1
|
Xiang S, Wang Z, Tang R, Wang L, Wang Q, Yu Y, Deng Q, Hou T, Hao H, Sun H. Exhaustively Exploring the Prevalent Interaction Pathways of Ligands Targeting the Ligand-Binding Pocket of Farnesoid X Receptor via Combined Enhanced Sampling. J Chem Inf Model 2023; 63:7529-7544. [PMID: 37983966 DOI: 10.1021/acs.jcim.3c01451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
It is well-known that the potency of a drug is heavily associated with its kinetic and thermodynamic properties with the target. Nuclear receptors (NRs), as an important target family, play important roles in regulating a variety of physiological processes in vivo. However, it is hard to understand the drug-NR interaction process because of the closed structure of the ligand-binding domain (LBD) of the NR proteins, which apparently hinders the rational design of drugs with controllable kinetic properties. Therefore, understanding the underlying mechanism of the ligand-NR interaction process seems necessary to help NR drug design. However, it is usually difficult for experimental approaches to interpret the kinetic process of drug-target interactions. Therefore, in silico methods were utilized to explore the optimal binding/dissociation pathways of the NR ligands. Specifically, farnesoid X receptor (FXR) is considered here as the target system since it has been an important target for the treatment of bile acid metabolism-associated diseases, and a series of structures cocrystallized with diverse scaffold ligands were resolved. By using random acceleration molecular dynamics (RAMD) simulation and umbrella sampling (US), 5 main dissociation pathways (pathways I-V) were identified in 11 representative FXR ligands, with most of them (9/11) preferring to go through Pathway III and the remaining two favoring escaping from Pathway I and IV. Furthermore, key residues functioning in the three main dissociation pathways were revealed by the kinetic residue energy analysis (KREA) based on the US trajectories, which may serve as road-marker residues for rapid identification of the (un)binding pathways of FXR ligands. Moreover, the preferred pathways explored by RAMD simulations are in good agreement with the minimum free energy path identified by the US simulations with the Pearson R = 0.76 between the predicted binding affinity and the experimental data, suggesting that RAMD is suitable for applying in large-scale (un)binding-pathway exploration in the case of ligands with obscure binding tunnels to the target.
Collapse
Affiliation(s)
- Sutong Xiang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Zhe Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Rongfan Tang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Lingling Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Qinghua Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Yang Yu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Qirui Deng
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| |
Collapse
|
2
|
Wang H, Sun Y, Li H, Yang S, Yi W. Design, Synthesis, and Biological Study of Novel Farnesoid X Receptor Agonist for the Treatment of Cholestatic Liver Disease. ChemistrySelect 2022. [DOI: 10.1002/slct.202201573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Han Wang
- Huazhong University of Science and Technology Hospital WuHan 430074 China
| | - Yating Sun
- Huazhong University of Science and Technology Hospital WuHan 430074 China
| | - Hewei Li
- Liyuan Hospital Affiliated to Tongji Medical College of Huazhong University of science and technology WuHan 430074 China
| | - Shengli Yang
- Xiehe Hospital Affiliated to Tongji Medical College of Huazhong University of science and technology WuHan 430074 China
| | - Wen Yi
- Huazhong University of Science and Technology Hospital WuHan 430074 China
| |
Collapse
|
3
|
Tang X, Ning M, Ye Y, Gu Y, Yan H, Leng Y, Shen J. Discovery of novel ketoxime ether derivatives with potent FXR agonistic activity, oral effectiveness and high liver/blood ratio. Bioorg Med Chem 2021; 43:116280. [PMID: 34256254 DOI: 10.1016/j.bmc.2021.116280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 11/24/2022]
Abstract
The farnesoid X receptor (FXR) is a promising therapeutic target for nonalcoholic steatohepatitis (NASH) and other bile acid related diseases because it plays a critical role in fibrosis, inflammation and bile acid homeostasis. Obeticholic acid (OCA), a FXR agonist which was synthesized from chenodeoxycholic acid, showed desirable curative effects in clinical trials. However, the pruritus which was the main side effect of OCA limited its further applications in NASH. Although pruritus was also observed in the clinical trials of non-steroidal FXR agonists, the proportion of patients with pruritus was much smaller than that of OCA. Thus, we decided to develop non-steroidal FXR agonists and discovered a series of novel FXR agonists which were synthesized from GW4064 by replacing the stilbene group with ketoxime ether. Encouragingly, in the following biological tests, our target compounds 13j and 13z not only showed potent FXR agonistic activities in vitro, but also effectively promoted the expression of target genes in vivo. More importantly, in the pharmacokinetic experiments, compounds 13j and 13z displayed high liver/blood ratio characteristics which were helpful to reduce the potential side effects which were caused by prolonged systemic activation of FXR. In summary, our compounds were good choices for the development of non-steroidal FXR agonists and were deserved further investigation.
Collapse
Affiliation(s)
- Xuehang Tang
- School of Pharmacy, Nanchang University, Nanchang 330000, Jiangxi Province, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Mengmeng Ning
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yangliang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yipei Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Hongyi Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai 201203, China; Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
4
|
Gohda K, Iguchi Y, Masuda A, Fujimori K, Yamashita Y, Teno N. Design and identification of a new farnesoid X receptor (FXR) partial agonist by computational structure-activity relationship analysis: Ligand-induced H8 helix fluctuation in the ligand-binding domain of FXR may lead to partial agonism. Bioorg Med Chem Lett 2021; 41:128026. [PMID: 33839252 DOI: 10.1016/j.bmcl.2021.128026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022]
Abstract
Farnesoid X receptor (FXR) controls gene-expression relevant to various diseases including nonalcoholic steatohepatitis and has become a drug target to regulate metabolic aberrations. However, some side effects of FXR agonists reported in clinical development such as an increase in blood cholesterol levels incentivize the development of partial agonists to minimize side effects. In this study, to identify a new partial agonist, we analyzed the computational structure-activity relationship (SAR) of FXR agonists previously developed in our laboratories using molecular dynamics simulations. SAR analysis showed that fluctuations in the H8 helix, by ligand binding, of the ligand-binding domain (LBD) of FXR may influence agonistic activity. Based on this observation, 6 was newly designed as a partial agonist and synthesized. As a result of biological evaluations, 6 showed weak agonistic activity (40.0% relative agonistic activity to the full-agonist GW4064) and a potent EC50 value (55.5 nM). The successful identification of the new potent partial agonist 6 suggested that helix fluctuation in the LBD induced by ligands could be one way to develop partial agonists.
Collapse
Affiliation(s)
- Keigo Gohda
- Computer-aided Molecular Modeling Research Center, Kansai (CAMM-Kansai), 3-32-302, Tsuto-Otsuka, Nishinomiya 663-8241, Japan.
| | - Yusuke Iguchi
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan
| | - Arisa Masuda
- Graduate School of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan
| | - Ko Fujimori
- Department of Pathobiochemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yukiko Yamashita
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan
| | - Naoki Teno
- Graduate School of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan; Faculty of Clinical Nutrition, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan
| |
Collapse
|
5
|
Li J, Liu M, Li Y, Sun DD, Shu Z, Tan Q, Guo S, Xie R, Gao L, Ru H, Zang Y, Liu H, Li J, Zhou Y. Discovery and Optimization of Non-bile Acid FXR Agonists as Preclinical Candidates for the Treatment of Nonalcoholic Steatohepatitis. J Med Chem 2020; 63:12748-12772. [PMID: 32991173 DOI: 10.1021/acs.jmedchem.0c01065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Farnesoid X receptor (FXR) plays a key role in bile acid homeostasis, inflammation, fibrosis, and metabolism of lipid and glucose and becomes a promising therapeutic target for nonalcoholic steatohepatitis (NASH) or other FXR-dependent diseases. The phase III trial results of obeticholic acid demonstrate that the FXR agonists emerge as a promising intervention in patients with NASH and fibrosis, but this bile acid-derived FXR agonist brings severe pruritus and an elevated risk of cardiovascular disease for patients. Herein, we reported our efforts in the discovery of a series of non-bile acid FXR agonists, and 36 compounds were designed and synthesized based on the structure-based drug design and structural optimization strategies. Particularly, compound 42 is a highly potent and selective FXR agonist, along with good pharmacokinetic profiles, high liver distribution, and preferable in vivo efficacy, indicating that it is a potential candidate for the treatment of NASH or other FXR-dependent diseases.
Collapse
Affiliation(s)
- Junyou Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Mengqi Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yazhou Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Dan-Dan Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Zhihao Shu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Qian Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Shimeng Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Rongrong Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Lixin Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Hongbo Ru
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China
| | - Yu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
6
|
N1-Substituted benzimidazole scaffold for farnesoid X receptor (FXR) agonists accompanying prominent selectivity against vitamin D receptor (VDR). Bioorg Med Chem 2020; 28:115512. [DOI: 10.1016/j.bmc.2020.115512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
|
7
|
Lamers C, Merk D. Discovery, Structural Refinement and Therapeutic Potential of Farnesoid X Receptor Activators. ANTI-FIBROTIC DRUG DISCOVERY 2020. [DOI: 10.1039/9781788015783-00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Farnesoid X receptor acts as bile acid sensing transcription factor and has been identified as valuable molecular drug target to treat severe liver disorders, such as non-alcoholic steatohepatitis (NASH). Preclinical and clinical data indicate anti-fibrotic effects obtained with FXR activation that also appear promising for other fibrotic diseases beyond NASH. Strong efforts in FXR ligand discovery have yielded potent steroidal and non-steroidal FXR activators, some of which have been studied in clinical trials. While the structure–activity relationship of some FXR agonist frameworks have been studied extensively, the structural diversity of potent FXR activator chemotypes is still limited to a handful of well-studied compound classes. Together with safety concerns related to full therapeutic activation of FXR, this indicates the need for novel innovative FXR ligands with selective modulatory properties. This chapter evaluates FXR's value as drug target with emphasis on fibrotic diseases, analyses FXR ligand recognition and requirements and focuses on the discovery and structural refinement of leading FXR activator chemotypes.
Collapse
Affiliation(s)
- Christina Lamers
- University Basel, Molecular Pharmacy Klingelberstr. 50 CH-4056 Basel Switzerland
| | - Daniel Merk
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry Max-von-Laue-Str. 9 D-60438 Frankfurt Germany
- Swiss Federal Institute of Technology (ETH) Zurich, Institute of Pharmaceutical Sciences Vladimir-Prelog-Weg 4 CH-8093 Zurich Switzerland
| |
Collapse
|
8
|
Fujimori K, Iguchi Y, Yamashita Y, Gohda K, Teno N. Synthesis of Novel Farnesoid X Receptor Agonists and Validation of Their Efficacy in Activating Differentiation of Mouse Bone Marrow-Derived Mesenchymal Stem Cells into Osteoblasts. Molecules 2019; 24:molecules24224155. [PMID: 31744088 PMCID: PMC6891315 DOI: 10.3390/molecules24224155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 01/14/2023] Open
Abstract
The modulators of farnesoid X receptor (FXR), a bile acid receptor, regulate various biological processes including bile acid metabolism, and are associated with the control of fatty liver and osteoporosis. Thus, the control of FXR activity and development of FXR modulators are critical not only for research, but also for clinical application. In this study, we synthesized novel FXR agonists 1–4 possessing isoxazole and N-substituted benzimidazole moieties, and compared their effects on osteoblast differentiation with the known FXR agonists, chenodeoxycholic acid and a synthetic compound, GW4064. Two (3 and 4) of the four novel FXR agonists 1–4 showed high specificities for FXR. Computer-assisted modeling suggested that the binding of the FXR agonist 3 with ligand binding domain of FXR was similar to GW4064. FXR was expressed in mouse bone marrow-derived mesenchymal stem cell (MSC)-like ST2 cells (ST-2 MSCs). The FXR agonists activated the BMP-2-induced differentiation of ST-2 MSCs into osteoblasts and enhanced the expression of RUNX2. Moreover, the potency of the FXR agonist 3 was comparable to GW4064 in promoting osteoblast differentiation of ST-2 MSCs. These results indicate that FXR activation enhanced the BMP-2-induced differentiation of MSCs into osteoblasts through activating RUNX2 expression. FXR could be a potential therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Ko Fujimori
- Department of Pathobiochemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
- Correspondence: ; Tel.: +81-72-690-1215
| | - Yusuke Iguchi
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1, Hirokoshingai, Kure, Hiroshima 737-0112, Japan; (Y.I.); (Y.Y.)
| | - Yukiko Yamashita
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1, Hirokoshingai, Kure, Hiroshima 737-0112, Japan; (Y.I.); (Y.Y.)
| | - Keigo Gohda
- Computer-aided Molecular Modeling Research Center, Kansai (CAMM-Kansai), 3-32-302, Tsuto-Otsuka, Nishinomiya, Hyogo 663-8241, Japan;
| | - Naoki Teno
- Graduate School of Pharmaceutical Sciences, Hiroshima International University, 5-1-1, Hirokoshingai, Kure, Hiroshima 737-0112, Japan;
- Faculty of Clinical Nutrition, Hiroshima International University, 5-1-1, Hirokoshingai, Kure, Hiroshima 737-0112, Japan
| |
Collapse
|
9
|
Di Leva FS, Di Marino D, Limongelli V. Structural Insight into the Binding Mode of FXR and GPBAR1 Modulators. Handb Exp Pharmacol 2019; 256:111-136. [PMID: 31161298 DOI: 10.1007/164_2019_234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this chapter we provide an exhaustive overview of the binding modes of bile acid (BA) and non-BA ligands to the nuclear farnesoid X receptor (FXR) and the G-protein bile acid receptor 1 (GPBAR1). These two receptors play a key role in many diseases related to lipid and glucose disorders, thus representing promising pharmacological targets. We pay particular attention to the chemical and structural features of the ligand-receptor interaction, providing guidelines to achieve ligands endowed with selective or dual activity towards the receptor and paving the way to future drug design studies.
Collapse
Affiliation(s)
| | - Daniele Di Marino
- Faculty of Biomedical Sciences, Institute of Computational Science, Center for Computational Medicine in Cardiology, Università della Svizzera italiana (USI), Lugano, Switzerland.,Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Vittorio Limongelli
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy. .,Faculty of Biomedical Sciences, Institute of Computational Science, Center for Computational Medicine in Cardiology, Università della Svizzera italiana (USI), Lugano, Switzerland.
| |
Collapse
|
10
|
Du J, Qiu M, Guo L, Yao X. Computational study of the binding mechanism between farnesoid X receptor α and antagonist N-benzyl-N-(3-(tertbutyl)-4-hydroxyphenyl)-2,6-dichloro-4-(dimethylamino) benzamide. J Biomol Struct Dyn 2018; 37:1628-1640. [PMID: 29633919 DOI: 10.1080/07391102.2018.1462735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Farnesoid X receptor α (FXRα) is a bile acid-activated transcription factor, which plays important roles in the regulation of multiple metabolic processes. Development of FXR antagonist has revealed great potential for the treatment of metabolic disorders. The compound N-Benzyl-N-(3-(tertbutyl)-4-hydroxyphenyl)-2,6-dichloro-4-(dimethylamino). Benzamide (NDB) was recently determined as a selective antagonist of FXRα, while the detailed interaction mechanism is not well understood. In this study, the combined computational methods including molecular dynamics simulations, binding free energy calculation, and principal component analysis were utilized to investigate the effect of NDB on the dynamics behaviors and dimerization of FXRα The binding free energy calculation indicated that the protein dimerization increases NDB affinity and the binding of NDB also stabilizes the interaction between two subunits of FXRα. Further decomposition of the overall binding free energies into individual residues identifies several residues significant for NDB binding, including Leu291, Met294, Ala295, His298, Met332, Ser336, Ala452, and Leu455. It also suggests that the interactions of L289(A)-W458(B), W458(A)-L289(B), R459(A)-N461(B), and N461(A)-R459(B) are important for the dimer stabilization. This study provides a molecular basis for the understanding of binding mechanism between antagonist NDB and FXRα and valuable information for the novel FXR modulators design for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Juan Du
- a Shandong Province Key Laboratory of Applied Mycology, College of Life Science , Qingdao Agricultural University, Changcheng Road 700#, Chengyang District, Qingdao 266109 , Shandong , China
| | - Miaoxue Qiu
- a Shandong Province Key Laboratory of Applied Mycology, College of Life Science , Qingdao Agricultural University, Changcheng Road 700#, Chengyang District, Qingdao 266109 , Shandong , China
| | - Lizhong Guo
- a Shandong Province Key Laboratory of Applied Mycology, College of Life Science , Qingdao Agricultural University, Changcheng Road 700#, Chengyang District, Qingdao 266109 , Shandong , China
| | - Xiaojun Yao
- b College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , China
| |
Collapse
|
11
|
Tully DC, Rucker PV, Chianelli D, Williams J, Vidal A, Alper PB, Mutnick D, Bursulaya B, Schmeits J, Wu X, Bao D, Zoll J, Kim Y, Groessl T, McNamara P, Seidel HM, Molteni V, Liu B, Phimister A, Joseph SB, Laffitte B. Discovery of Tropifexor (LJN452), a Highly Potent Non-bile Acid FXR Agonist for the Treatment of Cholestatic Liver Diseases and Nonalcoholic Steatohepatitis (NASH). J Med Chem 2017; 60:9960-9973. [PMID: 29148806 DOI: 10.1021/acs.jmedchem.7b00907] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The farnesoid X receptor (FXR) is a nuclear receptor that acts as a master regulator of bile acid metabolism and signaling. Activation of FXR inhibits bile acid synthesis and increases bile acid conjugation, transport, and excretion, thereby protecting the liver from the harmful effects of bile accumulation, leading to considerable interest in FXR as a therapeutic target for the treatment of cholestasis and nonalcoholic steatohepatitis. We identified a novel series of highly potent non-bile acid FXR agonists that introduce a bicyclic nortropine-substituted benzothiazole carboxylic acid moiety onto a trisubstituted isoxazole scaffold. Herein, we report the discovery of 1 (tropifexor, LJN452), a novel and highly potent agonist of FXR. Potent in vivo activity was demonstrated in rodent PD models by measuring the induction of FXR target genes in various tissues. Tropifexor has advanced into phase 2 human clinical trials in patients with NASH and PBC.
Collapse
Affiliation(s)
- David C Tully
- Genomics Institute of the Novartis Research Foundation , San Diego, California 92121, United States.,Novartis Institutes for Biomedical Research , Emeryville, California 94608, United States
| | - Paul V Rucker
- Genomics Institute of the Novartis Research Foundation , San Diego, California 92121, United States
| | - Donatella Chianelli
- Genomics Institute of the Novartis Research Foundation , San Diego, California 92121, United States
| | - Jennifer Williams
- Genomics Institute of the Novartis Research Foundation , San Diego, California 92121, United States
| | - Agnès Vidal
- Genomics Institute of the Novartis Research Foundation , San Diego, California 92121, United States
| | - Phil B Alper
- Genomics Institute of the Novartis Research Foundation , San Diego, California 92121, United States
| | - Daniel Mutnick
- Genomics Institute of the Novartis Research Foundation , San Diego, California 92121, United States
| | - Badry Bursulaya
- Genomics Institute of the Novartis Research Foundation , San Diego, California 92121, United States
| | - James Schmeits
- Genomics Institute of the Novartis Research Foundation , San Diego, California 92121, United States
| | - Xiangdong Wu
- Genomics Institute of the Novartis Research Foundation , San Diego, California 92121, United States
| | - Dingjiu Bao
- Genomics Institute of the Novartis Research Foundation , San Diego, California 92121, United States
| | - Jocelyn Zoll
- Genomics Institute of the Novartis Research Foundation , San Diego, California 92121, United States
| | - Young Kim
- Genomics Institute of the Novartis Research Foundation , San Diego, California 92121, United States
| | - Todd Groessl
- Genomics Institute of the Novartis Research Foundation , San Diego, California 92121, United States
| | - Peter McNamara
- Genomics Institute of the Novartis Research Foundation , San Diego, California 92121, United States
| | - H Martin Seidel
- Genomics Institute of the Novartis Research Foundation , San Diego, California 92121, United States
| | - Valentina Molteni
- Genomics Institute of the Novartis Research Foundation , San Diego, California 92121, United States
| | - Bo Liu
- Genomics Institute of the Novartis Research Foundation , San Diego, California 92121, United States
| | - Andrew Phimister
- Novartis Institutes for Biomedical Research , Emeryville, California 94608, United States
| | - Sean B Joseph
- Genomics Institute of the Novartis Research Foundation , San Diego, California 92121, United States
| | - Bryan Laffitte
- Genomics Institute of the Novartis Research Foundation , San Diego, California 92121, United States
| |
Collapse
|
12
|
Athanasiou C, Vasilakaki S, Dellis D, Cournia Z. Using physics-based pose predictions and free energy perturbation calculations to predict binding poses and relative binding affinities for FXR ligands in the D3R Grand Challenge 2. J Comput Aided Mol Des 2017; 32:21-44. [DOI: 10.1007/s10822-017-0075-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/09/2017] [Indexed: 01/21/2023]
|
13
|
Optimal affinity ranking for automated virtual screening validated in prospective D3R grand challenges. J Comput Aided Mol Des 2017; 32:287-297. [PMID: 28918599 DOI: 10.1007/s10822-017-0065-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/08/2017] [Indexed: 10/18/2022]
Abstract
The goal of virtual screening is to generate a substantially reduced and enriched subset of compounds from a large virtual chemistry space. Critical in these efforts are methods to properly rank the binding affinity of compounds. Prospective evaluations of ranking strategies in the D3R grand challenges show that for targets with deep pockets the best correlations (Spearman ρ ~ 0.5) were obtained by our submissions that docked compounds to the holo-receptors with the most chemically similar ligand. On the other hand, for targets with open pockets using multiple receptor structures is not a good strategy. Instead, docking to a single optimal receptor led to the best correlations (Spearman ρ ~ 0.5), and overall performs better than any other method. Yet, choosing a suboptimal receptor for crossdocking can significantly undermine the affinity rankings. Our submissions that evaluated the free energy of congeneric compounds were also among the best in the community experiment. Error bars of around 1 kcal/mol are still too large to significantly improve the overall rankings. Collectively, our top of the line predictions show that automated virtual screening with rigid receptors perform better than flexible docking and other more complex methods.
Collapse
|
14
|
Combining self- and cross-docking as benchmark tools: the performance of DockBench in the D3R Grand Challenge 2. J Comput Aided Mol Des 2017; 32:251-264. [DOI: 10.1007/s10822-017-0051-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/21/2017] [Indexed: 10/19/2022]
|
15
|
Novel substituted isoxazole FXR agonists with cyclopropyl, hydroxycyclobutyl and hydroxyazetidinyl linkers: Understanding and improving key determinants of pharmacological properties. Bioorg Med Chem Lett 2016; 26:3746-53. [DOI: 10.1016/j.bmcl.2016.05.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/19/2016] [Accepted: 05/21/2016] [Indexed: 11/23/2022]
|
16
|
Mellor CL, Steinmetz FP, Cronin MTD. Using Molecular Initiating Events to Develop a Structural Alert Based Screening Workflow for Nuclear Receptor Ligands Associated with Hepatic Steatosis. Chem Res Toxicol 2016; 29:203-12. [DOI: 10.1021/acs.chemrestox.5b00480] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Claire L. Mellor
- School of Pharmacy and Biomolecular
Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - Fabian P. Steinmetz
- School of Pharmacy and Biomolecular
Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - Mark T. D. Cronin
- School of Pharmacy and Biomolecular
Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| |
Collapse
|
17
|
Flesch D, Gabler M, Lill A, Gomez RC, Steri R, Schneider G, Stark H, Schubert-Zsilavecz M, Merk D. Fragmentation of GW4064 led to a highly potent partial farnesoid X receptor agonist with improved drug-like properties. Bioorg Med Chem 2015; 23:3490-8. [PMID: 25934227 DOI: 10.1016/j.bmc.2015.04.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/24/2015] [Accepted: 04/10/2015] [Indexed: 12/12/2022]
Abstract
The ligand activated transcription factor farnesoid X receptor (FXR) is a crucial regulator of several metabolic and inflammatory pathways and its activation by agonistic ligands seems a valuable therapeutic approach for many disorders. Most known non-steroidal FXR agonists however, have limitations that hinder their clinical development and novel FXR ligands are required. Evaluation of the co-crystal structures of the widely used FXR agonist GW4064 and related compounds in complex with the FXR ligand binding domain indicated that their disubstituted isoxazole moiety is especially relevant for FXR activation. By investigation of GW4064-fragments missing the aromatic tail, we discovered a highly potent and soluble partial FXR agonist (14, ST-1892) as well as a fluorescent FXR ligand (15) as potential pharmacological tool.
Collapse
Affiliation(s)
- Daniel Flesch
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Matthias Gabler
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Andreas Lill
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Roberto Carrasco Gomez
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Ramona Steri
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Gisbert Schneider
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 1-5/10, 8093 Zürich, Switzerland
| | - Holger Stark
- Institute for Pharmaceutical und Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Manfred Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
18
|
Merk D, Lamers C, Ahmad K, Carrasco Gomez R, Schneider G, Steinhilber D, Schubert-Zsilavecz M. Extending the structure-activity relationship of anthranilic acid derivatives as farnesoid X receptor modulators: development of a highly potent partial farnesoid X receptor agonist. J Med Chem 2014; 57:8035-55. [PMID: 25255039 DOI: 10.1021/jm500937v] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ligand activated transcription factor nuclear farnesoid X receptor (FXR) is involved as a regulator in many metabolic pathways including bile acid and glucose homeostasis. Therefore, pharmacological activation of FXR seems a valuable therapeutic approach for several conditions including metabolic diseases linked to insulin resistance, liver disorders such as primary biliary cirrhosis or nonalcoholic steatohepatitis, and certain forms of cancer. The available FXR agonists, however, activate the receptor to the full extent which might be disadvantageous over a longer time period. Hence, partial FXR activators are required for long-term treatment of metabolic disorders. We here report the SAR of anthranilic acid derivatives as FXR modulators and development, synthesis, and characterization of compound 51, which is a highly potent partial FXR agonist in a reporter gene assay with an EC50 value of 8 ± 3 nM and on mRNA level in liver cells.
Collapse
Affiliation(s)
- Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt , Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Yang L, Broderick D, Jiang Y, Hsu V, Maier CS. Conformational dynamics of human FXR-LBD ligand interactions studied by hydrogen/deuterium exchange mass spectrometry: insights into the antagonism of the hypolipidemic agent Z-guggulsterone. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1684-93. [PMID: 24953769 DOI: 10.1016/j.bbapap.2014.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/22/2014] [Accepted: 06/10/2014] [Indexed: 02/06/2023]
Abstract
Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily of transcription factors that plays a key role in the regulation of bile acids, lipid and glucose metabolisms. The regulative function of FXR is governed by conformational changes of the ligand binding domain (LBD) upon ligand binding. Although FXR is a highly researched potential therapeutic target, only a limited number of FXR-agonist complexes have been successfully crystallized and subsequently yielded high resolution structures. There is currently no structural information of any FXR-antagonist complexes publically available. We therefore explored the use of amide hydrogen/deuterium exchange (HDX) coupled with mass spectrometry for characterizing conformational changes in the FXR-LBD upon ligand binding. Ligand-specific deuterium incorporation profiles were obtained for three FXR ligand chemotypes: GW4064, a synthetic non-steroidal high affinity agonist; the bile acid chenodeoxycholic acid (CDCA), the endogenous low affinity agonist of FXR; and Z-guggulsterone (GG), an in vitro antagonist of the steroid chemotype. A comparison of the HDX profiles of their ligand-bound FXR-LBD complexes revealed a unique mode of interaction for GG. The conformational features of the FXR-LBD-antagonist interaction are discussed.
Collapse
Affiliation(s)
- Liping Yang
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - David Broderick
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Yuan Jiang
- Department of Statistics, Oregon State University, Corvallis, OR 97331, USA
| | - Victor Hsu
- Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
20
|
Yu DD, Lin W, Forman BM, Chen T. Identification of trisubstituted-pyrazol carboxamide analogs as novel and potent antagonists of farnesoid X receptor. Bioorg Med Chem 2014; 22:2919-38. [PMID: 24775917 DOI: 10.1016/j.bmc.2014.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/29/2014] [Accepted: 04/07/2014] [Indexed: 12/11/2022]
Abstract
Farnesoid X receptor (FXR, NRIH4) plays a major role in the control of cholesterol metabolism. This suggests that antagonizing the transcriptional activity of FXR is a potential means to treat cholestasis and related metabolic disorders. Here we describe the synthesis, biological evaluation, and structure-activity relationship (SAR) studies of trisubstituted-pyrazol carboxamides as novel and potent FXR antagonists. One of these novel FXR antagonists, 4j has an IC50 of 7.5 nM in an FXR binding assay and 468.5 nM in a cell-based FXR antagonistic assay. Compound 4j has no detectable FXR agonistic activity or cytotoxicity. Notably, 4j is the most potent FXR antagonist identified to date; it has a promising in vitro profile and could serve as an excellent chemical tool to elucidate the biological function of FXR.
Collapse
Affiliation(s)
- Donna D Yu
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Wenwei Lin
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Barry M Forman
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Taosheng Chen
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
21
|
Asymmetric synthesis of the four diastereoisomers of a novel non-steroidal farnesoid X receptor (FXR) agonist: Role of the chirality on the biological activity. Bioorg Med Chem 2013; 21:3780-9. [DOI: 10.1016/j.bmc.2013.04.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 12/21/2022]
|
22
|
Di Leva FS, Festa C, D'Amore C, De Marino S, Renga B, D'Auria MV, Novellino E, Limongelli V, Zampella A, Fiorucci S. Binding mechanism of the farnesoid X receptor marine antagonist suvanine reveals a strategy to forestall drug modulation on nuclear receptors. Design, synthesis, and biological evaluation of novel ligands. J Med Chem 2013; 56:4701-17. [PMID: 23656455 DOI: 10.1021/jm400419e] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Here, we report suvanine, a marine sponge sesterterpene, as an antagonist of the mammalian bile acid sensor farnesoid-X-receptor (FXR). Using suvanine as a template, we shed light on the molecular bases of FXR antagonism, identifying the essential conformational changes responsible for the transition from the agonist to the antagonist form. Molecular characterization of the nuclear corepressor NCoR and coactivator Src-1 revealed that receptor conformational changes are associated with a specific dynamic of recruitment of these cofactors to the promoter of OSTα, a FXR regulated gene. Using suvanine as a novel hit, a library of semisynthetic derivatives has been designed and prepared, leading to pharmacological profiles ranging from agonism to antagonism toward FXR. Deep pharmacological evaluation demonstrated that derivative 19 represents a new chemotype of FXR modulator, whereas alcohol 6, with a simplified molecular scaffold, exhibits excellent antagonistic activity.
Collapse
Affiliation(s)
- Francesco Saverio Di Leva
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Li W, Fu J, Cheng F, Zheng M, Zhang J, Liu G, Tang Y. Unbinding pathways of GW4064 from human farnesoid X receptor as revealed by molecular dynamics simulations. J Chem Inf Model 2012; 52:3043-52. [PMID: 23101941 DOI: 10.1021/ci300459k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Farnesoid X receptor (FXR, NR1H4) is a member of a nuclear receptor superfamily, which plays important roles in bile acid homeostasis, lipoprotein and glucose metabolism, and hepatic regeneration. GW4064 is a potent and selective FXR agonist and has become a tool compound to probe the physiological functions of FXR. Until now, the mechanism of GW4064 entering and leaving the FXR pocket is still poorly understood. Here, we report a computational study of GW4064 unbinding pathways from FXR by using several molecular dynamics (MD) simulation techniques. Based on the crystal structure of FXR in complex with GW4064, conventional MD was first used to refine the binding and check the stability of GW4064 in the FXR pocket. Random acceleration MD simulations were then performed to explore the possible unbinding pathways of GW4064 from FXR. Four main pathway clusters were found, among which three subpathways, namely Paths 2A, 2B, and 1B, were observed most frequently. Multiple steered MD simulations were further employed to estimate the maximum rupture force and the sum of the forces and to characterize the intermediate states of the ligand unbinding process. By comparing the average force profiles and structural changes, Paths 2A and 2B were identified to be the most favorable unbinding pathways. The former is located between the H1-H2 loop and the H5-H6 loop, and the latter is located in the cleft formed by the H5-H6 loop, H6, and H7. Moreover, the residues lining the pathways were analyzed for their roles in ligand unbinding. Based on our results, the possible structural modification strategies on GW4064 were also proposed.
Collapse
Affiliation(s)
- Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Sardella R, Marinozzi M, Ianni F, Lisanti A, Natalini B. Simultaneous diastereo- and enantioseparation of farnesoid X receptor (FXR) agonists with a quinine carbamate-based chiral stationary phase. Anal Bioanal Chem 2012; 405:847-62. [DOI: 10.1007/s00216-012-6348-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/24/2012] [Accepted: 08/09/2012] [Indexed: 10/27/2022]
|
25
|
Huang H, Yu Y, Gao Z, Zhang Y, Li C, Xu X, Jin H, Yan W, Ma R, Zhu J, Shen X, Jiang H, Chen L, Li J. Discovery and Optimization of 1,3,4-Trisubstituted-pyrazolone Derivatives as Novel, Potent, and Nonsteroidal Farnesoid X Receptor (FXR) Selective Antagonists. J Med Chem 2012; 55:7037-53. [DOI: 10.1021/jm3002718] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huang Huang
- Shanghai Key
Laboratory of New Drug Design, School of Pharmacy, East China University
of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Ying Yu
- Shanghai Key
Laboratory of New Drug Design, School of Pharmacy, East China University
of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Zhenting Gao
- Shanghai Key
Laboratory of New Drug Design, School of Pharmacy, East China University
of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Yong Zhang
- Department of Biochemistry, Zunyi Medical
College, 201 Dalian Road, Zunyi, Guizhou 563003, China
| | - Chenjing Li
- State Key Laboratory of Drug
Research, Shanghai Institute of Materia Medica, Chinese Academy of
Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xing Xu
- State Key Laboratory of Drug
Research, Shanghai Institute of Materia Medica, Chinese Academy of
Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Hui Jin
- Shanghai Key
Laboratory of New Drug Design, School of Pharmacy, East China University
of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Wenzhong Yan
- Shanghai Key
Laboratory of New Drug Design, School of Pharmacy, East China University
of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Ruoqun Ma
- Shanghai Key
Laboratory of New Drug Design, School of Pharmacy, East China University
of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Jin Zhu
- Shanghai Key
Laboratory of New Drug Design, School of Pharmacy, East China University
of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Xu Shen
- Shanghai Key
Laboratory of New Drug Design, School of Pharmacy, East China University
of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- State Key Laboratory of Drug
Research, Shanghai Institute of Materia Medica, Chinese Academy of
Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Hualiang Jiang
- Shanghai Key
Laboratory of New Drug Design, School of Pharmacy, East China University
of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- State Key Laboratory of Drug
Research, Shanghai Institute of Materia Medica, Chinese Academy of
Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Lili Chen
- State Key Laboratory of Drug
Research, Shanghai Institute of Materia Medica, Chinese Academy of
Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jian Li
- Shanghai Key
Laboratory of New Drug Design, School of Pharmacy, East China University
of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| |
Collapse
|
26
|
Marinozzi M, Carotti A, Sansone E, Macchiarulo A, Rosatelli E, Sardella R, Natalini B, Rizzo G, Adorini L, Passeri D, De Franco F, Pruzanski M, Pellicciari R. Pyrazole[3,4-e][1,4]thiazepin-7-one derivatives as a novel class of Farnesoid X Receptor (FXR) agonists. Bioorg Med Chem 2012; 20:3429-45. [DOI: 10.1016/j.bmc.2012.04.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/02/2012] [Accepted: 04/07/2012] [Indexed: 02/01/2023]
|
27
|
Medicinal chemistry of farnesoid X receptor ligands: from agonists and antagonists to modulators. Future Med Chem 2012; 4:1015-36. [DOI: 10.4155/fmc.12.47] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The nuclear receptor farnesoid X receptor (FXR) has emerged as a highly promising target in preclinical development in recent years. A significant amount of research has been conducted and, although none has reached clinical use, many synthetic ligands of FXR have been described. This review outlines the available knowledge regarding the medicinal chemistry and SAR of these FXR ligands, and discusses the molecular interactions of the compounds with the FXR ligand-binding domain by interpreting the existing co-crystal structures.
Collapse
|
28
|
Renga B, Mencarelli A, D'Amore C, Cipriani S, D'Auria MV, Sepe V, Chini MG, Monti MC, Bifulco G, Zampella A, Fiorucci S. Discovery that theonellasterol a marine sponge sterol is a highly selective FXR antagonist that protects against liver injury in cholestasis. PLoS One 2012; 7:e30443. [PMID: 22291955 PMCID: PMC3264597 DOI: 10.1371/journal.pone.0030443] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/21/2011] [Indexed: 02/07/2023] Open
Abstract
Background The farnesoid-x-receptor (FXR) is a bile acid sensor expressed in the liver and gastrointestinal tract. Despite FXR ligands are under investigation for treatment of cholestasis, a biochemical condition occurring in a number of liver diseases for which available therapies are poorly effective, mice harboring a disrupted FXR are protected against liver injury caused by bile acid overload in rodent models of cholestasis. Theonellasterol is a 4-methylene-24-ethylsteroid isolated from the marine sponge Theonella swinhoei. Here, we have characterized the activity of this theonellasterol on FXR-regulated genes and biological functions. Principal Findings Interrogation of HepG2 cells, a human hepatocyte cell line, by microarray analysis and transactivation assay shows that theonellasterol is a selective FXR antagonist, devoid of any agonistic or antagonistic activity on a number of human nuclear receptors including the vitamin D receptor, PPARs, PXR, LXRs, progesterone, estrogen, glucorticoid and thyroid receptors, among others. Exposure of HepG2 cells to theonellasterol antagonizes the effect of natural and synthetic FXR agonists on FXR-regulated genes, including SHP, OSTα, BSEP and MRP4. A proof-of-concept study carried out to investigate whether FXR antagonism rescues mice from liver injury caused by the ligation of the common bile duct, a model of obstructive cholestasis, demonstrated that theonellasterol attenuates injury caused by bile duct ligation as measured by assessing serum alanine aminostrasferase levels and extent of liver necrosis at histopathology. Analysis of genes involved in bile acid uptake and excretion by hepatocytes revealed that theonellasterol increases the liver expression of MRP4, a basolateral transporter that is negatively regulated by FXR. Administering bile duct ligated mice with an FXR agonist failed to rescue from liver injury and downregulated the expression of MRP4. Conclusions FXR antagonism in vivo results in a positive modulation of MRP4 expression in the liver and is a feasible strategy to target obstructive cholestasis.
Collapse
Affiliation(s)
- Barbara Renga
- Dipartimento di Medicina Clinica e Sperimentale, Nuova Facoltà di Medicina e Chirurgia, Università di Perugia, S. Andrea delle Fratte, Perugia, Italy
| | - Andrea Mencarelli
- Dipartimento di Medicina Clinica e Sperimentale, Nuova Facoltà di Medicina e Chirurgia, Università di Perugia, S. Andrea delle Fratte, Perugia, Italy
| | - Claudio D'Amore
- Dipartimento di Medicina Clinica e Sperimentale, Nuova Facoltà di Medicina e Chirurgia, Università di Perugia, S. Andrea delle Fratte, Perugia, Italy
| | - Sabrina Cipriani
- Dipartimento di Medicina Clinica e Sperimentale, Nuova Facoltà di Medicina e Chirurgia, Università di Perugia, S. Andrea delle Fratte, Perugia, Italy
| | - Maria Valeria D'Auria
- Dipartimento di Chimica delle Sostanze Naturali, Università di Napoli, “Federico II”, Napoli, Italy
| | - Valentina Sepe
- Dipartimento di Chimica delle Sostanze Naturali, Università di Napoli, “Federico II”, Napoli, Italy
| | - Maria Giovanna Chini
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università di Salerno, Fisciano, Salerno, Italy
| | - Maria Chiara Monti
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università di Salerno, Fisciano, Salerno, Italy
| | - Giuseppe Bifulco
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università di Salerno, Fisciano, Salerno, Italy
| | - Angela Zampella
- Dipartimento di Chimica delle Sostanze Naturali, Università di Napoli, “Federico II”, Napoli, Italy
| | - Stefano Fiorucci
- Dipartimento di Medicina Clinica e Sperimentale, Nuova Facoltà di Medicina e Chirurgia, Università di Perugia, S. Andrea delle Fratte, Perugia, Italy
- * E-mail:
| |
Collapse
|