1
|
Arce-Fonseca M, Gutiérrez-Ocejo RA, Rosales-Encina JL, Aranda-Fraustro A, Cabrera-Mata JJ, Rodríguez-Morales O. Nitazoxanide: A Drug Repositioning Compound with Potential Use in Chagas Disease in a Murine Model. Pharmaceuticals (Basel) 2023; 16:826. [PMID: 37375773 DOI: 10.3390/ph16060826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Chagas disease (ChD), caused by Trypanosoma cruzi, is the most serious parasitosis in the western hemisphere. Benznidazole and nifurtimox, the only two trypanocidal drugs, are expensive, difficult to obtain, and have severe side effects. Nitazoxanide has shown to be effective against protozoa, bacteria, and viruses. This study aimed to evaluate the nitazoxanide efficacy against the Mexican T. cruzi Ninoa strain in mice. Infected animals were orally treated for 30 days with nitazoxanide (100 mg/kg) or benznidazole (10 mg/kg). The clinical, immunological, and histopathological conditions of the mice were evaluated. Nitazoxanide- or benznidazole-treated mice had longer survival and less parasitemia than those without treatment. Antibody production in the nitazoxanide-treated mice was of the IgG1-type and not of the IgG2-type as in the benznidazole-treated mice. Nitazoxanide-treated mice had significantly high IFN-γ levels compared to the other infected groups. Serious histological damage could be prevented with nitazoxanide treatment compared to without treatment. In conclusion, nitazoxanide decreased parasitemia levels, indirectly induced the production of IgG antibodies, and partially prevented histopathological damage; however, it did not show therapeutic superiority compared to benznidazole in any of the evaluated aspects. Therefore, the repositioning of nitazoxanide as an alternative treatment against ChD could be considered, since it did not trigger adverse effects that worsened the pathological condition of the infected mice.
Collapse
Affiliation(s)
- Minerva Arce-Fonseca
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Rodolfo Andrés Gutiérrez-Ocejo
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - José Luis Rosales-Encina
- Department of Infectomics and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. Insituto Politécnico Nacional, Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico
| | - Alberto Aranda-Fraustro
- Department of Pathology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Juan José Cabrera-Mata
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Olivia Rodríguez-Morales
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| |
Collapse
|
2
|
Rodríguez-Morales O, Mendoza-Téllez EJ, Morales-Salinas E, Arce-Fonseca M. Effectiveness of Nitazoxanide and Electrolyzed Oxiding Water in Treating Chagas Disease in a Canine Model. Pharmaceutics 2023; 15:pharmaceutics15051479. [PMID: 37242721 DOI: 10.3390/pharmaceutics15051479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Chagas disease (CD) is caused by the protozoan Trypanosoma cruzi, and affects seven million people in Latin America. Side effects and the limited efficacy of current treatment have led to new drug research. The objective of this work was to evaluate the effectiveness of nitazoxanide (NTZ) and electrolyzed oxidizing water (EOW) in a canine model of experimental CD. Náhuatl dogs were infected with the T. cruzi H8 strain and NTZ- or EOW-treated orally for 10 days. Seronegativity was shown at 12 months post-infection (mpi) in the NTZ-, EOW-, and benznidazole (BNZ)-treated groups. The NTZ and BNZ groups had high levels of IFN-γ, TNF-α, IL-6, IL-12B, and IL-1β at 1.5 mpi and low levels of IL-10. Electrocardiographic studies showed alterations from 3 mpi and worsening at 12 mpi; NTZ treatment produced fewer cardiac pathomorphological changes compared to EOW, similar to BNZ treatment. There was no cardiomegaly in any group. In conclusion, although NTZ and EOW did not prevent changes in cardiac conductivity, they were able to avoid the severity of heart damage in the chronic phase of CD. NTZ induced a favorable proinflammatory immune response after infection, being a better option than EOW as a possible treatment for CD after BNZ.
Collapse
Affiliation(s)
- Olivia Rodríguez-Morales
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology of Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Erika Jocelin Mendoza-Téllez
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology of Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Elizabeth Morales-Salinas
- Department of Pathology of Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad 3000, Col. Copilco Universidad, Coyoacán, Mexico City 04510, Mexico
| | - Minerva Arce-Fonseca
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology of Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| |
Collapse
|
3
|
Khalid H, Batool S, Din FU, Khan S, Khan GM. Macrophage targeting of nitazoxanide-loaded transethosomal gel in cutaneous leishmaniasis. ROYAL SOCIETY OPEN SCIENCE 2022. [PMID: 36249328 DOI: 10.5061/dryad.cfxpnvx7d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Topical delivery is preferable over systemic delivery for cutaneous leishmaniasis, because of its easy administration, reduced systemic adverse effects and low cost. Nitazoxanide (NTZ) has broad-spectrum activity against various parasites and has the potential to avoid drug resistance developed by enzymatic mutations. NTZ oral formulation is associated with severe dyspepsia and stomach pain. Herein, NTZ-transethosomes (NTZ-TES) were prepared and loaded into chitosan gel (NTZ-TEG) for topical delivery. NTZ-TES were prepared by the thin-film hydration method and optimized statistically via the Box-Behnken method. The optimized formulation indicated excellent particle size (176 nm), polydispersity index (0.093), zeta potential (-26.4 mV) and entrapment efficiency (86%). The transmission electron microscopy analysis showed spherical-sized particles and Fourier-transform infrared spectroscopy analysis indicated no interaction among the excipients. Similarly, NTZ-TEG showed optimal pH, desirable viscosity and good spreadability. NTZ-TES and NTZ-TEG showed prolonged release behaviour and higher skin penetration and deposition in the epidermal/dermal layer of skin in comparison with the NTZ-dispersion. Moreover, NTZ-TES showed higher percentage inhibition, lower half-maximal inhibitory concentration (IC50) against promastigotes and higher macrophage uptake. Additionally, skin irritation and histopathology studies indicated the safe and non-irritant behaviour of the NTZ-TEG. The obtained findings suggested the enhanced skin permeation and improved anti-leishmanial effect of NTZ when administered as NTZ-TEG.
Collapse
Affiliation(s)
- Husna Khalid
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Sibgha Batool
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Gul Majid Khan
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
4
|
Khalid H, Batool S, Din FU, Khan S, Khan GM. Macrophage targeting of nitazoxanide-loaded transethosomal gel in cutaneous leishmaniasis. ROYAL SOCIETY OPEN SCIENCE 2022. [PMID: 36249328 DOI: 10.6084/m9.figshare.c.6214720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Topical delivery is preferable over systemic delivery for cutaneous leishmaniasis, because of its easy administration, reduced systemic adverse effects and low cost. Nitazoxanide (NTZ) has broad-spectrum activity against various parasites and has the potential to avoid drug resistance developed by enzymatic mutations. NTZ oral formulation is associated with severe dyspepsia and stomach pain. Herein, NTZ-transethosomes (NTZ-TES) were prepared and loaded into chitosan gel (NTZ-TEG) for topical delivery. NTZ-TES were prepared by the thin-film hydration method and optimized statistically via the Box-Behnken method. The optimized formulation indicated excellent particle size (176 nm), polydispersity index (0.093), zeta potential (-26.4 mV) and entrapment efficiency (86%). The transmission electron microscopy analysis showed spherical-sized particles and Fourier-transform infrared spectroscopy analysis indicated no interaction among the excipients. Similarly, NTZ-TEG showed optimal pH, desirable viscosity and good spreadability. NTZ-TES and NTZ-TEG showed prolonged release behaviour and higher skin penetration and deposition in the epidermal/dermal layer of skin in comparison with the NTZ-dispersion. Moreover, NTZ-TES showed higher percentage inhibition, lower half-maximal inhibitory concentration (IC50) against promastigotes and higher macrophage uptake. Additionally, skin irritation and histopathology studies indicated the safe and non-irritant behaviour of the NTZ-TEG. The obtained findings suggested the enhanced skin permeation and improved anti-leishmanial effect of NTZ when administered as NTZ-TEG.
Collapse
Affiliation(s)
- Husna Khalid
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Sibgha Batool
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Gul Majid Khan
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
5
|
Khalid H, Batool S, Din FU, Khan S, Khan GM. Macrophage targeting of nitazoxanide-loaded transethosomal gel in cutaneous leishmaniasis. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220428. [PMID: 36249328 PMCID: PMC9532992 DOI: 10.1098/rsos.220428] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/12/2022] [Indexed: 05/03/2023]
Abstract
Topical delivery is preferable over systemic delivery for cutaneous leishmaniasis, because of its easy administration, reduced systemic adverse effects and low cost. Nitazoxanide (NTZ) has broad-spectrum activity against various parasites and has the potential to avoid drug resistance developed by enzymatic mutations. NTZ oral formulation is associated with severe dyspepsia and stomach pain. Herein, NTZ-transethosomes (NTZ-TES) were prepared and loaded into chitosan gel (NTZ-TEG) for topical delivery. NTZ-TES were prepared by the thin-film hydration method and optimized statistically via the Box-Behnken method. The optimized formulation indicated excellent particle size (176 nm), polydispersity index (0.093), zeta potential (-26.4 mV) and entrapment efficiency (86%). The transmission electron microscopy analysis showed spherical-sized particles and Fourier-transform infrared spectroscopy analysis indicated no interaction among the excipients. Similarly, NTZ-TEG showed optimal pH, desirable viscosity and good spreadability. NTZ-TES and NTZ-TEG showed prolonged release behaviour and higher skin penetration and deposition in the epidermal/dermal layer of skin in comparison with the NTZ-dispersion. Moreover, NTZ-TES showed higher percentage inhibition, lower half-maximal inhibitory concentration (IC50) against promastigotes and higher macrophage uptake. Additionally, skin irritation and histopathology studies indicated the safe and non-irritant behaviour of the NTZ-TEG. The obtained findings suggested the enhanced skin permeation and improved anti-leishmanial effect of NTZ when administered as NTZ-TEG.
Collapse
Affiliation(s)
- Husna Khalid
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Sibgha Batool
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Fakhar ud Din
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Gul Majid Khan
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
6
|
Irabuena C, Scarone L, de Souza GE, Aguiar ACC, Mendes GR, Guido RVC, Serra G. Synthesis and antiplasmodial assessment of nitazoxanide and analogs as new antimalarial candidates. Med Chem Res 2022; 31:426-435. [PMID: 35106047 PMCID: PMC8794615 DOI: 10.1007/s00044-021-02843-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/16/2021] [Indexed: 10/26/2022]
Abstract
During the last years, the progression to control malaria disease seems to be slowed and WHO (World Health Organization) reported a modeling analysis with the prediction of the increase in malaria morbidity and mortality in sub-Saharan Africa during the COVID-19 pandemic. A rapid way to the discovery of new drugs could be carried out by performing investigations to identify drugs based on repurposing of "old" drugs. The 5-nitrothiazole drug, Nitazoxanide was shown to be active against intestinal protozoa, human helminths, anaerobic bacteria, viruses, etc. In this work, Nitazoxanide and analogs were prepared using two methodologies and evaluated against P. falciparum 3D7. A bithiazole analog, showed attractive inhibitory activity with an EC50 value of 5.9 μM, low propensity to show toxic effect against HepG2 cells at 25 μM, and no cross-resistance with standard antimalarials.
Collapse
Affiliation(s)
- Camila Irabuena
- Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, CC1157 Montevideo, Uruguay
- Graduate Program in Chemistry, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Laura Scarone
- Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, CC1157 Montevideo, Uruguay
| | - Guilherme Eduardo de Souza
- São Carlos Institute of Physics, University of Sao Paulo, Avenida João Dagnone, 1100, São Carlos, São Paulo 13563-120 Brazil
| | - Anna Caroline Campos Aguiar
- São Carlos Institute of Physics, University of Sao Paulo, Avenida João Dagnone, 1100, São Carlos, São Paulo 13563-120 Brazil
| | - Giovana Rossi Mendes
- São Carlos Institute of Physics, University of Sao Paulo, Avenida João Dagnone, 1100, São Carlos, São Paulo 13563-120 Brazil
| | - Rafael Victorio Carvalho Guido
- São Carlos Institute of Physics, University of Sao Paulo, Avenida João Dagnone, 1100, São Carlos, São Paulo 13563-120 Brazil
| | - Gloria Serra
- Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, CC1157 Montevideo, Uruguay
| |
Collapse
|
7
|
Lian P, Li R, Wan X, Xiang Z, Liu H, Cao Z, Wan X. Acetylation of alcohols and amines under visible light irradiation: diacetyl as an acylation reagent and photosensitizer. Org Chem Front 2022. [DOI: 10.1039/d1qo01613j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An unprecedented strategy for the acetylation of alcohols and amines using diacetyl as both an acylation reagent and a photosensitizer was well developed.
Collapse
Affiliation(s)
- Pengcheng Lian
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ruyi Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiao Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zixin Xiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hang Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhiyu Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Ahmed T, Rahman SMA, Asaduzzaman M, Islam ABMMK, Chowdhury AKA. Synthesis, in vitro bioassays, and computational study of heteroaryl nitazoxanide analogs. Pharmacol Res Perspect 2021; 9:e00800. [PMID: 34086411 PMCID: PMC8177060 DOI: 10.1002/prp2.800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022] Open
Abstract
Antiprotozoal drug nitazoxanide (NTZ) has shown diverse pharmacological properties and has appeared in several clinical trials. Herein we present the synthesis, characterization, in vitro biological investigation, and in silico study of four hetero aryl amide analogs of NTZ. Among the synthesized molecules, compound 2 and compound 4 exhibited promising antibacterial activity against Escherichia coli (E. coli), superior to that displayed by the parent drug nitazoxanide as revealed from the in vitro antibacterial assay. Compound 2 displayed zone of inhibition of 20 mm, twice as large as the parent drug NTZ (10 mm) in their least concentration (12.5 µg/ml). Compound 1 also showed antibacterial effect similar to that of nitazoxanide. The analogs were also tested for in vitro cytotoxic activity by employing cell counting kit-8 (CCK-8) assay technique in HeLa cell line, and compound 2 was identified as a potential anticancer agent having IC50 value of 172 µg which proves it to be more potent than nitazoxanide (IC50 = 428 µg). Furthermore, the compounds were subjected to molecular docking study against various bacterial and cancer signaling proteins. The in vitro test results corroborated with the in silico docking study as compound 2 and compound 4 had comparatively stronger binding affinity against the proteins and showed a higher docking score than nitazoxanide toward human mitogen-activated protein kinase (MAPK9) and fatty acid biosynthesis enzyme (FabH) of E. coli. Moreover, the docking study demonstrated dihydrofolate reductase (DHFR) and thymidylate synthase (TS) as probable new targets for nitazoxanide and its synthetic analogs. Overall, the study suggests that nitazoxanide and its analogs can be a potential lead compound in the drug development.
Collapse
Affiliation(s)
- Tasmia Ahmed
- Department of Clinical Pharmacy and PharmacologyFaculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - S. M. Abdur Rahman
- Department of Clinical Pharmacy and PharmacologyFaculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Muhammad Asaduzzaman
- Department of Clinical Pharmacy and PharmacologyFaculty of PharmacyUniversity of DhakaDhakaBangladesh
| | | | - A. K. Azad Chowdhury
- Department of Clinical Pharmacy and PharmacologyFaculty of PharmacyUniversity of DhakaDhakaBangladesh
| |
Collapse
|
9
|
Moreno-Herrera A, Cortez-Maya S, Bocanegra-Garcia V, Banik BK, Rivera G. Recent Advances in the Development of Broad-Spectrum Antiprotozoal Agents. Curr Med Chem 2021; 28:583-606. [PMID: 32124688 DOI: 10.2174/0929867327666200303170000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/05/2019] [Accepted: 01/01/2020] [Indexed: 11/22/2022]
Abstract
Infections caused by Trypanosoma brucei, Trypanosoma cruzi, Leishmania spp., Entamoeba histolytica, Giardia lamblia, Plasmodium spp., and Trichomonas vaginalis, are part of a large list of human parasitic diseases. Together, they cause more than 500 million infections per year. These protozoa parasites affect both low- and high-income countries and their pharmacological treatments are limited. Therefore, new and more effective drugs in preclinical development could improve overall therapy for parasitic infections even when their mechanisms of action are unknown. In this review, a number of heterocyclic compounds (diamidine, guanidine, quinoline, benzimidazole, thiazole, diazanaphthalene, and their derivatives) reported as antiprotozoal agents are discussed as options for developing new pharmacological treatments for parasitic diseases.
Collapse
Affiliation(s)
- Antonio Moreno-Herrera
- Laboratorio de Biotecnologia Farmaceutica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, Reynosa 88710, Mexico
| | - Sandra Cortez-Maya
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Circuito Exterior, Coyoacan, Ciudad de Mexico 04510, Mexico
| | - Virgilio Bocanegra-Garcia
- Laboratorio de Biotecnologia Farmaceutica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, Reynosa 88710, Mexico
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Deanship of Research, Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia
| | - Gildardo Rivera
- Laboratorio de Biotecnologia Farmaceutica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, Reynosa 88710, Mexico
| |
Collapse
|
10
|
Vasconcelos Gomes de Oliveira V, Angela Aranda de Souza M, Ramos Mororó Cavalcanti R, Veríssimo de Oliveira Cardoso M, Lima Leite AC, de Figueiredo RCBQ, Rogério de Freitas Silva S, Câmara Alves L, Amaro da Silva Junior V. Study of acute oral toxicity of the thiazole derivative N-(1-methyl-2-methyl-pyridine)-N-(p-bromophenylthiazol-2-yl)-hydrazine in a Syrian hamster. Toxicol Mech Methods 2021; 31:197-204. [PMID: 33349088 DOI: 10.1080/15376516.2020.1867681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The thiazole derivative N-1-methyl-2-methyl-pyridine)-N-(p-bromophenylthiazol-2-yl)-hydrazine was used to evaluate the acute oral toxicity in Syrian hamsters. The concentration of the doses (300 mg/kg and 2000 mg/kg) were based on the "Class Acute Toxicity Method" displayed in the OECD-423 guide. In addition, renal and liver biochemical tests were performed, as well as histopathological analysis. Our results showed that the compound's lethal dose (LD50) was 1000 mg/kg and classified as category 4 according to the criteria adopted in the experiment's protocol. Biochemical analysis of the liver function's parameters showed that the LD50 values in all animals were higher than the reference values. However, the analyze of the kidney injury parameters showed an increase in the urea's dosage but a decrease in the albumin's dosage in all animals when compared to the reference values. Kidney biochemical analysis also showed that creatinine's level was only higher than the reference values in one animal. Massive damages in the liver were observed, such as hypertrophy and hyperplasia of the hepatocyte, coagulation necrosis, the presence of mononuclear cells in the sinusoidal capillaries, steatosis, cholestasis, and congestion of sinusoidal capillaries and central-lobular veins. The animals presented renal injuries related to congestion of glomerular and interstitial capillaries, nephrosis of contorted proximal and distal tubules and congestion in the medullary region. In conclusion, the thiazole derivative was well tolerated although it caused acute liver and kidney damages. Therefore, these results showed the need of further investigation of this compound in vivo to evaluate the potential therapeutic effects with chronic models.
Collapse
Affiliation(s)
- Vinícius Vasconcelos Gomes de Oliveira
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brasil.,Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brasil
| | | | | | | | | | | | | | - Leucio Câmara Alves
- Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Recife, Brasil
| | | |
Collapse
|
11
|
Riches A, Hart CJS, Trenholme KR, Skinner-Adams TS. Anti- Giardia Drug Discovery: Current Status and Gut Feelings. J Med Chem 2020; 63:13330-13354. [PMID: 32869995 DOI: 10.1021/acs.jmedchem.0c00910] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Giardia parasites are ubiquitous protozoans of global importance that impact a wide range of animals including humans. They are the most common enteric pathogen of cats and dogs in developed countries and infect ∼1 billion people worldwide. While Giardia infections can be asymptomatic, they often result in severe and chronic diseases. There is also mounting evidence that they are linked to postinfection disorders. Despite growing evidence of the widespread morbidity associated with Giardia infections, current treatment options are limited to compound classes with broad antimicrobial activity. Frontline anti-Giardia drugs are also associated with increasing drug resistance and treatment failures. To improve the health and well-being of millions, new selective anti-Giardia drugs are needed alongside improved health education initiatives. Here we discuss current treatment options together with recent advances and gaps in drug discovery. We also propose criteria to guide the discovery of new anti-Giardia compounds.
Collapse
Affiliation(s)
- Andrew Riches
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, Victoria 3168, Australia
| | - Christopher J S Hart
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Katharine R Trenholme
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland 4029, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland 4029, Australia
| | - Tina S Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
12
|
Repurposing Drugs to Fight Hepatic Malaria Parasites. Molecules 2020; 25:molecules25153409. [PMID: 32731386 PMCID: PMC7435416 DOI: 10.3390/molecules25153409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Malaria remains one of the most prevalent infectious diseases worldwide, primarily affecting some of the most vulnerable populations around the globe. Despite achievements in the treatment of this devastating disease, there is still an urgent need for the discovery of new drugs that tackle infection by Plasmodium parasites. However, de novo drug development is a costly and time-consuming process. An alternative strategy is to evaluate the anti-plasmodial activity of compounds that are already approved for other purposes, an approach known as drug repurposing. Here, we will review efforts to assess the anti-plasmodial activity of existing drugs, with an emphasis on the obligatory and clinically silent liver stage of infection. We will also review the current knowledge on the classes of compounds that might be therapeutically relevant against Plasmodium in the context of other communicable diseases that are prevalent in regions where malaria is endemic. Repositioning existing compounds may constitute a faster solution to the current gap of prophylactic and therapeutic drugs that act on Plasmodium parasites, overall contributing to the global effort of malaria eradication.
Collapse
|
13
|
Matadamas-Martínez F, Nogueda-Torres B, Castillo R, Hernández-Campos A, Barrera-Valdes MDLL, León-Ávila G, Hernández JM, Yépez-Mulia L. Characterisation of the in vitro activity of a Nitazoxanide-N-methyl-1H-benzimidazole hybrid molecule against albendazole and nitazoxanide susceptible and resistant strains of Giardia intestinalis and its in vivo giardicidal activity. Mem Inst Oswaldo Cruz 2020; 115:e190348. [PMID: 32049098 PMCID: PMC7012584 DOI: 10.1590/0074-02760190348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/02/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND It was previously demonstrated that CMC-20, a nitazoxanide and N-methyl-1H-benzimidazole hybrid molecule, had higher in vitro activity against Giardia intestinalis WB strain than metronidazole and albendazole and similar to nitazoxanide. OBJETIVES To evaluate the in vitro activity of CMC-20 against G. intestinalis strains with different susceptibility/resistance to albendazole and nitazoxanide and evaluate its effect on the distribution of parasite cytoskeletal proteins and its in vivo giardicidal activity. METHODS CMC-20 activity was tested against two isolates from patients with chronic and acute giardiasis, an experimentally induced albendazole resistant strain and a nitazoxanide resistant clinical isolate. CMC-20 effect on the distribution of parasite cytoskeletal proteins was analysed by indirect immunofluorescence and its activity was evaluated in a murine model of giardiasis. FINDINGS CMC-20 showed broad activity against susceptible and resistant strains to albendazole and nitaxozanide. It affected the parasite microtubule reservoir and triggered the parasite encystation. In this process, alpha-7.2 giardin co-localised with CWP-1 protein. CMC-20 reduced the infection time and cyst load in feces of G. muris infected mice similar to albendazole. MAIN CONCLUSIONS The in vitro and in vivo giardicidal activity of CMC-20 suggests its potential use in the treatment of giardiasis.
Collapse
Affiliation(s)
- Félix Matadamas-Martínez
- Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Farmacia, Mexico City, Mexico
- Instituto Mexicano del Seguro Social, Centro Médico Siglo XXI, Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Mexico City, Mexico
| | - Benjamín Nogueda-Torres
- Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Departamento de Parasitología, Mexico City, Mexico
| | - Rafael Castillo
- Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Farmacia, Mexico City, Mexico
| | - Alicia Hernández-Campos
- Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Farmacia, Mexico City, Mexico
| | - María de la Luz Barrera-Valdes
- Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Departamento de Parasitología, Mexico City, Mexico
- Instituto Mexicano del Seguro Social, Centro Médico Siglo XXI, Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Mexico City, Mexico
| | - Gloria León-Ávila
- Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Departamento de Zoología, Laboratorio de Genética, Mexico City, Mexico
| | - José Manuel Hernández
- >Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Biología Celular, Mexico City, Mexico
| | - Lilián Yépez-Mulia
- Instituto Mexicano del Seguro Social, Centro Médico Siglo XXI, Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Mexico City, Mexico
| |
Collapse
|
14
|
Drug resistance in Giardia: Mechanisms and alternative treatments for Giardiasis. ADVANCES IN PARASITOLOGY 2020; 107:201-282. [PMID: 32122530 DOI: 10.1016/bs.apar.2019.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of chemotherapeutic drugs is the main resource against clinical giardiasis due to the lack of approved vaccines. Resistance of G. duodenalis to the most used drugs to treat giardiasis, metronidazole and albendazole, is a clinical issue of growing concern and yet unknown impact, respectively. In the search of new drugs, the completion of the Giardia genome project and the use of biochemical, molecular and bioinformatics tools allowed the identification of ligands/inhibitors for about one tenth of ≈150 potential drug targets in this parasite. Further, the synthesis of second generation nitroimidazoles and benzimidazoles along with high-throughput technologies have allowed not only to define overall mechanisms of resistance to metronidazole but to screen libraries of repurposed drugs and new pharmacophores, thereby increasing the known arsenal of anti-giardial compounds to some hundreds, with most demonstrating activity against metronidazole or albendazole-resistant Giardia. In particular, cysteine-modifying agents which include omeprazole, disulfiram, allicin and auranofin outstand due to their pleiotropic activity based on the extensive repertoire of thiol-containing proteins and the microaerophilic metabolism of this parasite. Other promising agents derived from higher organisms including phytochemicals, lactoferrin and propolis as well as probiotic bacteria/fungi have also demonstrated significant potential for therapeutic and prophylactic purposes in giardiasis. In this context the present chapter offers a comprehensive review of the current knowledge, including commonly prescribed drugs, causes of therapeutic failures, drug resistance mechanisms, strategies for the discovery of new agents and alternative drug therapies.
Collapse
|
15
|
Bala V, Chhonker YS. Recent developments in anti-Trichomonas research: An update review. Eur J Med Chem 2017; 143:232-243. [PMID: 29175675 DOI: 10.1016/j.ejmech.2017.11.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022]
Abstract
Trichomonas vaginalis is a major non-viral sexually-transmitted infection resulted into serious obstetrical and gynecological troubles. The increasing resistance to nitroimidazole therapy and recurrence makes it crucial to develop new drugs against trichomoniasis. Over the past few years, a large number of research articles highlighting the synthetic and natural product research to combat Trichomonas vaginalis have been published. Electronic databases were searched to collect all data from the year 2006 through June 2017 for anti-Trichomonas activity potential of synthetic and natural products. This review article put together the synthetic and natural product research to find out an effective metronidazole alternative to cure trichomoniasis.
Collapse
Affiliation(s)
- Veenu Bala
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, 313001, India.
| | - Yashpal S Chhonker
- College of Pharmacy, Department of Pharmacy Practice, University of Nebraska Medical Centre, Omaha, USA.
| |
Collapse
|
16
|
Colín-Lozano B, León-Rivera I, Chan-Bacab MJ, Ortega-Morales BO, Moo-Puc R, López-Guerrero V, Hernández-Núñez E, Argüello-Garcia R, Scior T, Barbosa-Cabrera E, Navarrete-Vázquez G. Synthesis, in vitro and in vivo giardicidal activity of nitrothiazole-NSAID chimeras displaying broad antiprotozoal spectrum. Bioorg Med Chem Lett 2017. [PMID: 28645659 DOI: 10.1016/j.bmcl.2017.05.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We designed and synthesized five new 5-nitrothiazole-NSAID chimeras as analogues of nitazoxanide, using a DCC-activated amidation. Compounds 1-5 were tested in vitro against a panel of five protozoa: 2 amitochondriates (Giardia intestinalis, Trichomonas vaginalis) and 3 kinetoplastids (Leishmania mexicana, Leishmania amazonensis and Trypanosoma cruzi). All chimeras showed broad spectrum and potent antiprotozoal activities, with IC50 values ranging from the low micromolar to nanomolar order. Compounds 1-5 were even more active than metronidazole and nitazoxanide, two marketed first-line drugs against giardiasis. In particular, compound 4 (an indomethacin hybrid) was one of the most potent of the series, inhibiting G. intestinalis growth in vitro with an IC50 of 0.145μM. Compound 4 was 38-times more potent than metronidazole and 8-times more active than nitazoxanide. The in vivo giardicidal effect of 4 was evaluated in a CD-1 mouse model obtaining a median effective dose of 1.709μg/kg (3.53nmol/kg), a 321-fold and 1015-fold increase in effectiveness after intragastric administration over metronidazole and nitazoxanide, respectively. Compounds 1 and 3 (hybrids of ibuprofen and clofibric acid), showed potent giardicidal activities in the in vitro as well as in the in vivo assays after oral administration. Therefore, compounds 1-5 constitute promising drug candidates for further testing in experimental chemotherapy against giardiasis, trichomoniasis, leishmaniasis and even trypanosomiasis infections.
Collapse
Affiliation(s)
- Blanca Colín-Lozano
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - Ismael León-Rivera
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - Manuel Jesús Chan-Bacab
- Departamento de Microbiología Ambiental y Biotecnología, Universidad Autónoma de Campeche, Campeche 24039, Mexico
| | - Benjamín Otto Ortega-Morales
- Departamento de Microbiología Ambiental y Biotecnología, Universidad Autónoma de Campeche, Campeche 24039, Mexico
| | - Rosa Moo-Puc
- Unidad de Investigación Médica Yucatán, IMSS Mérida, Yucatán 97000, Mexico
| | - Vanessa López-Guerrero
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - Emanuel Hernández-Núñez
- Cátedra CONACyT, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida, 97310 Yucatán, Mexico
| | - Raúl Argüello-Garcia
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07360, Mexico
| | - Thomas Scior
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla 72000, Mexico
| | - Elizabeth Barbosa-Cabrera
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, IPN, Mexico City 11340, Mexico
| | - Gabriel Navarrete-Vázquez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| |
Collapse
|
17
|
Enciso E, Sarmiento-Sánchez JI, López-Moreno HS, Ochoa-Terán A, Osuna-Martínez U, Beltrán-López E. Synthesis of new quinazolin-2,4-diones as anti-Leishmania mexicana agents. Mol Divers 2016; 20:821-828. [DOI: 10.1007/s11030-016-9693-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/07/2016] [Indexed: 11/24/2022]
|
18
|
Scior T, Lozano-Aponte J, Ajmani S, Hernández-Montero E, Chávez-Silva F, Hernández-Núñez E, Moo-Puc R, Fraguela-Collar A, Navarrete-Vázquez G. Antiprotozoal Nitazoxanide Derivatives: Synthesis, Bioassays and QSAR Study Combined with Docking for Mechanistic Insight. Curr Comput Aided Drug Des 2016; 11:21-31. [PMID: 25872791 PMCID: PMC5396257 DOI: 10.2174/1573409911666150414145937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/02/2015] [Accepted: 04/03/2015] [Indexed: 12/29/2022]
Abstract
In view of the serious health problems concerning infectious diseases in heavily populated areas, we followed the strategy of lead compound diversification to evaluate the near-by chemical space for new organic compounds. To this end, twenty derivatives of nitazoxanide (NTZ) were synthesized and tested for activity against Entamoeba histolytica parasites. To ensure drug-likeliness and activity relatedness of the new compounds, the synthetic work was assisted by a quantitative structure-activity relationships study (QSAR). Many of the inherent downsides – well-known to QSAR practitioners – we circumvented thanks to workarounds which we proposed in prior QSAR publication. To gain further mechanistic insight on a molecular level, ligand-enzyme docking simulations were carried out since NTZ is known to inhibit the protozoal pyruvate ferredoxin oxidoreductase (PFOR) enzyme as its biomolecular target.
Collapse
Affiliation(s)
- Thomas Scior
- Department of Pharmacy, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Edificio 105 C/106, C.P. 72570 Puebla, PUE., Mexico.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Miyamoto Y, Eckmann L. Drug Development Against the Major Diarrhea-Causing Parasites of the Small Intestine, Cryptosporidium and Giardia. Front Microbiol 2015; 6:1208. [PMID: 26635732 PMCID: PMC4652082 DOI: 10.3389/fmicb.2015.01208] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/16/2015] [Indexed: 12/23/2022] Open
Abstract
Diarrheal diseases are among the leading causes of morbidity and mortality in the world, particularly among young children. A limited number of infectious agents account for most of these illnesses, raising the hope that advances in the treatment and prevention of these infections can have global health impact. The two most important parasitic causes of diarrheal disease are Cryptosporidium and Giardia. Both parasites infect predominantly the small intestine and colonize the lumen and epithelial surface, but do not invade deeper mucosal layers. This review discusses the therapeutic challenges, current treatment options, and drug development efforts against cryptosporidiosis and giardiasis. The goals of drug development against Cryptosporidium and Giardia are different. For Cryptosporidium, only one moderately effective drug (nitazoxanide) is available, so novel classes of more effective drugs are a high priority. Furthermore, new genetic technology to identify potential drug targets and better assays for functional evaluation of these targets throughout the parasite life cycle are needed for advancing anticryptosporidial drug design. By comparison, for Giardia, several classes of drugs with good efficacy exist, but dosing regimens are suboptimal and emerging resistance begins to threaten clinical utility. Consequently, improvements in potency and dosing, and the ability to overcome existing and prevent new forms of drug resistance are priorities in antigiardial drug development. Current work on new drugs against both infections has revealed promising strategies and new drug leads. However, the primary challenge for further drug development is the underlying economics, as both parasitic infections are considered Neglected Diseases with low funding priority and limited commercial interest. If a new urgency in medical progress against these infections can be raised at national funding agencies or philanthropic organizations, meaningful and timely progress is possible in treating and possibly preventing cryptosporidiosis and giardiasis.
Collapse
Affiliation(s)
- Yukiko Miyamoto
- Department of Medicine, University of California at San Diego, La Jolla CA, USA
| | - Lars Eckmann
- Department of Medicine, University of California at San Diego, La Jolla CA, USA
| |
Collapse
|
20
|
Azam A, Peerzada MN, Ahmad K. Parasitic diarrheal disease: drug development and targets. Front Microbiol 2015; 6:1183. [PMID: 26617574 PMCID: PMC4621754 DOI: 10.3389/fmicb.2015.01183] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/12/2015] [Indexed: 12/23/2022] Open
Abstract
Diarrhea is the manifestation of gastrointestinal infection and is one of the major causes of mortality and morbidity specifically among the children of less than 5 years age worldwide. Moreover, in recent years there has been a rise in the number of reports of intestinal infections continuously in the industrialized world. These are largely related to waterborne and food borne outbreaks. These occur by the pathogenesis of both prokaryotic and eukaryotic organisms like bacteria and parasites. The parasitic intestinal infection has remained mostly unexplored and under assessed in terms of therapeutic development. The lack of new drugs and the risk of resistance have led us to carry out this review on drug development for parasitic diarrheal diseases. The major focus has been depicted on commercially available drugs, currently synthesized active heterocyclic compounds and unique drug targets, that are vital for the existence and growth of the parasites and can be further exploited for the search of therapeutically active anti-parasitic agents.
Collapse
Affiliation(s)
- Amir Azam
- Medicinal Chemistry Laboratory, Department of Chemistry, Jamia Millia IslamiaNew Delhi, India
| | - Mudasir N. Peerzada
- Medicinal Chemistry Laboratory, Department of Chemistry, Jamia Millia IslamiaNew Delhi, India
| | - Kamal Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia IslamiaNew Delhi, India
| |
Collapse
|
21
|
Yah CS, Simate GS. Nanoparticles as potential new generation broad spectrum antimicrobial agents. Daru 2015; 23:43. [PMID: 26329777 PMCID: PMC4557602 DOI: 10.1186/s40199-015-0125-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/12/2015] [Indexed: 12/20/2022] Open
Abstract
The rapid emergence of antimicrobial resistant strains to conventional antimicrobial agents has complicated and prolonged infection treatment and increased mortality risk globally. Furthermore, some of the conventional antimicrobial agents are unable to cross certain cell membranes thus, restricting treatment of intracellular pathogens. Therefore, the disease-causing-organisms tend to persist in these cells. However, the emergence of nanoparticle (NP) technology has come with the promising broad spectrum NP-antimicrobial agents due to their vast physiochemical and functionalization properties. In fact, NP-antimicrobial agents are able to unlock the restrictions experienced by conventional antimicrobial agents. This review discusses the status quo of NP-antimicrobial agents as potent broad spectrum antimicrobial agents, sterilization and wound healing agents, and sustained inhibitors of intracellular pathogens. Indeed, the perspective of developing potent NP-antimicrobial agents that carry multiple-functionality will revolutionize clinical medicine and play a significant role in alleviating disease burden.
Collapse
Affiliation(s)
- Clarence S Yah
- Department of Biochemistry and Microbiology, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa.
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, E7146, 615 N. Wolfe Street, Baltimore, 21205, , MD, USA.
| | - Geoffrey S Simate
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, P/Bag 3, Wits 2050, Johannesburg, South Africa.
| |
Collapse
|
22
|
Navarrete-Vázquez G, Chávez-Silva F, Colín-Lozano B, Estrada-Soto S, Hidalgo-Figueroa S, Guerrero-Álvarez J, Méndez ST, Reyes-Vivas H, Oria-Hernández J, Canul-Canché J, Ortiz-Andrade R, Moo-Puc R. Synthesis of nitro(benzo)thiazole acetamides and in vitro antiprotozoal effect against amitochondriate parasites Giardia intestinalis and Trichomonas vaginalis. Bioorg Med Chem 2015; 23:2204-10. [PMID: 25801157 DOI: 10.1016/j.bmc.2015.02.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/17/2015] [Accepted: 02/26/2015] [Indexed: 01/03/2023]
Abstract
We synthesized four 5-nitrothiazole (1-4) and four 6-nitrobenzothiazole acetamides (5-8) using an easy two step synthetic route. All compounds were tested in vitro against amitochondriate parasites Giardia intestinalis and Trichomonas vaginalis, showing excellent antiprotozoal effects. IC₅₀'s of the most potent compounds range from nanomolar to low micromolar order, being more active than their drugs of choice. Compound 1 (IC₅₀=122 nM), was 44-times more active than Metronidazole, and 10-fold more effective than Nitazoxanide against G. intestinalis and showed good trichomonicidal activity (IC₅₀=2.24 μM). This compound did not display in vitro cytotoxicity against VERO cells. The in vitro inhibitory effect of compounds 1-8 and Nitazoxanide against G. intestinalis fructose-1,6-biphosphate aldolase (GiFBPA) was evaluated as potential drug target, showing a clear inhibitory effect over the enzyme activity. Molecular docking of compounds 1, 4 and Nitazoxanide into the ligand binding pocket of GiFBPA, revealed contacts with the active site residues of the enzyme. Ligand efficiency metrics of 1 revealed optimal combinations of physicochemical and antiprotozoal properties, better than Nitazoxanide.
Collapse
Affiliation(s)
- Gabriel Navarrete-Vázquez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | - Fabiola Chávez-Silva
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - Blanca Colín-Lozano
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - Samuel Estrada-Soto
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - Sergio Hidalgo-Figueroa
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico; Laboratorio de Farmacología, Depto. Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340 México, D.F., Mexico
| | - Jorge Guerrero-Álvarez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - Sara T Méndez
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 México, D.F., Mexico
| | - Horacio Reyes-Vivas
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 México, D.F., Mexico
| | - Jesús Oria-Hernández
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 México, D.F., Mexico
| | | | - Rolffy Ortiz-Andrade
- Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán 97150, Mexico
| | - Rosa Moo-Puc
- Unidad de Investigación Médica Yucatán, IMSS Mérida, Yucatán 97000, Mexico
| |
Collapse
|
23
|
Dank C, Kirchknopf B, Mastalir M, Kählig H, Felsinger S, Roller A, Arion VB, Gstach H. Hybrids of salicylalkylamides and Mannich bases: control of the amide conformation by hydrogen bonding in solution and in the solid state. Molecules 2015; 20:1686-711. [PMID: 25608856 PMCID: PMC6272445 DOI: 10.3390/molecules20011686] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/04/2015] [Accepted: 01/12/2015] [Indexed: 11/23/2022] Open
Abstract
3-Aminomethylation of salicylalkylamides afforded hybrids with a Mannich base. In addition, it triggered the rotation of the amide bond. The observed conformational switch is driven by strong intramolecular hydrogen bonding between the Mannich base and phenolic group. Crystal structure analysis reveals the stabilization of the hybrid molecules by double hydrogen bonding of the phenolic OH, which acts as an acceptor and donor simultaneously. The molecules contain an amide site and a Mannich base site in an orthogonal spatial arrangement. The intramolecular hydrogen bonds are persistent in a nonpolar solvent (e.g., chloroform). The conformational change can be reversed upon protection or protonation of the Mannich base nitrogen.
Collapse
Affiliation(s)
- Christian Dank
- Institute of Medical Chemistry, Center of Pathobiochemistry and Genetics, Medical University of Vienna, Währingerstrasse 10, Vienna 1090, Austria.
| | - Barbara Kirchknopf
- University of Applied Sciences Wiener Neustadt, Konrad-Lorenz-Strasse 10, Tulln a. d. Donau 3430, Austria.
| | - Matthias Mastalir
- Institute of Medical Chemistry, Center of Pathobiochemistry and Genetics, Medical University of Vienna, Währingerstrasse 10, Vienna 1090, Austria.
| | - Hanspeter Kählig
- Institute of Organic Chemistry, University of Vienna, Währingerstrasse 38, Vienna 1090, Austria.
| | - Susanne Felsinger
- Institute of Organic Chemistry, University of Vienna, Währingerstrasse 38, Vienna 1090, Austria.
| | - Alexander Roller
- Structure Analysis Centre, University of Vienna, Währingerstrasse 38, Vienna 1090, Austria.
| | - Vladimir B Arion
- Structure Analysis Centre, University of Vienna, Währingerstrasse 38, Vienna 1090, Austria.
| | - Hubert Gstach
- Institute of Medical Chemistry, Center of Pathobiochemistry and Genetics, Medical University of Vienna, Währingerstrasse 10, Vienna 1090, Austria.
| |
Collapse
|
24
|
Ibáñez-Escribano A, Meneses-Marcel A, Marrero-Ponce Y, Nogal-Ruiz JJ, Arán VJ, Gómez-Barrio A, Escario JA. A sequential procedure for rapid and accurate identification of putative trichomonacidal agents. J Microbiol Methods 2014; 105:162-7. [DOI: 10.1016/j.mimet.2014.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 06/17/2014] [Accepted: 07/24/2014] [Indexed: 11/15/2022]
|
25
|
Díaz MV, Miranda MR, Campos-Estrada C, Reigada C, Maya JD, Pereira CA, López-Muñoz R. Pentamidine exerts in vitro and in vivo anti Trypanosoma cruzi activity and inhibits the polyamine transport in Trypanosoma cruzi. Acta Trop 2014; 134:1-9. [PMID: 24560964 DOI: 10.1016/j.actatropica.2014.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 01/17/2014] [Accepted: 02/11/2014] [Indexed: 01/31/2023]
Abstract
Pentamidine is an antiprotozoal and fungicide drug used in the treatment of leishmaniasis and African trypanosomiasis. Despite its extensive use as antiparasitic drug, little evidence exists about the effect of pentamidine in Trypanosoma cruzi, the etiological agent of Chagas' disease. Recent studies have shown that pentamidine blocks a polyamine transporter present in Leishmania major; consequently, its might also block these transporters in T. cruzi. Considering that T. cruzi lacks the ability to synthesize putrescine de novo, the inhibition of polyamine transport can bring a new therapeutic target against the parasite. In this work, we show that pentamidine decreases, not only the viability of T. cruzi trypomastigotes, but also the parasite burden of infected cells. In T. cruzi-infected mice pentamidine decreases the inflammation and parasite burden in hearts from infected mice. The treatment also decreases parasitemia, resulting in an increased survival rate. In addition, pentamidine strongly inhibits the putrescine and spermidine transport in T. cruzi epimastigotes and amastigotes. Thus, this study points to reevaluate the utility of pentamidine and introduce evidence of a potential new action mechanism. In the quest of new therapeutic strategies against Chagas disease, the extensive use of pentamidine in human has led to a well-known clinical profile, which could be an advantage over newly synthesized molecules that require more comprehensive trials prior to their clinical use.
Collapse
|
26
|
Watkins RR, Eckmann L. Treatment of giardiasis: current status and future directions. Curr Infect Dis Rep 2014; 16:396. [PMID: 24493628 DOI: 10.1007/s11908-014-0396-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Giardiasis is a common yet neglected cause of diarrheal illness worldwide. Antimicrobial therapy is usually but not always effective and drug resistance has become an increasing concern. Several promising drug candidates have been recently identified that can overcome antibiotic resistance in Giardia. These include derivatives of 5-nitroimidazoles and benzimidazoles, as well as hybrid compounds created from combinations of different antigiardial drugs. High-throughput screening of large compound libraries has been a productive strategy for identifying antigiardial activity in drugs already approved for other indications, e.g. auranofin. This article reviews the current treatment of giardiasis, mechanisms of resistance, advances in drug and vaccine development, and directions for further research on this significant human pathogen.
Collapse
Affiliation(s)
- Richard R Watkins
- Department of Internal Medicine, Northeast Ohio Medical University, Rootstown, OH, USA,
| | | |
Collapse
|
27
|
Mesquita JT, Tempone AG, Reimão JQ. Combination therapy with nitazoxanide and amphotericin B, Glucantime®, miltefosine and sitamaquine against Leishmania (Leishmania) infantum intracellular amastigotes. Acta Trop 2014; 130:112-6. [PMID: 24239532 DOI: 10.1016/j.actatropica.2013.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/15/2013] [Accepted: 11/05/2013] [Indexed: 01/05/2023]
Abstract
Leishmaniasis is a neglected disease that affects poorest population mainly in developing countries, representing one of the major causes of mortality and morbidity. Therefore, efforts to find new chemotherapeutics for leishmaniasis remain a priority. Previous reports demonstrated the in vitro and in vivo antileishmanial activity of nitazoxanide, an antiprotozoan agent used in the treatment of infectious diarrhea. The present work was carried out to determine the effect of nitazoxanide in combination with current antileishmanial drugs. Mouse peritoneal macrophages were infected with Leishmania (Leishmania) infantum amastigotes in order to calculate the 50% and 90% inhibitory concentration values. Drug interactions were assessed with fixed ratio isobologram method and fractional inhibitory concentrations (FIC50 and FIC90); sum of FIC (ΣFIC50 and ΣFIC90) and overall mean ΣFIC (xΣFIC50 and xΣFIC90) were calculated for each combination. The nature of interactions was classified according to the xΣFIC50 and xΣFIC90. The combination between nitazoxanide and amphotericin B, Glucantime(®), miltefosine and sitamaquine showed xΣFIC50 values of 1.13, 0.83, 1.06 and 0.94, respectively, indicating additive interaction. Considering the in vitro activity of nitazoxanide and the obtained results, further in vivo studies may be considered to evaluate possible drug interactions in visceral leishmaniasis.
Collapse
|
28
|
2-acylamino-5-nitro-1,3-thiazoles: preparation and in vitro bioevaluation against four neglected protozoan parasites. Bioorg Med Chem 2014; 22:1626-33. [PMID: 24529307 DOI: 10.1016/j.bmc.2014.01.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/10/2014] [Accepted: 01/20/2014] [Indexed: 12/17/2022]
Abstract
The 2-acylamino-5-nitro-1,3-thiazole derivatives (1-14) were prepared using a one step reaction. All compounds were tested in vitro against four neglected protozoan parasites (Giardia intestinalis, Trichomonas vaginalis, Leishmania amazonensis and Trypanosoma cruzi). Acetamide (9), valeroylamide (10), benzamide (12), methylcarbamate (13) and ethyloxamate (14) derivatives were the most active compounds against G. intestinalis and T. vaginalis, showing nanomolar inhibition. Compound 13 (IC50=10nM), was 536-times more active than metronidazole, and 121-fold more effective than nitazoxanide against G. intestinalis. Compound 14 was 29-times more active than metronidazole and 6.5-fold more potent than nitazoxanide against T. vaginalis. Ureic derivatives 2, 3 and 5 showed moderate activity against L. amazonensis. None of them were active against T. cruzi. Ligand efficiency indexes analysis revealed higher intrinsic quality of the most active 2-acylamino derivatives than nitazoxanide and metronidazole. In silico toxicity profile was also computed for the most active compounds. A very low in vitro mammalian cytotoxicity was obtained for 13 and 14, showing selectivity indexes (SI) of 246,300 and 141,500, respectively. Nitazoxanide showed an excellent leishmanicidal and trypanocidal effect, repurposing this drug as potential new antikinetoplastid parasite compound.
Collapse
|
29
|
Mesquita JT, Pinto EG, Taniwaki NN, Galisteo AJ, Tempone AG. Lethal action of the nitrothiazolyl-salicylamide derivative nitazoxanide via induction of oxidative stress in Leishmania (L.) infantum. Acta Trop 2013; 128:666-73. [PMID: 24071379 DOI: 10.1016/j.actatropica.2013.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/13/2013] [Accepted: 09/14/2013] [Indexed: 11/17/2022]
Abstract
Studying the cellular death pathways in Leishmania is an important aspect of discovering new antileishmanials. While using a drug repositioning approach, the lethal action of the nitrothiazolyl-salicylamide derivative nitazoxanide (NTZ) was investigated against Leishmania (L.) infantum. The in vitro antileishmanial activity and cytotoxicity were assessed using both parasite stages and mammalian NCTC cells, respectively. The lethal action of NTZ was investigated by detecting the phosphatidylserine (PS) exposure, reactive oxygen species (ROS) regulation, plasma membrane permeability, mitochondrial membrane potential and ultrastructural modifications by transmission electron microscopy. NTZ's activity against L. infantum was confirmed, producing IC50 values of 42.71μg/mL against promastigotes and 6.78μg/mL against intracellular amastigotes. NTZ rapidly altered the cellular metabolism of promastigotes by depolarising the mitochondrial membrane and up-regulating the reactive oxygen species (ROS). In addition, the flow cytometry data revealed an intense and time-dependent exposure of PS in promastigotes. When using SYTOX(®) Green as a fluorescent probe, NTZ demonstrated no interference in plasma membrane permeability. The ultrastructural alterations in promastigotes were time-dependent and caused chromatin condensation, plasma membrane blebbing and mitochondrial swelling. These data suggest that NTZ induced oxidative stress in L. (L.) infantum and might be a useful compound for investigating new therapeutic targets.
Collapse
Affiliation(s)
- Juliana Tonini Mesquita
- Department of Parasitology, Instituto Adolfo Lutz, Av. Dr. Arnaldo, 351, 01246-900 São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
30
|
Müller J, Hemphill A. New approaches for the identification of drug targets in protozoan parasites. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 301:359-401. [PMID: 23317822 DOI: 10.1016/b978-0-12-407704-1.00007-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Antiparasitic chemotherapy is an important issue for drug development. Traditionally, novel compounds with antiprotozoan activities have been identified by screening of compound libraries in high-throughput systems. More recently developed approaches employ target-based drug design supported by genomics and proteomics of protozoan parasites. In this chapter, the drug targets in protozoan parasites are reviewed. The gene-expression machinery has been among the first targets for antiparasitic drugs and is still under investigation as a target for novel compounds. Other targets include cytoskeletal proteins, proteins involved in intracellular signaling, membranes, and enzymes participating in intermediary metabolism. In apicomplexan parasites, the apicoplast is a suitable target for established and novel drugs. Some drugs act on multiple subcellular targets. Drugs with nitro groups generate free radicals under anaerobic growth conditions, and drugs with peroxide groups generate radicals under aerobic growth conditions, both affecting multiple cellular pathways. Mefloquine and thiazolides are presented as examples for antiprotozoan compounds with multiple (side) effects. The classic approach of drug discovery employing high-throughput physiological screenings followed by identification of drug targets has yielded the mainstream of current antiprotozoal drugs. Target-based drug design supported by genomics and proteomics of protozoan parasites has not produced any antiparasitic drug so far. The reason for this is discussed and a synthesis of both methods is proposed.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, University of Berne, Berne, Switzerland.
| | | |
Collapse
|
31
|
Zheng H, Deng H, Chen Y, Li D. Tizoxanide pyridine monosolvate. Acta Crystallogr Sect E Struct Rep Online 2012; 68:o1453-4. [PMID: 22590331 PMCID: PMC3344569 DOI: 10.1107/s1600536812016133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 04/13/2012] [Indexed: 11/10/2022]
Abstract
IN THE TITLE COMPOUND [SYSTEMATIC NAME: 2-hy-droxy-N-(5-nitro-1,3-thia-zol-2-yl)benzamide pyridine monosolvate], C(10)H(7)N(3)O(4)S·C(5)H(5)N, the dihedral angle between the pyridine and benzamide rings is 80.55 (7)°. An intamolecular O-H⋯N hydrogen bond occurs in the tizoxanide. In the crystal, the components are linked by an O-H⋯N hydrogen bond, forming a zigzag chain along the c axis. Aromatic π-π inter-actions between inversion-related pyridine rings [centroid-centroid distance = 3.803 (6) Å] are also observed.
Collapse
Affiliation(s)
- Huaqin Zheng
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, People’s Republic of China
| | - Hui Deng
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, People’s Republic of China
| | - Yunyun Chen
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, People’s Republic of China
| | - Ding Li
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, People’s Republic of China
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Giardiasis is one of the most common causes of diarrheal disease worldwide, yet existing antimicrobial therapies are not always effective and drug resistance occurs in vivo and in vitro. The review focuses on recent advances in the development of new antigiardial drug candidates. RECENT FINDINGS Modification of existing drug leads is a major strategy to develop new high-potency drugs. Complex derivatives of 5-nitroimidazole, the core structure of the most commonly used antigiardial drug, metronidazole, have shown significantly improved activities against Giardia and the ability to overcome metronidazole resistance. Derivatives of benzimidazole, the structural core of the effective antigiardial albendazole, are also exhibiting promising new activities. Beyond lead modifications, several new classes of antigiardial drug candidates have recently been identified by high-throughput screening of large compound libraries, and first efforts have been reported on the development of drugs tailored to known molecular targets in Giardia. SUMMARY The pipeline of new antigiardial drug candidates has significantly expanded over the last few years, but this expansion has so far not been accompanied by demonstration of efficacy in animal models or by a clear understanding of the action mechanisms, particularly in regard to new nitro antimicrobials. Many challenges are still to be expected before clinical utility of new antigiardial drugs can be established.
Collapse
|