1
|
Kesharwani S, Eeba, Tandi M, Agarwal N, Sundriyal S. Design and synthesis of non-hydroxamate lipophilic inhibitors of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR): in silico, in vitro and antibacterial studies. RSC Adv 2024; 14:27530-27554. [PMID: 39221132 PMCID: PMC11362829 DOI: 10.1039/d4ra05083e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
1-Deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) is a key enzyme of the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway operating in several pathogens, including Mycobacterium and Plasmodium. Since a DXR homologue is not present in humans, it is an important antimicrobial target. Fosmidomycin (FSM) and its analogues inhibit DXR function by chelating the divalent metal (Mn2+ or Mg2+) in its active site via a hydroxamate metal binding group (MBG). The latter, however, enhances the polarity of molecules and is known to display metabolic instability and toxicity issues. While attempts have been made to increase the lipophilicity of FSM by substituting the linker chain and prodrug approach, very few efforts have been made to replace the hydroxamate group with other lipophilic MBGs. We report a systematic in silico and experimental investigation to identify novel MBGs for designing non-hydroxamate lipophilic DXR inhibitors. The SAR studies with selected MBG fragments identified novel inhibitors of E. Coli DXR with IC50 values ranging from 0.29 to 106 μM. The promising inhibitors were also screened against ESKAPE pathogens and M. tuberculosis.
Collapse
Affiliation(s)
- Sharyu Kesharwani
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (BITS) Pilani Campus, Vidya Vihar, Pilani Rajasthan 333 031 India
| | - Eeba
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Mile Stone, Gurugram-Faridabad Expressway Faridabad 121001 Haryana India
| | - Mukesh Tandi
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (BITS) Pilani Campus, Vidya Vihar, Pilani Rajasthan 333 031 India
| | - Nisheeth Agarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Mile Stone, Gurugram-Faridabad Expressway Faridabad 121001 Haryana India
| | - Sandeep Sundriyal
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (BITS) Pilani Campus, Vidya Vihar, Pilani Rajasthan 333 031 India
| |
Collapse
|
2
|
Bague D, Wang R, Hodge D, Mikati MO, Roma JS, Boshoff HI, Dailey AL, Girma M, Couch RD, Odom John AR, Dowd CS. Inhibition of DXR in the MEP pathway with lipophilic N-alkoxyaryl FR900098 analogs. RSC Med Chem 2024; 15:2422-2439. [PMID: 39026652 PMCID: PMC11253873 DOI: 10.1039/d3md00642e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/22/2024] [Indexed: 07/20/2024] Open
Abstract
In Mycobacterium tuberculosis (Mtb) and Plasmodium falciparum (Pf), the methylerythritol phosphate (MEP) pathway is responsible for isoprene synthesis. This pathway and its products are vital to bacterial/parasitic metabolism and survival, and represent an attractive set of drug targets due to their essentiality in these pathogens but absence in humans. The second step in the MEP pathway is the conversion of 1-deoxy-d-xylulose-5-phosphate (DXP) to MEP and is catalyzed by 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR). Natural products fosmidomycin and FR900098 inhibit DXR, but are too polar to reach the desired target inside some cells, such as Mtb. Synthesized FR900098 analogs with lipophilic substitution in the position α to the phosphorous atom showed promise, resulting in increased activity against Mtb and Pf. Here, an α substitution, consisting of a 3,4-dichlorophenyl substituent, in combination with various O-linked alkylaryl substituents on the hydroxamate moiety is utilized in the synthesis of a novel series of FR900098 analogs. The purpose of the O-linked alkylaryl substituents is to further enhance DXR inhibition by extending the structure into the adjacent NADPH binding pocket, blocking the binding of both DXP and NADPH. Of the initial O-linked alkylaryl substituted analogs, compound 6e showed most potent activity against Pf parasites at 3.60 μM. Additional compounds varying the phenyl ring of 6e were synthesized. The most potent phosphonic acids, 6l and 6n, display nM activity against PfDXR and low μM activity against Pf parasites. Prodrugs of these compounds were less effective against Pf parasites but showed modest activity against Mtb cells. Data from this series of compounds suggests that this combination of substituents can be advantageous in designing a new generation of antimicrobials.
Collapse
Affiliation(s)
- Darean Bague
- Department of Chemistry, George Washington University Washington D.C. 20052 USA
| | - Ruiqin Wang
- Department of Chemistry, George Washington University Washington D.C. 20052 USA
| | - Dana Hodge
- Division of Infectious Diseases, Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Marwa O Mikati
- Department of Molecular Microbiology, Washington University School of Medicine St. Louis MO 63110 USA
| | - Jose S Roma
- Tuberculosis Research Section, LCIM, NIAID/NIH Bethesda MD 20892 USA
| | - Helena I Boshoff
- Tuberculosis Research Section, LCIM, NIAID/NIH Bethesda MD 20892 USA
| | - Allyson L Dailey
- Department of Chemistry and Biochemistry, George Mason University Fairfax VA 22030 USA
| | - Misgina Girma
- Department of Chemistry and Biochemistry, George Mason University Fairfax VA 22030 USA
| | - Robin D Couch
- Department of Chemistry and Biochemistry, George Mason University Fairfax VA 22030 USA
| | - Audrey R Odom John
- Division of Infectious Diseases, Children's Hospital of Philadelphia Philadelphia PA 19104 USA
- Department of Molecular Microbiology, Washington University School of Medicine St. Louis MO 63110 USA
| | - Cynthia S Dowd
- Department of Chemistry, George Washington University Washington D.C. 20052 USA
| |
Collapse
|
3
|
Wang X, Edwards RL, Ball HS, Heidel KM, Brothers RC, Johnson C, Haymond A, Girma M, Dailey A, Roma JS, Boshoff HI, Osbourn DM, Meyers MJ, Couch RD, Odom John AR, Dowd CS. MEPicides: α,β-unsaturated Fosmidomycin N-Acyl Analogs as Efficient Inhibitors of Plasmodium falciparum 1-Deoxy-d-xylulose-5-phosphate reductoisomerase. ACS Infect Dis 2023; 9:1387-1395. [PMID: 37310810 PMCID: PMC10880585 DOI: 10.1021/acsinfecdis.3c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Malaria, a mosquito-borne disease caused by several parasites of the Plasmodium genus, remains a huge threat to global public health. There are an estimated 0.5 million malaria deaths each year, mostly among African children. Unlike humans, Plasmodium parasites and a number of important pathogenic bacteria employ the methyl erythritol phosphate (MEP) pathway for isoprenoid synthesis. Thus, the MEP pathway represents a promising set of drug targets for antimalarial and antibacterial compounds. Here, we present new unsaturated MEPicide inhibitors of 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), the second enzyme of the MEP pathway. A number of these compounds have demonstrated robust inhibition of Plasmodium falciparum DXR, potent antiparasitic activity, and low cytotoxicity against HepG2 cells. Parasites treated with active compounds are rescued by isopentenyl pyrophosphate, the product of the MEP pathway. With higher levels of DXR substrate, parasites acquire resistance to active compounds. These results further confirm the on-target inhibition of DXR in parasites by the inhibitors. Stability in mouse liver microsomes is high for the phosphonate salts, but remains a challenge for the prodrugs. Taken together, the potent activity and on-target mechanism of action of this series further validate DXR as an antimalarial drug target and the α,β-unsaturation moiety as an important structural component.
Collapse
Affiliation(s)
- Xu Wang
- Department of Chemistry, George Washington University, Washington, District of Columbia 20052, United States
| | - Rachel L Edwards
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Haley S Ball
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia 20110, United States
| | - Kenneth M Heidel
- Department of Chemistry, George Washington University, Washington, District of Columbia 20052, United States
| | - Robert C Brothers
- Department of Chemistry, George Washington University, Washington, District of Columbia 20052, United States
| | - Claire Johnson
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia 20110, United States
| | - Amanda Haymond
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia 20110, United States
| | - Misgina Girma
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia 20110, United States
| | - Allyson Dailey
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia 20110, United States
| | - Jose Santinni Roma
- Tuberculosis Research Section, LCIM, NIAID/NIH, Bethesda, Maryland 20892, United States
| | - Helena I Boshoff
- Tuberculosis Research Section, LCIM, NIAID/NIH, Bethesda, Maryland 20892, United States
| | - Damon M Osbourn
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Marvin J Meyers
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Robin D Couch
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia 20110, United States
| | - Audrey R Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Cynthia S Dowd
- Department of Chemistry, George Washington University, Washington, District of Columbia 20052, United States
| |
Collapse
|
4
|
The Multifaceted MEP Pathway: Towards New Therapeutic Perspectives. Molecules 2023; 28:molecules28031403. [PMID: 36771066 PMCID: PMC9919496 DOI: 10.3390/molecules28031403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Isoprenoids, a diverse class of natural products, are present in all living organisms. Their two universal building blocks are synthesized via two independent pathways: the mevalonate pathway and the 2-C-methyl-ᴅ-erythritol 4-phosphate (MEP) pathway. The presence of the latter in pathogenic bacteria and its absence in humans make all its enzymes suitable targets for the development of novel antibacterial drugs. (E)-4-Hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP), the last intermediate of this pathway, is a natural ligand for the human Vγ9Vδ2 T cells and the most potent natural phosphoantigen known to date. Moreover, 5-hydroxypentane-2,3-dione, a metabolite produced by Escherichia coli 1-deoxy-ᴅ-xylulose 5-phosphate synthase (DXS), the first enzyme of the MEP pathway, structurally resembles (S)-4,5-dihydroxy-2,3-pentanedione, a signal molecule implied in bacterial cell communication. In this review, we shed light on the diversity of potential uses of the MEP pathway in antibacterial therapies, starting with an overview of the antibacterials developed for each of its enzymes. Then, we provide insight into HMBPP, its synthetic analogs, and their prodrugs. Finally, we discuss the potential contribution of the MEP pathway to quorum sensing mechanisms. The MEP pathway, providing simultaneously antibacterial drug targets and potent immunostimulants, coupled with its potential role in bacterial cell-cell communication, opens new therapeutic perspectives.
Collapse
|
5
|
Over 40 Years of Fosmidomycin Drug Research: A Comprehensive Review and Future Opportunities. Pharmaceuticals (Basel) 2022; 15:ph15121553. [PMID: 36559004 PMCID: PMC9782300 DOI: 10.3390/ph15121553] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
To address the continued rise of multi-drug-resistant microorganisms, the development of novel drugs with new modes of action is urgently required. While humans biosynthesize the essential isoprenoid precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) via the established mevalonate pathway, pathogenic protozoa and certain pathogenic eubacteria use the less well-known methylerythritol phosphate pathway for this purpose. Important pathogens using the MEP pathway are, for example, Plasmodium falciparum, Mycobacterium tuberculosis, Pseudomonas aeruginosa and Escherichia coli. The enzymes of that pathway are targets for antiinfective drugs that are exempt from target-related toxicity. 2C-Methyl-D-erythritol 4-phosphate (MEP), the second enzyme of the non-mevalonate pathway, has been established as the molecular target of fosmidomycin, an antibiotic that has so far failed to be approved as an anti-infective drug. This review describes the development and anti-infective properties of a wide range of fosmidomycin derivatives synthesized over the last four decades. Here we discuss the DXR inhibitor pharmacophore, which comprises a metal-binding group, a phosphate or phosphonate moiety and a connecting linker. Furthermore, non-fosmidomycin-based DXRi, bisubstrate inhibitors and several prodrug concepts are described. A comprehensive structure-activity relationship (SAR) of nearly all inhibitor types is presented and some novel opportunities for further drug development of DXR inhibitors are discussed.
Collapse
|
6
|
Abstract
Phosphoryl prodrugs are key compounds in drug development. Biologically active phosphoryl compounds often have negative charges on the phosphoryl group, and as a result, frequently have poor pharmacokinetic (PK) profiles. The use of lipophilic moieties bonded to the phosphorus (or attached oxygen atoms) masks the negative charge of the phosphoryl group, cleavage releasing the active molecule. The use of prodrugs to improve the PK of active parent molecules is an essential step in drug development. This review highlights promising trends in terminal elimination half-life, Cmax, clearance, oral bioavailability, and cLogP in phosphoryl prodrugs. We focus on specific prodrug families: esters, amidates, and ProTides. We conclude that moderating lipophilicity is a key part of prodrug success. This type of evaluation is important for drug development, regardless of clinical application. It is our hope that this analysis, and future ones like it, will play a significant role in prodrug evolution.
Collapse
Affiliation(s)
- Samuel A Kirby
- Department of Chemistry, George Washington University, Washington DC 20052
| | - Cynthia S Dowd
- Department of Chemistry, George Washington University, Washington DC 20052
| |
Collapse
|
7
|
Cazzaniga G, Mori M, Chiarelli LR, Gelain A, Meneghetti F, Villa S. Natural products against key Mycobacterium tuberculosis enzymatic targets: Emerging opportunities for drug discovery. Eur J Med Chem 2021; 224:113732. [PMID: 34399099 DOI: 10.1016/j.ejmech.2021.113732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
For centuries, natural products (NPs) have served as powerful therapeutics against a variety of human ailments. Nowadays, they still represent invaluable resources for the treatment of many diseases, including bacterial infections. After nearly three decades since the World Health Organization's (WHO) declaration of tuberculosis (TB) as a global health emergency, Mycobacterium tuberculosis (Mtb) continues to claim millions of lives, remaining among the leading causes of death worldwide. In the last years, several efforts have been devoted to shortening and improving treatment outcomes, and to overcoming the increasing resistance phenomenon. Nature has always provided a virtually unlimited source of bioactive molecules, which have inspired the development of new drugs. NPs are characterized by an exceptional chemical and structural diversity, the result of millennia of evolutionary responses to various stimuli. Thanks to their favorable structural features and their enzymatic origin, they are naturally prone to bind proteins and exhibit bioactivities. Furthermore, their worldwide distribution and ease of accessibility has contributed to promote investigations on their activity. Overall, these characteristics make NPs excellent models for the design of novel therapeutics. This review offers a critical and comprehensive overview of the most promising NPs, isolated from plants, fungi, marine species, and bacteria, endowed with inhibitory properties against traditional and emerging mycobacterial enzymatic targets. A selection of 86 compounds is here discussed, with a special emphasis on their biological activity, structure-activity relationships, and mechanism of action. Our study corroborates the antimycobacterial potential of NPs, substantiating their relevance in future drug discovery and development efforts.
Collapse
Affiliation(s)
- Giulia Cazzaniga
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy
| | - Matteo Mori
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy
| | - Laurent Roberto Chiarelli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, via A. Ferrata 9, 27100, Pavia, Italy
| | - Arianna Gelain
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy
| | - Fiorella Meneghetti
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy.
| | - Stefania Villa
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy
| |
Collapse
|
8
|
Non-hydroxamate inhibitors of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR): A critical review and future perspective. Eur J Med Chem 2020; 213:113055. [PMID: 33303239 DOI: 10.1016/j.ejmech.2020.113055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/22/2022]
Abstract
1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) catalyzes the second step of the non-mevalonate (or MEP) pathway that functions in several organisms and plants for the synthesis of isoprenoids. DXR is essential for the survival of multiple pathogenic bacteria/parasites, including those that cause tuberculosis and malaria in humans. DXR function is inhibited by fosmidomycin (1), a natural product, which forms a chelate with the active site divalent metal (Mg2+/Mn2+) through its hydroxamate metal-binding group (MBG). Most of the potent DXR inhibitors are structurally similar to 1 and retain hydroxamate despite the unfavourable pharmacokinetic and toxicity profile of the latter. We provide our perspective on the lack of non-hydroxamate DXR inhibitors. We also highlight the fundamental flaws in the design of MBG in these molecules, primarily responsible for their failure to inhibit DXR. We also suggest that for designing next-generation non-hydroxamate DXR inhibitors, approaches followed for other metalloenzymes targets may be exploited.
Collapse
|
9
|
Mikati MO, Miller JJ, Osbourn DM, Barekatain Y, Ghebremichael N, Shah IT, Burnham CAD, Heidel KM, Yan VC, Muller FL, Dowd CS, Edwards RL, Odom John AR. Antimicrobial Prodrug Activation by the Staphylococcal Glyoxalase GloB. ACS Infect Dis 2020; 6:3064-3075. [PMID: 33118347 PMCID: PMC8543975 DOI: 10.1021/acsinfecdis.0c00582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With the rising prevalence of multidrug resistance, there is an urgent need to develop novel antibiotics. Many putative antibiotics demonstrate promising in vitro potency but fail in vivo due to poor drug-like qualities (e.g., serum half-life, oral absorption, solubility, and toxicity). These drug-like properties can be modified through the addition of chemical protecting groups, creating "prodrugs" that are activated prior to target inhibition. Lipophilic prodrugging techniques, including the attachment of a pivaloyloxymethyl group, have garnered attention for their ability to increase cellular permeability by masking charged residues and the relative ease of the chemical prodrugging process. Unfortunately, pivaloyloxymethyl prodrugs are rapidly activated by human sera, rendering any membrane permeability qualities absent during clinical treatment. Identification of the bacterial prodrug activation pathway(s) will allow for the development of host-stable and microbe-targeted prodrug therapies. Here, we use two zoonotic staphylococcal species, Staphylococcus schleiferi and S. pseudintermedius, to establish the mechanism of carboxy ester prodrug activation. Using a forward genetic screen, we identify a conserved locus in both species encoding the enzyme hydroxyacylglutathione hydrolase (GloB), whose loss-of-function confers resistance to carboxy ester prodrugs. We enzymatically characterize GloB and demonstrate that it is a functional glyoxalase II enzyme, which has the capacity to activate carboxy ester prodrugs. As GloB homologues are both widespread and diverse in sequence, our findings suggest that GloB may be a useful mechanism for developing species- or genus-level prodrug targeting strategies.
Collapse
Affiliation(s)
- Marwa O Mikati
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Justin J Miller
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Damon M Osbourn
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Yasaman Barekatain
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Naomi Ghebremichael
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Ishaan T Shah
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Carey-Ann D Burnham
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Kenneth M Heidel
- Department of Chemistry, The George Washington University, Washington, DC 20052, United States
| | - Victoria C Yan
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Florian L Muller
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Cynthia S Dowd
- Department of Chemistry, The George Washington University, Washington, DC 20052, United States
| | - Rachel L Edwards
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Audrey R Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
10
|
Edwards RL, Heueck I, Lee SG, Shah IT, Miller JJ, Jezewski AJ, Mikati MO, Wang X, Brothers RC, Heidel KM, Osbourn DM, Burnham CAD, Alvarez S, Fritz SA, Dowd CS, Jez JM, Odom John AR. Potent, specific MEPicides for treatment of zoonotic staphylococci. PLoS Pathog 2020; 16:e1007806. [PMID: 32497104 PMCID: PMC7297381 DOI: 10.1371/journal.ppat.1007806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/16/2020] [Accepted: 04/11/2020] [Indexed: 12/20/2022] Open
Abstract
Coagulase-positive staphylococci, which frequently colonize the mucosal surfaces of animals, also cause a spectrum of opportunistic infections including skin and soft tissue infections, urinary tract infections, pneumonia, and bacteremia. However, recent advances in bacterial identification have revealed that these common veterinary pathogens are in fact zoonoses that cause serious infections in human patients. The global spread of multidrug-resistant zoonotic staphylococci, in particular the emergence of methicillin-resistant organisms, is now a serious threat to both animal and human welfare. Accordingly, new therapeutic targets that can be exploited to combat staphylococcal infections are urgently needed. Enzymes of the methylerythritol phosphate pathway (MEP) of isoprenoid biosynthesis represent potential targets for treating zoonotic staphylococci. Here we demonstrate that fosmidomycin (FSM) inhibits the first step of the isoprenoid biosynthetic pathway catalyzed by deoxyxylulose phosphate reductoisomerase (DXR) in staphylococci. In addition, we have both enzymatically and structurally determined the mechanism by which FSM elicits its effect. Using a forward genetic screen, the glycerol-3-phosphate transporter GlpT that facilitates FSM uptake was identified in two zoonotic staphylococci, Staphylococcus schleiferi and Staphylococcus pseudintermedius. A series of lipophilic ester prodrugs (termed MEPicides) structurally related to FSM were synthesized, and data indicate that the presence of the prodrug moiety not only substantially increased potency of the inhibitors against staphylococci but also bypassed the need for GlpT-mediated cellular transport. Collectively, our data indicate that the prodrug MEPicides selectively and robustly inhibit DXR in zoonotic staphylococci, and further, that DXR represents a promising, druggable target for future development.
Collapse
Affiliation(s)
- Rachel L. Edwards
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Isabel Heueck
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Soon Goo Lee
- University of North Carolina-Wilmington, Wilmington, North Carolina, United States of America
| | - Ishaan T. Shah
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Justin J. Miller
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrew J. Jezewski
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Marwa O. Mikati
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xu Wang
- Department of Chemistry, George Washington University, Washington, DC, United States of America
| | - Robert C. Brothers
- Department of Chemistry, George Washington University, Washington, DC, United States of America
| | - Kenneth M. Heidel
- Department of Chemistry, George Washington University, Washington, DC, United States of America
| | - Damon M. Osbourn
- Department of Chemistry, Saint Louis University, St. Louis, Missouri, United States of America
| | - Carey-Ann D. Burnham
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sophie Alvarez
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Stephanie A. Fritz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Cynthia S. Dowd
- Department of Chemistry, George Washington University, Washington, DC, United States of America
| | - Joseph M. Jez
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Audrey R. Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
11
|
Mancini G, Bouda M, Gamrat JM, Tomsho JW. Synthesis and Antimicrobial Evaluation of γ-Borono Phosphonate Compounds in Escherichia coli and Mycobacterium smegmatis. ACS OMEGA 2019; 4:14551-14559. [PMID: 31528809 PMCID: PMC6740193 DOI: 10.1021/acsomega.9b01774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Drug resistance in bacteria is a serious threat, and drugs with novel modes of action are constantly needed. Fosmidomycin is a naturally occurring antibiotic that inhibits the nonmevalonate pathway via inhibition of the enzyme 1-deoxylulose-5-phosphate reductoisomerase (DXR). This work is the first report in which a boronic acid is evaluated as an isostere of the retrohydroxamate moiety of fosmidomycin. We report the novel synthesis of a γ-borono phosphonate analog of fosmidomycin and its corresponding prodrugs. We evaluate the inhibition of DXR and the antimicrobial activity of γ-borono phosphonate compounds against Escherichia coli wild type, E. coli Δglycerol-3-phosphate transporter, and Mycobacterium smegmatis. Despite its structural similarities, the γ-borono phosphonate compound shows antimicrobial activity against E. coli with a mechanism of action that is different from fosmidomycin. This was proven with an underutilized method for studying in vitro inhibition of the MEP pathway in E. coli via isopentenyl pyrophosphate chemical rescue. These results indicate that these compounds may serve as a promising scaffold for developing a new class of antimicrobial agents.
Collapse
|
12
|
Heidel KM, Dowd CS. Phosphonate prodrugs: an overview and recent advances. Future Med Chem 2019; 11:1625-1643. [PMID: 31469328 PMCID: PMC6722485 DOI: 10.4155/fmc-2018-0591] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/29/2019] [Indexed: 01/04/2023] Open
Abstract
Phosphonates, often used as isosteric replacements for phosphates, can provide important interactions with an enzyme. Due to their high charge at physiological pH, however, permeation into cells can be a challenge. Protecting phosphonates as prodrugs has shown promise in drug delivery. Thus, a variety of structures and cleavage/activation mechanisms exist, enabling release of the active compound. This review describes the structural diversity of these pro-moieties, relevant cleavage mechanisms and recent advances in the design of phosphonate prodrugs.
Collapse
Affiliation(s)
- Kenneth M Heidel
- Department of Chemistry, George Washington University, Washington, DC 20052, USA
| | - Cynthia S Dowd
- Department of Chemistry, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
13
|
Phosphonodiamidate prodrugs of N-alkoxy analogs of a fosmidomycin surrogate as antimalarial and antitubercular agents. Bioorg Med Chem Lett 2019; 29:1051-1053. [PMID: 30857749 DOI: 10.1016/j.bmcl.2019.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 11/23/2022]
Abstract
A series of N-alkoxy analogs of a l-leucine ethyl ester phosphonodiamidate prodrug of a fosmidomycin surrogate were synthesized and investigated for their ability to inhibit in vitro growth of P. falciparum and M. tuberculosis. These compounds originate by merging a previously reported successful phosphonate derivatisation with favorable modifications of the hydroxamate moiety. None of the synthesized compounds showed enhanced activity against either P. falciparum or M. tuberculosis in comparison with the parent free hydroxamate analog.
Collapse
|
14
|
Bhagat S, Supriya M, Pathak S, Sriram D, Chakraborti AK. α-Sulfonamidophosphonates as new anti-mycobacterial chemotypes: Design, development of synthetic methodology, and biological evaluation. Bioorg Chem 2019; 82:246-252. [DOI: 10.1016/j.bioorg.2018.09.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/12/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022]
|
15
|
Wang X, Edwards RL, Ball H, Johnson C, Haymond A, Girma M, Manikkam M, Brothers RC, McKay KT, Arnett SD, Osbourn DM, Alvarez S, Boshoff HI, Meyers MJ, Couch RD, Odom John AR, Dowd CS. MEPicides: α,β-Unsaturated Fosmidomycin Analogues as DXR Inhibitors against Malaria. J Med Chem 2018; 61:8847-8858. [PMID: 30192536 DOI: 10.1021/acs.jmedchem.8b01026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Severe malaria due to Plasmodium falciparum remains a significant global health threat. DXR, the second enzyme in the MEP pathway, plays an important role to synthesize building blocks for isoprenoids. This enzyme is a promising drug target for malaria due to its essentiality as well as its absence in humans. In this study, we designed and synthesized a series of α,β-unsaturated analogues of fosmidomycin, a natural product that inhibits DXR in P. falciparum. All compounds were evaluated as inhibitors of P. falciparum. The most promising compound, 18a, displays on-target, potent inhibition against the growth of P. falciparum (IC50 = 13 nM) without significant inhibition of HepG2 cells (IC50 > 50 μM). 18a was also tested in a luciferase-based Plasmodium berghei mouse model of malaria and showed exceptional in vivo efficacy. Together, the data support MEPicide 18a as a novel, potent, and promising drug candidate for the treatment of malaria.
Collapse
Affiliation(s)
- Xu Wang
- Department of Chemistry , George Washington University , Washington D.C. 20052 , United States
| | - Rachel L Edwards
- Department of Pediatrics , Washington University School of Medicine, Washington University , St. Louis , Missouri 63110 , United States
| | - Haley Ball
- Department of Chemistry and Biochemistry , George Mason University , Manassas , Virginia 20110 , United States
| | - Claire Johnson
- Department of Chemistry and Biochemistry , George Mason University , Manassas , Virginia 20110 , United States
| | - Amanda Haymond
- Department of Chemistry and Biochemistry , George Mason University , Manassas , Virginia 20110 , United States
| | - Misgina Girma
- Department of Chemistry and Biochemistry , George Mason University , Manassas , Virginia 20110 , United States
| | - Michelle Manikkam
- Tuberculosis Research Section, LCIM , NIAID/NIH , Bethesda , Maryland 20892 , United States
| | - Robert C Brothers
- Department of Chemistry , George Washington University , Washington D.C. 20052 , United States
| | - Kyle T McKay
- Department of Chemistry , George Washington University , Washington D.C. 20052 , United States
| | - Stacy D Arnett
- Department of Pharmacology and Physiology , Saint Louis University , St. Louis , Missouri 63104 , United States
| | - Damon M Osbourn
- Department of Molecular Microbiology and Immunology , Saint Louis University , St. Louis , Missouri 63104 , United States
| | - Sophie Alvarez
- Proteomics & Metabolomics Facility, Center for Biotechnology, Department of Agronomy and Horticulture , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States
| | - Helena I Boshoff
- Tuberculosis Research Section, LCIM , NIAID/NIH , Bethesda , Maryland 20892 , United States
| | - Marvin J Meyers
- Department of Pharmacology and Physiology , Saint Louis University , St. Louis , Missouri 63104 , United States.,Department of Chemistry , Saint Louis University , St. Louis , Missouri 63103 , United States
| | - Robin D Couch
- Department of Chemistry and Biochemistry , George Mason University , Manassas , Virginia 20110 , United States
| | - Audrey R Odom John
- Department of Pediatrics , Washington University School of Medicine, Washington University , St. Louis , Missouri 63110 , United States
| | - Cynthia S Dowd
- Department of Chemistry , George Washington University , Washington D.C. 20052 , United States
| |
Collapse
|
16
|
Wang X, Dowd CS. The Methylerythritol Phosphate Pathway: Promising Drug Targets in the Fight against Tuberculosis. ACS Infect Dis 2018; 4:278-290. [PMID: 29390176 DOI: 10.1021/acsinfecdis.7b00176] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a severe infectious disease in need of new chemotherapies especially for drug-resistant cases. To meet the urgent requirement of new TB drugs with novel modes of action, the TB research community has been validating numerous targets from several biosynthetic pathways. The methylerythritol phosphate (MEP) pathway is utilized by Mtb for the biosynthesis of isopentenyl pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate (DMAPP), the universal five-carbon building blocks of isoprenoids. While being a common biosynthetic pathway in pathogens, the MEP pathway is completely absent in humans. Due to its unique presence in pathogens as well as the essentiality of the MEP pathway in Mtb, the enzymes in this pathway are promising targets for the development of new drugs against tuberculosis. In this Review, we discuss three enzymes in the MEP pathway: 1-deoxy-d-xylulose-5-phosphate synthase (DXS), 1-deoxy-d-xylulose-5-phosphate reductoisomerase (IspC/DXR), and 2 C-methyl-d-erythritol 2,4-cyclodiphosphate synthase (IspF), which appear to be the most promising antitubercular drug targets. Structural and mechanistic features of these enzymes are reviewed, as well as selected inhibitors that show promise as antitubercular agents.
Collapse
Affiliation(s)
- Xu Wang
- Department of Chemistry, George Washington University, 800 22nd Street NW, Washington, D.C. 20052, United States
| | - Cynthia S. Dowd
- Department of Chemistry, George Washington University, 800 22nd Street NW, Washington, D.C. 20052, United States
| |
Collapse
|
17
|
Edwards RL, Brothers RC, Wang X, Maron MI, Ziniel PD, Tsang PS, Kraft TE, Hruz PW, Williamson KC, Dowd CS, John ARO. MEPicides: potent antimalarial prodrugs targeting isoprenoid biosynthesis. Sci Rep 2017; 7:8400. [PMID: 28827774 PMCID: PMC5567135 DOI: 10.1038/s41598-017-07159-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 06/21/2017] [Indexed: 01/29/2023] Open
Abstract
The emergence of Plasmodium falciparum resistant to frontline therapeutics has prompted efforts to identify and validate agents with novel mechanisms of action. MEPicides represent a new class of antimalarials that inhibit enzymes of the methylerythritol phosphate (MEP) pathway of isoprenoid biosynthesis, including the clinically validated target, deoxyxylulose phosphate reductoisomerase (Dxr). Here we describe RCB-185, a lipophilic prodrug with nanomolar activity against asexual parasites. Growth of P. falciparum treated with RCB-185 was rescued by isoprenoid precursor supplementation, and treatment substantially reduced metabolite levels downstream of the Dxr enzyme. In addition, parasites that produced higher levels of the Dxr substrate were resistant to RCB-185. Notably, environmental isolates resistant to current therapies remained sensitive to RCB-185, the compound effectively treated sexually-committed parasites, and was both safe and efficacious in malaria-infected mice. Collectively, our data demonstrate that RCB-185 potently and selectively inhibits Dxr in P. falciparum, and represents a promising lead compound for further drug development.
Collapse
Affiliation(s)
- Rachel L Edwards
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert C Brothers
- Department of Chemistry, George Washington University, Washington, DC, USA
| | - Xu Wang
- Department of Chemistry, George Washington University, Washington, DC, USA
| | - Maxim I Maron
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Peter D Ziniel
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Patricia S Tsang
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Thomas E Kraft
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Roche Pharma Research and Early Development, Roche Innovation Center, Munich, Nonnenwald, Penzberg, Germany
| | - Paul W Hruz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kim C Williamson
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Cynthia S Dowd
- Department of Chemistry, George Washington University, Washington, DC, USA
| | - Audrey R Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
18
|
Biopharmaceutic parameters, pharmacokinetics, transport and CYP-mediated drug interactions of IIIM-017: A novel nitroimidazooxazole analogue with anti-tuberculosis activity. Eur J Pharm Sci 2017; 106:71-78. [DOI: 10.1016/j.ejps.2017.05.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/20/2017] [Accepted: 05/23/2017] [Indexed: 01/20/2023]
|
19
|
San Jose G, Jackson ER, Haymond A, Johny C, Edwards RL, Wang X, Brothers RC, Edelstein EK, Odom AR, Boshoff HI, Couch RD, Dowd CS. Structure-Activity Relationships of the MEPicides: N-Acyl and O-Linked Analogs of FR900098 as Inhibitors of Dxr from Mycobacterium tuberculosis and Yersinia pestis. ACS Infect Dis 2016; 2:923-935. [PMID: 27676224 PMCID: PMC5266543 DOI: 10.1021/acsinfecdis.6b00125] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite continued research efforts, the threat of drug resistance from a variety of bacteria continues to plague clinical communities. Discovery and validation of novel biochemical targets will facilitate development of new drugs to combat these organisms. The methylerythritol phosphate (MEP) pathway to make isoprene units is a biosynthetic pathway essential to many bacteria. We and others have explored inhibitors of the MEP pathway as novel antibacterial agents. Mycobacterium tuberculosis, the causative agent of tuberculosis, and Yersinia pestis, resulting in the plague or "black death", both rely on the MEP pathway for isoprene production. 1-Deoxy-d-xylulose 5-phosphate reductoisomerase (Dxr) catalyzes the first committed step in the MEP pathway. We examined two series of Dxr inhibitors based on the parent structure of the retrohydroxamate natural product FR900098. The compounds contain either an extended N-acyl or O-linked alkyl/aryl group and are designed to act as bisubstrate inhibitors of the enzyme. While nearly all of the compounds inhibited both Mtb and Yp Dxr to some extent, compounds generally displayed more potent inhibition against the Yp homologue, with the best analogs displaying nanomolar IC50 values. In bacterial growth inhibition assays, the phosphonic acids generally resulted in poor antibacterial activity, likely a reflection of inadequate permeability. Accordingly, diethyl and dipivaloyloxymethyl (POM) prodrug esters of these compounds were made. While the added lipophilicity did not enhance Yersinia activity, the compounds showed significantly improved antitubercular activities. The most potent compounds have Mtb MIC values of 3-12 μg/mL. Taken together, we have uncovered two series of analogs that potently inhibit Dxr homologues from Mtb and Yp. These inhibitors of the MEP pathway, termed MEPicides, serve as leads for future analog development.
Collapse
Affiliation(s)
- Géraldine San Jose
- 800 22 Street NW, Department of Chemistry, George Washington University, Washington DC 20052 USA
| | - Emily R. Jackson
- 800 22 Street NW, Department of Chemistry, George Washington University, Washington DC 20052 USA
| | - Amanda Haymond
- 10900 University Boulevard, Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110 USA
| | - Chinchu Johny
- 10900 University Boulevard, Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110 USA
| | - Rachel L. Edwards
- 660 S Euclid Avenue, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Xu Wang
- 800 22 Street NW, Department of Chemistry, George Washington University, Washington DC 20052 USA
| | - R. Carl Brothers
- 800 22 Street NW, Department of Chemistry, George Washington University, Washington DC 20052 USA
| | - Emma K. Edelstein
- 800 22 Street NW, Department of Chemistry, George Washington University, Washington DC 20052 USA
| | - Audrey R. Odom
- 660 S Euclid Avenue, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Helena I. Boshoff
- 9000 Rockville Pike, Tuberculosis Research Section, LCID, NIAID/NIH, Bethesda, MD 20892 USA
| | - Robin D. Couch
- 10900 University Boulevard, Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110 USA
| | - Cynthia S. Dowd
- 800 22 Street NW, Department of Chemistry, George Washington University, Washington DC 20052 USA
| |
Collapse
|
20
|
Chofor R, Sooriyaarachchi S, Risseeuw MDP, Bergfors T, Pouyez J, Johny C, Haymond A, Everaert A, Dowd CS, Maes L, Coenye T, Alex A, Couch RD, Jones TA, Wouters J, Mowbray SL, Van Calenbergh S. Synthesis and Bioactivity of β-Substituted Fosmidomycin Analogues Targeting 1-Deoxy-d-xylulose-5-phosphate Reductoisomerase. J Med Chem 2015; 58:2988-3001. [DOI: 10.1021/jm5014264] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- René Chofor
- Laboratory
for Medicinal Chemistry (FFW), Universiteit Gent, Ottergemsesteenweg
460, B-9000 Gent, Belgium
| | - Sanjeewani Sooriyaarachchi
- Department
of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Biomedical
Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Martijn D. P. Risseeuw
- Laboratory
for Medicinal Chemistry (FFW), Universiteit Gent, Ottergemsesteenweg
460, B-9000 Gent, Belgium
| | - Terese Bergfors
- Department
of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Biomedical
Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Jenny Pouyez
- Department
of Chemistry, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Chinchu Johny
- Department
of Chemistry and Biochemistry, George Mason University, Manassas, Virginia 20110, United States
| | - Amanda Haymond
- Department
of Chemistry and Biochemistry, George Mason University, Manassas, Virginia 20110, United States
| | - Annelien Everaert
- Laboratory
of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Cynthia S. Dowd
- Department
of Chemistry, George Washington University, Washington, D.C. 20052, United States
| | - Louis Maes
- Laboratory
for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical,
Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein
1, B-2610 Antwerp, Belgium
| | - Tom Coenye
- Laboratory
of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Alexander Alex
- Evenor Consulting Ltd., The
New Barn, Mill Lane, Eastry, Kent CT13 0JW, United Kingdom
| | - Robin D. Couch
- Department
of Chemistry and Biochemistry, George Mason University, Manassas, Virginia 20110, United States
| | - T. Alwyn Jones
- Department
of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Biomedical
Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Johan Wouters
- Department
of Chemistry, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Sherry L. Mowbray
- Department
of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Biomedical
Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Serge Van Calenbergh
- Laboratory
for Medicinal Chemistry (FFW), Universiteit Gent, Ottergemsesteenweg
460, B-9000 Gent, Belgium
| |
Collapse
|
21
|
Masini T, Hirsch AKH. Development of Inhibitors of the 2C-Methyl-d-erythritol 4-Phosphate (MEP) Pathway Enzymes as Potential Anti-Infective Agents. J Med Chem 2014; 57:9740-63. [DOI: 10.1021/jm5010978] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tiziana Masini
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh
7, NL-9747
AG Groningen, The Netherlands
| | - Anna K. H. Hirsch
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh
7, NL-9747
AG Groningen, The Netherlands
| |
Collapse
|