1
|
Sonego JM, de Diego SI, Szajnman SH, Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds: Chemistry and Applications in Organic Synthesis. Chemistry 2023; 29:e202300030. [PMID: 37378970 DOI: 10.1002/chem.202300030] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 06/29/2023]
Abstract
Selenium, originally described as a toxin, turns out to be a crucial trace element for life that appears as selenocysteine and its dimer, selenocystine. From the point of view of drug developments, selenium-containing drugs are isosteres of sulfur and oxygen with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. In this article, we have focused on the relevant features of the selenium atom, above all, the corresponding synthetic approaches to access a variety of organoselenium molecules along with the proposed reaction mechanisms. The preparation and biological properties of selenosugars, including selenoglycosides, selenonucleosides, selenopeptides, and other selenium-containing compounds will be treated. We have attempted to condense the most important aspects and interesting examples of the chemistry of selenium into a single article.
Collapse
Affiliation(s)
- Juan M Sonego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sheila I de Diego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sergio H Szajnman
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
2
|
Brian Chia CS, Pheng Lim S. A Patent Review on SARS Coronavirus Papain-Like Protease (PL pro ) Inhibitors. ChemMedChem 2023; 18:e202300216. [PMID: 37248169 DOI: 10.1002/cmdc.202300216] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 05/31/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is an unprecedented global health emergency causing more than 6.6 million fatalities by 31 December 2022. So far, only three antiviral drugs have been granted emergency use authorisation or approved by the FDA. The SARS-CoV-2 papain-like protease (PLpro ) is deemed an attractive drug target as it plays an essential role in viral polyprotein processing and pathogenesis although no inhibitors have yet been approved. This patent review discusses coronavirus PLpro inhibitors reported in patents published between 1 January 2003 to 2 March 2023, giving an overview on the inhibitors that have generated commercial interest, especially amongst drug companies.
Collapse
Affiliation(s)
- C S Brian Chia
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos #08-01, Singapore, 138670, Singapore
| | - Siew Pheng Lim
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos #08-01, Singapore, 138670, Singapore
| |
Collapse
|
3
|
Sun BX, Wang XN, Fan TG, Hou YJ, Shen YT, Li YM. Copper-Catalyzed Cascade Multicomponent Reaction of Azides, Alkynes, and Selenium: Synthesis of Ditriazolyl Diselenides. J Org Chem 2023; 88:4528-4535. [PMID: 36913662 DOI: 10.1021/acs.joc.2c03102] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
A copper-catalyzed cascade multicomponent reaction for synthesizing ditriazolyl diselenides from azides, terminal alkynes, and elemental selenium has been developed. The present reaction features utilizing readily available and stable reagents, high atom-economy, and mild reaction conditions. A possible mechanism is proposed.
Collapse
Affiliation(s)
- Bo-Xun Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Xu-Nan Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Tai-Gang Fan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yu-Jian Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yun-Tao Shen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Ya-Min Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
4
|
Santana Filho PC, Brasil da Silva M, Malaquias da Silva BN, Fazolo T, Dorneles GP, Braun de Azeredo J, Alf da Rosa M, Rodrigues Júnior LC, Peres A, Santos Canto RF, Torres Romão PR. Seleno-indoles trigger reactive oxygen species and mitochondrial dysfunction in Leishmania amazonensis. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
5
|
Castro‐Godoy WD, Bouchet LM, Puiatti M, Schmidt LC, Argüello JE. Purpurin‐Promoted Photo‐Redox Reduction of Benzyl Selenocyanates as Masked Selenols, Preparative, Electrochemical, Computational, and Mechanistic Study. ChemistrySelect 2022. [DOI: 10.1002/slct.202204061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Willber D. Castro‐Godoy
- CENSALUD-UES Dpto. de Química Física y Matemática Facultad de Química y Farmacia Universidad de El Salvador Final Av. de Mártires y Héroes del 30 de Julio, San Salvador 1101 El Salvador
| | - Lydia M. Bouchet
- INFIQC-CONICET-UNC Dpto. de Química Orgánica Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Marcelo Puiatti
- INFIQC-CONICET-UNC Dpto. de Química Orgánica Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Luciana C. Schmidt
- INFIQC-CONICET-UNC Dpto. de Química Orgánica Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Juan E. Argüello
- INFIQC-CONICET-UNC Dpto. de Química Orgánica Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Ciudad Universitaria X5000HUA Córdoba Argentina
| |
Collapse
|
6
|
Chen CL, Li JC, Liu MC, Zhou YB, Wu HY. Metal-Free Synthesis of Diselenides and Ditellurides by using TMSCN. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Guo T, Li Z, Bi L, Fan L, Zhang P. Recent advances in organic synthesis applying elemental selenium. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Singh A, Kaushik A, Dhau JS, Kumar R. Exploring coordination preferences and biological applications of pyridyl-based organochalcogen (Se, Te) ligands. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214254] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Ma Y, Liu M, Zhou Y, Wu H. Synthesis of Organoselenium Compounds with Elemental Selenium. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101227] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yang‐Tong Ma
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 People's Republic of China
| | - Miao‐Chang Liu
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 People's Republic of China
| | - Yun‐Bing Zhou
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 People's Republic of China
| | - Hua‐Yue Wu
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 People's Republic of China
| |
Collapse
|
10
|
Kumawat A, Raheem S, Ali F, Dar TA, Chakrabarty S, Rizvi MA. Organoselenium Compounds as Acetylcholinesterase Inhibitors: Evidence and Mechanism of Mixed Inhibition. J Phys Chem B 2021; 125:1531-1541. [PMID: 33538163 DOI: 10.1021/acs.jpcb.0c08111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acetylcholinesterase (AChE) inhibitors are actively used for the effective treatment of Alzheimer's disease. In recent years, the neuroprotective effects of organoselenium compounds such as ebselen and diselenides on the AChE activity have been investigated as potential therapeutic agents. In this work, we have carried out systematic kinetic and intrinsic fluorescence assays in combination with docking and molecular dynamics (MD) simulations to elucidate the molecular mechanism of the mixed inhibition of AChE by ebselen and diphenyl diselenide (DPDSe) molecules. Our MD simulations demonstrate significant heterogeneity in the binding modes and allosteric hotspots for DPDSe on AChE due to non-specific interactions. We have further identified that both ebselen and DPDSe can strongly bind around the peripheral anionic site (PAS), leading to non-competitive inhibition similar to other PAS-binding inhibitors. We also illustrate the entry of the DPDSe molecule into the gorge through a "side door", which offers an alternate entry point for AChE inhibitors as compared to the usual substrate entry point of the gorge. Together with results from experiments, these simulations provide mechanistic insights into the mixed type of inhibition for AChE using DPDSe as a promising inhibitor for AChE.
Collapse
Affiliation(s)
- Amit Kumawat
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Fasil Ali
- Department of Clinical Bio-Chemistry, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Tanveer Ali Dar
- Department of Clinical Bio-Chemistry, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Suman Chakrabarty
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| | - Masood Ahmad Rizvi
- Department of Chemistry, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| |
Collapse
|
11
|
Lim YJ, Shin NH, Kim C, Kim YE, Cho H, Park MS, Lee SH. An efficient and practical method for the selective synthesis of sodium diselenide and diorganyl diselenides through selenium reduction. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Dias RDS, Cervo R, Siqueira FDS, Campos MMA, Lang ES, Tirloni B, Schumacher RF, Cargnelutti R. Synthesis and antimicrobial evaluation of coordination compounds containing 2,2′‐bis(3‐aminopyridyl) diselenide as ligand. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Renne de Sousa Dias
- Departamento de Química, Laboratório de Materiais InorgânicosUniversidade Federal de Santa Maria Santa Maria RS 97105–900 Brazil
| | - Rodrigo Cervo
- Departamento de Química, Laboratório de Materiais InorgânicosUniversidade Federal de Santa Maria Santa Maria RS 97105–900 Brazil
| | - Fallon dos Santos Siqueira
- Programa de Pós‐graduação em Ciências Farmacêuticas, Departamento de Análises Clínicas e ToxicológicasUniversidade Federal de Santa Maria Santa Maria RS 97105–900 Brazil
| | - Marli Matiko Anraku Campos
- Programa de Pós‐graduação em Ciências Farmacêuticas, Departamento de Análises Clínicas e ToxicológicasUniversidade Federal de Santa Maria Santa Maria RS 97105–900 Brazil
| | - Ernesto Schulz Lang
- Departamento de Química, Laboratório de Materiais InorgânicosUniversidade Federal de Santa Maria Santa Maria RS 97105–900 Brazil
| | - Bárbara Tirloni
- Departamento de Química, Laboratório de Materiais InorgânicosUniversidade Federal de Santa Maria Santa Maria RS 97105–900 Brazil
| | - Ricardo Frederico Schumacher
- Departamento de Química, Laboratório de Materiais InorgânicosUniversidade Federal de Santa Maria Santa Maria RS 97105–900 Brazil
| | - Roberta Cargnelutti
- Departamento de Química, Laboratório de Materiais InorgânicosUniversidade Federal de Santa Maria Santa Maria RS 97105–900 Brazil
| |
Collapse
|
13
|
Liu Z, Jiang Y, Liu C, Zhang L, Wang J, Li T, Zhang H, Li M, Yang X. Metal-Free Synthesis of Phenol-Aryl Selenides via Dehydrogenative C-Se Coupling of Aryl Selenoxides with Phenols. J Org Chem 2020; 85:7386-7398. [PMID: 32370509 DOI: 10.1021/acs.joc.0c00792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Herein, we disclose the synthesis of diaryl selenides through an unexpected C-Se coupling between aryl benzyl selenoxides and phenols. The synthetic significance of the method is that it provides a mild, rapid, and metal-free access to organoselenides in high yields with excellent functional group tolerance. This coupling of aryl benzyl selenoxides reveals a completely new reaction possibility compared with aryl sulfoxides. We also probed the reaction mechanism of this unexpected transformation through experimental studies and revealed a special Se(IV)-Se(III)-Se(II) reaction pathway.
Collapse
Affiliation(s)
- Zhengfen Liu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yonggang Jiang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Chunxiang Liu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Linlin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Jing Wang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Tiantian Li
- Department of Soil and Water Science, Tropical Research and Education Center, University of Florida, Homestead 33031, Florida, USA
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Minyan Li
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
14
|
Rizvi MA, Hussain Z, Ali F, Amin A, Mir SH, Rydzek G, Jagtap RM, Pardeshi SK, Qadri RA, Ariga K. Bioactive supra decorated thiazolidine-4-carboxylic acid derivatives attenuate cellular oxidative stress by enhancing catalase activity. Phys Chem Chem Phys 2020; 22:7942-7951. [DOI: 10.1039/d0cp00253d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioactive (2S,4R)-3-(tert-butoxycarbonyl)-2-(2-hydroxyphenyl)thiazolidine-4-carboxylic acid molecules restructure enzymes through complexation, allowing enhancing their activity to protect cells from oxidative stress.
Collapse
Affiliation(s)
| | - Zakir Hussain
- Department of Chemistry
- University of Kashmir
- Srinagar
- India
| | - Fasil Ali
- Department of Studies and Research in Biochemistry
- Mangalore University
- India
| | - Asif Amin
- Department of Biotechnology
- University of Kashmir
- Srinagar 190006
- India
| | - Sajjad Husain Mir
- Advanced Materials and Bio Engineering Research Centre (AMBER)
- Ireland
- Department of Chemistry
- Trinity College Dublin
- The University of Dublin
| | - Gaulthier Rydzek
- Institut Charles Gerhardt Montpellier
- UMR 5253
- CNRS
- ENSCM
- Univ. Montpellier
| | - Rohidas M. Jagtap
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | | | - Raies A. Qadri
- Department of Biotechnology
- University of Kashmir
- Srinagar 190006
- India
| | - Katsuhiko Ariga
- World Premier International Center for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
- Graduate School of Frontier Sciences
| |
Collapse
|
15
|
Roopesh Kumar L, Sagar NR, Divya K, Madhu C, Sureshbabu VV. Synthesis of an amino phosphinodiselenoic acid ester and β-amino diselenides employing P 2Se 5. NEW J CHEM 2020. [DOI: 10.1039/d0nj00012d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protic solvents furnished amino phosphinodiselenoic acid esters, whereas β-amino diselenides were obtained exclusively when reactions performed in polar aprotic solvents.
Collapse
Affiliation(s)
- L. Roopesh Kumar
- Peptide Research Laboratory
- Department of Studies in Chemistry
- Bangalore University
- Bangalore-560 056
- India
| | - N. R. Sagar
- Peptide Research Laboratory
- Department of Studies in Chemistry
- Bangalore University
- Bangalore-560 056
- India
| | - K. Divya
- Peptide Research Laboratory
- Department of Studies in Chemistry
- Bangalore University
- Bangalore-560 056
- India
| | - C. Madhu
- Peptide Research Laboratory
- Department of Studies in Chemistry
- Bangalore University
- Bangalore-560 056
- India
| | - Vommina V Sureshbabu
- Peptide Research Laboratory
- Department of Studies in Chemistry
- Bangalore University
- Bangalore-560 056
- India
| |
Collapse
|
16
|
Jagtap RM, Shaikh SR, Gonnade RG, Raheem S, Rizvi MA, Pardeshi SK. Cyanuric‐Chloride‐Mediated Synthesis of 2‐Aryl‐3‐tert‐butoxycarbonyl‐thiazolidine‐4‐carboxylic Acid Anilides: Mechanistic, X‐Ray Crystal Structures and Cytotoxicity Studies. ChemistrySelect 2019. [DOI: 10.1002/slct.201903000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rohidas M. Jagtap
- Department of ChemistrySavitribai Phule Pune University (formerly University of Pune), Ganeshkhind Pune- 411007 India
| | - Samir R. Shaikh
- Center for Materials Characterization (CMC)National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
| | - Rajesh G. Gonnade
- Center for Materials Characterization (CMC)National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
| | - Shabnam Raheem
- Department of ChemistryUniversity of Kashmir, Hazratbal Srinagar, Jammu and Kashmir 190006 India
| | - Masood A. Rizvi
- Department of ChemistryUniversity of Kashmir, Hazratbal Srinagar, Jammu and Kashmir 190006 India
| | - Satish K. Pardeshi
- Department of ChemistrySavitribai Phule Pune University (formerly University of Pune), Ganeshkhind Pune- 411007 India
| |
Collapse
|
17
|
Li H, Li Q, Hou W, Zhang J, Yu C, Zeng D, Liu G, Li F. Enzyme-Catalytic Self-Triggered Release of Drugs from a Nanosystem for Efficient Delivery to Nuclei of Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43581-43587. [PMID: 31664812 DOI: 10.1021/acsami.9b15460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stimulus-responsive drug delivery nanosystems (DDSs) are of great significance in improving cancer therapy for intelligent control over drug release. However, among them, many DDSs are unable to realize rapid and sufficient drug release because most internal stimulants might be consumed during the release process. To address the plight, an abundant supply of stimulants is highly desirable. Herein, a core crosslinked pullulan-di-(4,1-hydroxybenzylene)diselenide nanosystem, which could generate abundant exogenous-stimulant reactive oxygen species (ROS) via tumor-specific NAD(P)H:quinone oxidoreductase-1 (NQO1) catalysis, was constructed by the encapsulation of β-lapachone. The enzyme-catalytic-generated ROS induced self-triggered cascade amplification release of loaded doxorubicin (DOX) in the tumor cells, thus achieving efficient delivery of DOX to the nuclei of tumor cells by breaking the diselenide bond of the nanosystem. As a result, the antitumor effect of this nanosystem was significantly improved in the HepG2 xenograft model. In general, this study offers a new paradigm for utilizing the interaction between the loaded agent and carrier in the tumor cells to obtain self-triggered drug release in the design of DDSs for enhanced cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , Fujian , P. R. China
| | | |
Collapse
|
18
|
Krasowska D, Iraci N, Santi C, Drabowicz J, Cieslak M, Kaźmierczak-Barańska J, Palomba M, Królewska-Golińska K, Magiera J, Sancineto L. Diselenides and Benzisoselenazolones as Antiproliferative Agents and Glutathione-S-Transferase Inhibitors. Molecules 2019; 24:E2914. [PMID: 31405214 PMCID: PMC6721112 DOI: 10.3390/molecules24162914] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/01/2023] Open
Abstract
A series of variously functionalized selenium-containing compounds were purposely synthesized and evaluated against a panel of cancer cell lines. Most of the compounds showed an interesting cytotoxicity profile with compound 5 showing a potent activity on MCF7 cells. The ethyl amino derivative 5 acts synergistically with cis-platin and inhibits the GST enzyme with a potency that well correlates with the cytotoxicity observed in MCF7 cells. A computational analysis suggests a possible binding mode on the GST enzyme. As the main outcome of the present study, the ethyl amino derivative 5 emerged as a valid lead compound for further, future developments.
Collapse
Affiliation(s)
- Dorota Krasowska
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Nunzio Iraci
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Claudio Santi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Józef Drabowicz
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
- Institute of Chemistry Jan Długosz University in Częstochowa Częstochowa, 42-200 Armii Krajowej 13/15, Poland
| | - Marcin Cieslak
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Julia Kaźmierczak-Barańska
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Martina Palomba
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Karolina Królewska-Golińska
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Jakub Magiera
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Luca Sancineto
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland.
| |
Collapse
|
19
|
One-pot preparation of (RSe)2CF2 and (RS)2CF2 compounds via insertion of TMSCF3-derived difluorocarbene into diselenides and disulfides. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Kim EY, Chung TW, Han CW, Park SY, Park KH, Jang SB, Ha KT. A Novel Lactate Dehydrogenase Inhibitor, 1-(Phenylseleno)-4-(Trifluoromethyl) Benzene, Suppresses Tumor Growth through Apoptotic Cell Death. Sci Rep 2019; 9:3969. [PMID: 30850682 PMCID: PMC6408513 DOI: 10.1038/s41598-019-40617-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 02/20/2019] [Indexed: 12/18/2022] Open
Abstract
The Warburg effect, wherein cancer cells prefer glycolysis rather than oxidative phosphorylation even under normoxic conditions, is a major characteristic of malignant tumors. Lactate dehydrogenase A (LDHA) is the main enzyme regulating the Warburg effect, and is thus, a major target for novel anti-cancer drug development. Through our ongoing screening of novel inhibitors, we found that several selenobenzene compounds have inhibitory effects on LDHA activity. Among them, 1-(phenylseleno)-4-(trifluoromethyl) benzene (PSTMB) had the most potent inhibitory effect on the enzymatic activity of LDHA. The results from biochemical assays and computational modeling showed that PSTMB inhibited LDHA activity. In addition, PSTMB inhibited the growth of several tumor cell lines, including NCI-H460, MCF-7, Hep3B, A375, HT29, and LLC. In HT29 human colon cancer cells, PSTMB dose-dependently inhibited the viability of the cells and activity of LDHA, without affecting the expression of LDHA. Under both normoxic and hypoxic conditions, PSTMB effectively reduced LDHA activity and lactate production. Furthermore, PSTMB induced mitochondria-mediated apoptosis of HT29 cells via production of reactive oxygen species. These results suggest that PSTMB may be a novel candidate for development of anti-cancer drugs by targeting cancer metabolism.
Collapse
Affiliation(s)
- Eun-Yeong Kim
- Department of Korean Medical Science, School of Korean Medicine and Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Tae-Wook Chung
- Department of Korean Medical Science, School of Korean Medicine and Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Chang Woo Han
- Department of Molecular Biology, College of Natural Science, Pusan National University, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - So Young Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Kang Hyun Park
- Department of Chemistry, College of Natural Science, Pusan National University, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Geumjeong-gu, Busan, 46241, Republic of Korea.
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine and Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea.
| |
Collapse
|
21
|
Das T, Chatterjee R, Majee A, Uyama H, Morgan D, Nandi M. In situ synthesis of CuO nanoparticles over functionalized mesoporous silica and their application in catalytic syntheses of symmetrical diselenides. Dalton Trans 2019; 48:17874-17886. [DOI: 10.1039/c9dt03418h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A versatile and novel mesoporous silica supported CuO nanoparticle catalyst (nCuO-FMS) and its application in the syntheses of symmetrical diselenides.
Collapse
Affiliation(s)
- Trisha Das
- Integrated Science Education and Research Centre
- Siksha Bhavana
- Visva-Bharati University
- Santiniketan 731 235
- India
| | - Rana Chatterjee
- Department of Chemistry
- Siksha Bhavana
- Visva-Bharati University
- Santiniketan 731235
- India
| | - Adinath Majee
- Department of Chemistry
- Siksha Bhavana
- Visva-Bharati University
- Santiniketan 731235
- India
| | - Hiroshi Uyama
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Osaka
- Japan
| | - David Morgan
- Cardiff Catalysis Institute
- School of Chemistry
- Cardiff University
- Cardiff CF10 3AT
- UK
| | - Mahasweta Nandi
- Integrated Science Education and Research Centre
- Siksha Bhavana
- Visva-Bharati University
- Santiniketan 731 235
- India
| |
Collapse
|
22
|
Álvarez-Pérez M, Ali W, Marć MA, Handzlik J, Domínguez-Álvarez E. Selenides and Diselenides: A Review of Their Anticancer and Chemopreventive Activity. Molecules 2018. [PMID: 29534447 PMCID: PMC6017218 DOI: 10.3390/molecules23030628] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Selenium and selenocompounds have attracted the attention and the efforts of scientists worldwide due to their promising potential applications in cancer prevention and/or treatment. Different organic selenocompounds, with diverse functional groups that contain selenium, have been reported to exhibit anticancer and/or chemopreventive activity. Among them, selenocyanates, selenoureas, selenoesters, selenium-containing heterocycles, selenium nanoparticles, selenides and diselenides have been considered in the search for efficiency in prevention and treatment of cancer and other related diseases. In this review, we focus our attention on the potential applications of selenides and diselenides in cancer prevention and treatment that have been reported so far. The around 80 selenides and diselenides selected herein as representative compounds include promising antioxidant, prooxidant, redox-modulating, chemopreventive, anticancer, cytotoxic and radioprotective compounds, among other activities. The aim of this work is to highlight the possibilities that these novel organic selenocompounds can offer in an effort to contribute to inspire medicinal chemists in their search of new promising derivatives.
Collapse
Affiliation(s)
- Mónica Álvarez-Pérez
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG, CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Wesam Ali
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B2 1, D-66123 Saarbruecken, Germany.
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland.
| | - Małgorzata Anna Marć
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland.
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland.
| | - Enrique Domínguez-Álvarez
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG, CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
23
|
Díaz M, González R, Plano D, Palop JA, Sanmartín C, Encío I. A diphenyldiselenide derivative induces autophagy via JNK in HTB-54 lung cancer cells. J Cell Mol Med 2017; 22:289-301. [PMID: 28922542 PMCID: PMC5742718 DOI: 10.1111/jcmm.13318] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/19/2017] [Indexed: 12/21/2022] Open
Abstract
Symmetric aromatic diselenides are potential anticancer agents with strong cytotoxic activity. In this study, the in vitro anticancer activities of a novel series of diarylseleno derivatives from the diphenyldiselenide (DPDS) scaffold were evaluated. Most of the compounds exhibited high efficacy for inducing cytotoxicity against different human cancer cell lines. DPDS 2, the compound with the lowest mean GI50 value, induced both caspase-dependent apoptosis and arrest at the G0 /G1 phase in acute lymphoblastic leucemia CCRF-CEM cells. Consistent with this, PARP cleavage; enhanced caspase-2, -3, -8 and -9 activity; reduced CDK4 expression and increased levels of p53 were detected in these cells upon DPDS 2 treatment. Mutated p53 expressed in CCRF-CEM cells retains its transactivating activity. Therefore, increased levels of p21CIP1 and BAX proteins were also detected. On the other hand, DPDS 6, the compound with the highest selectivity index for cancer cells, resulted in G2 /M cell cycle arrest and caspase-independent cell death in p53 deficient HTB-54 lung cancer cells. Autophagy inhibitors 3-methyladenine, wortmannin and chloroquine inhibited DPDS 6-induced cell death. Consistent with autophagy, increased LC3-II and decreased SQSTM1/p62 levels were detected in HTB-54 cells in response to DPDS 6. Induction of JNK phosphorylation and a reduction in phospho-p38 MAPK were also detected. Moreover, the JNK inhibitor SP600125-protected HTB-54 cells from DPDS 6-induced cell death indicating that JNK activation is involved in DPDS 6-induced autophagy. These results highlight the anticancer effects of these derivatives and warrant future studies examining their clinical potential.
Collapse
Affiliation(s)
- Marta Díaz
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra (IDISNA), Pamplona, Spain
| | - Roncesvalles González
- Departamento de Ciencias de la Salud, Universidad Pública de Navarra, Pamplona, Spain
| | - Daniel Plano
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra (IDISNA), Pamplona, Spain
| | - Juan Antonio Palop
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra (IDISNA), Pamplona, Spain
| | - Carmen Sanmartín
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra (IDISNA), Pamplona, Spain
| | - Ignacio Encío
- Departamento de Ciencias de la Salud, Universidad Pública de Navarra, Pamplona, Spain
| |
Collapse
|
24
|
Thotakura N, Dadarwal M, Kumar P, Sharma G, Guru SK, Bhushan S, Raza K, Katare OP. Chitosan-Stearic Acid Based Polymeric Micelles for the Effective Delivery of Tamoxifen: Cytotoxic and Pharmacokinetic Evaluation. AAPS PharmSciTech 2017; 18:759-768. [PMID: 27287243 DOI: 10.1208/s12249-016-0563-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/31/2016] [Indexed: 12/16/2022] Open
Abstract
Chitosan is a widely employed polysaccharide with positive zeta-potential and better tissue/cell adhesion. Its hydrophilicity, high viscosity, and insolubility at physiological pH are major hurdles in proper utilization of this macromolecule. Therefore, it was conjugated with biocompatible stearic acid and the conjugate was employed to develop polymeric micelles for delivery of tamoxifen to breast cancer cells. The conjugate was characterized by FT-IR and NMR, and the nanocarrier was characterized for micromeritics, surface charge, drug loading, and morphological attributes. The efficacy was evaluated by in vitro MTT studies, safety by erythrocyte compatibility, and biodistribution by in vivo pharmacokinetic studies. Despite better drug loading and sustained drug release, cytotoxicity on MCF-7 breast cancer cells was substantially enhanced and the pharmacokinetic profile was significantly modified. The AUC was enhanced manifolds along with reduced clearance. The findings are unique and provide an alternative to the conventional lipid-based nanocarriers for better dose delivery, tissue adhesion, and desired pharmacokinetic modulation.
Collapse
|
25
|
Zhai S, Hu X, Hu Y, Wu B, Xing D. Visible light-induced crosslinking and physiological stabilization of diselenide-rich nanoparticles for redox-responsive drug release and combination chemotherapy. Biomaterials 2017; 121:41-54. [DOI: 10.1016/j.biomaterials.2017.01.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/01/2017] [Accepted: 01/02/2017] [Indexed: 02/06/2023]
|
26
|
Thakur CK, Thotakura N, Kumar R, Kumar P, Singh B, Chitkara D, Raza K. Chitosan-modified PLGA polymeric nanocarriers with better delivery potential for tamoxifen. Int J Biol Macromol 2016; 93:381-389. [PMID: 27586640 DOI: 10.1016/j.ijbiomac.2016.08.080] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/20/2016] [Accepted: 08/28/2016] [Indexed: 11/18/2022]
Abstract
Breast cancer is believed as the second most common cause of cancer-related deaths in women for which tamoxifen is frequently prescribed. Despite many promises, tamoxifen is associated with various challenges like low hydrophilicity, poor bioavailability and dose-dependent toxicity. Therefore, it was envisioned to develop tamoxifen- loaded chitosan-PLGA micelles for potential safe and better delivery of this promising agent. The chitosan-PLGA copolymer was synthesised and characterised by Fourier Transform-Infrared, Ultraviolet-visible and Nuclear Magnetic Resonance spectroscopic techniques. The drug-loaded nanocarrier was characterised for drug-pay load, micrometrics, surface charge and morphological attributes. The developed system was evaluated for in-vitro drug release, haemolytic profile, cellular-uptake, anticancer activity by cytotoxicity assay and dermatokinetic studies. The developed nano-system was able to substantially load the drug and control the drug release. The in-vitro cytotoxicity offered by the system was significantly enhanced vis-a-vis plain drug, and there was no substantial haemolysis. The IC50 values were significantly decreased and the nanocarriers were uptaken by MCF-7 cells, noticeably. The carrier was able to locate the drug in the interiors of rat skin in considerable amounts to that of the conventional product. This approach is promising as it provides a biocompatible and effective option for better delivery of tamoxifen.
Collapse
Affiliation(s)
- Chanchal Kiran Thakur
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist. Ajmer 305 817, Rajasthan, India
| | - Nagarani Thotakura
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist. Ajmer 305 817, Rajasthan, India
| | - Rajendra Kumar
- UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites, Panjab University, 160 014 Chandigarh, India
| | - Pramod Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist. Ajmer 305 817, Rajasthan, India
| | - Bhupinder Singh
- UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites, Panjab University, 160 014 Chandigarh, India; Division of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, 140 604 Chandigarh, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Vidya Vihar Campus, Pilani 333031, Rajasthan, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist. Ajmer 305 817, Rajasthan, India.
| |
Collapse
|
27
|
Rizvi MA, Mane M, Khuroo MA, Peerzada GM. Computational survey of ligand properties on iron(III)–iron(II) redox potential: exploring natural attenuation of nitroaromatic compounds. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1813-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
28
|
Raza K, Thotakura N, Kumar P, Joshi M, Bhushan S, Bhatia A, Kumar V, Malik R, Sharma G, Guru SK, Katare OP. C60-fullerenes for delivery of docetaxel to breast cancer cells: A promising approach for enhanced efficacy and better pharmacokinetic profile. Int J Pharm 2015; 495:551-559. [PMID: 26383841 DOI: 10.1016/j.ijpharm.2015.09.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 01/23/2023]
Abstract
Docetaxel has always attracted the researchers owing to its promises and challenges. Despite marked efficacy, concerns like poor aqueous solubility, lower bioavailability, poor tissue penetration and dose related side-effects offer further scope of research on docetaxel. The present study aims to explore the potential of C60-fullerenes in the delivery of docetaxel to cancerous cells. C60-fullerenes were carboxylated, acylated and conjugated with the drug. The chemical processes were monitored by UV, FT-IR and NMR spectroscopy. The conjugate was further characterized for drug loading, micromeritics, drug release, morphology and evaluated for in-vitro cytotoxicity, haemolysis and in-vivo pharmacokinetic profile. The developed nanoconstruct was able to enhance the bioavailability of docetaxel by 4.2 times and decrease the drug clearance by 50%. The developed system was able to control the drug release and was found to be compatible with erythrocytes. The cytotoxic potential on studied MCF-7 and MDA-MB231 cell lines was also enhanced by many folds, indicating marked promise in efficacy enhancement and dose reduction. The present findings are encouraging and offer a technique to enhance the delivery and efficacy potential of anticancer agents, especially belonging to BCS class IV.
Collapse
Affiliation(s)
- Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Ajmer, Rajasthan 305817, India.
| | - Nagarani Thotakura
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Ajmer, Rajasthan 305817, India
| | - Pramod Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Ajmer, Rajasthan 305817, India
| | - Mayank Joshi
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Ajmer, Rajasthan 305817, India
| | - Shashi Bhushan
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Amit Bhatia
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Faculty of Applied Medical Sciences, Lovely Professional University, Jalandhar, Punjab 144806, India
| | - Vipin Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Ajmer, Rajasthan 305817, India
| | - Ruchi Malik
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Ajmer, Rajasthan 305817, India
| | - Gajanand Sharma
- Division of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Santosh Kumar Guru
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - O P Katare
- Division of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| |
Collapse
|
29
|
Paul A, Nanjunda R, Kumar A, Laughlin S, Nhili R, Depauw S, Deuser SS, Chai Y, Chaudhary AS, David-Cordonnier MH, Boykin DW, Wilson WD. Mixed up minor groove binders: Convincing A·T specific compounds to recognize a G·C base pair. Bioorg Med Chem Lett 2015; 25:4927-4932. [PMID: 26051649 DOI: 10.1016/j.bmcl.2015.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/06/2015] [Indexed: 01/08/2023]
Abstract
DNA minor-groove-binding compounds have limited biological applications, in part due to problems with sequence specificity that cause off-target effects. A model to enhance specificity has been developed with the goal of preparing compounds that bind to two AT sites separated by G·C base pairs. Compounds of interest were probed using thermal melting, circular dichroism, mass spectrometry, biosensor-SPR, and molecular modeling methods. A new minor groove binder that can strongly and specifically recognize a single G·C base pair with flanking AT sequences has been prepared. This multi-site DNA recognition mode offers novel design principles to recognize entirely new DNA motifs.
Collapse
Affiliation(s)
- Ananya Paul
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Rupesh Nanjunda
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Arvind Kumar
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Sarah Laughlin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Raja Nhili
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM-University of Lille and Centre Hospitalier of Lille, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun, F-59045 Lille Cedex, France
| | - Sabine Depauw
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM-University of Lille and Centre Hospitalier of Lille, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun, F-59045 Lille Cedex, France
| | - Shelby Sheldon Deuser
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Yun Chai
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Arpana S Chaudhary
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Marie-Hélène David-Cordonnier
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM-University of Lille and Centre Hospitalier of Lille, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun, F-59045 Lille Cedex, France
| | - David W Boykin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - W David Wilson
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
30
|
Rizvi MA, Zaki M, Afzal M, Mane M, Kumar M, Shah BA, Srivastav S, Srikrishna S, Peerzada GM, Tabassum S. Nuclear blebbing of biologically active organoselenium compound towards human cervical cancer cell (HeLa): In vitro DNA/HSA binding, cleavage and cell imaging studies. Eur J Med Chem 2015; 90:876-88. [PMID: 25535953 DOI: 10.1016/j.ejmech.2014.12.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 12/06/2014] [Accepted: 12/09/2014] [Indexed: 11/26/2022]
|
31
|
Sontakke VA, Kate AN, Ghosh S, More P, Gonnade R, Kumbhar NM, Kumbhar AA, Chopade BA, Shinde VS. Synthesis, DNA interaction and anticancer activity of 2-anthryl substituted benzimidazole derivatives. NEW J CHEM 2015. [DOI: 10.1039/c4nj02415j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Anthryl substituted benzimidazole derivatives were synthesized and anticancer activity, cellular uptake, DNA interaction and molecular docking studies have been accomplished.
Collapse
Affiliation(s)
- Vyankat A. Sontakke
- Garware Research Centre
- Department of Chemistry
- Savitribai Phule Pune University (formerly University of Pune)
- Pune-411007
- India
| | - Anup N. Kate
- Department of Chemistry
- Savitribai Phule Pune University (formerly University of Pune)
- Pune-411007
- India
| | - Sougata Ghosh
- Institute of Bioinformatics and Biotechnology
- Savitribai Phule Pune University (formerly University of Pune)
- Pune-411007
- India
| | - Piyush More
- Institute of Bioinformatics and Biotechnology
- Savitribai Phule Pune University (formerly University of Pune)
- Pune-411007
- India
| | - Rajesh Gonnade
- Centre for Materials Characterization
- National Chemical Laboratory
- India
| | - Navanath M. Kumbhar
- Rajiv Gandhi Institute of Information Technology and Biotechnology
- Bharati Vidyapeeth Deemed University
- Pune-411046
- India
| | - Anupa A. Kumbhar
- Department of Chemistry
- Savitribai Phule Pune University (formerly University of Pune)
- Pune-411007
- India
| | - Balu A. Chopade
- Institute of Bioinformatics and Biotechnology
- Savitribai Phule Pune University (formerly University of Pune)
- Pune-411007
- India
| | - Vaishali S. Shinde
- Garware Research Centre
- Department of Chemistry
- Savitribai Phule Pune University (formerly University of Pune)
- Pune-411007
- India
| |
Collapse
|