1
|
Li Y, Tian X, Luo J, Bao T, Wang S, Wu X. Molecular mechanisms of aging and anti-aging strategies. Cell Commun Signal 2024; 22:285. [PMID: 38790068 PMCID: PMC11118732 DOI: 10.1186/s12964-024-01663-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Aging is a complex and multifaceted process involving a variety of interrelated molecular mechanisms and cellular systems. Phenotypically, the biological aging process is accompanied by a gradual loss of cellular function and the systemic deterioration of multiple tissues, resulting in susceptibility to aging-related diseases. Emerging evidence suggests that aging is closely associated with telomere attrition, DNA damage, mitochondrial dysfunction, loss of nicotinamide adenine dinucleotide levels, impaired macro-autophagy, stem cell exhaustion, inflammation, loss of protein balance, deregulated nutrient sensing, altered intercellular communication, and dysbiosis. These age-related changes may be alleviated by intervention strategies, such as calorie restriction, improved sleep quality, enhanced physical activity, and targeted longevity genes. In this review, we summarise the key historical progress in the exploration of important causes of aging and anti-aging strategies in recent decades, which provides a basis for further understanding of the reversibility of aging phenotypes, the application prospect of synthetic biotechnology in anti-aging therapy is also prospected.
Collapse
Affiliation(s)
- Yumeng Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Xutong Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Juyue Luo
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Tongtong Bao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Shujin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| |
Collapse
|
2
|
Sharma R, Malviya R, Srivastava S, Ahmad I, Rab SO, Uniyal P. Targeted Treatment Strategies for Mitochondria Dysfunction: Correlation with Neurological Disorders. Curr Drug Targets 2024; 25:683-699. [PMID: 38910425 DOI: 10.2174/0113894501303824240604103732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 06/25/2024]
Abstract
Mitochondria are an essential intracellular organelle for medication targeting and delivery since they seem to create energy and conduct many other cellular tasks, and mitochondrial dysfunctions and malfunctions lead to many illnesses. Many initiatives have been taken to detect, diagnose, and image mitochondrial abnormalities, and to transport and accumulate medicines precisely to mitochondria, all because of special mitochondrial aspects of the pathophysiology of cancer. In addition to the negative membrane potential and paradoxical mitochondrial dynamics, they include high temperatures, high levels of reactive oxygen species, high levels of glutathione, and high temperatures. Neurodegenerative diseases represent a broad spectrum of debilitating illnesses. They are linked to the loss of certain groups of neurons based on an individual's physiology or anatomy. The mitochondria in a cell are generally accepted as the authority with respect to ATP production. Disruption of this system is linked to several cellular physiological issues. The development of neurodegenerative disorders has been linked to mitochondrial malfunction, according to pathophysiological studies. There seems to be substantial evidence connecting mitochondrial dysfunction and oxidative stress to the development of neurodegenerative disorders. It has been extensively observed that mitochondrial malfunction triggers autophagy, which plays a role in neurodegenerative disorders. In addition, excitotoxicity and mitochondrial dysfunction have been linked to the development of neurodegenerative disorders. The pathophysiology of neurodegenerative illnesses has been linked to increased apoptosis and necrosis, as well as mitochondrial malfunction. A variety of synthetic and natural treatments have shown efficacy in treating neurodegenerative illnesses caused by mitochondrial failure. Neurodegenerative illnesses can be effectively treated with existing drugs that target mitochondria, although their precise formulations are poorly understood. Therefore, there is an immediate need to focus on creating drug delivery methods specifically targeted at mitochondria in the treatment and diagnosis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Rishav Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Saurabh Srivastava
- School of Pharmacy, KPJ Healthcare University College (KPJUC), Nilai, Malaysia
- Era College of Pharmacy, Era University, Lucknow, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
3
|
Khan T, Waseem R, Zehra Z, Aiman A, Bhardwaj P, Ansari J, Hassan MI, Islam A. Mitochondrial Dysfunction: Pathophysiology and Mitochondria-Targeted Drug Delivery Approaches. Pharmaceutics 2022; 14:pharmaceutics14122657. [PMID: 36559149 PMCID: PMC9785072 DOI: 10.3390/pharmaceutics14122657] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Mitochondria are implicated in a wide range of functions apart from ATP generation, and, therefore, constitute one of the most important organelles of cell. Since healthy mitochondria are essential for proper cellular functioning and survival, mitochondrial dysfunction may lead to various pathologies. Mitochondria are considered a novel and promising therapeutic target for the diagnosis, treatment, and prevention of various human diseases including metabolic disorders, cancer, and neurodegenerative diseases. For mitochondria-targeted therapy, there is a need to develop an effective drug delivery approach, owing to the mitochondrial special bilayer structure through which therapeutic molecules undergo multiple difficulties in reaching the core. In recent years, various nanoformulations have been designed such as polymeric nanoparticles, liposomes, inorganic nanoparticles conjugate with mitochondriotropic moieties such as mitochondria-penetrating peptides (MPPs), triphenylphosphonium (TPP), dequalinium (DQA), and mitochondrial protein import machinery for overcoming barriers involved in targeting mitochondria. The current approaches used for mitochondria-targeted drug delivery have provided promising ways to overcome the challenges associated with targeted-drug delivery. Herein, we review the research from past years to the current scenario that has identified mitochondrial dysfunction as a major contributor to the pathophysiology of various diseases. Furthermore, we discuss the recent advancements in mitochondria-targeted drug delivery strategies for the pathologies associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Tanzeel Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Rashid Waseem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Zainy Zehra
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Ayesha Aiman
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Priyanka Bhardwaj
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Jaoud Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
- Correspondence:
| |
Collapse
|
4
|
Bian C, Zheng Z, Su J, Wang H, Chang S, Xin Y, Jiang X. Targeting Mitochondrial Metabolism to Reverse Radioresistance: An Alternative to Glucose Metabolism. Antioxidants (Basel) 2022; 11:2202. [PMID: 36358574 PMCID: PMC9686736 DOI: 10.3390/antiox11112202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Radiotherapy failure and poor tumor prognosis are primarily attributed to radioresistance. Improving the curative effect of radiotherapy and delaying cancer progression have become difficult problems for clinicians. Glucose metabolism has long been regarded as the main metabolic process by which tumor cells meet their bioenergetic and anabolic needs, with the complex interactions between the mitochondria and tumors being ignored. This misconception was not dispelled until the early 2000s; however, the cellular molecules and signaling pathways involved in radioresistance remain incompletely defined. In addition to being a key metabolic site that regulates tumorigenesis, mitochondria can influence the radiation effects of malignancies by controlling redox reactions, participating in oxidative phosphorylation, producing oncometabolites, and triggering apoptosis. Therefore, the mitochondria are promising targets for the development of novel anticancer drugs. In this review, we summarize the internal relationship and related mechanisms between mitochondrial metabolism and cancer radioresistance, thus exploring the possibility of targeting mitochondrial signaling pathways to reverse radiation insensitivity. We suggest that attention should be paid to the potential value of mitochondria in prolonging the survival of cancer patients.
Collapse
Affiliation(s)
- Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Huanhuan Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Sitong Chang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
5
|
Zhang S, Wu X, Wang J, Shi Y, Hu Q, Cui W, Bai H, Zhou J, Du Y, Han L, Li L, Feng D, Ge S, Qu Y. Adiponectin/AdiopR1 signaling prevents mitochondrial dysfunction and oxidative injury after traumatic brain injury in a SIRT3 dependent manner. Redox Biol 2022; 54:102390. [PMID: 35793583 PMCID: PMC9287731 DOI: 10.1016/j.redox.2022.102390] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 10/26/2022] Open
Abstract
Mitochondrial dysfunction and oxidative injury, which contribute to worsening of neurological deficits and poor clinical outcomes, are hallmarks of secondary brain injury after TBI. Adiponectin (APN), beyond its well-established regulatory effects on metabolism, is also essential for maintaining normal brain functions by binding APN receptors that are ubiquitously expressed in the brain. Currently, the significance of the APN/APN receptor (AdipoR) signaling pathway in secondary injury after TBI and the specific mechanisms have not been conclusively determined. In this study, we found that APN knockout aggravated brain functional deficits, increased brain edema and lesion volume, and exacerbated oxidative stress as well as apoptosis after TBI. These effects were significantly alleviated after APN receptor agonist (AdipoRon) treatment. Moreover, we found that AdipoR1, rather than AdipoR2, mediated the protective effects of APN/AdipoR signaling against oxidative stress and brain injury after TBI. In neuron-specific AdipoR1 knockout mice, mitochondrial damage was more severe after TBI, indicating a potential association between APN/AdipoR1 signaling inactivation and mitochondrial damage. Mechanistically, neuron-specific knockout of SIRT3, the most important deacetylase in the mitochondria, reversed the neuroprotective effects of AdipoRon after TBI. Then, PRDX3, a critical antioxidant enzyme in the mitochondria, was identified as a vital downstream target of the APN/SIRT3 axis to alleviate oxidative injury after TBI. Finally, we revealed that APN/AdipoR1 signaling promotes SIRT3 transcription by activating the AMPK-PGC pathway. In conclusion, APN/AdipoR1 signaling plays a protective role in post-TBI oxidative damage by restoring the SIRT3-mediated mitochondrial homeostasis and antioxidant system.
Collapse
Affiliation(s)
- Shenghao Zhang
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xun Wu
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Jin Wang
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yingwu Shi
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Qing Hu
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Wenxing Cui
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Hao Bai
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Jinpeng Zhou
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yong Du
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Liying Han
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Leiyang Li
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Dayun Feng
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Shunnan Ge
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| | - Yan Qu
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
6
|
Liu W, Qaed E, Zhu HG, Dong MX, Tang Z. Non-energy mechanism of phosphocreatine on the protection of cell survival. Biomed Pharmacother 2021; 141:111839. [PMID: 34174505 DOI: 10.1016/j.biopha.2021.111839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
If mitochondrial energy availability or oxidative metabolism is altered, patients will suffer from insufficient energy supply Phosphocreatine (PCr) not only acts as an energy carrier, but also acts as an antioxidant and defensive agent to maintain the integrity and stability of the membrane, to maintain ATP homeostasis through regulating mitochondrial respiration. Meanwhile, PCr can enhance calcium balance and reduce morphological pathological changes, ultimately, PCr helps to reduce apoptosis. On the other aspect, the activities of ATP synthase and MitCK play a crucial role in the maintenance of cellular energy metabolic function. It is interesting to note, PCr not only rises the activities of ATP synthase as well as MitCK, but also promotes these two enzymatic reactions. Additionally, PCr can also inhibit mitochondrial permeability transition in a concentration-dependent manner, prevent ROS and CytC from spilling into the cytoplasm, thereby inhibit the release of proapoptotic factors caspase-3 and caspase-9, and eventually, effectively prevent LPS-induced apoptosis of cells. Understandably, PCr prevents the apoptosis caused by abnormal mitochondrial energy metabolism and has a protective role in a non-energy manner. Moreover, recent studies have shown that PCr protects cell survival through PI3K/Akt/eNOS, MAPK pathway, and inhibition of Ang II-induced NF-κB activation. Furthermore, PCr antagonizes oxidative stress through the activation of PI3K/Akt/GSK3b intracellular pathway, PI3K/AKT-PGC1α signaling pathway, while through the promotion of SIRT3 expression to maintain normal cell metabolism. Interestingly, PCr results in delaying the time to enter pathological metabolism through the delayed activation of AMPK pathway, which is different from previous studies, now we propose the hypothesis that the "miRNA-JAK2/STAT3 -CypD pathway" may take part in protecting cells from apoptosis, PCr may be further be involved in the dynamic relationship between CypD and STAT3. Furthermore, we believe that PCr and CypD would be the central link to maintain cell survival and maintain cell stability and mitochondrial repair under the mitochondrial dysfunction caused by oxidative stress. This review provides the modern progress knowledge and views on the molecular mechanism and molecular targets of PCr in a non-energy way.
Collapse
Affiliation(s)
- Wu Liu
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044 Dalian, China
| | - Eskandar Qaed
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044 Dalian, China
| | - Han Guo Zhu
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044 Dalian, China
| | - Ma Xiao Dong
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044 Dalian, China
| | - ZeYao Tang
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044 Dalian, China.
| |
Collapse
|
7
|
Wang YX, Han FY, Duan ZK, Chang Y, Lin B, Wang XB, Huang XX, Yao GD, Song SJ. Phenolics from Archidendron clypearia (Jack) I.C.Nielsen protect SH-SY5Y cells against H 2O 2-induced oxidative stress. PHYTOCHEMISTRY 2020; 176:112414. [PMID: 32446133 DOI: 10.1016/j.phytochem.2020.112414] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Five undescribed phenolics named pithecellobiumin C-G, along with thirteen known ones were isolated from the twigs and leaves of Archidendron clypearia (Jack) I.C.Nielsen. Their structures were elucidated based on comprehensive spectroscopic analyses, combined with computer-assisted structure elucidation software (ACD/Structure Elucidator) and gauge-independent atomic orbitals (GIAO) NMR chemical shift calculations. The absolute configurations were determined by comparison of experimental and calculated specific rotation and ECD curves. These compounds were tested for their neuroprotective activities against H2O2-induced injury in human neuroblastoma SH-SY5Y cells by MTT assay. Pithecellobiumin C-E exhibited noticeable neuroprotective effect. Further pharmacological study demonstrated that they could prevent cell death through inhibiting the apoptosis induction. Flow cytometry assays also proved that these compounds could attenuate reactive oxygen species (ROS) level and mitochondrial dysfunction in SH-SY5Y cells.
Collapse
Affiliation(s)
- Yu-Xi Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Liaoning province, People's Republic of China
| | - Feng-Ying Han
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Liaoning province, People's Republic of China
| | - Zhi-Kang Duan
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Liaoning province, People's Republic of China
| | - Ye Chang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Liaoning province, People's Republic of China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xiao-Bo Wang
- Chinese People's Liberation Army Logistics Support Force No. 967 Hospital, Dalian, 116021, People's Republic of China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Liaoning province, People's Republic of China; Chinese People's Liberation Army Logistics Support Force No. 967 Hospital, Dalian, 116021, People's Republic of China.
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Liaoning province, People's Republic of China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Liaoning province, People's Republic of China.
| |
Collapse
|
8
|
Wang J, Liu QB, Hou ZL, Shi SC, Ren H, Yao GD, Lin B, Huang XX, Song SJ. Discovery of guaiane-type sesquiterpenoids from the roots of Daphne genkwa with neuroprotective effects. Bioorg Chem 2020; 95:103545. [DOI: 10.1016/j.bioorg.2019.103545] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/09/2019] [Accepted: 12/21/2019] [Indexed: 12/18/2022]
|
9
|
Hill BG, Shiva S, Ballinger S, Zhang J, Darley-Usmar VM. Bioenergetics and translational metabolism: implications for genetics, physiology and precision medicine. Biol Chem 2019; 401:3-29. [PMID: 31815377 PMCID: PMC6944318 DOI: 10.1515/hsz-2019-0268] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/24/2019] [Indexed: 12/25/2022]
Abstract
It is now becoming clear that human metabolism is extremely plastic and varies substantially between healthy individuals. Understanding the biochemistry that underlies this physiology will enable personalized clinical interventions related to metabolism. Mitochondrial quality control and the detailed mechanisms of mitochondrial energy generation are central to understanding susceptibility to pathologies associated with aging including cancer, cardiac and neurodegenerative diseases. A precision medicine approach is also needed to evaluate the impact of exercise or caloric restriction on health. In this review, we discuss how technical advances in assessing mitochondrial genetics, cellular bioenergetics and metabolomics offer new insights into developing metabolism-based clinical tests and metabolotherapies. We discuss informatics approaches, which can define the bioenergetic-metabolite interactome and how this can help define healthy energetics. We propose that a personalized medicine approach that integrates metabolism and bioenergetics with physiologic parameters is central for understanding the pathophysiology of diseases with a metabolic etiology. New approaches that measure energetics and metabolomics from cells isolated from human blood or tissues can be of diagnostic and prognostic value to precision medicine. This is particularly significant with the development of new metabolotherapies, such as mitochondrial transplantation, which could help treat complex metabolic diseases.
Collapse
Affiliation(s)
- Bradford G. Hill
- Envirome Institute, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, KY 40202
| | - Sruti Shiva
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, Center for Metabolism & Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15143
| | - Scott Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Veteran Affairs Medical Center, Birmingham, AL 35294
| | - Victor M. Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
10
|
Sánchez-Melgar A, Albasanz JL, Martín M. Polyphenols and Neuroprotection: The Role of Adenosine Receptors. J Caffeine Adenosine Res 2019. [DOI: 10.1089/caff.2019.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alejandro Sánchez-Melgar
- Departamento de Química Inorgánica, Orgánica y Bioquímica, CRIB, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - José Luis Albasanz
- Departamento de Química Inorgánica, Orgánica y Bioquímica, CRIB, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Mairena Martín
- Departamento de Química Inorgánica, Orgánica y Bioquímica, CRIB, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
11
|
Arbo B, Ribeiro M, Garcia-Segura L. Development of new treatments for Alzheimer's disease based on the modulation of translocator protein (TSPO). Ageing Res Rev 2019; 54:100943. [PMID: 31430564 DOI: 10.1016/j.arr.2019.100943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 12/27/2022]
Abstract
The increase in life expectancy of the world population is associated with a higher prevalence of neurodegenerative diseases. Alzheimer's Disease (AD) is the most common neurodegenerative disease, affecting currently 43 million people over the world. To date, most of the pharmacological interventions in AD are intended for the alleviation of some of its symptoms, and there are no effective treatments to inhibit the progression of the disease. Translocator protein (TSPO) is present in contact points between the outer and the inner mitochondrial membranes and is involved in the control of steroidogenesis, inflammation and apoptosis. In the last decade, studies have shown that TSPO ligands present neuroprotective effects in different experimental models of AD, both in vitro and in vivo. The aim of this review is to analyze the data provided by these studies and to discuss if TSPO could be a viable therapeutic target for the development of new treatments for AD.
Collapse
|
12
|
de Pinho Ferreira Guiné R. Study of Consumer Acceptance by Means of Questionnaire Survey Towards Newly Developed Yogurts with Functional Ingredients. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401313666171004150928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Presently, consumers are becoming very much aware of the benefits of allying
the concepts of pleasant food with health promoting properties. Hence, the market for healthier
foods, functional foods or even nutraceuticals has risen in the past decades.
Objective:
This work was designed to assess the consumers’ possible acceptance of newly developed
yogurts with functional ingredients.
Methods:
A descriptive cross-sectional study was undertaken on a non-probabilistic sample of 347
participants. The data were collected from October to December 2015 in the Central Region of Portugal.
The questionnaires were applied by direct interview after verbally informed consent only to participants
aged 18 or over.
Results:
The results obtained showed that more than 90% of the participants liked yogurts and consumed
yogurts regularly (∼73%), either in the solid or liquid forms. The participants consumed functional
yogurts, specifically for regulation of intestinal transit (∼46%) and for weight control (∼44%).
When asked about the new yogurts with functional and detox properties, the participants indicated that
they might be potential consumers of yogurts with the ability to eliminate toxins from the body
(∼69%). In spite of recognizing the importance of adding ingredients with certain functionalities, like
parsley, watercress or celery, the consumers manifested some doubts that those ingredients might
combine well in yogurts. A regression model was deduced relating the possible consumption of detox
yogurts with some behavioural aspects like physical exercise, consumption of functional foods and detox
products.
Conclusion:
This work showed that selling yogurts with detox properties might be a good strategy because
there might be a market for that type of product. However, without trying the samples and verifying
the real taste of the products, the possible consumers have some doubts about the incorporation
of certain ingredients, even though recognizing their roles as important.
Collapse
|
13
|
De Simone A, Georgiou C, Ioannidis H, Gupta AA, Juárez-Jiménez J, Doughty-Shenton D, Blackburn EA, Wear MA, Richards JP, Barlow PN, Carragher N, Walkinshaw MD, Hulme AN, Michel J. A computationally designed binding mode flip leads to a novel class of potent tri-vector cyclophilin inhibitors. Chem Sci 2019; 10:542-547. [PMID: 30746096 PMCID: PMC6335623 DOI: 10.1039/c8sc03831g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/14/2018] [Indexed: 12/27/2022] Open
Abstract
Cyclophilins (Cyps) are a major family of drug targets that are challenging to prosecute with small molecules because the shallow nature and high degree of conservation of the active site across human isoforms offers limited opportunities for potent and selective inhibition. Herein a computational approach based on molecular dynamics simulations and free energy calculations was combined with biophysical assays and X-ray crystallography to explore a flip in the binding mode of a reported urea-based Cyp inhibitor. This approach enabled access to a distal pocket that is poorly conserved among key Cyp isoforms, and led to the discovery of a new family of sub-micromolar cell-active inhibitors that offer unprecedented opportunities for the development of next-generation drug therapies based on Cyp inhibition. The computational approach is applicable to a broad range of organic functional groups and could prove widely enabling in molecular design.
Collapse
Affiliation(s)
- Alessio De Simone
- University of Edinburgh , Joseph Black Building, King's Buildings, David Brewster Road , Edinburgh , Scotland EH9 3FJ , UK .
| | - Charis Georgiou
- University of Edinburgh , Joseph Black Building, King's Buildings, David Brewster Road , Edinburgh , Scotland EH9 3FJ , UK .
| | - Harris Ioannidis
- University of Edinburgh , Joseph Black Building, King's Buildings, David Brewster Road , Edinburgh , Scotland EH9 3FJ , UK .
| | - Arun A Gupta
- University of Edinburgh , Joseph Black Building, King's Buildings, David Brewster Road , Edinburgh , Scotland EH9 3FJ , UK .
| | - Jordi Juárez-Jiménez
- University of Edinburgh , Joseph Black Building, King's Buildings, David Brewster Road , Edinburgh , Scotland EH9 3FJ , UK .
| | - Dahlia Doughty-Shenton
- Edinburgh Phenotypic Assay Centre , University of Edinburgh , Queen's Medical Research Institute , Little France Cres , Edinburgh , Scotland EH16 4TJ , UK
| | - Elizabeth A Blackburn
- The Edinburgh Protein Production Facility (EPPF) , University of Edinburgh , Level 3 Michael Swann Building, King's Buildings, Max Born Crescent , Edinburgh , Scotland EH9 3BF , UK
| | - Martin A Wear
- The Edinburgh Protein Production Facility (EPPF) , University of Edinburgh , Level 3 Michael Swann Building, King's Buildings, Max Born Crescent , Edinburgh , Scotland EH9 3BF , UK
| | - Jonathan P Richards
- University of Edinburgh , Joseph Black Building, King's Buildings, David Brewster Road , Edinburgh , Scotland EH9 3FJ , UK .
| | - Paul N Barlow
- University of Edinburgh , Joseph Black Building, King's Buildings, David Brewster Road , Edinburgh , Scotland EH9 3FJ , UK .
| | - Neil Carragher
- Cancer Research UK Edinburgh Centre , University of Edinburgh , MRC Institute of Genetics and Molecular Medicine , Crewe Road South , Edinburgh , Scotland EH4 2XR , UK
| | - Malcolm D Walkinshaw
- University of Edinburgh , Michael Swann Building, Max Born Crescent , Edinburgh , Scotland EH9 3BF , UK
| | - Alison N Hulme
- University of Edinburgh , Joseph Black Building, King's Buildings, David Brewster Road , Edinburgh , Scotland EH9 3FJ , UK .
| | - Julien Michel
- University of Edinburgh , Joseph Black Building, King's Buildings, David Brewster Road , Edinburgh , Scotland EH9 3FJ , UK .
| |
Collapse
|
14
|
Panja D, Vedeler CA, Schubert M. Paraneoplastic cerebellar degeneration: Yo antibody alters mitochondrial calcium buffering capacity. Neuropathol Appl Neurobiol 2018; 45:141-156. [PMID: 29679372 PMCID: PMC7379599 DOI: 10.1111/nan.12492] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/02/2018] [Indexed: 12/16/2022]
Abstract
Aim Neurodegeneration is associated with dysfunction of calcium buffering capacity and thereby sustained cellular and mitochondrial calcium overload. Paraneoplastic cerebellar degeneration (PCD), characterized by progressive Purkinje neurone degeneration following paraneoplastic Yo antibody internalization and binding to cerebellar degeneration‐related protein CDR2 and CDR2L, has been linked to intracellular calcium homeostasis imbalance due to calbindin D28k malfunction. Therefore, we hypothesized that Yo antibody internalization affects not only calbindin calcium binding capacity, but also calcium‐sensitive mitochondrial‐associated signalling, causing mitochondrial calcium overload and thereby Purkinje neurone death. Methods Immunohistochemically, we evaluated cerebellar organotypic slice cultures of rat brains after inducing PCD through the application of Yo antibody‐positive PCD patient sera or purified antibodies against CDR2 and CDR2L how pharmacologically biased mitochondrial signalling affected PCD pathology. Results We found that Yo antibody internalization into Purkinje neurons caused depletion of Purkinje neurone calbindin‐immunoreactivity, cannabinoid 1 receptor over‐activation and alterations in the actions of the mitochondria permeability transition pore (MPTP), voltage‐dependent anion channels, reactive oxygen species (ROS) and Na+/Ca2+ exchangers (NCX). The pathological mechanisms caused by Yo antibody binding to CDR2 or CDR2L differed between the two targets. Yo‐CDR2 binding did not alter the mitochondrial calcium retention capacity, cyclophilin D‐independent opening of MPTP or activity of NCX. Conclusion These findings suggest that minimizing intracellular calcium overload toxicity either directly with cyclosporin‐A or indirectly with cannabidiol or the ROS scavenger butylated hydroxytoluene promotes mitochondrial calcium homeostasis and may therefore be used as future neuroprotective therapy for PCD patients.
Collapse
Affiliation(s)
- D Panja
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - C A Vedeler
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway.,Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - M Schubert
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
15
|
Tang L, Wei F, Wu Y, He Y, Shi L, Xiong F, Gong Z, Guo C, Li X, Deng H, Cao K, Zhou M, Xiang B, Li X, Li Y, Li G, Xiong W, Zeng Z. Role of metabolism in cancer cell radioresistance and radiosensitization methods. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:87. [PMID: 29688867 PMCID: PMC5914062 DOI: 10.1186/s13046-018-0758-7] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Radioresistance is a major factor leading to the failure of radiotherapy and poor prognosis in tumor patients. Following the application of radiotherapy, the activity of various metabolic pathways considerably changes, which may result in the development of resistance to radiation. MAIN BODY Here, we discussed the relationships between radioresistance and mitochondrial and glucose metabolic pathways, aiming to elucidate the interplay between the tumor cell metabolism and radiotherapy resistance. In this review, we additionally summarized the potential therapeutic targets in the metabolic pathways. SHORT CONCLUSION The aim of this review was to provide a theoretical basis and relevant references, which may lead to the improvement of the sensitivity of radiotherapy and prolong the survival of cancer patients.
Collapse
Affiliation(s)
- Le Tang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Wei
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yingfen Wu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yi He
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lei Shi
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Deng
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ke Cao
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
16
|
Kim T, Son WS, Morshed MN, Londhe AM, Jung SY, Park JH, Park WK, Lim SM, Park KD, Cho SJ, Jeong KS, Lee J, Pae AN. Discovery of thienopyrrolotriazine derivatives to protect mitochondrial function against Aβ-induced neurotoxicity. Eur J Med Chem 2017; 141:240-256. [PMID: 29031071 DOI: 10.1016/j.ejmech.2017.09.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 01/13/2023]
Abstract
Recovery of mitochondrial dysfunction has gained increasing attention as an alternative therapeutic strategy for Alzheimer's disease (AD). Recent studies suggested that the 18 kDa mitochondrial translocator protein (TSPO) has the potential to serve as a drug target for the treatment of AD. In this study, we generated a structure-based pharmacophore model and virtually screened a commercial library, identifying SVH07 as a virtual hit, which contained a tricyclic core structure, thieno[2',3':4,5]pyrrolo[1,2-d][1,2,4]triazine group. A series of SVH07 analogues were synthesized and their effects on the mitochondrial membrane potential and ATP production were determined by using neuronal cells under Aβ-induced toxicity. Among these analogues, compound 26 significantly recovered mitochondrial membrane depolarization and ATP production. In vitro binding assays indicated that SVH07 and 26 showed high affinities to TSPO with the IC50 values in a nanomolar range. We believe that compound 26 is a promising lead compound for the development of TSPO-targeted mitochondrial functional modulators with therapeutic potential in AD.
Collapse
Affiliation(s)
- TaeHun Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Biological Chemistry, Korea University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejon 34113, Republic of Korea
| | - Woo Seung Son
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Department of Chemistry, Yonsei University, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Mohammad Neaz Morshed
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Center for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka 1000, Bangladesh
| | - Ashwini M Londhe
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Biological Chemistry, Korea University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejon 34113, Republic of Korea
| | - Seo Yun Jung
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Woo-Kyu Park
- Center for Drug Discovery Technology, Korea Research Institute of Chemical Technology, Gajeong-ro 141, Yuseong-gu, Daejon 34114, Republic of Korea
| | - Sang Min Lim
- Biological Chemistry, Korea University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejon 34113, Republic of Korea; Center for Neuro-Medicine, Korea Institute of Science and Technology (KIST), Hwarangno 14- gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Biological Chemistry, Korea University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejon 34113, Republic of Korea
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Kyu-Sung Jeong
- Department of Chemistry, Yonsei University, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Jiyoun Lee
- Department of Global Medical Science, Sungshin University, Seoul 01133, Republic of Korea.
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Biological Chemistry, Korea University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejon 34113, Republic of Korea.
| |
Collapse
|
17
|
Alvariño R, Alonso E, Tribalat MA, Gegunde S, Thomas OP, Botana LM. Evaluation of the Protective Effects of Sarains on H 2O 2-Induced Mitochondrial Dysfunction and Oxidative Stress in SH-SY5Y Neuroblastoma Cells. Neurotox Res 2017; 32:368-380. [PMID: 28478531 DOI: 10.1007/s12640-017-9748-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/19/2017] [Accepted: 04/25/2017] [Indexed: 12/20/2022]
Abstract
Sarains are diamide alkaloids isolated from the Mediterranean sponge Haliclona (Rhizoniera) sarai that have previously shown antibacterial, insecticidal and anti-fouling activities. In this study, we examined for the first time the neuroprotective effects of sarains 1, 2 and A against oxidative stress in a human neuronal model. SH-SY5Y cells were co-incubated with sarains at concentrations ranging from 0.01 to 10 μM, and the well-known oxidant hydrogen peroxide at 150 μM for 6 h and the protective effects of the compounds were evaluated. Among the sarains tested, sarain A was the most promising compound, improving mitochondrial function and decreasing reactive oxygen species levels in human neuroblastoma cells treated with the compound at 0.01, 0.1 and 1 μM. This compound was also able to increase the activity of the antioxidant enzymes superoxide dismutases by inducing the translocation of the nuclear factor E2-related factor 2 (Nrf2) to the nucleus at the lower concentrations tested (0.01 and 0.1 μM). Moreover, sarain A at 0.1 and 1 μM blocked the mitochondrial permeability transition pore (mPTP) opening through cyclophilin D inhibition. These results suggest that the protective effects produced by the treatment with sarain A are related with its ability to block the mPTP and to enhance the Nrf2 pathway, indicating that sarain A may be a candidate compound for further studies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Rebeca Alvariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27003, Lugo, Spain
| | - Eva Alonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27003, Lugo, Spain
| | - Marie-Aude Tribalat
- Géoazur UMR Université Nice Sophia Antipolis, 250 Avenue Albert Einstein, 06108, Nice, France
| | - Sandra Gegunde
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27003, Lugo, Spain
| | - Olivier P Thomas
- Géoazur UMR Université Nice Sophia Antipolis, 250 Avenue Albert Einstein, 06108, Nice, France.,Marine Biodiscovery, School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27003, Lugo, Spain.
| |
Collapse
|
18
|
Yaseen MA, Sutin J, Wu W, Fu B, Uhlirova H, Devor A, Boas DA, Sakadžić S. Fluorescence lifetime microscopy of NADH distinguishes alterations in cerebral metabolism in vivo. BIOMEDICAL OPTICS EXPRESS 2017; 8:2368-2385. [PMID: 28663879 PMCID: PMC5480486 DOI: 10.1364/boe.8.002368] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 05/06/2023]
Abstract
Evaluating cerebral energy metabolism at microscopic resolution is important for comprehensively understanding healthy brain function and its pathological alterations. Here, we resolve specific alterations in cerebral metabolism in vivo in Sprague Dawley rats utilizing minimally-invasive 2-photon fluorescence lifetime imaging (2P-FLIM) measurements of reduced nicotinamide adenine dinucleotide (NADH) fluorescence. Time-resolved fluorescence lifetime measurements enable distinction of different components contributing to NADH autofluorescence. Ostensibly, these components indicate different enzyme-bound formulations of NADH. We observed distinct variations in the relative proportions of these components before and after pharmacological-induced impairments to several reactions involved in glycolytic and oxidative metabolism. Classification models were developed with the experimental data and used to predict the metabolic impairments induced during separate experiments involving bicuculline-induced seizures. The models consistently predicted that prolonged focal seizure activity results in impaired activity in the electron transport chain, likely the consequence of inadequate oxygen supply. 2P-FLIM observations of cerebral NADH will help advance our understanding of cerebral energetics at a microscopic scale. Such knowledge will aid in our evaluation of healthy and diseased cerebral physiology and guide diagnostic and therapeutic strategies that target cerebral energetics.
Collapse
Affiliation(s)
- Mohammad A. Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jason Sutin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Weicheng Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Buyin Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Hana Uhlirova
- Department of Neurosciences and Radiology, UC San Diego, La Jolla, CA, USA
- Current affiliation: Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Anna Devor
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurosciences and Radiology, UC San Diego, La Jolla, CA, USA
| | - David A. Boas
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
19
|
Mitochondrial dysfunction associated with nitric oxide pathways in glutamate neurotoxicity. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2017; 29:92-97. [DOI: 10.1016/j.arteri.2016.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 12/26/2022]
|
20
|
Yang Z, Zhang D, Zhang Y, Wu M, Liu H, Han X, Zheng Q, Huang Y, Chen C, Zhang L, Yan D, Zhao Y, Xiao X. Thermal activities of 6-gingerol, 8-gingerol and 6-shogaol on the potentiation of mitochondria thermogenesis based on microcalorimetry. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY 2017; 127:1787-1795. [DOI: 10.1007/s10973-016-5578-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
|
21
|
HIV-1 gp120-Mediated Mitochondrial Dysfunction and HIV-Associated Neurological Disorders. Neurotox Res 2016; 30:135-7. [PMID: 27072361 DOI: 10.1007/s12640-016-9619-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 12/13/2022]
Abstract
The treatment of HIV infection presents a great challenge among the patients who develop various forms of cognitive impairments. Particularly, the neurotoxicity associated with HIV is attributed to different viral proteins present in HIV, and is a root cause for HIV-associated neurocognitive disorders (HAND). A common characteristic among several neurodegenerative disorders including HAND is mitochondrial dysfunction in various brain cells. However, there has been very little effort to explore the possibility of exploiting mitochondrial dynamics in HAND treatment. A recent study by Avdoshina and colleagues has reported the role of mitochondrial dysfunction in HIV-1 gp120-mediated neuronal dysfunction, which presents a novel mechanism for the development of adjunct therapy to treat HAND.
Collapse
|