point, with a corresponding improvement in cardiac function and decrease in left ventricular dilation. In cultured cardiomyocytes and fibroblasts, MMI-0100 inhibited MK2 to reduce cardiomyocyte caspase 3/7 activity, while enhancing primary cardiac fibroblast caspase 3/7 activity, which may explain MMI-0100's salvage of cardiac function and anti-fibrotic effects in vivo. These findings suggest that therapeutic inhibition of MK2 after acute MI, using rationally-designed cell-permeant peptides, inhibits cardiac fibrosis and maintains cardiac function by mechanisms that involve inhibiting cardiomyocyte apoptosis, while enhancing primary cardiac fibroblast cell death.
Collapse
|
26
|
Sharma GVM, Ramesh A, Singh A, Srikanth G, Jayaram V, Duscharla D, Jun JH, Ummanni R, Malhotra SV. Imidazole derivatives show anticancer potential by inducing apoptosis and cellular senescence. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00277f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Pingaew R, Mandi P, Nantasenamat C, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Design, synthesis and molecular docking studies of novel N-benzenesulfonyl-1,2,3,4-tetrahydroisoquinoline-based triazoles with potential anticancer activity. Eur J Med Chem 2014; 81:192-203. [PMID: 24836071 DOI: 10.1016/j.ejmech.2014.05.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 05/01/2014] [Accepted: 05/04/2014] [Indexed: 01/09/2023]
Abstract
A novel series of N-benzenesulfonyl-1,2,3,4-tetrahydroisoquinolines (14-33) containing triazole moiety were designed and synthesized through rational cycloadditions using the modified Pictet-Spengler reaction and the Click chemistry. Antiproliferative activity against four cancer cell lines (e.g., HuCCA-1, HepG2, A549 and MOLT-3) revealed that many substituted triazole analogs of benzoates (20, 29) and benzaldehydes (30, 32) exhibited anticancer activity against all of the tested cancer cell lines in which the ester analog 20 was shown to be the most potent compound against HuCCA-1 (IC50 = 0.63 μM) and A549 (IC50 = 0.57 μM) cell lines. Triazoles bearing phenyl (15, 24), tolyl (26, 27), acetophenone (19), benzoate (20, 29), benzaldehyde (21, 30) and naphthalenyl (25) substituents showed stronger anticancer activity against HepG2 cells than that of the etoposide. Interestingly, the p-tolyl analog (27) displayed the most potent inhibitory activity (IC50 = 0.56 μM) against HepG2 cells without affecting normal cells. Of the investigated tetrahydroisoquinoline-triazoles, the promising compounds 20 and 27 were selected for molecular docking against AKR1C3, which was identified to be a plausible target site.
Collapse
Affiliation(s)
- Ratchanok Pingaew
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand.
| | - Prasit Mandi
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand; Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand; Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Somsak Ruchirawat
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand; Program in Chemical Biology, Chulabhorn Graduate Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Commission on Higher, Education (CHE), Ministry of Education, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
28
|
Williams SJ, Zammit SC, Cox AJ, Shackleford DM, Morizzi J, Zhang Y, Powell AK, Gilbert RE, Krum H, Kelly DJ. 3′,4′-Bis-difluoromethoxycinnamoylanthranilate (FT061): An orally-active antifibrotic agent that reduces albuminuria in a rat model of progressive diabetic nephropathy. Bioorg Med Chem Lett 2013; 23:6868-73. [DOI: 10.1016/j.bmcl.2013.09.100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/30/2013] [Indexed: 12/14/2022]
|
29
|
A new anti-fibrotic drug attenuates cardiac remodeling and systolic dysfunction following experimental myocardial infarction. Int J Cardiol 2013; 168:1174-85. [DOI: 10.1016/j.ijcard.2012.11.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 11/06/2012] [Accepted: 11/11/2012] [Indexed: 01/06/2023]
|
30
|
Production of hydroxycinnamoyl anthranilates from glucose in Escherichia coli. Microb Cell Fact 2013; 12:62. [PMID: 23806124 PMCID: PMC3716870 DOI: 10.1186/1475-2859-12-62] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 06/18/2013] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Oats contain hydroxycinnamoyl anthranilates, also named avenanthramides (Avn), which have beneficial health properties because of their antioxidant, anti-inflammatory, and antiproliferative effects. The microbial production of hydroxycinnamoyl anthranilates is an eco-friendly alternative to chemical synthesis or purification from plant sources. We recently demonstrated in yeast (Saccharomyces cerevisiae) that coexpression of 4-coumarate: CoA ligase (4CL) from Arabidopsis thaliana and hydroxycinnamoyl/benzoyl-CoA/anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT) from Dianthus caryophyllusenabled the biological production of several cinnamoyl anthranilates upon feeding with anthranilate and various cinnamates. Using engineering strategies to overproduce anthranilate and hydroxycinnamates, we describe here an entire pathway for the microbial synthesis of two Avns from glucose in Escherichia coli. RESULTS We first showed that coexpression of HCBT and Nt4CL1 from tobacco in the E. coli anthranilate-accumulating strain W3110 trpD9923 allowed the production of Avn D [N-(4'-hydroxycinnamoyl)-anthranilic acid] and Avn F [N-(3',4'-dihydroxycinnamoyl)-anthranilic acid] upon feeding with p-coumarate and caffeate, respectively. Moreover, additional expression in this strain of a tyrosine ammonia-lyase from Rhodotorula glutinis (RgTAL) led to the conversion of endogenous tyrosine into p-coumarate and resulted in the production of Avn D from glucose. Second, a 135-fold improvement in Avn D titer was achieved by boosting tyrosine production using two plasmids that express the eleven genes necessary for tyrosine synthesis from erythrose 4-phosphate and phosphoenolpyruvate. Finally, expression of either the p-coumarate 3-hydroxylase Sam5 from Saccharothrix espanensis or the hydroxylase complex HpaBC from E. coli resulted in the endogenous production of caffeate and biosynthesis of Avn F. CONCLUSION We established a biosynthetic pathway for the microbial production of valuable hydroxycinnamoyl anthranilates from an inexpensive carbon source. The proposed pathway will serve as a platform for further engineering toward economical and sustainable bioproduction of these pharmaceuticals and other related aromatic compounds.
Collapse
|
31
|
Kim S, Lim C, Lee S, Lee S, Cho H, Lee JY, Shim DS, Park HD, Kim S. Column chromatography-free solution-phase synthesis of a natural piper-amide-like compound library. ACS COMBINATORIAL SCIENCE 2013; 15:208-15. [PMID: 23458110 DOI: 10.1021/co400003d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have achieved an efficient solution-phase parallel synthesis of a library of natural piper-amide-like compounds from the bifunctional β-phosphono-N-hydroxy-succinimidyl ester intermediate. The primary important feature in our study is the construction of natural-product-like molecules through the adaptation of sophisticated organic reactions that create water-soluble byproducts for a chromatography-free purification. This simple and efficient method rapidly provides a combinatorial library of high yield and purity. The library was evaluated against GPCR targets to demonstrate its potential use as a tool for drug discovery and in chemical biology.
Collapse
Affiliation(s)
- Sumin Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 151-742, Korea
| | - Chaemin Lim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 151-742, Korea
| | - Sukjin Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 151-742, Korea
| | - Seokwoo Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 151-742, Korea
| | - Hyunkyung Cho
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 151-742, Korea
| | - Joo-Youn Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 151-742, Korea
- Drug Discovery Department, LG Life Sciences, Ltd., R&D Park, 104-1, Munji-dong, Yuseong-gu, Daejeon, 305-380, Korea
| | - Dong Sup Shim
- Drug Discovery Department, LG Life Sciences, Ltd., R&D Park, 104-1, Munji-dong, Yuseong-gu, Daejeon, 305-380, Korea
| | - Hee Dong Park
- Drug Discovery Department, LG Life Sciences, Ltd., R&D Park, 104-1, Munji-dong, Yuseong-gu, Daejeon, 305-380, Korea
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 151-742, Korea
| |
Collapse
|
32
|
Sindelar M, Lutz TA, Petrera M, Wanner KT. Focused Pseudostatic Hydrazone Libraries Screened by Mass Spectrometry Binding Assay: Optimizing Affinities toward γ-Aminobutyric Acid Transporter 1. J Med Chem 2013; 56:1323-40. [DOI: 10.1021/jm301800j] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Miriam Sindelar
- Center for Drug Research, Department
of Pharmacy, Ludwig Maximilians University at Munich, Butenandtstrasse
9-13, D-81377 Munich, Germany
| | - Toni A. Lutz
- Center for Drug Research, Department
of Pharmacy, Ludwig Maximilians University at Munich, Butenandtstrasse
9-13, D-81377 Munich, Germany
| | - Marilena Petrera
- Center for Drug Research, Department
of Pharmacy, Ludwig Maximilians University at Munich, Butenandtstrasse
9-13, D-81377 Munich, Germany
| | - Klaus T. Wanner
- Center for Drug Research, Department
of Pharmacy, Ludwig Maximilians University at Munich, Butenandtstrasse
9-13, D-81377 Munich, Germany
| |
Collapse
|
33
|
Tan SM, Zhang Y, Wang B, Tan CYR, Zammit SC, Williams SJ, Krum H, Kelly DJ. FT23, an orally active antifibrotic compound, attenuates structural and functional abnormalities in an experimental model of diabetic cardiomyopathy. Clin Exp Pharmacol Physiol 2012; 39:650-6. [PMID: 22612418 DOI: 10.1111/j.1440-1681.2012.05726.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diabetic cardiomyopathy is characterized by early diastolic dysfunction and structural changes, such as interstitial fibrosis and cardiac hypertrophy. Using the Ren-2 rat model, we sought to investigate the effect of FT23 on the structural and functional changes associated with diabetic cardiomyopathy. Heterozygous Ren-2 rats were rendered diabetic with streptozotocin by tail vein injection. Rats were then treated with FT23 (200 mg/kg per day by gavage twice daily) or vehicle from Week 8 to Week 16 after the onset of diabetes. Echocardiography was performed to assess heart function before the rats were killed and their hearts collected for histological and molecular biological assessment. The antifibrotic effect of FT23 was compared with that of tranilast in neonatal cardiac fibroblasts when stimulated with transforming growth factor (TGF)-β (5 ng/mL) at 30, 50 and 100 umol/L. FT23 exhibited greater inhibition of TGF-β-induced collagen production in neonatal cardiac fibroblasts, as measured by a [(3) H]-proline incorporation assay, compared with its parental compound tranilast. In the in vivo study, FT23 significantly attenuated the increased heart weight : bodyweight ratio in FT23-treated diabetic Ren-2 rats. Diastolic dysfunction, as measured by mitral valve (MV) E/A ratio and MV deceleration time, was also significantly attenuated by FT23. Picrosirius red-stained heart sections revealed that cardiac fibrosis in the diabetic rats was reduced by FT23 compared with that in vehicle-treated rats, with a concomitant reduction in collagen I immunostaining and infiltration of macrophages, as demonstrated by ED1 immunostaining. The results of the present study suggest that FT23 inhibits the activity of TGF-β and attenuates structural and functional manifestations of diastolic dysfunction observed in a model of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Sih Min Tan
- The University of Melbourne, Department of Medicine, St Vincent's Hospital, Fitzory, Australia
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Gilbert RE, Zhang Y, Williams SJ, Zammit SC, Stapleton DI, Cox AJ, Krum H, Langham R, Kelly DJ. A purpose-synthesised anti-fibrotic agent attenuates experimental kidney diseases in the rat. PLoS One 2012; 7:e47160. [PMID: 23071743 PMCID: PMC3468513 DOI: 10.1371/journal.pone.0047160] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/10/2012] [Indexed: 11/18/2022] Open
Abstract
Background and Purpose Locally-active growth factors have been implicated in the pathogenesis of many diseases in which organ fibrosis is a characteristic feature. In the setting of chronic kidney disease (CKD), two such pro-fibrotic factors, transforming growth factor-ß (TGF-ß) and platelet-derived growth factor (PDGF) have emerged as lead potential targets for intervention. Given the incomplete organ protection afforded by blocking the actions of TGF-ß or PDGF individually, we sought to determine whether an agent that inhibited the actions of both may have broader effects in ameliorating the key structural and functional abnormalities of CKD. Experimental Approach Accordingly, we studied the effects of a recently described, small molecule anti-fibrotic drug, 3-methoxy-4-propargyloxycinnamoyl anthranilate (FT011, Fibrotech Therapeutics, Australia), which should have these effects. Key Results In the in vitro setting, FT011 inhibited both TGF-ß1 and PDGF-BB induced collagen production as well as PDGF-BB-mediated mesangial proliferation. Consistent with these in vitro actions, when studied in a robust model of non-diabetic kidney disease, the 5/6 nephrectomised rat, FT011 attenuated the decline in GFR, proteinuria and glomerulosclerosis (p<0.05 for all). Similarly, in the streptozotocin-diabetic Ren-2 rat, a model of advanced diabetic nephropathy, FT011 reduced albuminuria, glomerulosclerosis and tubulointerstitial fibrosis. Conclusions and Implications Together these studies suggest that broadly antagonising growth factor actions, including those of TGF-ß1 and PDGF-BB, has the potential to protect the kidney from progressive injury in both the diabetic and non-diabetic settings.
Collapse
Affiliation(s)
- Richard E. Gilbert
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
- * E-mail: (REG); (DJK)
| | - Yuan Zhang
- Department of Medicine, University of Melbourne, St. Vincent’s Hospital, Fitzroy, Victoria, Australia
| | - Spencer J. Williams
- Bio21 Molecular Science and Biotechnology Institute, School of Chemistry, University of Melbourne, Parkville, Victoria, Australia
| | - Steven C. Zammit
- Bio21 Molecular Science and Biotechnology Institute, School of Chemistry, University of Melbourne, Parkville, Victoria, Australia
| | - David I. Stapleton
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Alison J. Cox
- Department of Medicine, University of Melbourne, St. Vincent’s Hospital, Fitzroy, Victoria, Australia
| | - Henry Krum
- Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health, Monash University, Melbourne, Australia
| | - Robyn Langham
- Department of Medicine, University of Melbourne, St. Vincent’s Hospital, Fitzroy, Victoria, Australia
| | - Darren J. Kelly
- Department of Medicine, University of Melbourne, St. Vincent’s Hospital, Fitzroy, Victoria, Australia
- Fibrotech Therapeutics Pty Ltd, Melbourne, Australia
- * E-mail: (REG); (DJK)
| |
Collapse
|
35
|
Zhang Y, Edgley AJ, Cox AJ, Powell AK, Wang B, Kompa AR, Stapleton DI, Zammit SC, Williams SJ, Krum H, Gilbert RE, Kelly DJ. FT011, a new anti-fibrotic drug, attenuates fibrosis and chronic heart failure in experimental diabetic cardiomyopathy. Eur J Heart Fail 2012; 14:549-62. [PMID: 22417655 DOI: 10.1093/eurjhf/hfs011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
AIMS Cardiac remodelling in diabetes includes pathological accumulation of extracellular matrix and myocyte hypertrophy that contribute to heart dysfunction. Attenuation of remodelling represents a potential therapeutic target. We tested this hypothesis using a new anti-fibrotic drug, FT011 (Fibrotech Therapeutics Pty Ltd), on diabetic Ren-2 rats, a model which replicates many of the structural and functional manifestations of diabetic cardiomyopathy in humans. METHODS AND RESULTS Homozygous Ren-2 rats were randomized to receive streptozotocin or vehicle then further randomized to FT011 (200 mg/kg/day) or vehicle treatment for 6 weeks. Prior to tissue collection, cardiac function was assessed via echocardiography and cardiac catheterization. Total collagen deposition and cardiomyocyte hypertrophy were assessed by picrosirius red and haematoxylin and eosin staining, respectively. Macrophage interstitial infiltration and type I and III collagen were quantitated by immunostaining. Without affecting blood pressure or hyperglycaemia, treatment of diabetic rats with FT011 significantly attenuated interstitial fibrosis (total collagen, 5.09 ±1.28 vs, 2.42 ±0.43%/area; type I collagen, 4.09 ±1.16 vs. 1.42 ±0.38%/area; type III collagen, 1.52 ±0.33 vs. 0.71 ±0.14 %/area; P < 0.05), cardiomyocyte hypertrophy (882 ±38 vs. 659 ±28 µm(2); P < 0.05), and interstitial macrophage influx (66 ±5.3 vs, 44 ±7.9 number/section; P < 0.05). Cardiac myopathic dilatation was normalized, as evidenced by reduced left ventricular inner diameter at diastole (0.642 ±0.016 vs. 0.577 ±0.024 cm), increased ejection fraction (75 ±1.1 vs. 83 ±1.2%) and preload recruitable stroke work relationship (44 ±6.7 vs. 77 ±6.3 slope-mmHg; P < 0.05), and reduced end-diastolic pressure-volume relationship (0.059 ±0.011 vs. 0.02 ±0.003 slope-mmHg/μL; P < 0.05). CONCLUSIONS A direct anti-fibrotic agent, FT011, attenuates cardiac remodelling and dysfunction in experimental diabetic cardiomyopathy. This represents a novel therapy for the treatment of diabetic cardiomyopathy associated with cardiac fibrosis and hypertrophy.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Battenberg OA, Nodwell MB, Sieber SA. Evaluation of α-pyrones and pyrimidones as photoaffinity probes for affinity-based protein profiling. J Org Chem 2011; 76:6075-87. [PMID: 21726094 DOI: 10.1021/jo201281c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
α-Pyrones and pyrimidones are common structural motifs in natural products and bioactive compounds. They also display photochemistry that generates high-energy intermediates that may be capable of protein reactivity. A library of pyrones and pyrimidones was synthesized, and their potential to act as photoaffinity probes for nondirected affinity-based protein profiling in several crude cell lysates was evaluated. Further "proof-of-principle" experiments demonstrate that a pyrimidone tag on an appropriate scaffold is equally capable of proteome labeling as a benzophenone.
Collapse
Affiliation(s)
- Oliver A Battenberg
- Department Chemie, Center for Integrated Protein Science CIPSM, Institute of Advanced Studies, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | |
Collapse
|
37
|
Thomas MC, Groop PH. New approaches to the treatment of nephropathy in diabetes. Expert Opin Investig Drugs 2011; 20:1057-71. [DOI: 10.1517/13543784.2011.591785] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Eudes A, Baidoo EEK, Yang F, Burd H, Hadi MZ, Collins FW, Keasling JD, Loqué D. Production of tranilast [N-(3′,4′-dimethoxycinnamoyl)-anthranilic acid] and its analogs in yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2010; 89:989-1000. [DOI: 10.1007/s00253-010-2939-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
|
39
|
Edgley AJ, Krum H, Kelly DJ. Targeting fibrosis for the treatment of heart failure: a role for transforming growth factor-β. Cardiovasc Ther 2010; 30:e30-40. [PMID: 21883991 DOI: 10.1111/j.1755-5922.2010.00228.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chronic heart failure (CHF) is a growing health problem in developed nations. The pathological accumulation of extracellular matrix is a key contributor to CHF in both diabetic and nondiabetic states, resulting in progressive stiffening of the ventricular walls and loss of contractility. Proinflammatory disease processes, including inflammatory cytokine activation, contribute to accumulation of extracellular matrix in the heart. Transforming growth factor-β is a key profibrotic cytokine mediating fibrosis. Current therapeutic strategies do not directly target the profibrotic inflammatory processes occurring in the heart and hence there is a clear unmet clinical need to develop new therapeutic agents targeting fibrosis. Accordingly, strategies that inhibit proinflammatory cytokine activation and pathological accumulation of extracellular matrix (ECM) provide a potential therapeutic target for prevention of heart failure. This review focuses on the therapeutic targeting of TGF-β in the prevention of pathological fibrosis in the heart.
Collapse
Affiliation(s)
- Amanda J Edgley
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|
40
|
Abstract
Current pharmacological therapy for heart failure (HF) is based on improved understanding of the pathophysiological mechanisms of HF progression. In particular, inhibition of key activated neurohormonal systems (eg, the renin-angiotensin-aldosterone system) and the sympathetic nervous system has been the cornerstone of drug therapy for this condition. However, despite these major advances, many HF patients still only marginally respond to these therapies. Novel therapeutic approaches have been tested. Several recent phase III studies have failed, however, despite intriguing pathophysiological concepts and promising pilot data. In other studies, significant benefits have been observed in certain subgroups only, suggesting the need for a more tailored approach to individual risk and comorbidity. This review will focus on recent and potential future pharmacological HF therapies and where drug treatment may be in the next few years. In discussing future pharmacological therapy for HF, 3 key strategies will be considered: (1) optimization of conventional therapies, (2) a focus on new drug development within areas not yet adequately represented by major clinical data and (3) new drugs affecting novel therapeutic targets.
Collapse
Affiliation(s)
- Yusuke Sata
- National Cardiovascular Center, Suita, Japan
| | | |
Collapse
|