1
|
Place AR, Ramos-Franco J, Waters AL, Peng J, Hamann MT. Sterolysin from a 1950s culture of Karlodinium veneficum (aka Gymnodinium veneficum Ballantine) forms lethal sterol dependent membrane pores. Sci Rep 2024; 14:17998. [PMID: 39097621 PMCID: PMC11297910 DOI: 10.1038/s41598-024-68669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024] Open
Abstract
In 1957 Abbott and Ballantine described a highly toxic activity from a dinoflagellate isolated from the English Channel in 1949 by Mary Park. From a culture maintained at Plymouth Laboratory since 1950, we have been able to isolate two toxic molecules (abbotoxin and 59-E-Chloro-abbotoxin), determine the planar structures by analysis of HRMS and 1D and 2D NMR spectra, and found them to be karlotoxin (KmTx) congeners. Both toxins kill larval zebrafish with symptoms identical to those described by Abbot and Ballantine for gobies (Gobius virescens). Using surface plasma resonance the sterol binding specificity of karlotoxins is shown to require desmethyl sterols. Our results with black lipid membranes indicate that karlotoxin forms large-conductance channels in the lipid membrane, which are characterized by large ionic conductance, poor ionic selectivity, and a complex gating behavior that exhibits strong voltage dependence and multiple gating patterns. In addition, we show that KmTx 2 pore formation is a highly targeted mechanism involving sterol-specificity. This is the first report of the functional properties of the membrane pores formed by karlotoxins and is consistent with the initial observations of Abbott and Ballantine from 1957.
Collapse
Affiliation(s)
- Allen R Place
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Sciences, Suite 236 Rita Rossi Colwell Center, Baltimore, MD, 21202, USA.
| | - Josefina Ramos-Franco
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Amanda L Waters
- Department of Chemistry, University of Central Oklahoma, Edmond, OK, 73034, USA
| | - Jiangnan Peng
- Department of Chemistry, Morgan State University, Baltimore, MD, 21251, USA
- COP Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, 29425-5700, USA
| | - Mark T Hamann
- Department of Chemistry, Morgan State University, Baltimore, MD, 21251, USA
| |
Collapse
|
2
|
Matsumori N, Hieda M, Morito M, Wakamiya Y, Oishi T. Truncated derivatives of amphidinol 3 reveal the functional role of polyol chain in sterol-recognition and pore formation. Bioorg Med Chem Lett 2024; 98:129594. [PMID: 38104905 DOI: 10.1016/j.bmcl.2023.129594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Here we examined the membrane binding and pore formation of amphidinol 3 (AM3) and its truncated synthetic derivatives. Importantly, both of the membrane affinity and pore formation activity were well correlated with the reported antifungal activity. Our data clearly demonstrated that the C1-C30 moiety of AM3 plays essential roles both in sterol recognition and stable pore formation. Based on the current findings, we updated the interacting model between AM3 and sterol, in which the moiety encompassing from C21 to C67 accommodates a sterol molecule with forming hydrogen bonds with the sterol hydroxy group and van der Waals contact between AM3 polyol and sterol skeleton. Although the conformation of the C1-C20 moiety of AM3 is hard to specify due to its flexibility, the region likely contributes to stabilization of pore structure.
Collapse
Affiliation(s)
- Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Manami Hieda
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masayuki Morito
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuma Wakamiya
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Discovery Chemistry Department, Chugai Pharmaceutical Co., Ltd., 200. 216 Totsukacho, Totsuka-ku, Yokohama 244-8602, Japan
| | - Tohru Oishi
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
3
|
López-Rodríguez M, López-Rosales L, Diletta G, Cerón-García MDC, Navarro-López E, Gallardo-Rodríguez JJ, Tristán AI, Abreu AC, García-Camacho F. The Isolation of Specialty Compounds from Amphidinium carterae Biomass by Two-Step Solid-Phase and Liquid-Liquid Extraction. Toxins (Basel) 2022; 14:toxins14090593. [PMID: 36136531 PMCID: PMC9504921 DOI: 10.3390/toxins14090593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 12/04/2022] Open
Abstract
The two main methods for partitioning crude methanolic extract from Amphidinium carterae biomass were compared. The objective was to obtain three enriched fractions containing amphidinols (APDs), carotenoids, and fatty acids. Since the most valuable bioproducts are APDs, their recovery was the principal goal. The first method consisted of a solid-phase extraction (SPE) in reverse phase that, for the first time, was optimized to fractionate organic methanolic extracts from Amphidinium carterae biomass using reverse-phase C18 as the adsorbent. The second method consisted of a two-step liquid-liquid extraction coupled with SPE and, alternatively, with solvent partitioning. The SPE method allowed the recovery of the biologically-active fraction (containing the APDs) by eluting with methanol (MeOH): water (H2O) (80:20 v/v). Alternatively, an APD purification strategy using solvent partitioning proved to be a better approach for providing APDs in a clear-cut way. When using n-butanol, APDs were obtained at a 70% concentration (w/w), whereas for the SPE method, the most concentrated fraction was only 18% (w/w). For the other fractions (carotenoids and fatty acids), a two-step liquid-liquid extraction (LLE) method coupled with the solvent partitioning method presented the best results.
Collapse
Affiliation(s)
| | - Lorenzo López-Rosales
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain
- Research Centre CIAIMBITAL, University of Almeria, 04120 Almeria, Spain
| | - Giullia Diletta
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain
| | - María del Carmen Cerón-García
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain
- Research Centre CIAIMBITAL, University of Almeria, 04120 Almeria, Spain
- Correspondence:
| | - Elvira Navarro-López
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain
- Research Centre CIAIMBITAL, University of Almeria, 04120 Almeria, Spain
| | - Juan José Gallardo-Rodríguez
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain
- Research Centre CIAIMBITAL, University of Almeria, 04120 Almeria, Spain
| | - Ana Isabel Tristán
- Research Centre CIAIMBITAL, University of Almeria, 04120 Almeria, Spain
- Department of Chemistry and Physics, University of Almeria, 04120 Almeria, Spain
| | - Ana Cristina Abreu
- Research Centre CIAIMBITAL, University of Almeria, 04120 Almeria, Spain
- Department of Chemistry and Physics, University of Almeria, 04120 Almeria, Spain
| | - Francisco García-Camacho
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain
- Research Centre CIAIMBITAL, University of Almeria, 04120 Almeria, Spain
| |
Collapse
|
4
|
Pradhan B, Ki JS. Phytoplankton Toxins and Their Potential Therapeutic Applications: A Journey toward the Quest for Potent Pharmaceuticals. Mar Drugs 2022; 20:md20040271. [PMID: 35447944 PMCID: PMC9030253 DOI: 10.3390/md20040271] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023] Open
Abstract
Phytoplankton are prominent organisms that contain numerous bioactive substances and secondary metabolites, including toxins, which can be valuable to pharmaceutical, nutraceutical, and biotechnological industries. Studies on toxins produced by phytoplankton such as cyanobacteria, diatoms, and dinoflagellates have become more prevalent in recent years and have sparked much interest in this field of research. Because of their richness and complexity, they have great potential as medicinal remedies and biological exploratory probes. Unfortunately, such toxins are still at the preclinical and clinical stages of development. Phytoplankton toxins are harmful to other organisms and are hazardous to animals and human health. However, they may be effective as therapeutic pharmacological agents for numerous disorders, including dyslipidemia, obesity, cancer, diabetes, and hypertension. In this review, we have focused on the properties of different toxins produced by phytoplankton, as well as their beneficial effects and potential biomedical applications. The anticancer properties exhibited by phytoplankton toxins are mainly attributed to their apoptotic effects. As a result, phytoplankton toxins are a promising strategy for avoiding postponement or cancer treatment. Moreover, they also displayed promising applications in other ailments and diseases such as Alzheimer’s disease, diabetes, AIDS, fungal, bacterial, schizophrenia, inflammation, allergy, osteoporosis, asthma, and pain. Preclinical and clinical applications of phytoplankton toxins, as well as future directions of their enhanced nano-formulations for improved clinical efficacy, have also been reviewed.
Collapse
|
5
|
Morales-Amador A, Molina-Miras A, López-Rosales L, Sánchez-Mirón A, García-Camacho F, Souto ML, Fernández JJ. Isolation and Structural Elucidation of New Amphidinol Analogues from Amphidinium carterae Cultivated in a Pilot-Scale Photobioreactor. Mar Drugs 2021; 19:432. [PMID: 34436271 PMCID: PMC8399002 DOI: 10.3390/md19080432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
The demand for valuable products from dinoflagellate biotechnology has increased remarkably in recent years due to their many prospective applications. However, there remain many challenges that need to be addressed in order to make dinoflagellate bioactives a commercial reality. In this article, we describe the technical feasibility of producing and recovering amphidinol analogues (AMs) excreted into a culture broth of Amphidinium carterae ACRN03, successfully cultured in an LED-illuminated pilot-scale (80 L) bubble column photobioreactor operated in fed-batch mode with a pulse feeding strategy. We report on the isolation of new structurally related AMs, amphidinol 24 (1, AM24), amphidinol 25 (2, AM25) and amphidinol 26 (3, AM26), from a singular fraction resulting from the downstream processing. Their planar structures were elucidated by extensive NMR and HRMS analysis, whereas the relative configuration of the C-32→C-47 bis-tetrahydropyran core was confirmed to be antipodal in accord with the recently revised configuration of AM3. The hemolytic activities of the new metabolites and other related derivatives were evaluated, and structure-activity conclusions were established. Their isolation was based on a straightforward and high-performance bioprocess that could be suitable for the commercial development of AMs or other high-value compounds from shear sensitive dinoflagellates.
Collapse
Affiliation(s)
- Adrián Morales-Amador
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Spain;
- Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Spain
| | - Alejandro Molina-Miras
- Chemical Engineering Department, University of Almería, 04120 Almería, Spain; (A.M.-M.); (L.L.-R.); (A.S.-M.); (F.G.-C.)
- Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Lorenzo López-Rosales
- Chemical Engineering Department, University of Almería, 04120 Almería, Spain; (A.M.-M.); (L.L.-R.); (A.S.-M.); (F.G.-C.)
- Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Asterio Sánchez-Mirón
- Chemical Engineering Department, University of Almería, 04120 Almería, Spain; (A.M.-M.); (L.L.-R.); (A.S.-M.); (F.G.-C.)
- Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Francisco García-Camacho
- Chemical Engineering Department, University of Almería, 04120 Almería, Spain; (A.M.-M.); (L.L.-R.); (A.S.-M.); (F.G.-C.)
- Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - María L. Souto
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Spain;
- Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Spain
| | - José J. Fernández
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Spain;
- Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Spain
| |
Collapse
|
6
|
Elsadek LA, Matthews JH, Nishimura S, Nakatani T, Ito A, Gu T, Luo D, Salvador-Reyes LA, Paul VJ, Kakeya H, Luesch H. Genomic and Targeted Approaches Unveil the Cell Membrane as a Major Target of the Antifungal Cytotoxin Amantelide A. Chembiochem 2021; 22:1790-1799. [PMID: 33527693 DOI: 10.1002/cbic.202000685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/31/2021] [Indexed: 12/13/2022]
Abstract
Amantelide A, a polyhydroxylated macrolide isolated from a marine cyanobacterium, displays broad-spectrum activity against mammalian cells, bacterial pathogens, and marine fungi. We conducted comprehensive mechanistic studies to identify the molecular targets and pathways affected by amantelide A. Our investigations relied on chemical structure similarities with compounds of known mechanisms, yeast knockout mutants, yeast chemogenomic profiling, and direct biochemical and biophysical methods. We established that amantelide A exerts its antifungal action by binding to ergosterol-containing membranes followed by pore formation and cell death, a mechanism partially shared with polyene antifungals. Binding assays demonstrated that amantelide A also binds to membranes containing epicholesterol or mammalian cholesterol, thus suggesting that the cytotoxicity to mammalian cells might be due to its affinity to cholesterol-containing membranes. However, membrane interactions were not completely dependent on sterols. Yeast chemogenomic profiling suggested additional direct or indirect effects on actin. Accordingly, we performed actin polymerization assays, which suggested that amantelide A also promotes actin polymerization in cell-free systems. However, the C-33 acetoxy derivative amantelide B showed a similar effect on actin dynamics in vitro but no significant activity against yeast. Overall, these studies suggest that the membrane effects are the most functionally relevant for amantelide A mechanism of action.
Collapse
Affiliation(s)
- Lobna A Elsadek
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA.,Center for Natural Products,Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - James H Matthews
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA.,Center for Natural Products,Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Shinichi Nishimura
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takahiro Nakatani
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| | - Airi Ito
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tongjun Gu
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Road, Gainesville, FL 32610, USA
| | - Danmeng Luo
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA.,Center for Natural Products,Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Lilibeth A Salvador-Reyes
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA.,Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, 1100, Philippines
| | - Valerie J Paul
- Smithsonian Marine Station, 701 Seaway Drive, Ft., Pierce, FL 34949, USA
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA.,Center for Natural Products,Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Amphidinol 3 preferentially binds to cholesterol in disordered domains and disrupts membrane phase separation. Biochem Biophys Rep 2021; 26:100941. [PMID: 33614998 PMCID: PMC7881217 DOI: 10.1016/j.bbrep.2021.100941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 11/20/2022] Open
Abstract
Amphidinol 3 (AM3), a polyhydroxy-polyene metabolite from the dinoflagellate Amphidinium klebsii, possesses potent antifungal activity. AM3 is known to interact directly with membrane sterols and permeabilize membranes by forming pores. Because AM3 binds to sterols such as cholesterol and ergosterol, it can be assumed that AM3 has some impact on lipid rafts, which are membrane domains rich in sphingolipids and cholesterol. Hence, we first examined the effect of AM3 on phase-separated liposomes, in which raft-like ordered and non-raft-like disordered domains are segregated. Consequently, AM3 disrupted the phase separation at 22 μM, as in the case of methyl-β-cyclodextrin, a well-known raft-disrupter that extracts sterol from membranes. The surface plasmon resonance measurements and dye leakage assays show that AM3 preferentially recognizes cholesterol in the disordered membrane, which may reflect a weaker lipid-cholesterol interaction in disordered membrane than in ordered membrane. Finally, to gain insight into the AM3-induced coalescence of membrane phases, we measured membrane fluidity using fluorescence correlation spectroscopy, demonstrating that AM3 significantly increases the order of disordered phase. Together, AM3 preferentially binds to the disordered phase rather than the ordered phase, and enhances the order of the disordered phase, consequently blending the separated phases.
Collapse
|
8
|
Wakamiya Y, Ebine M, Murayama M, Omizu H, Matsumori N, Murata M, Oishi T. Synthesis and Stereochemical Revision of the C31–C67 Fragment of Amphidinol 3. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yuma Wakamiya
- Department of Chemistry, Faculty and Graduate School of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Makoto Ebine
- Department of Chemistry, Faculty and Graduate School of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Mariko Murayama
- Department of Chemistry, Faculty and Graduate School of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Hiroyuki Omizu
- Department of Chemistry, Faculty and Graduate School of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty and Graduate School of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Michio Murata
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikeneyama, Toyonaka Osaka 560-0043 Japan
| | - Tohru Oishi
- Department of Chemistry, Faculty and Graduate School of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
9
|
Wakamiya Y, Ebine M, Murayama M, Omizu H, Matsumori N, Murata M, Oishi T. Synthesis and Stereochemical Revision of the C31–C67 Fragment of Amphidinol 3. Angew Chem Int Ed Engl 2018; 57:6060-6064. [DOI: 10.1002/anie.201712167] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/04/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Yuma Wakamiya
- Department of Chemistry, Faculty and Graduate School of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Makoto Ebine
- Department of Chemistry, Faculty and Graduate School of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Mariko Murayama
- Department of Chemistry, Faculty and Graduate School of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Hiroyuki Omizu
- Department of Chemistry, Faculty and Graduate School of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty and Graduate School of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Michio Murata
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikeneyama, Toyonaka Osaka 560-0043 Japan
| | - Tohru Oishi
- Department of Chemistry, Faculty and Graduate School of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
10
|
Assunção J, Guedes AC, Malcata FX. Biotechnological and Pharmacological Applications of Biotoxins and Other Bioactive Molecules from Dinoflagellates. Mar Drugs 2017; 15:E393. [PMID: 29261163 PMCID: PMC5742853 DOI: 10.3390/md15120393] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 12/26/2022] Open
Abstract
The long-lasting interest in bioactive molecules (namely toxins) produced by (microalga) dinoflagellates has risen in recent years. Exhibiting wide diversity and complexity, said compounds are well-recognized for their biological features, with great potential for use as pharmaceutical therapies and biological research probes. Unfortunately, provision of those compounds is still far from sufficient, especially in view of an increasing demand for preclinical testing. Despite the difficulties to establish dinoflagellate cultures and obtain reasonable productivities of such compounds, intensive research has permitted a number of advances in the field. This paper accordingly reviews the characteristics of some of the most important biotoxins (and other bioactive substances) produced by dinoflagellates. It also presents and discusses (to some length) the main advances pertaining to dinoflagellate production, from bench to large scale-with an emphasis on material published since the latest review available on the subject. Such advances encompass improvements in nutrient formulation and light supply as major operational conditions; they have permitted adaptation of classical designs, and aided the development of novel configurations for dinoflagellate growth-even though shearing-related issues remain a major challenge.
Collapse
Affiliation(s)
- Joana Assunção
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, P-4200-465 Porto, Portugal.
| | - A Catarina Guedes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, P-4450-208 Matosinhos, Portugal.
| | - F Xavier Malcata
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, P-4200-465 Porto, Portugal.
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, P-4200-465 Porto, Portugal.
| |
Collapse
|
11
|
Satake M, Cornelio K, Hanashima S, Malabed R, Murata M, Matsumori N, Zhang H, Hayashi F, Mori S, Kim JS, Kim CH, Lee JS. Structures of the Largest Amphidinol Homologues from the Dinoflagellate Amphidinium carterae and Structure-Activity Relationships. JOURNAL OF NATURAL PRODUCTS 2017; 80:2883-2888. [PMID: 29120640 DOI: 10.1021/acs.jnatprod.7b00345] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Amphidinols are polyketide metabolites produced by marine dinoflagellates and are chiefly composed of a long linear chain with polyol groups and polyolefins. Two new homologues, amphidinols 20 (AM20, 1) and 21 (AM21, 2), were isolated from Amphidinium carterae collected in Korea. Their structures were elucidated by detailed NMR analyses as amphidinol 6-type compounds with remarkably long polyol chains. Amphidinol 21 (2) has the longest linear structure among the amphidinol homologues reported so far. The congeners, particularly amphidinol 21 (2), showed weaker activity in hemolysis and antifungal assays compared to known amphidinols.
Collapse
Affiliation(s)
- Masayuki Satake
- Department of Chemistry, School of Science, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kimberly Cornelio
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- JST ERATO Lipid Active Structure Project , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Raymond Malabed
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- JST ERATO Lipid Active Structure Project , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Sciences, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Huiping Zhang
- RIKEN Center for Life Science Technology , 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Fumiaki Hayashi
- RIKEN Center for Life Science Technology , 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shoko Mori
- Bioorganic Research Institute, Suntory Foundation for Life Sciences , Sikadai, Seika-cho, Soraku-gun, Kyoto 619-0284 Japan
| | - Jong Souk Kim
- Department of Marine Bio-materials & Aquaculture, Pukyong National University , Busan 608-737, Korea
| | - Chang-Hoon Kim
- Department of Marine Bio-materials & Aquaculture, Pukyong National University , Busan 608-737, Korea
| | - Jong-Soo Lee
- Department of Seafood and Aquaculture Science, College of Marine Science, Gyeongsang National University , Tongyeong, Kyungnam 650-160, Korea
| |
Collapse
|
12
|
Espiritu RA. Membrane permeabilizing action of amphidinol 3 and theonellamide A in raft-forming lipid mixtures. ACTA ACUST UNITED AC 2017; 72:43-48. [PMID: 27159918 DOI: 10.1515/znc-2016-0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/11/2016] [Indexed: 11/15/2022]
Abstract
Amphidinol 3 (AM3) and theonellamide A (TNM-A) are potent antifungal compounds produced by the dinoflagellate Amphidinium klebsii and the sponge Theonella spp., respectively. Both of these metabolites have been demonstrated to interact with membrane lipids ultimately resulting in a compromised bilayer integrity. In this report, the activity of AM3 and TNM-A in ternary lipid mixtures composed of 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (POPC):brain sphingomyelin:cholesterol at a mole ratio of 1:1:1 or 3:1:1 exhibiting lipid rafts coexistence is presented. It was found that AM3 has a more extensive membrane permeabilizing activity compared with TNM-A in these membrane mimics, which was almost complete at 15 μM. The extent of their activity nevertheless is similar to the previously reported binary system of POPC and cholesterol, suggesting that phase separation has neither beneficial nor detrimental effects in their ability to disrupt the lipid bilayer.
Collapse
Affiliation(s)
- Rafael A Espiritu
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
13
|
The Missing Piece in Biosynthesis of Amphidinols: First Evidence of Glycolate as a Starter Unit in New Polyketides from Amphidinium carterae. Mar Drugs 2017; 15:md15060157. [PMID: 28561749 PMCID: PMC5484107 DOI: 10.3390/md15060157] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 11/23/2022] Open
Abstract
Two new members of the amphidinol family, amphidinol A (1) and its 7-sulfate derivative amphidinol B (2), were isolated from a strain of Amphidinium carterae of Lake Fusaro, near Naples (Italy), and chemically identified by spectroscopic and spectrometric methods. Amphidinol A showed antifungal activity against Candida albicans (MIC = 19 µg/mL). Biosynthetic experiments with stable isotope-labelled acetate allowed defining the elongation process in 1. For the first time the use of glycolate as a starter unit in the polyketide biosynthesis of amphidinol metabolites was unambiguously demonstrated.
Collapse
|
14
|
Waters AL, Oh J, Place AR, Hamann MT. Stereochemical Studies of the Karlotoxin Class Using NMR Spectroscopy and DP4 Chemical‐Shift Analysis: Insights into their Mechanism of Action. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amanda L. Waters
- Department of Pharmacognosy, Pharmacology, School of Pharmacy, and Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 (USA)
| | - Joonseok Oh
- Department of Pharmacognosy, Pharmacology, School of Pharmacy, and Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 (USA)
| | - Allen R. Place
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Sciences, Suite 236 Columbus Center, Baltimore, MD 21202 (USA)
| | - Mark T. Hamann
- Department of Pharmacognosy, Pharmacology, School of Pharmacy, and Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 (USA)
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425 (USA)
| |
Collapse
|
15
|
Waters AL, Oh J, Place AR, Hamann MT. Stereochemical Studies of the Karlotoxin Class Using NMR Spectroscopy and DP4 Chemical-Shift Analysis: Insights into their Mechanism of Action. Angew Chem Int Ed Engl 2015; 54:15705-10. [PMID: 26568046 DOI: 10.1002/anie.201507418] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 09/22/2015] [Indexed: 12/13/2022]
Abstract
After publication of karlotoxin 2 (KmTx2; 1), the harmful algal bloom dinoflagellate Karlodinium sp. was collected and scrutinized to identify additional biologically active complex polyketides. The structure of 1 was validated and revised at C49 using computational NMR tools including J-based configurational analysis and chemical-shift calculations. The characterization of two new compounds [KmTx8 (2) and KmTx9 (3)] was achieved through overlaid 2D HSQC NMR techniques, while the relative configurations were determined by comparison to 1 and computational chemical-shift calculations. The detailed evaluation of 2 using the NCI-60 cell lines, NMR binding studies, and an assessment of the literature supports a mode of action (MoA) for targeting cancer-cell membranes, especially of cytostatic tumors. This MoA is uniquely different from that of current agents employed in the control of cancers for which 2 shows sensitivity.
Collapse
Affiliation(s)
- Amanda L Waters
- Department of Pharmacognosy, Pharmacology, School of Pharmacy, and Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 (USA)
| | - Joonseok Oh
- Department of Pharmacognosy, Pharmacology, School of Pharmacy, and Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 (USA)
| | - Allen R Place
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Sciences, Suite 236 Columbus Center, Baltimore, MD 21202 (USA)
| | - Mark T Hamann
- Department of Pharmacognosy, Pharmacology, School of Pharmacy, and Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 (USA). , .,Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425 (USA). ,
| |
Collapse
|
16
|
Deeds JR, Hoesch RE, Place AR, Kao JPY. The cytotoxic mechanism of karlotoxin 2 (KmTx 2) from Karlodinium veneficum (Dinophyceae). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:148-55. [PMID: 25546005 PMCID: PMC4343303 DOI: 10.1016/j.aquatox.2014.11.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/26/2014] [Accepted: 11/29/2014] [Indexed: 05/09/2023]
Abstract
This study demonstrates that the polyketide toxin karlotoxin 2 (KmTx 2) produced by Karlodinium veneficum, a dinoflagellate associated with fish kills in temperate estuaries world-wide, alters vertebrate cell membrane permeability. Microfluorimetric and electrophysiological measurements were used to determine that vertebrate cellular toxicity occurs through non-selective permeabilization of plasma membranes, leading to osmotic cell lysis. Previous studies showed that KmTx 2 is lethal to fish at naturally-occurring concentrations measured during fish kills, while sub-lethal doses severely damage gill epithelia. This study provides a mechanistic explanation for the association between K. veneficum blooms and fish kills that has long been observed in temperate estuaries worldwide.
Collapse
Affiliation(s)
- Jonathan R Deeds
- University of Maryland Center for Environmental Science, Institute of Marine and Environmental Technology, 701 East Pratt Street, Suite 236, Baltimore, MD 21202, USA.
| | - Robert E Hoesch
- University of Maryland, Baltimore, Center for Biomedical Engineering and Technology and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Allen R Place
- University of Maryland Center for Environmental Science, Institute of Marine and Environmental Technology, 701 East Pratt Street, Suite 236, Baltimore, MD 21202, USA.
| | - Joseph P Y Kao
- University of Maryland, Baltimore, Center for Biomedical Engineering and Technology and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
17
|
Tsuruda T, Ebine M, Umeda A, Oishi T. Stereoselective Synthesis of the C1–C29 Part of Amphidinol 3. J Org Chem 2015; 80:859-71. [DOI: 10.1021/jo502322m] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Takeshi Tsuruda
- Department of Chemistry,
Faculty and Graduate School of Sciences, Kyushu University, 6-10-1
Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Makoto Ebine
- Department of Chemistry,
Faculty and Graduate School of Sciences, Kyushu University, 6-10-1
Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Aya Umeda
- Department of Chemistry,
Faculty and Graduate School of Sciences, Kyushu University, 6-10-1
Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Tohru Oishi
- Department of Chemistry,
Faculty and Graduate School of Sciences, Kyushu University, 6-10-1
Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
18
|
Nuzzo G, Cutignano A, Sardo A, Fontana A. Antifungal amphidinol 18 and its 7-sulfate derivative from the marine dinoflagellate Amphidinium carterae. JOURNAL OF NATURAL PRODUCTS 2014; 77:1524-1527. [PMID: 24926538 DOI: 10.1021/np500275x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Two new polyketides of the amphidinol family, amphidinol 18 (AM18, 1) and its corresponding 7-sulfate derivative (AM19, 2), have been isolated from the MeOH extract of the dinoflagellate Amphidinium carterae. Structure elucidation of the two polyoxygenated molecules has been accomplished by extensive use of spectroscopic and spectrometric techniques. AM18 exhibited antifungal activity against Candida albicans at 9 μg/mL.
Collapse
Affiliation(s)
- Genoveffa Nuzzo
- CNR, Istituto di Chimica Biomolecolare , Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | | | | | | |
Collapse
|
19
|
Espiritu RA, Matsumori N, Tsuda M, Murata M. Direct and stereospecific interaction of amphidinol 3 with sterol in lipid bilayers. Biochemistry 2014; 53:3287-93. [PMID: 24773476 DOI: 10.1021/bi5002932] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amphidinol 3 (AM3), a polyhydroxy-polyene metabolite from the dinoflagellate Amphidinium klebsii, possesses potent antifungal activity. Although AM3 permeabilizes phospholipid membranes only in the presence of sterol, the detailed molecular basis by which AM3 recognizes sterols in membranes remains unknown. Here, we investigated the molecular interaction between sterols and AM3 in membranes from the viewpoint of stereospecific molecular recognition using ergosterol, cholesterol, and epicholesterol, which is the 3-OH epimer of cholesterol. Dye leakage assays, surface plasmon resonance experiments, (2)H and (31)P NMR measurements, and microscopic observations revealed that AM3 directly interacts with membrane sterols through the strict molecular recognition of the stereochemistry of the sterol 3-OH group. The direct interaction enhances the membrane binding efficiency of AM3, which subsequently permeabilizes membranes without altering membrane integrity.
Collapse
Affiliation(s)
- Rafael Atillo Espiritu
- Department of Chemistry, Graduate School of Science, Osaka University , Osaka 560-0043, Japan
| | | | | | | |
Collapse
|
20
|
Ebine M, Kanemoto M, Manabe Y, Konno Y, Sakai K, Matsumori N, Murata M, Oishi T. Synthesis and Structure Revision of the C43–C67 Part of Amphidinol 3. Org Lett 2013; 15:2846-9. [DOI: 10.1021/ol401176a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Makoto Ebine
- Department of Chemistry, Faculty and Graduate School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan, Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan, and JST ERATO Lipid Active Structure, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Mitsunori Kanemoto
- Department of Chemistry, Faculty and Graduate School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan, Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan, and JST ERATO Lipid Active Structure, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Faculty and Graduate School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan, Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan, and JST ERATO Lipid Active Structure, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yosuke Konno
- Department of Chemistry, Faculty and Graduate School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan, Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan, and JST ERATO Lipid Active Structure, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Ken Sakai
- Department of Chemistry, Faculty and Graduate School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan, Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan, and JST ERATO Lipid Active Structure, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty and Graduate School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan, Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan, and JST ERATO Lipid Active Structure, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- Department of Chemistry, Faculty and Graduate School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan, Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan, and JST ERATO Lipid Active Structure, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tohru Oishi
- Department of Chemistry, Faculty and Graduate School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan, Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan, and JST ERATO Lipid Active Structure, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
21
|
Espiritu RA, Matsumori N, Murata M, Nishimura S, Kakeya H, Matsunaga S, Yoshida M. Interaction between the marine sponge cyclic peptide theonellamide A and sterols in lipid bilayers as viewed by surface plasmon resonance and solid-state (2)H nuclear magnetic resonance. Biochemistry 2013; 52:2410-8. [PMID: 23477347 DOI: 10.1021/bi4000854] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Theonellamides (TNMs) are members of a distinctive family of antifungal and cytotoxic bicyclic dodecapeptides isolated from the marine sponge Theonella sp. Recently, it has been shown that TNMs recognize 3β-hydroxysterol-containing membranes, induce glucan overproduction, and damage cellular membranes. However, to date, the detailed mode of sterol binding at a molecular level has not been determined. In this study, to gain insight into the mechanism of sterol recognition of TNM in lipid bilayers, surface plasmon resonance (SPR) experiments and solid-state deuterium nuclear magnetic resonance ((2)H NMR) measurements were performed on theonellamide A (TNM-A). SPR results revealed that the incorporation of 10 mol % cholesterol or ergosterol into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes significantly enhances the affinity of the peptide for the membrane, particularly in the initial binding to the membrane surface. These findings, together with the fact that binding of TNM-A to epicholesterol (3α-cholesterol)-containing liposomes and pure POPC liposomes was comparably weak, confirmed the preference of the peptide for the 3β-hydroxysterol-containing membranes. To further establish the formation of the complex of TNM-A with 3β-hydroxysterols in lipid bilayers, solid-state (2)H NMR measurements were conducted using deuterium-labeled cholesterol, ergosterol, or epicholesterol. The (2)H NMR spectra showed that TNM-A significantly inhibits the fast rotational motion of cholesterol and ergosterol, but not epicholesterol, therefore verifying the direct complexation between TNM-A and 3β-hydroxysterols in lipid bilayers. This study demonstrates that TNM-A directly recognizes the 3β-OH moiety of sterols, which greatly facilitates its binding to bilayer membranes.
Collapse
Affiliation(s)
- Rafael Atillo Espiritu
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Manabe Y, Ebine M, Matsumori N, Murata M, Oishi T. Confirmation of the absolute configuration at C45 of amphidinol 3. JOURNAL OF NATURAL PRODUCTS 2012; 75:2003-2006. [PMID: 23130992 DOI: 10.1021/np300604w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Amphidinol 3 (AM3), a membrane-active agent isolated from the dinoflagellate Amphidinium klebsii, consists of a long carbon chain containing 25 stereogenic centers. Although the absolute configuration of AM3 was determined by extensive NMR analysis and degradation of the natural product, the partial structure corresponding to the tetrahydropyran ring system was found to be antipodal to that of karlotoxin 2, a structurally related compound recently isolated from the dinoflagellate Karlodinium veneficum. By extensive degradation of the natural product and conversion of the resulting alcohol to an MTPA ester, the absolute configuration at C45 of AM3 was confirmed to be R, supporting the originally proposed structure.
Collapse
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Faculty and Graduate School of Sciences, Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
24
|
Kasai Y, Matsumori N, Ueno H, Nonomura K, Yano S, Michio M, Oishi T. Synthesis of 6-F-ergosterol and its influence on membrane-permeabilization of amphotericin B and amphidinol 3. Org Biomol Chem 2011; 9:1437-42. [DOI: 10.1039/c0ob00685h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|