1
|
Coronell-Tovar A, Cortés-Benítez F, González-Andrade M. The importance of including the C-terminal domain of PTP1B 1-400 to identify potential antidiabetic inhibitors. J Enzyme Inhib Med Chem 2023; 38:2170369. [PMID: 36997321 PMCID: PMC10064822 DOI: 10.1080/14756366.2023.2170369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
In the present work, we studied the inhibitory and kinetic implications of classical PTP1B inhibitors (chlorogenic acid, ursolic acid, suramin) using three enzyme constructs (hPTP1B1-285, hPTP1B1-321, and hPTP1B1-400). The results indicate that the unstructured region of PTP1B (300-400 amino acids) is very important both to obtain optimal inhibitory results and propose classical inhibition mechanisms (competitive or non-competitive) through kinetic studies. The IC50 calculated for ursolic acid and suramin using hPTP1B1-400 are around four and three times lower to the short form of the enzyme, the complete form of PTP1B, the one found in the cytosol (in vivo). On the other hand, we highlight the studies of enzymatic kinetics using the hPTP1B1-400 to know the type of enzymatic inhibition and to be able to direct docking studies, where the unstructured region of the enzyme can be one more option for binding compounds with inhibitory activity.
Collapse
Affiliation(s)
- Andrea Coronell-Tovar
- Departamento de Bioquímica, Facultad de Medicina, Laboratorio de Biosensores y Modelaje molecular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Francisco Cortés-Benítez
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco (UAM-X), Ciudad de México, México
| | - Martin González-Andrade
- Departamento de Bioquímica, Facultad de Medicina, Laboratorio de Biosensores y Modelaje molecular, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
2
|
Dong ZB, Gong Z, Dou Q, Cheng B, Wang T. A decade update on the application of β-oxodithioesters in heterocyclic synthesis. Org Biomol Chem 2023; 21:6806-6829. [PMID: 37555699 DOI: 10.1039/d3ob00601h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The diverse synthesis of heterocyclic compounds has always been one of the popular subjects of organic chemistry. To this end, great efforts have been devoted to developing new reagents and establishing new strategies and methods concerning efficiency, selectivity and sustainability. β-Oxodithioesters and their enol tautomers (i.e., α-enolic dithioesters), as a class of simple and readily accessible sulfur-containing synthons, have been widely applied in the construction of various five- and six-membered heterocycles (e.g., thiophenes, thiopyrans, thiazoles, pyridines and quinolines) and other useful open-chain frameworks. Due to their unique chemical structures, β-oxodithioesters bear multiple reaction sites, which enable them to participate in two-component or multicomponent reactions to construct various heterocyclic compounds. In the past decade, the application of β-oxodithioesters in the synthesis of heterocycles has made remarkable progress. Herein, an update on the recent advances in the application of β-oxodithioesters in the synthesis of heterocycles during the period from 2013 to 2023/06 is provided. According to the different types of rings concerning heteroatoms in products, this review is divided into five sections under discussion including (i) synthesis of sulfur-containing heterocycles, (ii) synthesis of sulfur and nitrogen-containing heterocycles, (iii) synthesis of nitrogen-containing heterocycles, (iv) synthesis of nitrogen and oxygen-containing heterocycles, and (v) modification to other open-chain frameworks.
Collapse
Affiliation(s)
- Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Zhiying Gong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Qian Dou
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Bin Cheng
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Taimin Wang
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China.
| |
Collapse
|
3
|
Recent Updates on Development of Protein-Tyrosine Phosphatase 1B Inhibitors for Treatment of Diabetes, Obesity and Related Disorders. Bioorg Chem 2022; 121:105626. [DOI: 10.1016/j.bioorg.2022.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 01/30/2023]
|
4
|
Hopkins MD, Ozmer GL, Witt RC, Brandeburg ZC, Rogers DA, Keating CE, Petcoff PL, Sheaff RJ, Lamar AA. PhI(OAc) 2 and iodine-mediated synthesis of N-alkyl sulfonamides derived from polycyclic aromatic hydrocarbon scaffolds and determination of their antibacterial and cytotoxic activities. Org Biomol Chem 2021; 19:1133-1144. [PMID: 33443507 DOI: 10.1039/d0ob02429e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of new approaches toward chemo- and regioselective functionalization of polycyclic aromatic hydrocarbon (PAH) scaffolds will provide opportunities for the synthesis of novel biologically active small molecules that exploit the high degree of lipophilicity imparted by the PAH unit. Herein, we report a new synthetic method for C-X bond substitution that is speculated to operate via a N-centered radical (NCR) mechanism according to experimental observations. A series of PAH sulfonamides have been synthesized and their biological activity has been evaluated against Gram-negative and Gram-positive bacterial strains (using a BacTiter-Glo assay) along with a series of mammalian cell lines (using CellTiter-Blue and CellTiter-Glo assays). The viability assays have resulted in the discovery of a number of bactericidal compounds that exhibit potency similar to other well-known antibacterials such as kanamycin and tetracycline, along with the discovery of a luciferase inhibitor. Additionally, the physicochemical and drug-likeness properties of the compounds were determined experimentally and using in silico approaches and the results are presented and discussed within.
Collapse
Affiliation(s)
- Megan D Hopkins
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, Oklahoma 74104, USA.
| | - Garett L Ozmer
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, Oklahoma 74104, USA.
| | - Ryan C Witt
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, Oklahoma 74104, USA.
| | - Zachary C Brandeburg
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, Oklahoma 74104, USA.
| | - David A Rogers
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, Oklahoma 74104, USA.
| | - Claire E Keating
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, Oklahoma 74104, USA.
| | - Presley L Petcoff
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, Oklahoma 74104, USA.
| | - Robert J Sheaff
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, Oklahoma 74104, USA.
| | - Angus A Lamar
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, Oklahoma 74104, USA.
| |
Collapse
|
5
|
Shevchuk M, Wang Q, Pajkert R, Xu J, Mei H, Röschenthaler G, Han J. Recent Advances in Synthesis of Difluoromethylene Phosphonates for Biological Applications. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001464] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Michael Shevchuk
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Qian Wang
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Romana Pajkert
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Jingcheng Xu
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Haibo Mei
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Gerd‐Volker Röschenthaler
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Jianlin Han
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| |
Collapse
|
6
|
Pajkert R, Koroniak H, Kafarski P, Röschenthaler GV. Hypervalent-iodine mediated one-pot synthesis of isoxazolines and isoxazoles bearing a difluoromethyl phosphonate moiety. Org Biomol Chem 2021; 19:4871-4876. [PMID: 34002761 DOI: 10.1039/d1ob00685a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A one-pot, regioselective 1,3-dipolar cycloaddition of in situ generated (diethoxyphosphoryl)difluoromethyl nitrile oxide toward selected alkenes and alkynes is reported. This protocol enables facile access to 3,5-disubstituted isoxazolines and isoxazoles bearing a CF2P(O)(OEt)2 moiety in good to excellent yields, under mild reaction conditions.
Collapse
Affiliation(s)
- Romana Pajkert
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, P.O. Box 750 561, D-28759 Bremen, Germany.
| | - Henryk Koroniak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Paweł Kafarski
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Gerd-Volker Röschenthaler
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, P.O. Box 750 561, D-28759 Bremen, Germany.
| |
Collapse
|
7
|
Recent advance on PTP1B inhibitors and their biomedical applications. Eur J Med Chem 2020; 199:112376. [DOI: 10.1016/j.ejmech.2020.112376] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
|
8
|
Abstract
Tyrosine phosphorylation is a critical component of signal transduction for multicellular organisms, particularly for pathways that regulate cell proliferation and differentiation. While tyrosine kinase inhibitors have become FDA-approved drugs, inhibitors of the other important components of these signaling pathways have been harder to develop. Specifically, direct phosphotyrosine (pTyr) isosteres have been aggressively pursued as inhibitors of Src homology 2 (SH2) domains and protein tyrosine phosphatases (PTPs). Medicinal chemists have produced many classes of peptide and small molecule inhibitors that mimic pTyr. However, balancing affinity with selectivity and cell penetration has made this an extremely difficult space for developing successful clinical candidates. This review will provide a comprehensive picture of the field of pTyr isosteres, from early beginnings to the current state and trajectory. We will also highlight the major protein targets of these medicinal chemistry efforts, the major classes of peptide and small molecule inhibitors that have been developed, and the handful of compounds which have been tested in clinical trials.
Collapse
Affiliation(s)
- Robert A Cerulli
- Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111, USA
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA.
| |
Collapse
|
9
|
Hopkins MD, Abebe FA, Scott KA, Ozmer GL, Sheir AA, Schroeder LJ, Sheaff RJ, Lamar AA. Synthesis and identification of heteroaromatic N-benzyl sulfonamides as potential anticancer agents. Org Biomol Chem 2019; 17:8391-8402. [PMID: 31469373 DOI: 10.1039/c9ob01694e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sulfonamides are a crucial class of bioisosteres that are prevalent in a wide range of pharmaceuticals, however, the available methods for their production directly from heteroaryl aldehyde reagents remains surprisingly limited. A new approach for regioselective incorporation of a sulfonamide unit to heteroarene scaffolds has been developed and is reported within. As a result, a variety of primary benzylic N-alkylsulfonamides have been prepared via a two-step (one pot) formation from the in situ reduction of an intermediate N-sulfonyl imine under mild, practical conditions. The compounds have been screened against a variety of cell lines for cytotoxicity effects using a Cell Titer Blue assay. The cell viability investigation identifies a subset of N-benzylic sulfonamides derived from the indole scaffold to be targeted for further development into novel molecules with potential therapeutic value. The most cytotoxic of the compounds prepared, AAL-030, exhibited higher potency than other well-known anticancer agents Indisulam and ABT-751.
Collapse
Affiliation(s)
- Megan D Hopkins
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, Oklahoma 74104, USA.
| | - Felagot A Abebe
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, Oklahoma 74104, USA.
| | - Kristina A Scott
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, Oklahoma 74104, USA.
| | - Garett L Ozmer
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, Oklahoma 74104, USA.
| | - Alec A Sheir
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, Oklahoma 74104, USA.
| | - Lucas J Schroeder
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, Oklahoma 74104, USA.
| | - Robert J Sheaff
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, Oklahoma 74104, USA.
| | - Angus A Lamar
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, Oklahoma 74104, USA.
| |
Collapse
|
10
|
Eleftheriou P, Geronikaki A, Petrou A. PTP1b Inhibition, A Promising Approach for the Treatment of Diabetes Type II. Curr Top Med Chem 2019; 19:246-263. [PMID: 30714526 DOI: 10.2174/1568026619666190201152153] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Diabetes Mellitus (DM), is a metabolic disorder characterized by high blood glucose levels. The main types of diabetes mellitus are Diabetes mellitus type I, Diabetes mellitus type II, gestational diabetes and Diabetes of other etiology. Diabetes type II, the Non Insulin Dependent Type (NIDDM) is the most common type, characterized by the impairment in activation of the intracellular mechanism leading to the insertion and usage of glucose after interaction of insulin with its receptor, known as insulin resistance. Although, a number of drugs have been developed for the treatment of diabetes type II, their ability to reduce blood glucose levels is limited, while several side effects are also observed. Furthermore, none of the market drugs targets the enhancement of the action of the intracellular part of insulin receptor or recuperation of the glucose transport mechanism in GLUT4 dependent cells. The Protein Tyrosine Phosphatase (PTP1b) is the main enzyme involved in insulin receptor desensitization and has become a drug target for the treatment of Diabetes type II. Several PTP1b inhibitors have already been found, interacting with the binding site of the enzyme, surrounding the catalytic amino acid Cys215 and the neighboring area or with the allosteric site of the enzyme, placed at a distance of 20 Å from the active site, around Phe280. However, the research continues for finding more potent inhibitors with increased cell permeability and specificity. OBJECTIVE The aim of this review is to show the attempts made in developing of Protein Tyrosine Phosphatase (PTP1b) inhibitors with high potency, selectivity and bioavailability and to sum up the indications for favorable structural characteristics of effective PTP1b inhibitors. METHODS The methods used include a literature survey and the use of Protein Structure Databanks such as PuBMed Structure and RCSB and the tools they provide. CONCLUSION The research for finding PTP1b inhibitors started with the design of molecules mimicking the Tyrosine substrate of the enzyme. The study revealed that an aromatic ring connected to a polar group, which preferably enables hydrogen bond formation, is the minimum requirement for small inhibitors binding to the active site surrounding Cys215. Molecules bearing two hydrogen bond donor/acceptor (Hb d/a) groups at a distance of 8.5-11.5 Å may form more stable complexes, interacting simultaneously with a secondary area A2. Longer molecules with two Hb d/a groups at a distance of 17 Å or 19 Å may enable additional interactions with secondary sites (B and C) that confer stability as well as specificity. An aromatic ring linked to polar or Hb d/a moieties is also required for allosteric inhibitors. A lower distance between Hb d/a moieties, around 7.5 Å may favor allosteric interaction. Permanent inhibition of the enzyme by oxidation of the catalytic Cys215 has also been referred. Moreover, covalent modification of Cys121, placed near but not inside the catalytic pocket has been associated with permanent inhibition of the enzyme.
Collapse
Affiliation(s)
- Phaedra Eleftheriou
- Department of Medical Laboratory Studies, School of Health and Medical Care, Alexander Technological Educational Institute of Thessaloniki, Thessaloniki 57400, Greece
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
11
|
The development of protein tyrosine phosphatase1B inhibitors defined by binding sites in crystalline complexes. Future Med Chem 2019; 10:2345-2367. [PMID: 30273014 DOI: 10.4155/fmc-2018-0089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Protein tyrosine phosphatase1B (PTP1B), a significant negative regulator in insulin and leptin signaling pathways, has emerged as a promising drug target for Type II diabetes mellitus and obesity. Numerous potent PTP1B inhibitors have been discovered within both academia and pharmaceutical industry. However, nearly all medicinal chemistry efforts have been severely hindered because a vast majority of them demonstrate poor membrane permeability and low-selectivity, especially over T-cell protein tyrosine phosphatase (TCPTP). To search the rules about the selectivity over TCPTP and membrane permeability of PTP1B inhibitors, based on the PTP1B/inhibitor crystal complexes, the development PTP1B inhibitors defined as AB, AC, ABC and ADC types have been concluded in the review.
Collapse
|
12
|
Gimeno A, Ardid-Ruiz A, Ojeda-Montes MJ, Tomás-Hernández S, Cereto-Massagué A, Beltrán-Debón R, Mulero M, Valls C, Aragonès G, Suárez M, Pujadas G, Garcia-Vallvé S. Combined Ligand- and Receptor-Based Virtual Screening Methodology to Identify Structurally Diverse Protein Tyrosine Phosphatase 1B Inhibitors. ChemMedChem 2018; 13:1939-1948. [DOI: 10.1002/cmdc.201800267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/05/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Aleix Gimeno
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Campus de Sescelades 43007 Tarragona Catalonia Spain
| | - Andrea Ardid-Ruiz
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology; Universitat Rovira i Virgili; Campus de Sescelades 43007 Tarragona Catalonia Spain
| | - María José Ojeda-Montes
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Campus de Sescelades 43007 Tarragona Catalonia Spain
| | - Sarah Tomás-Hernández
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Campus de Sescelades 43007 Tarragona Catalonia Spain
| | - Adrià Cereto-Massagué
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Campus de Sescelades 43007 Tarragona Catalonia Spain
| | - Raúl Beltrán-Debón
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Campus de Sescelades 43007 Tarragona Catalonia Spain
| | - Miquel Mulero
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Campus de Sescelades 43007 Tarragona Catalonia Spain
| | - Cristina Valls
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Campus de Sescelades 43007 Tarragona Catalonia Spain
| | - Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology; Universitat Rovira i Virgili; Campus de Sescelades 43007 Tarragona Catalonia Spain
| | - Manuel Suárez
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology; Universitat Rovira i Virgili; Campus de Sescelades 43007 Tarragona Catalonia Spain
| | - Gerard Pujadas
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Campus de Sescelades 43007 Tarragona Catalonia Spain
- EURECAT, TECNIO, CEICS; Avinguda Universitat 1 43204 Reus Catalonia Spain
| | - Santiago Garcia-Vallvé
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Campus de Sescelades 43007 Tarragona Catalonia Spain
- EURECAT, TECNIO, CEICS; Avinguda Universitat 1 43204 Reus Catalonia Spain
| |
Collapse
|
13
|
Tian C, Chang H, La X, Li JA. Wushenziye Formula Improves Skeletal Muscle Insulin Resistance in Type 2 Diabetes Mellitus via PTP1B-IRS1-Akt-GLUT4 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:4393529. [PMID: 29479370 PMCID: PMC5804399 DOI: 10.1155/2017/4393529] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/25/2017] [Accepted: 12/04/2017] [Indexed: 12/24/2022]
Abstract
Background. Wushenziye formula (WSZYF) is an effective traditional Chinese medicine in the treatment of type 2 diabetes mellitus (T2DM). Aim. This study aimed to identify the effects and underlying mechanisms of WSZYF on improving skeletal muscle insulin resistance in T2DM. Methods. An animal model of T2DM was induced by Goto-Kakizaki diabetes prone rats fed with high fat and sugar for 4 weeks. Insulin resistance model was induced in skeletal muscle cell. Results. In vivo, WSZYF improved general conditions and decreased significantly fasting blood glucose, glycosylated serum protein, glycosylated hemoglobin, insulin concentration, and insulin resistance index of T2DM rats. In vitro, WSZYF enhanced glucose consumption in insulin resistance model of skeletal muscle cell. Furthermore, WSZYF affected the expressions of molecules in regulating T2DM, including increasing the expressions of p-IRS1, p-Akt, and GLUT4, reducing PTP1B expression. Conclusion. These findings displayed the potential of WSZYF as a new drug candidate in the treatment of T2DM and the antidiabetic mechanism of WSZYF is probably mediated through modulating the PTP1B-IRS1-Akt-GLUT4 signaling pathway.
Collapse
Affiliation(s)
- Chunyu Tian
- North China University of Science and Technology, Tangshan 063210, China
- Pharmacology Analysis Key Laboratory for Prevention and Treatment of Diabetes of Traditional Chinese Medicine in Hebei Province, Tangshan 063210, China
| | - Hong Chang
- North China University of Science and Technology, Tangshan 063210, China
- Pharmacology Analysis Key Laboratory for Prevention and Treatment of Diabetes of Traditional Chinese Medicine in Hebei Province, Tangshan 063210, China
| | - Xiaojin La
- North China University of Science and Technology, Tangshan 063210, China
- Pharmacology Analysis Key Laboratory for Prevention and Treatment of Diabetes of Traditional Chinese Medicine in Hebei Province, Tangshan 063210, China
| | - Ji-an Li
- North China University of Science and Technology, Tangshan 063210, China
- Pharmacology Analysis Key Laboratory for Prevention and Treatment of Diabetes of Traditional Chinese Medicine in Hebei Province, Tangshan 063210, China
| |
Collapse
|
14
|
Feng YJ, Chen YH, Huang SL, Liu YH, Lin YC. Cyclization Reactions of Aryl Propargyl Acetates with Tethered Epoxide Induced by Ruthenium Complex. Chem Asian J 2017; 12:3027-3038. [PMID: 28980768 DOI: 10.1002/asia.201701070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/14/2017] [Indexed: 01/05/2023]
Abstract
Reactions of the ruthenium complex [Ru]Cl ([Ru]=Cp(PPh3 )2 Ru; Cp=η5 -C5 H5 ) with several aryl propargyl acetates, each with an ortho-substituted chain of various length containing an epoxide on the aromatic ring and with or without methyl substitutents on the epoxide ring, bring about novel cyclizations. The cyclization reactions of HC≡CCH(OAc)(C6 H4 )CH2 (RC2 H2 O) (R=H, 6 a; R=CH3 , 6 b, where RC2 H2 O is an epoxide ring) in MeOH give the vinylidene complexes 5 a-b, respectively, each with the Cβ integrated into a tetrahydro-5H-benzo[7]annulen-6-ol ring. A C-C bond formation takes place between the propargyl acetate and the less substituted carbon of the epoxide ring. Further cyclizations of 5 a-b induced by HBF4 give the corresponding vinylidene complexes 8 a-b each with a new 8-oxabicyclo-[3.2.1]octane ring by removal of a methanol molecule in high yield. For similar aryl propargyl acetates with a shorter epoxide chain, the cyclization gives a mixture of a vinylidene complex with a tetrahydronaphthalen-1-ol ring and a carbene complex with a tricyclic indeno-furan ring. For the cyclization of 18, with a longer epoxide chain, opening of the epoxide is required to afford the vicinal bromohydrin 22, then tandem cyclization occurs in one pot. Products are characterized by spectroscopic methods as well as by XRD analysis.
Collapse
Affiliation(s)
- Yi-Jhen Feng
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan), Fax: (+886) 223636359
| | - Yi-Hsin Chen
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan), Fax: (+886) 223636359
| | - Shou-Ling Huang
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan), Fax: (+886) 223636359
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan), Fax: (+886) 223636359
| | - Ying-Chih Lin
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan), Fax: (+886) 223636359
| |
Collapse
|
15
|
PTP1B inhibitors from the seeds of Iris sanguinea and their insulin mimetic activities via AMPK and ACC phosphorylation. Bioorg Med Chem Lett 2017; 27:5076-5081. [DOI: 10.1016/j.bmcl.2017.09.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/03/2017] [Accepted: 09/13/2017] [Indexed: 02/08/2023]
|
16
|
Gulipalli KC, Bodige S, Ravula P, Endoori S, Vanaja GR, Suresh Babu G, Narendra Sharath Chandra JN, Seelam N. Design, synthesis, in silico and in vitro evaluation of thiophene derivatives: A potent tyrosine phosphatase 1B inhibitor and anticancer activity. Bioorg Med Chem Lett 2017; 27:3558-3564. [PMID: 28579122 DOI: 10.1016/j.bmcl.2017.05.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/06/2017] [Accepted: 05/16/2017] [Indexed: 11/24/2022]
Abstract
A series of novel methyl 4-(4-amidoaryl)-3-methoxythiophene-2-carboxylate derivatives were designed against the active site of protein tyrosine phosphatise 1B (PTP1B) enzyme using MOE.2008.10. These molecules are also subjected for in silico toxicity prediction studies and considering their corresponding drug scores, it implied that, the molecules are promising as anticancer agents. The designed compounds were synthesized by using suitable methods and characterized. They were subjected to inhibitory activity against PTP1B and in vitro anticancer activity by MTT assay. Most of the tested compounds showed potent inhibitory activity against PTP1B, among the compounds tested, compound 5b exhibited the highest activity (IC50=5.25µM) and remarkable cytotoxic activity at 0.09µM of IC50 against the MCF-7 cell line. In addition to this, compound 5c also showed potential anticancer activity at 2.22µM of IC50 against MCF-7 and 0.72µM against HepG2 cell lines as well as PTP1B inhibitory activity at IC50 of 6.37µM.
Collapse
Affiliation(s)
- Kali Charan Gulipalli
- Department of Chemistry, K L University, Green Fields, Vaddeswaram, Guntur 522502, India
| | - Srinu Bodige
- Department of Chemistry, K L University, Green Fields, Vaddeswaram, Guntur 522502, India
| | - Parameshwar Ravula
- Department of Pharmaceutical Chemistry, Gurunanak Institutions Technical Campus, School of Pharmacy, Hyderabad, India
| | - Srinivas Endoori
- Department of Chemistry, K L University, Green Fields, Vaddeswaram, Guntur 522502, India
| | - G R Vanaja
- Department of Animal Biology, University of Hyderabad, Hyderabad 500046, India
| | - G Suresh Babu
- Department of Animal Biology, University of Hyderabad, Hyderabad 500046, India
| | | | - Nareshvarma Seelam
- Department of Chemistry, K L University, Green Fields, Vaddeswaram, Guntur 522502, India.
| |
Collapse
|
17
|
Recent advances in the development of protein tyrosine phosphatase 1B inhibitors for Type 2 diabetes. Future Med Chem 2016; 8:1239-58. [PMID: 27357615 DOI: 10.4155/fmc-2016-0064] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is the most serious and prevalent metabolic disorders worldwide, complications of which can decrease significantly the quality of life and contribute to premature death. Resistance to insulin is a predominant pathophysiological factor of Type 2 diabetes (T2D). Protein tyrosine phosphatase 1B (PTP1B) is an important negative factor of insulin signal and a potent therapeutic target in T2D patients. This review highlights recent advances (2012-2015) in research related to the role of PTP1B in signal transduction processes implicated in pathophysiology of T2D, and novel PTP1B inhibitors with an emphasis on their chemical structures and modes of action.
Collapse
|
18
|
Aceves-Luquero C, Galiana-Roselló C, Ramis G, Villalonga-Planells R, García-España E, Fernández de Mattos S, Peláez R, Llinares JM, González-Rosende ME, Villalonga P. N-(2-methyl-indol-1H-5-yl)-1-naphthalenesulfonamide: A novel reversible antimitotic agent inhibiting cancer cell motility. Biochem Pharmacol 2016; 115:28-42. [PMID: 27349984 DOI: 10.1016/j.bcp.2016.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
Abstract
A series of compounds containing the sulfonamide scaffold were synthesized and screened for their in vitro anticancer activity against a representative panel of human cancer cell lines, leading to the identification of N-(2-methyl-1H-indol-5-yl)-1-naphthalenesulfonamide (8e) as a compound showing a remarkable activity across the panel, with IC50 values in the nanomolar-to-low micromolar range. Cell cycle distribution analysis revealed that 8e promoted a severe G2/M arrest, which was followed by cellular senescence as indicated by the detection of senescence-associated β-galactosidase (SA-β-gal) in 8e-treated cells. Prolonged 8e treatment also led to the onset of apoptosis, in correlation with the detection of increased Caspase 3/7 activities. Despite increasing γ-H2A.X levels, a well-established readout for DNA double-strand breaks, in vitro DNA binding studies with 8e did not support interaction with DNA. In agreement with this, 8e failed to activate the cellular DNA damage checkpoint. Importantly, tubulin staining showed that 8e promoted a severe disorganization of microtubules and mitotic spindle formation was not detected in 8e-treated cells. Accordingly, 8e inhibited tubulin polymerization in vitro in a dose-dependent manner and was also able to robustly inhibit cancer cell motility. Docking analysis revealed a compatible interaction with the colchicine-binding site of tubulin. Remarkably, these cellular effects were reversible since disruption of treatment resulted in the reorganization of microtubules, cell cycle re-entry and loss of senescent markers. Collectively, our data suggest that this compound may be a promising new anticancer agent capable of both reducing cancer cell growth and motility.
Collapse
Affiliation(s)
- Clara Aceves-Luquero
- Cancer Cell Biology Laboratory, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les llles Balears, Palma, Illes Balears, Spain; Institut d'Investigació Sanitària de Palma (IdISPa), Palma, Illes Balears, Spain
| | - Cristina Galiana-Roselló
- Departamento de Farmacia, Universidad CEU-Cardenal Herrera, Moncada, Valencia, Spain; Departamento de Química Orgánica, ICMoL, Universitat de València, Paterna, Spain
| | - Guillem Ramis
- Cancer Cell Biology Laboratory, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les llles Balears, Palma, Illes Balears, Spain; Institut d'Investigació Sanitària de Palma (IdISPa), Palma, Illes Balears, Spain
| | | | | | - Silvia Fernández de Mattos
- Cancer Cell Biology Laboratory, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les llles Balears, Palma, Illes Balears, Spain; Departament de Biologia Fonamental i Ciències de la Salut, Universitat de les llles Balears, Palma, Illes Balears, Spain; Institut d'Investigació Sanitària de Palma (IdISPa), Palma, Illes Balears, Spain
| | - Rafael Peláez
- Departamento de Química Farmacéutica, Universidad de Salamanca, Salamanca, Spain
| | - José M Llinares
- Departamento de Química Orgánica, ICMoL, Universitat de València, Paterna, Spain
| | | | - Priam Villalonga
- Cancer Cell Biology Laboratory, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les llles Balears, Palma, Illes Balears, Spain; Departament de Biologia Fonamental i Ciències de la Salut, Universitat de les llles Balears, Palma, Illes Balears, Spain; Institut d'Investigació Sanitària de Palma (IdISPa), Palma, Illes Balears, Spain.
| |
Collapse
|
19
|
The design strategy of selective PTP1B inhibitors over TCPTP. Bioorg Med Chem 2016; 24:3343-52. [PMID: 27353889 DOI: 10.1016/j.bmc.2016.06.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 02/01/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) has already been well studied as a highly validated therapeutic target for diabetes and obesity. However, the lack of selectivity limited further studies and clinical applications of PTP1B inhibitors, especially over T-cell protein tyrosine phosphatase (TCPTP). In this review, we enumerate the published specific inhibitors of PTP1B, discuss the structure-activity relationships by analysis of their X-ray structures or docking results, and summarize the characteristic of selectivity related residues and groups. Furthermore, the design strategy of selective PTP1B inhibitors over TCPTP is also proposed. We hope our work could provide an effective way to gain specific PTP1B inhibitors.
Collapse
|
20
|
Ma HW, Chen PM, Lo JX, Lin YC, Huang SL, Chen CR, Chia PY. Domino Cyclization of 1,n-Enynes (n = 7, 8, 9) Giving Derivatives of Pyrane, Chromene, Fluorene, Phenanthrene and Dibenzo[7]annulene by Ruthenium Complexes. J Org Chem 2016; 81:4494-505. [DOI: 10.1021/acs.joc.6b00260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hao-Wei Ma
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Pei-Min Chen
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Ji-Xian Lo
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Ying-Chih Lin
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Shou-Ling Huang
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Chi-Ren Chen
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Pi-Yeh Chia
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
21
|
Abstract
A powerful early approach to evaluating the druggability of proteins involved determining the hit rate in NMR-based screening of a library of small compounds. Here, we show that a computational analog of this method, based on mapping proteins using small molecules as probes, can reliably reproduce druggability results from NMR-based screening and can provide a more meaningful assessment in cases where the two approaches disagree. We apply the method to a large set of proteins. The results show that, because the method is based on the biophysics of binding rather than on empirical parametrization, meaningful information can be gained about classes of proteins and classes of compounds beyond those resembling validated targets and conventionally druglike ligands. In particular, the method identifies targets that, while not druggable by druglike compounds, may become druggable using compound classes such as macrocycles or other large molecules beyond the rule-of-five limit.
Collapse
Affiliation(s)
- Dima Kozakov
- Department of Applied Mathematics & Statistics, Stony Brook University , Stony Brook, New York 11794, United States
| | - David R Hall
- Acpharis Inc. , Holliston, Massachusetts 01746, United States
| | | | | | | | | |
Collapse
|
22
|
Wagner S, Schütz A, Rademann J. Light-switched inhibitors of protein tyrosine phosphatase PTP1B based on phosphonocarbonyl phenylalanine as photoactive phosphotyrosine mimetic. Bioorg Med Chem 2015; 23:2839-47. [PMID: 25907367 DOI: 10.1016/j.bmc.2015.03.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 11/24/2022]
Abstract
Phosphopeptide mimetics containing the 4-phosphonocarbonyl phenylalanine (pcF) as a photo-active phosphotyrosine isoster are developed as potent, light-switchable inhibitors of the protein tyrosine phosphatase PTP1B. The photo-active inhibitors 6-10 are derived from phosphopeptide substrates and are prepared from the suitably protected pcF building block 12 by Fmoc-based solid phase peptide synthesis. All pcF-containing peptides are moderate inhibitors of PTP1B with KI values between 10 and 50μM. Irradiation of the inhibitors at 365nm in the presence of the protein PTP1B amplify the inhibitory activity of pcF-peptides up to 120-fold, switching the KI values of the best inhibitors to the sub-micromolar range. Photo-activation of the inhibitors results in the formation of triplet intermediates of the benzoylphosphonate moiety, which deactivate PTP1B following an oxidative radical mechanism. Deactivation of PTP1B proceeds without covalent crosslinking of the protein target with the photo-switched inhibitors and can be reverted by subsequent addition of reducing agent dithiothreitol (DTT).
Collapse
Affiliation(s)
- Stefan Wagner
- Freie Universität Berlin, Institute of Pharmacy, Medicinal Chemistry, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Anja Schütz
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Jörg Rademann
- Freie Universität Berlin, Institute of Pharmacy, Medicinal Chemistry, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| |
Collapse
|
23
|
Fullerene derivatives as a new class of inhibitors of protein tyrosine phosphatases. Bioorg Med Chem Lett 2014; 24:3175-9. [DOI: 10.1016/j.bmcl.2014.04.110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/25/2014] [Accepted: 04/27/2014] [Indexed: 11/18/2022]
|
24
|
Liu M, Wang L, Sun X, Zhao X. Investigating the impact of Asp181 point mutations on interactions between PTP1B and phosphotyrosine substrate. Sci Rep 2014; 4:5095. [PMID: 24865376 PMCID: PMC4035576 DOI: 10.1038/srep05095] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/07/2014] [Indexed: 01/27/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin and leptin signaling, which suggests that it is an attractive therapeutic target in type II diabetes and obesity. The aim of this research is to explore residues which interact with phosphotyrosine substrate can be affected by D181 point mutations and lead to increased substrate binding. To achieve this goal, molecular dynamics simulations were performed on wild type (WT) and two mutated PTP1B/substrate complexes. The cross-correlation and principal component analyses show that point mutations can affect the motions of some residues in the active site of PTP1B. Moreover, the hydrogen bond and energy decomposition analyses indicate that apart from residue 181, point mutations have influence on the interactions of substrate with several residues in the active site of PTP1B.
Collapse
Affiliation(s)
- Mengyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Xun Sun
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xian Zhao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
25
|
Ma Y, Jin YY, Wang YL, Wang RL, Lu XH, Kong DX, Xu WR. The Discovery of a Novel and Selective Inhibitor of PTP1B Over TCPTP: 3D QSAR Pharmacophore Modeling, Virtual Screening, Synthesis, and Biological Evaluation. Chem Biol Drug Des 2014; 83:697-709. [DOI: 10.1111/cbdd.12283] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics); School of Pharmacy; Tianjin Medical University; Tianjin 300070 China
| | - Yuan-Yuan Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics); School of Pharmacy; Tianjin Medical University; Tianjin 300070 China
| | - Ye-Liu Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics); School of Pharmacy; Tianjin Medical University; Tianjin 300070 China
| | - Run-Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics); School of Pharmacy; Tianjin Medical University; Tianjin 300070 China
| | - Xin-Hua Lu
- New Drug Research and Development Center; North China Pharmaceutical Group Corporation; 388 Heping East Road Shijiazhuang Hebei 050015 China
| | - De-Xin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics; School of Pharmaceutical Sciences and Research Center of Basic Medical Sciences; Tianjin Medical University; Tianjin 300070 China
| | - Wei-Ren Xu
- Tianjin Institute of Pharmaceutical Research (TIPR); Tianjin 300193 China
| |
Collapse
|
26
|
Abstract
SIGNIFICANCE Protein tyrosine phosphatases (PTPs) are important enzymes that are involved in the regulation of cellular signaling. Evidence accumulated over the years has indicated that PTPs present exciting opportunities for drug discovery against diseases such as diabetes, cancer, autoimmune diseases, and tuberculosis. However, the highly conserved and partially positive charge of the catalytic sites of PTPs is a major challenge in the development of potent and highly selective PTP inhibitors. RECENT ADVANCES Here, we examine the strategy of developing bidentate inhibitors for selective inhibition of PTPs. Bidentate inhibitors are small-molecular-weight compounds with the ability to bind to both the active site and a non-conserved secondary phosphate binding site. This secondary phosphate binding site was initially discovered in protein tyrosine phosphatase 1B (PTP1B), and, hence, most of the bidentate inhibitors reported in this review are PTP1B inhibitors. CRITICAL ISSUES Although bidentate inhibition is a good strategy for developing potent and selective inhibitors, the cell membrane permeability and pharmacokinetic properties of the inhibitors are also important for successful drug development. In this review, we will also summarize the various efforts made toward the development of phosphotyrosine (pTyr) mimetics for increasing cellular permeability. FUTURE DIRECTIONS Even though the secondary phosphate binding site was initially found in PTP1B, structural data have shown that a secondary binding site can also be found in other PTPs, albeit with varying degrees of accessibility. Along with improvements in pTyr mimetics, we believe that the future will see an increase in the number of orally bioavailable bidentate inhibitors against the various classes of PTPs.
Collapse
Affiliation(s)
- Joo-Leng Low
- 1 Institute of Chemical and Engineering Sciences , Agency for Science Technology and Research, Singapore, Singapore
| | | | | |
Collapse
|
27
|
Santiago JA, Potashkin JA. System-based approaches to decode the molecular links in Parkinson's disease and diabetes. Neurobiol Dis 2014; 72 Pt A:84-91. [PMID: 24718034 DOI: 10.1016/j.nbd.2014.03.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/24/2014] [Accepted: 03/28/2014] [Indexed: 12/17/2022] Open
Abstract
A growing body of evidence indicates an increased risk for developing Parkinson's disease (PD) among people with type 2 diabetes (T2DM). The relationship between the etiology and development of both chronic diseases is beginning to be uncovered and recent studies show that PD and T2DM share remarkably similar dysregulated pathways. It has been proposed that a cascade of events including mitochondrial dysfunction, impaired insulin signaling, and metabolic inflammation trigger neurodegeneration in T2DM models. Network-based approaches have elucidated a potential molecular framework linking both diseases. Further, transcriptional signatures that modulate the neurodegenerative phenotype in T2DM have been identified. Here we contextualize the current experimental approaches to dissect the mechanisms underlying the association between PD and T2DM and discuss the existing challenges toward the understanding of the coexistence of these devastating aging diseases.
Collapse
Affiliation(s)
- Jose A Santiago
- The Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Judith A Potashkin
- The Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
28
|
Nagaraju A, Ramulu BJ, Shukla G, Srivastava A, Verma GK, Raghuvanshi K, Singh MS. A facile and straightforward synthesis of 1,2,3-thiadiazoles from α-enolicdithioesters via nitrosation/reduction/diazotization/cyclization cascade in one-pot. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.02.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the leptin and insulin signaling pathways. The important roles of PTP1B related to obesity and diabetes were confirmed by a deletion of PTP1B gene in mice. Mice with the whole body deletion of PTP1B were protected against the development of obesity and diabetes. When PTP1B gene was deleted selectively in the brain of mice, the major effects on weight and glucose control were consistent with the whole body deletion of PTP1B. This is in contrast to the muscle-, liver-, and adipocyte-specific deletion, which had no beneficial effects on obesity. While these results indicate the importance of neuronal PTP1B in maintaining energy homeostasis, the peripheral PTP1B is also being investigated for their potential roles in the control of energy balance. Validation of PTP1B as a therapeutic target for obesity and diabetes prompted efforts to develop potent and selective inhibitors of PTP1B. Among the small molecule inhibitors investigated, trodusquemine, which acts both centrally and peripherally, is currently in phase 2 clinical trials. An approach using PTP1B-directed antisense oligonucleotides is also in phase 2 clinical trials.
Collapse
Affiliation(s)
- Hyeongjin Cho
- Department of Chemistry, Inha University, Incheon, Korea.
| |
Collapse
|
30
|
Design, synthesis and molecular modelling studies of novel 3-acetamido-4-methyl benzoic acid derivatives as inhibitors of protein tyrosine phosphatase 1B. Eur J Med Chem 2013; 70:469-76. [DOI: 10.1016/j.ejmech.2013.10.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 10/09/2013] [Accepted: 10/11/2013] [Indexed: 11/20/2022]
|
31
|
Feng YJ, Lo JX, Lin YC, Huang SL, Wang Y, Liu YH. Tandem Cyclization of Enynes Containing a Thioether or Ether Linkage via Ruthenium Allenylidene and Vinylidene Complexes. Organometallics 2013. [DOI: 10.1021/om400742x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yi-Jhen Feng
- Department
of Chemistry, National Taiwan University, Taipei, Taiwan 106, Republic of China
| | - Ji-Xian Lo
- Department
of Chemistry, National Taiwan University, Taipei, Taiwan 106, Republic of China
| | - Ying-Chih Lin
- Department
of Chemistry, National Taiwan University, Taipei, Taiwan 106, Republic of China
| | - Shou-Ling Huang
- Department
of Chemistry, National Taiwan University, Taipei, Taiwan 106, Republic of China
| | - Yu Wang
- Department
of Chemistry, National Taiwan University, Taipei, Taiwan 106, Republic of China
| | - Yi-Hung Liu
- Department
of Chemistry, National Taiwan University, Taipei, Taiwan 106, Republic of China
| |
Collapse
|
32
|
Trush VV, Cherenok SO, Tanchuk VY, Kukhar VP, Kalchenko VI, Vovk AI. Calix[4]arene methylenebisphosphonic acids as inhibitors of protein tyrosine phosphatase 1B. Bioorg Med Chem Lett 2013; 23:5619-23. [DOI: 10.1016/j.bmcl.2013.08.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 11/24/2022]
|
33
|
Safavi M, Foroumadi A, Abdollahi M. The importance of synthetic drugs for type 2 diabetes drug discovery. Expert Opin Drug Discov 2013; 8:1339-63. [DOI: 10.1517/17460441.2013.837883] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Nunes-Xavier CE, Martín-Pérez J, Elson A, Pulido R. Protein tyrosine phosphatases as novel targets in breast cancer therapy. Biochim Biophys Acta Rev Cancer 2013; 1836:211-26. [PMID: 23756181 DOI: 10.1016/j.bbcan.2013.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/01/2013] [Indexed: 02/07/2023]
Abstract
Breast cancer is linked to hyperactivation of protein tyrosine kinases (PTKs), and recent studies have unveiled that selective tyrosine dephosphorylation by protein tyrosine phosphatases (PTPs) of specific substrates, including PTKs, may activate or inactivate oncogenic pathways in human breast cancer cell growth-related processes. Here, we review the current knowledge on the involvement of PTPs in breast cancer, as major regulators of breast cancer therapy-targeted PTKs, such as HER1/EGFR, HER2/Neu, and Src. The functional interplay between PTKs and PTK-activating or -inactivating PTPs, and its implications in novel breast cancer therapies based on targeting of specific PTPs, are discussed.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- BioCruces Health Research Institute, Hospital de Cruces, Plaza Cruces s/n, 48903 Barakaldo, Spain
| | | | | | | |
Collapse
|
35
|
Pajkert R, Röschenthaler GV. Synthesis of (α,α-Difluoropropargyl)phosphonates via Aldehyde-to-Alkyne Homologation. J Org Chem 2013; 78:3697-708. [DOI: 10.1021/jo400198a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Romana Pajkert
- School of Engineering
and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | |
Collapse
|
36
|
Shi D, Guo S, Jiang B, Guo C, Wang T, Zhang L, Li J. HPN, a synthetic analogue of bromophenol from red alga Rhodomela confervoides: synthesis and anti-diabetic effects in C57BL/KsJ-db/db mice. Mar Drugs 2013; 11:350-62. [PMID: 23364683 PMCID: PMC3640384 DOI: 10.3390/md11020350] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/16/2013] [Accepted: 01/21/2013] [Indexed: 01/12/2023] Open
Abstract
3,4-dibromo-5-(2-bromo-3,4-dihydroxy-6-(isopropoxymethyl)benzyl)benzene-1,2-diol (HPN) is a synthetic analogue of 3,4-dibromo-5-(2-bromo-3,4-dihydroxy-6-(ethoxymethyl)benzyl)benzene-1,2-diol (BPN), which is isolated from marine red alga Rhodomela confervoides with potent protein tyrosine phosphatase 1B (PTP1B) inhibition (IC50 = 0.84 μmol/L). The in vitro assay showed that HPN exhibited enhanced inhibitory activity against PTP1B with IC50 0.63 μmol/L and high selectivity against other PTPs (T cell protein tyrosine phosphatase (TCPTP), leucocyte antigen-related tyrosine phosphatase (LAR), Src homology 2-containing protein tyrosine phosphatase-1 (SHP-1) and SHP-2). The results of antihyperglycemic activity using db/db mouse model demonstrated that HPN significantly decreased plasma glucose (P < 0.01) after eight weeks treatment period. HPN lowered serum triglycerides and total cholesterol concentration in a dose-dependent manner. Besides, both of the high and medium dose groups of HPN remarkably decreased HbA1c levels (P < 0.05). HPN in the high dose group markedly lowered the insulin level compared to the model group (P < 0.05), whereas the effects were less potent than the positive drug rosiglitazone. Western blotting results showed that HPN decreased PTP1B levels in pancreatic tissue. Last but not least, the results of an intraperitoneal glucose tolerance test in Sprague–Dawley rats indicate that HPN have a similar antihyperglycemic activity as rosiglitazone. HPN therefore have potential for development as treatments for Type 2 diabetes.
Collapse
Affiliation(s)
- Dayong Shi
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; E-Mails: (S.G.); (B.J.); (C.G.)
- Nantong Branch, Institute of Oceanology, Chinese Academy of Sciences, Nantong 226006, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-0532-8289-8719; Fax: +86-0532-8289-8641
| | - Shuju Guo
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; E-Mails: (S.G.); (B.J.); (C.G.)
- Nantong Branch, Institute of Oceanology, Chinese Academy of Sciences, Nantong 226006, China
| | - Bo Jiang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; E-Mails: (S.G.); (B.J.); (C.G.)
- Nantong Branch, Institute of Oceanology, Chinese Academy of Sciences, Nantong 226006, China
| | - Chao Guo
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; E-Mails: (S.G.); (B.J.); (C.G.)
- Nantong Branch, Institute of Oceanology, Chinese Academy of Sciences, Nantong 226006, China
| | - Tao Wang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China; E-Mails: (T.W.); (L.Z.)
| | - Luyong Zhang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China; E-Mails: (T.W.); (L.Z.)
| | - Jingya Li
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China; E-Mail:
| |
Collapse
|
37
|
Gupta S, Varshney K, Srivastava R, Rahuja N, Rawat AK, Srivastava AK, Saxena AK. Identification of novel urea derivatives as PTP1B inhibitors: synthesis, biological evaluation and structure–activity relationships. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00138e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
38
|
Shah SR, Navathe SS, Dikundwar AG, Guru Row TN, Vasella AT. Thermal Rearrangement of Azido Ketones into Oxazoles via Azirines: One-Pot, Metal-Free Heteroannulation to Functionalized 1,3-Oxazoles. European J Org Chem 2012. [DOI: 10.1002/ejoc.201201269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Varshney K, Gupta S, Rahuja N, Rawat AK, Singh N, Tamarkar AK, Srivastava AK, Saxena AK. Synthesis, Structure-Activity Relationship and Docking Studies of Substituted Aryl Thiazolyl Phenylsulfonamides as Potential Protein Tyrosine Phosphatase 1B Inhibitors. ChemMedChem 2012; 7:1185-90. [DOI: 10.1002/cmdc.201200197] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Indexed: 11/09/2022]
|
40
|
Beyond PPARs and Metformin. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2012. [DOI: 10.1016/b978-0-12-396492-2.00012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|