1
|
Ahmad G, Sohail M, Bilal M, Rasool N, Qamar MU, Ciurea C, Marceanu LG, Misarca C. N-Heterocycles as Promising Antiviral Agents: A Comprehensive Overview. Molecules 2024; 29:2232. [PMID: 38792094 PMCID: PMC11123935 DOI: 10.3390/molecules29102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Viruses are a real threat to every organism at any stage of life leading to extensive infections and casualties. N-heterocycles can affect the viral life cycle at many points, including viral entrance into host cells, viral genome replication, and the production of novel viral species. Certain N-heterocycles can also stimulate the host's immune system, producing antiviral cytokines and chemokines that can stop the reproduction of viruses. This review focused on recent five- or six-membered synthetic N-heterocyclic molecules showing antiviral activity through SAR analyses. The review will assist in identifying robust scaffolds that might be utilized to create effective antiviral drugs with either no or few side effects.
Collapse
Affiliation(s)
- Gulraiz Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Maria Sohail
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan;
- Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Codrut Ciurea
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Luigi Geo Marceanu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Catalin Misarca
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| |
Collapse
|
2
|
Chaudhary J, Sharma V, Jain A, Sharma D, Chopra B, Dhingra AK. A Profound Insight into the Structure-activity Relationship of Ubiquitous Scaffold Piperazine: An Explicative Review. Med Chem 2024; 20:17-29. [PMID: 37815177 DOI: 10.2174/0115734064244117230923172611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 10/11/2023]
Abstract
Despite extensive research in the field of drug discovery and development, still there is a need to develop novel molecular entities. Literature reveals a substantial heterocyclic nucleus named, piperazine, which shows an immense therapeutic voyage. For several decades, molecules having the piperazine nucleus have entered the market as a drug exhibiting biological potential. It was known to possess antipsychotic, antihistamine, antianginal, antidepressant, anticancer, antiviral, cardioprotective, and anti-inflammatory activity with a specific basis for structural activity relationship. Thus, it is regarded as a key structural feature in most of the already available therapeutic drugs in the market. Reports also suggest that the extensive utilization of these currently available drugs having a piperazine nucleus shows increasing tolerance significantly day by day. In addition to this, various other factors like solubility, low bioavailability, cost-effectiveness, and imbalance between pharmacokinetics and pharmacodynamics profile limit their utilization. Focusing on that issues, various structural modification studies were performed on the piperazine moiety to develop new derivatives/analogs to overcome the problems associated with available marketed drugs. Thus, this review article aims to gain insight into the number of structural modifications at the N-1 and N-4 positions of the piperazine scaffold. This SAR approach may prove to be the best way to overcome the above-discussed drawbacks and lead to the design of drug molecules with better efficacy and affinity. Hence, there is an urgent need to focus on the structural features of this scaffold which paves further work for deeper exploration and may help medicinal chemists as well as pharmaceutical industries.
Collapse
Affiliation(s)
- Jasmine Chaudhary
- Faculty of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwer (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Vishal Sharma
- Faculty of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwer (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Akash Jain
- Faculty of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwer (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Diksha Sharma
- Research Scholar, Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Bhawna Chopra
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | | |
Collapse
|
3
|
Del Rosario García-Lozano M, Dragoni F, Gallego P, Mazzotta S, López-Gómez A, Boccuto A, Martínez-Cortés C, Rodríguez-Martínez A, Pérez-Sánchez H, Manuel Vega-Pérez J, Antonio Del Campo J, Vicenti I, Vega-Holm M, Iglesias-Guerra F. Piperazine-derived small molecules as potential Flaviviridae NS3 protease inhibitors. In vitro antiviral activity evaluation against Zika and Dengue viruses. Bioorg Chem 2023; 133:106408. [PMID: 36801791 DOI: 10.1016/j.bioorg.2023.106408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Since 2011 Direct Acting antivirals (DAAs) drugs targeting different non-structural (NS) viral proteins (NS3, NS5A or NS5B inhibitors) have been approved for clinical use in HCV therapies. However, currently there are not licensed therapeutics to treat Flavivirus infections and the only licensed DENV vaccine, Dengvaxia, is restricted to patients with preexisting DENV immunity. Similarly to NS5 polymerase, the NS3 catalytic region is evolutionarily conserved among the Flaviviridae family sharing strong structural similarity with other proteases belonging to this family and therefore is an attractive target for the development of pan-flavivirus therapeutics. In this work we present a library of 34 piperazine-derived small molecules as potential Flaviviridae NS3 protease inhibitors. The library was developed through a privileged structures-based design and then biologically screened using a live virus phenotypic assay to determine the half-maximal inhibitor concentration (IC50) of each compound against ZIKV and DENV. Two lead compounds, 42 and 44, with promising broad-spectrum activity against ZIKV (IC50 6.6 µM and 1.9 µM respectively) and DENV (IC50 6.7 µM and 1.4 µM respectively) and a good security profile were identified. Besides, molecular docking calculations were performed to provide insights about key interactions with residues in NS3 proteases' active sites.
Collapse
Affiliation(s)
- María Del Rosario García-Lozano
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain; SeLiver Group at the Institute of Biomedicine of Seville (IBIS), Virgen del Rocío University Hospital CSIC University of Seville, Seville, Spain
| | - Filippo Dragoni
- Department of Medical Biotechnologies, Siena University Hospital, Policlinico Le Scotte, Viale Bracci 16, 53100 Siena, Italy
| | - Paloma Gallego
- Unit for Clinical Management of Digestive Diseases and CIBERehd, Valme University Hospital, 41014 Seville, Spain
| | - Sarah Mazzotta
- Department of Chemistry, University of Milan, 20133 Milan, Italy
| | - Alejandro López-Gómez
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain
| | - Adele Boccuto
- Department of Medical Biotechnologies, Siena University Hospital, Policlinico Le Scotte, Viale Bracci 16, 53100 Siena, Italy; VisMederi Research srl, Siena, Italy
| | - Carlos Martínez-Cortés
- Structural Bioinformatics and High Performance Computing (BIO-HPC) Research Group, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain
| | - Alejandro Rodríguez-Martínez
- Department of Physical Chemistry and Institute of Biotechnology, University of Granada, Campus Fuentenueva sn, 18071 Granada, Spain
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing (BIO-HPC) Research Group, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain
| | - José Manuel Vega-Pérez
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain
| | | | - Ilaria Vicenti
- Department of Medical Biotechnologies, Siena University Hospital, Policlinico Le Scotte, Viale Bracci 16, 53100 Siena, Italy.
| | - Margarita Vega-Holm
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain.
| | - Fernando Iglesias-Guerra
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain
| |
Collapse
|
4
|
Kilbile JT, Tamboli Y, Gadekar SS, Islam I, Supuran CT, Sapkal SB. An insight into the biological activity and structure-based drug design attributes of sulfonylpiperazine derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Borah B, Dhar Dwivedi K, Chowhan LR. 4‐Hydroxycoumarin: A Versatile Substrate for Transition‐metal‐free Multicomponent Synthesis of Bioactive Heterocycles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100550] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat Sector-30 Gandhinagar 382030 India
| | - Kartikey Dhar Dwivedi
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat Sector-30 Gandhinagar 382030 India
| | - L. Raju Chowhan
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat Sector-30 Gandhinagar 382030 India
| |
Collapse
|
6
|
Paca AM, Ajibade PA, Andrew FP, Nundkumar N, Singh M. Synthesis, X-ray crystal structures and anticancer studies of four Pd(II) dithiocarbamate complexes. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
7
|
Kumar RR, Sahu B, Pathania S, Singh PK, Akhtar MJ, Kumar B. Piperazine, a Key Substructure for Antidepressants: Its Role in Developments and Structure-Activity Relationships. ChemMedChem 2021; 16:1878-1901. [PMID: 33751807 DOI: 10.1002/cmdc.202100045] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 01/21/2023]
Abstract
Depression is the single largest contributor to global disability with a huge economic and social burden on the world. There are a number of antidepressant drugs on the market, but treatment-resistant depression and relapse of depression in a large number of patients have increased problems for clinicians. One peculiarity observed in most of the marketed antidepressants is the presence of a piperazine substructure. Although piperazine is also used in the optimization of other pharmacological agents, it is almost extensively used for the development of novel antidepressants. One common understanding is that this is due to its favorable CNS pharmacokinetic profile; however, in the case of antidepressants, piperazine plays a much bigger role and is involved in specific binding conformations of these agents. Therefore, in this review, a critical analysis of the significance of the piperazine moiety in the development of antidepressants has been performed. An overview of current developments in the designing and synthesis of piperazine-based antidepressants (2015 onwards) along with SAR studies is also provided. The various piperazine-based therapeutic agents in early- or late-phase human testing for depression are also discussed. The preclinical compounds discussed in this review will help researchers understand how piperazine actually influences the design and development of novel antidepressant compounds. The SAR studies discussed will provide crucial clues about the structural features and optimizations required to enhance the efficacy and potency of piperazine-based antidepressants.
Collapse
Affiliation(s)
- Ravi Ranjan Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Bhaskar Sahu
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Shelly Pathania
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Pankaj Kumar Singh
- Integrative Physiology and Pharmacology, Institute of Biomedicine, Faculty of Medicine, University of Turku, 20520, Turku, Finland
| | - M Jawaid Akhtar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| |
Collapse
|
8
|
Sharma A, Wakode S, Fayaz F, Khasimbi S, Pottoo FH, Kaur A. An Overview of Piperazine Scaffold as Promising Nucleus for Different Therapeutic Targets. Curr Pharm Des 2020; 26:4373-4385. [DOI: 10.2174/1381612826666200417154810] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/10/2020] [Indexed: 11/22/2022]
Abstract
Piperazine scaffolds are a group of heterocyclic atoms having pharmacological values and showing
significant results in pharmaceutical chemistry. Piperazine has a flexible core structure for the design and synthesis
of new bioactive compounds. These flexible heterogenous compounds exhibit various biological roles, primarily
anticancer, antioxidant, cognition enhancers, antimicrobial, antibacterial, antiviral, antifungal, antiinflammatory,
anti-HIV-1 inhibitors, antidiabetic, antimalarial, antidepressant, antianxiety and anticonvulsant
activities, etc. In the past few years, researchers focused on the therapeutic profile of piperazine synthons for
different biological targets. The present review highlights the development in designing pharmacological activities
of nitrogen-containing piperazine moiety as a therapeutic agent. The extensive popularity of piperazine as a
drug of abuse and their vast heterogeneity research efforts over the last years motivated the new investigators to
further explore this area.
Collapse
Affiliation(s)
- Anjali Sharma
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi-110017, India
| | - Sharad Wakode
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi-110017, India
| | - Faizana Fayaz
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi-110017, India
| | - Shaik Khasimbi
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi-110017, India
| | - Faheem H. Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. BOX 1982, Dammam 31441, Saudi Arabia
| | - Avneet Kaur
- SGT college of Pharmacy, SGT University, Gurugram, Haryana- 122001, India
| |
Collapse
|
9
|
Synthesis and Structure-Activity Relationship of 1-(2-Furoyl)Piperazine Bearing Benzamides as Butyrylcholinesterase Inhibitors. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02247-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Wu W, Jiang Y, Fei Q, Du H, Yang M. Synthesis and antifungal activity of novel 1,2,4‐triazole derivatives containing an amide moiety. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wen‐Neng Wu
- Institute of Entomology, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationGuizhou University Guiyang China
- Food and Pharmaceutical Engineering InstituteGuiyang University Guiyang China
| | - Yang‐Ming Jiang
- State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical University Guiyang China
| | - Qiang Fei
- Food and Pharmaceutical Engineering InstituteGuiyang University Guiyang China
| | - Hai‐Tang Du
- Food and Pharmaceutical Engineering InstituteGuiyang University Guiyang China
| | - Mao‐Fa Yang
- Institute of Entomology, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationGuizhou University Guiyang China
| |
Collapse
|
11
|
Ghosh S, Malik YS, Kobayashi N. Therapeutics and Immunoprophylaxis Against Noroviruses and Rotaviruses: The Past, Present, and Future. Curr Drug Metab 2018; 19:170-191. [PMID: 28901254 PMCID: PMC5971199 DOI: 10.2174/1389200218666170912161449] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/25/2016] [Accepted: 03/19/2017] [Indexed: 12/20/2022]
Abstract
Background: Noroviruses and rotaviruses are important viral etiologies of severe gastroenteritis. Noroviruses are the primary cause of nonbacterial diarrheal outbreaks in humans, whilst rotaviruses are a major cause of childhood diarrhea. Although both enteric pathogens substantially impact human health and economies, there are no approved drugs against noroviruses and rotaviruses so far. On the other hand, whilst the currently licensed rotavirus vaccines have been successfully implemented in over 100 countries, the most advanced norovirus vaccine has recently completed phase-I and II trials. Methods: We performed a structured search of bibliographic databases for peer-reviewed research litera-ture on advances in the fields of norovirus and rotavirus therapeutics and immunoprophylaxis. Results: Technological advances coupled with a proper understanding of viral morphology and replication over the past decade has facilitated pioneering research on therapeutics and immunoprophylaxis against noroviruses and rotaviruses, with promising outcomes in human clinical trials of some of the drugs and vaccines. This review focuses on the various developments in the fields of norovirus and rotavirus thera-peutics and immunoprophylaxis, such as potential antiviral drug molecules, passive immunotherapies (oral human immunoglobulins, egg yolk and bovine colostral antibodies, llama-derived nanobodies, and anti-bodies expressed in probiotics, plants, rice grains and insect larvae), immune system modulators, probiot-ics, phytochemicals and other biological substances such as bovine milk proteins, therapeutic nanoparti-cles, hydrogels and viscogens, conventional viral vaccines (live and inactivated whole virus vaccines), and genetically engineered viral vaccines (reassortant viral particles, virus-like particles (VLPs) and other sub-unit recombinant vaccines including multi-valent viral vaccines, edible plant vaccines, and encapsulated viral particles). Conclusions: This review provides important insights into the various approaches to therapeutics and im-munoprophylaxis against noroviruses and rotaviruses..
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts and Nevis, West Indies.,Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Yashpal Singh Malik
- Indian Veterinary Research Institute, Izatnagar 243 122, Uttar Pradesh, India
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
12
|
Abbasi MA, Hassan M, Ur-Rehman A, Siddiqui SZ, Hussain G, Shah SAA, Ashraf M, Shahid M, Seo SY. 2-Furoic piperazide derivatives as promising drug candidates of type 2 diabetes and Alzheimer's diseases: In vitro and in silico studies. Comput Biol Chem 2018; 77:72-86. [PMID: 30245349 DOI: 10.1016/j.compbiolchem.2018.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 02/06/2023]
Abstract
The heterocyclic compounds have been extensively reported for their bioactivity potential. The current research work reports the synthesis of some new multi-functional derivatives of 2-furoic piperazide (1; 1-(2-furoyl)piperazine). The synthesis was initiated by reacting the starting compound 1 with 3,5-dichloro-2-hydroxybenzenesulfonyl chloride (2) in a basic, polar and protic medium to obtain the parent sulfonamide 3 which was then treated with different electrophiles, 4a-g, in a polar and aprotic medium to acquire the designed molecules, 5a-g. These convergent derivatives were evaluated for their inhibitory potential against α-glucosidase, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Acarbose was used as a reference standard for α-glucosidase inhibition while eserine for AChE and BChE inhibition. Some of the synthesized compounds were identified as promising inhibitors of these three enzymes and their bioactivity potentials were also supported by molecular docking study. The most active compounds among the synthetic analogues might be helpful in drug discovery and development for the treatment of type 2 diabetes and Alzhiemer's diseases.
Collapse
Affiliation(s)
- Muhammad Athar Abbasi
- College of Natural Science, Department of Biological Sciences, Kongju National University, Gongju, 32588, South Korea; Department of Chemistry, Government College University, Lahore, 54000, Pakistan.
| | - Mubashir Hassan
- College of Natural Science, Department of Biological Sciences, Kongju National University, Gongju, 32588, South Korea
| | - Aziz Ur-Rehman
- Department of Chemistry, Government College University, Lahore, 54000, Pakistan
| | | | - Ghulam Hussain
- Department of Chemistry, Government College University, Lahore, 54000, Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy and Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Level 9, FF3, Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Muhammad Ashraf
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Sung Yum Seo
- College of Natural Science, Department of Biological Sciences, Kongju National University, Gongju, 32588, South Korea.
| |
Collapse
|
13
|
Baghery S, Zolfigol MA, Schirhagl R, Hasani M. {[1,4-DHPyrazine][C(CN)3]2} as a New Nano Molten Salt Catalyst for the Synthesis of Novel Piperazine Based bis(4-hydroxy-2H-chromen-2-one) Derivatives. Catal Letters 2017. [DOI: 10.1007/s10562-017-2096-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
|
15
|
Weerawarna PM, Kim Y, Galasiti Kankanamalage AC, Damalanka VC, Lushington GH, Alliston KR, Mehzabeen N, Battaile KP, Lovell S, Chang KO, Groutas WC. Structure-based design and synthesis of triazole-based macrocyclic inhibitors of norovirus protease: Structural, biochemical, spectroscopic, and antiviral studies. Eur J Med Chem 2016; 119:300-18. [PMID: 27235842 PMCID: PMC4916972 DOI: 10.1016/j.ejmech.2016.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 01/14/2023]
Abstract
Outbreaks of acute gastroenteritis caused by noroviruses constitute a public health concern worldwide. To date, there are no approved drugs or vaccines for the management and prophylaxis of norovirus infections. A potentially effective strategy for the development of norovirus therapeutics entails the discovery of inhibitors of norovirus 3CL protease, an enzyme essential for noroviral replication. We describe herein the structure-based design of the first class of permeable, triazole-based macrocyclic inhibitors of norovirus 3C-like protease, as well as pertinent X-ray crystallographic, biochemical, spectroscopic, and antiviral studies. Novel triazole-based macrocyclic inhibitors of norovirus 3CL protease were synthesized. The interplay of conformation and activity was probed using NMR and X-ray crystallography. Bound inhibitors assume a β-strand conformation according to X-ray crystal structure. Loss of critical hydrogen bonding interactions was revealed by X-ray crystallography.
Collapse
Affiliation(s)
| | - Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | - Vishnu C Damalanka
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | | | - Kevin R Alliston
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | - Nurjahan Mehzabeen
- Protein Structure Laboratory, The University of Kansas, Lawrence, KS 66047, USA
| | - Kevin P Battaile
- IMCA-CAT, Hauptman-Woodward Medical Research Institute, APS Argonne National Laboratory, Argonne, IL 60439, USA
| | - Scott Lovell
- Protein Structure Laboratory, The University of Kansas, Lawrence, KS 66047, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - William C Groutas
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA.
| |
Collapse
|
16
|
Xu G, Yang X, Jiang B, Lei P, Liu X, Wang Q, Zhang X, Ling Y. Synthesis and bioactivities of novel piperazine-containing 1,5-Diphenyl-2-penten-1-one analogues from natural product lead. Bioorg Med Chem Lett 2016; 26:1849-53. [PMID: 26906636 DOI: 10.1016/j.bmcl.2016.01.088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/20/2016] [Accepted: 01/30/2016] [Indexed: 10/22/2022]
Abstract
A series of novel 1,5-Diphenyl-2-penten-1-one analogues (7a-h, 8a-h) with piperazine moiety have been designed and synthesized on the basis of natural product 1,5-Diphenyl-2-penten-1-one (I). All the synthesized compounds were evaluated in vitro for anti-plant pathogenic fungi activities and insecticidal activities. The results indicated that most of these analogues exhibited moderate antifungal activities and moderate to good insecticidal activities. Amongst them, the most potent 7c, 7e and 7h keep a mortality of 100% against larva of mosquito at the concentration of 1mg/L. Initial structure-activity relationship (SAR) analysis showed that, a methyl group can influence the biological activities of these compounds significantly, the compounds with N'-unsubstituted piperazine showed much better antifungal activities and larvicidal activity against mosquito than the compounds with N'-methylated piperazine. In addition, the larvicidal activity against mosquito had sharply decline when the substituent on benzene ring was changed from 4-position to 2 or 3-position.
Collapse
Affiliation(s)
- Gaofei Xu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xinling Yang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Biaobiao Jiang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Peng Lei
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xili Liu
- Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, 100193, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Xuebo Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yun Ling
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Galasiti Kankanamalage AC, Weerawarna PM, Kim Y, Chang KO, Groutas WC. Anti-norovirus therapeutics: a patent review (2010-2015). Expert Opin Ther Pat 2016; 26:297-308. [PMID: 26881878 PMCID: PMC4948123 DOI: 10.1517/13543776.2016.1153065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Human noroviruses are the primary causative agents of acute gastroenteritis and are a pressing public health burden worldwide. There are currently no vaccines or small molecule therapeutics available for the treatment or prophylaxis of norovirus infections. An improved understanding of norovirus biology, as well as the pathogenic mechanisms underlying the disease, has provided the impetus for a range of intense exploratory drug discovery efforts targeting viral and host factors. AREAS COVERED An overview of norovirus inhibitors disclosed in the patent literature (2010-present) and Clinicaltrials.gov is presented. The review is further enriched and supplemented by recent literature reports. EXPERT OPINION Seminal discoveries made in recent years, including a better understanding of the pathobiology and life cycle of norovirus, the identification and targeting of multiple viral and host factors, the advent of a replicon system and a small animal model for the preclinical evaluation of lead compounds, and the availability of high resolution X-ray crystal structures that can be utilized in structure-based drug design and lead optimization campaigns, collectively suggest that a small molecule therapeutic and prophylactic for norovirus infection is likely to emerge in the not too distant future.
Collapse
Affiliation(s)
| | | | - Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, Manhattan, Kansas 66506, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, Manhattan, Kansas 66506, USA
| | - William C. Groutas
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, USA
| |
Collapse
|
18
|
Kim Y, Galasiti Kankanamalage AC, Chang KO, Groutas WC. Recent Advances in the Discovery of Norovirus Therapeutics. J Med Chem 2015; 58:9438-50. [PMID: 26258852 DOI: 10.1021/acs.jmedchem.5b00762] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Noroviruses are members of the family Caliciviridae. Norovirus infections are a global health burden that impacts >20 million individuals annually in the U.S. alone. Noroviruses are associated with high morbidity among vulnerable populations, particularly immunocompromised patients. This perspective highlights recent developments related to the discovery and development of norovirus-specific small-molecule therapeutics as well as recent advances in our understanding of norovirus biology and pathogenesis. Most of the work in this area is at the early discovery stage and has been primarily focused on inhibitors of norovirus 3C-like protease and RNA dependent RNA polymerase. However, recent discoveries emanating from basic studies in norovirus research have resulted in the identification of new host-related drug targets that can be exploited. A repurposed compound has been advanced to human clinical studies.
Collapse
Affiliation(s)
- Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas 66506, United States
| | | | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas 66506, United States
| | - William C Groutas
- Department of Chemistry, Wichita State University , 1845 North Fairmount Avenue, Wichita, Kansas 67260, United States
| |
Collapse
|
19
|
Piperazine scaffold: A remarkable tool in generation of diverse pharmacological agents. Eur J Med Chem 2015; 102:487-529. [PMID: 26310894 DOI: 10.1016/j.ejmech.2015.07.026] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 12/21/2022]
Abstract
Piperazine is one of the most sought heterocyclics for the development of new drug candidates. This ring can be traced in a number of well established, commercially available drugs. Wide array of pharmacological activities exhibited by piperazine derivatives have made them indispensable anchors for the development of novel therapeutic agents. The review herein highlights the therapeutic significance of piperazine derivatives. Various therapeutically active piperazine derivatives developed by several chemists are reported here.
Collapse
|
20
|
Kankanamalage ACG, Kim Y, Weerawarna PM, Uy RAZ, Damalanka VC, Mandadapu SR, Alliston KR, Mehzabeen N, Battaile KP, Lovell S, Chang KO, Groutas WC. Structure-guided design and optimization of dipeptidyl inhibitors of norovirus 3CL protease. Structure-activity relationships and biochemical, X-ray crystallographic, cell-based, and in vivo studies. J Med Chem 2015; 58:3144-55. [PMID: 25761614 PMCID: PMC4484267 DOI: 10.1021/jm5019934] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Norovirus infection constitutes the primary cause of acute viral gastroenteritis. There are currently no vaccines or norovirus-specific antiviral therapeutics available for the management of norovirus infection. Norovirus 3C-like protease is essential for viral replication, consequently, inhibition of this enzyme is a fruitful avenue of investigation that may lead to the emergence of antinorovirus therapeutics. We describe herein the optimization of dipeptidyl inhibitors of norovirus 3C-like protease using iterative SAR, X-ray crystallographic, and enzyme and cell-based studies. We also demonstrate herein in vivo efficacy of an inhibitor using the murine model of norovirus infection.
Collapse
Affiliation(s)
| | - Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506
| | | | | | | | | | - Kevin R. Alliston
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260
| | - Nurjahan Mehzabeen
- Protein Structure Laboratory, The University of Kansas, Lawrence, Kansas 66047
| | - Kevin P. Battaile
- IMCA-CAT, Hauptman-Woodward Medical Research Institute, APS Argonne National Laboratory, Argonne, IL 60439
| | - Scott Lovell
- Protein Structure Laboratory, The University of Kansas, Lawrence, Kansas 66047
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506
| | - William C. Groutas
- Protein Structure Laboratory, The University of Kansas, Lawrence, Kansas 66047
| |
Collapse
|
21
|
Kamal A, Shaik B, Nayak VL, Nagaraju B, Kapure JS, Shaheer Malik M, Shaik TB, Prasad B. Synthesis and biological evaluation of 1,2,3-triazole linked aminocombretastatin conjugates as mitochondrial mediated apoptosis inducers. Bioorg Med Chem 2014; 22:5155-67. [PMID: 25192811 DOI: 10.1016/j.bmc.2014.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/23/2014] [Accepted: 08/11/2014] [Indexed: 12/29/2022]
Abstract
A series of 1,2,3-triazole linked aminocombretastatin conjugates were synthesized and evaluated for cytotoxicity, inhibition of tubulin polymerization and apoptosis inducing ability. Most of the conjugates exhibited significant anticancer activity against some representative human cancer cell lines and two of the conjugates 6d and 7c displayed potent cytotoxicity with IC50 values of 53 nM and 44 nM against A549 human lung cancer respectively, and were comparable to combretastatin A-4 (CA-4). SAR studies revealed that 1-benzyl substituted triazole moiety with an amide linkage at 3-position of B-ring of the combretastatin subunit are more active compared to 2-position. G2/M cell cycle arrest was induced by these conjugates 6d and 7c and the tubulin polymerization assay (IC50 of 1.16 μM and 0.95 μM for 6d and 7c, respectively) as well as immunofluorescence analysis showed that these conjugates effectively inhibit microtubule assembly at both molecular and cellular levels in A549 cells. Colchicine competitive binding assay suggested that these conjugates bind at the colchicine binding site of tubulin as also observed from the docking studies. Further, mitochondrial membrane potential, ROS generation, caspase-3 activation assay, Hoechst staining and DNA fragmentation analysis revealed that these conjugates induce cell death by apoptosis.
Collapse
Affiliation(s)
- Ahmed Kamal
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| | - Bajee Shaik
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - V Lakshma Nayak
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Burri Nagaraju
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Jeevak Sopanrao Kapure
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - M Shaheer Malik
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Thokhir Basha Shaik
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - B Prasad
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| |
Collapse
|
22
|
Kaufman SS, Green KY, Korba BE. Treatment of norovirus infections: moving antivirals from the bench to the bedside. Antiviral Res 2014; 105:80-91. [PMID: 24583027 PMCID: PMC4793406 DOI: 10.1016/j.antiviral.2014.02.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/05/2014] [Accepted: 02/13/2014] [Indexed: 11/16/2022]
Abstract
Noroviruses (NV) are the most common cause of acute gastrointestinal illness in the United States and worldwide. The development of specific antiviral countermeasures has lagged behind that of other viral pathogens, primarily because norovirus disease has been perceived as brief and self-limiting and robust assays suitable for drug discovery have been lacking. The increasing recognition that NV illness can be life-threatening, especially in immunocompromised patients who often require prolonged hospitalization and intensive supportive care, has stimulated new research to develop an effective antiviral therapy. Here, we propose a path forward for evaluating drug therapy in norovirus-infected immunocompromised individuals, a population at high risk for serious and prolonged illness. The clinical and laboratory features of norovirus illness in immunocompromised patients are reviewed, and potential markers of drug efficacy are defined. We discuss the potential design of clinical trials in these patients and how an antiviral therapy that proves effective in immunocompromised patients might also be used in the setting of acute outbreaks, especially in confined settings such as nursing homes, to block the spread of infection and reduce the severity of illness. We conclude by reviewing the current status of approved and experimental compounds that might be evaluated in a hospital setting.
Collapse
Affiliation(s)
- Stuart S Kaufman
- MedStar Georgetown Transplant Institute and Department of Pediatrics, Georgetown University Medical Center, Washington, DC 20007, United States
| | - Kim Y Green
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Brent E Korba
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20007, United States.
| |
Collapse
|
23
|
Takahashi D, Kim Y, Lovell S, Prakash O, Groutas WC, Chang KO. Structural and inhibitor studies of norovirus 3C-like proteases. Virus Res 2013; 178:437-44. [PMID: 24055466 PMCID: PMC3840063 DOI: 10.1016/j.virusres.2013.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 01/23/2023]
Abstract
Noroviruses have a single-stranded, positive sense 7-8kb RNA genome, which encodes a polyprotein precursor processed by a virus-encoded 3C-like cysteine protease (3CLpro) to generate mature non-structural proteins. Because processing of the polyprotein is essential for virus replication, norovirus 3CLpro has been targeted for the discovery of anti-norovirus small molecule therapeutics. Thus, we performed functional, structural and inhibition studies of norovirus 3CLpro with fluorescence resonance energy transfer (FRET) assay, X-ray crystallography, and NMR spectroscopy with a synthetic protease inhibitor. Three 3CLpro from Norwalk virus (NV, genogroup I), MD145 (genogroup II) and murine norovirus-1 (MNV-1, genogroup V) were optimized for a FRET assay, and compared for the inhibitory activities of a synthetic protease inhibitor (GC376). The apo 3D structures of NV 3CLpro determined with X-ray crystallography and NMR spectroscopy were further analyzed. In addition, the binding mode of NV 3CLpro-GC376 was compared with X-ray crystallography and NMR spectroscopy. The results of this report provide insight into the interaction of NV 3CLpro with substrate/inhibitor for better understanding of the enzyme and antiviral drug development.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Department of Biochemistry, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506, USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506
| | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, KS 66047
| | - Om Prakash
- Department of Biochemistry, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506, USA
| | - William C Groutas
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
24
|
Lee JH, Bae SY, Oh M, Kim KH, Chung MS. Antiviral effects of mulberry (Morus alba) juice and its fractions on foodborne viral surrogates. Foodborne Pathog Dis 2013; 11:224-9. [PMID: 24350883 DOI: 10.1089/fpd.2013.1633] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Norovirus infection is a major cause of nonbacterial foodborne outbreaks worldwide, but no specific treatments are available yet. In this study, we investigated the antiviral activity of mulberry (Morus alba, Ma) juice and its fractions on murine norovirus-1 (MNV-1) and feline calicivirus-F9 (FCV-F9) as human norovirus surrogates using cytopathic effect inhibition, plaque reduction, and RNA expression assays. In time-of-addition experiments, Ma juice was found to be effective in reducing the infectivity of MNV-1 and FCV-F9 in the pre- and co-treatments. The effective concentration for 50% reduction was approximately 0.005% juice (relative to 100% natural juice) and 0.25% juice for MNV-1 and FCV-F9, respectively. Ma juice at 0.1% exhibited about 60% reduction of the MNV-1 polymerase gene expression, confirming the inhibition of viral replication. In an attempt to identify active components with antiviral activities, Ma-F1 (<3 kDa) and Ma-F2 (>3 kDa) were examined to show that Ma-F2 was more effective than Ma-F1 in all modes, except for pre-virus treatment. Nevertheless, two major polyphenolic compounds of Ma juice, cyanidin-3-glucoside and cyanidin-3-rutinoside, showed antiviral activity in the co-treatment mode. Our results suggest that Ma juice and its fractions may inhibit internalization and replication of MNV-1, whereas it may influence adherence or internalization of FCV-F9 virions. Ma juice may prove useful in the prevention of foodborne viral infection.
Collapse
Affiliation(s)
- Ji-Hye Lee
- 1 Department of Biotechnology & Bioinformatics, Korea University , Sejong, Korea
| | | | | | | | | |
Collapse
|
25
|
Potent inhibition of norovirus by dipeptidyl α-hydroxyphosphonate transition state mimics. Bioorg Med Chem Lett 2013; 23:5941-4. [PMID: 24054123 DOI: 10.1016/j.bmcl.2013.08.073] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/12/2013] [Accepted: 08/15/2013] [Indexed: 12/16/2022]
Abstract
The design, synthesis, and evaluation of a series of dipeptidyl α-hydroxyphosphonates is reported. The synthesized compounds displayed high anti-norovirus activity in a cell-based replicon system, as well as high enzyme selectivity.
Collapse
|
26
|
Mandadapu SR, Weerawarna PM, Prior AM, Uy RAZ, Aravapalli S, Alliston KR, Lushington GH, Kim Y, Hua DH, Chang KO, Groutas WC. Macrocyclic inhibitors of 3C and 3C-like proteases of picornavirus, norovirus, and coronavirus. Bioorg Med Chem Lett 2013; 23:3709-12. [PMID: 23727045 PMCID: PMC3750990 DOI: 10.1016/j.bmcl.2013.05.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/29/2013] [Accepted: 05/07/2013] [Indexed: 12/18/2022]
Abstract
The design, synthesis, and in vitro evaluation of the first macrocyclic inhibitor of 3C and 3C-like proteases of picornavirus, norovirus, and coronavirus are reported. The in vitro inhibitory activity (50% effective concentration) of the macrocyclic inhibitor toward enterovirus 3C protease (CVB3 Nancy strain), and coronavirus (SARS-CoV) and norovirus 3C-like proteases, was determined to be 1.8, 15.5 and 5.1 μM, respectively.
Collapse
Affiliation(s)
| | | | - Allan M. Prior
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | - Sridhar Aravapalli
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | - Kevin R. Alliston
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | | | - Yunjeong Kim
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Duy H. Hua
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - William C. Groutas
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| |
Collapse
|
27
|
Hakimi M, Mardani Z, Moeini K. Spectral and Structural Study of two Piperazine Based Nitrate Salts. JOURNAL OF CHEMICAL RESEARCH 2013. [DOI: 10.3184/174751913x13575773628099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two new compounds, N-(2-aminoethyl)piperazinium trinitrate (AEPH3(NO3)3) and N-(2-hydroxyethyl)piperazinium dinitrate (HEPH2(NO3)2), were prepared. IR spectra of AEPH3(NO3)3 and HEPH2(NO3)2 were compared with those of the parent N-(2-aminoethyl)piperazine (AEP) and N-(2-hydroxyethyl)piperazine (HEP), respectively. The intermolecular interactions affect the symmetry of the nitrate ions in AEPH3(NO3)3 and HEPH2(NO3)2, lowering it from D3h to C2v or Cs. Single-crystal X-ray diffraction of AEPH3(NO3)3 showed that the piperazine moiety has a chair conformation and that two of its nitrogen atoms have a distorted tetrahedral geometry. Similar results were observed for HEPH2(NO3)2. In the crystals, there are N···O contacts between nitrate groups and hydrogen bond motifs between nitrate and ammonium groups (only in AEPH3(NO3)3).
Collapse
Affiliation(s)
- Mohammad Hakimi
- Chemistry Department, Payame Noor University, 19395-4697 Tehran, Iran
| | - Zahra Mardani
- Chemistry Department, Payame Noor University, 19395-4697 Tehran, Iran
| | - Keyvan Moeini
- Chemistry Department, Payame Noor University, 19395-4697 Tehran, Iran
| |
Collapse
|
28
|
Mandadapu SR, Gunnam MR, Tiew KC, Uy RAZ, Prior AM, Alliston KR, Hua DH, Kim Y, Chang KO, Groutas WC. Inhibition of norovirus 3CL protease by bisulfite adducts of transition state inhibitors. Bioorg Med Chem Lett 2012; 23:62-5. [PMID: 23218713 DOI: 10.1016/j.bmcl.2012.11.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/05/2012] [Accepted: 11/07/2012] [Indexed: 01/08/2023]
Abstract
Noroviruses are the most common cause of acute viral gastroenteritis, accounting for >21 million cases annually in the US alone. Norovirus infections constitute an important health problem for which there are no specific antiviral therapeutics or vaccines. In this study, a series of bisulfite adducts derived from representative transition state inhibitors (dipeptidyl aldehydes and α-ketoamides) was synthesized and shown to exhibit anti-norovirus activity in a cell-based replicon system. The ED(50) of the most effective inhibitor was 60 nM. This study demonstrates for the first time the utilization of bisulfite adducts of transition state inhibitors in the inhibition of norovirus 3C-like protease in vitro and in a cell-based replicon system. The approach described herein can be extended to the synthesis of the bisulfite adducts of other classes of transition state inhibitors of serine and cysteine proteases, such as α-ketoheterocycles and α-ketoesters.
Collapse
|
29
|
Mandadapu SR, Weerawarna PM, Gunnam MR, Alliston KR, Lushington GH, Kim Y, Chang KO, Groutas WC. Potent inhibition of norovirus 3CL protease by peptidyl α-ketoamides and α-ketoheterocycles. Bioorg Med Chem Lett 2012; 22:4820-6. [PMID: 22698498 DOI: 10.1016/j.bmcl.2012.05.055] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 12/13/2022]
Abstract
A series of structurally-diverse α-ketoamides and α-ketoheterocycles was synthesized and subsequently investigated for inhibitory activity against norovirus 3CL protease in vitro, as well as anti-norovirus activity in a cell-based replicon system. The synthesized compounds were found to inhibit norovirus 3CL protease in vitro and to also exhibit potent anti-norovirus activity in a cell-based replicon system.
Collapse
|
30
|
Dou D, Tiew KC, Mandadapu SR, Gunnam MR, Alliston KR, Kim Y, Chang KO, Groutas WC. Potent norovirus inhibitors based on the acyclic sulfamide scaffold. Bioorg Med Chem 2012; 20:2111-8. [PMID: 22356738 DOI: 10.1016/j.bmc.2012.01.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/11/2012] [Accepted: 01/19/2012] [Indexed: 11/16/2022]
Abstract
The development of small molecule therapeutics to combat norovirus infection is of considerable interest from a public health perspective because of the highly contagious nature of noroviruses. A series of amino acid-derived acyclic sulfamide-based norovirus inhibitors has been synthesized and evaluated using a cell-based replicon system. Several compounds were found to display potent anti-norovirus activity, low toxicity, and good aqueous solubility. These compounds are suitable for further optimization of pharmacological and ADMET properties.
Collapse
Affiliation(s)
- Dengfeng Dou
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | | | | | | | | | | | | | | |
Collapse
|