1
|
Dapkekar AB, Satyanarayana G. Electrochemically driven regioselective construction of 4-sulfenyl-isochromenones from o-alkynylbenzoates and diaryl disulfides. Org Biomol Chem 2024; 22:7111-7116. [PMID: 39140309 DOI: 10.1039/d4ob01137f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Herein, we report a convenient and environmentally friendly electrochemical technique that enables the regioselective construction of 4-sulfenyl-1H-isochromen-1-ones using readily available precursors such as o-alkynyl benzoates and diaryl disulfides. This electrochemical process has been accomplished through constant current electrolysis in an undivided cell under external acid, catalyst, oxidant, or metal-free conditions. Owing to this protocol's mild reaction conditions, the products are obtained in good to very good yields, demonstrating a broad substrate scope and functional group tolerance.
Collapse
Affiliation(s)
- Anil Balajirao Dapkekar
- Department of Chemistry, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana 502284, India.
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana 502284, India.
| |
Collapse
|
2
|
Tammam MA, Gamal El-Din MI, Abood A, El-Demerdash A. Recent advances in the discovery, biosynthesis, and therapeutic potential of isocoumarins derived from fungi: a comprehensive update. RSC Adv 2023; 13:8049-8089. [PMID: 36909763 PMCID: PMC9999372 DOI: 10.1039/d2ra08245d] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/26/2023] [Indexed: 03/12/2023] Open
Abstract
Microorganisms still remain the main hotspots in the global drug discovery avenue. In particular, fungi are highly prolific producers of vast structurally diverse specialized secondary metabolites, which have displayed a myriad of biomedical potentials. Intriguingly, isocoumarins is one distinctive class of fungal natural products polyketides, which demonstrated numerous remarkable biological and pharmacological activities. This review article provides a comprehensive state-of-the-art over the period 2000-2022 about the discovery, isolation, classifications, and therapeutic potentials of isocoumarins exclusively reported from fungi. Indeed, a comprehensive list of 351 structurally diverse isocoumarins were documented and classified according to their fungal sources [16 order/28 family/55 genera] where they have been originally discovered along with their reported pharmacological activities wherever applicable. Also, recent insights around their proposed and experimentally proven biosynthetic pathways are also briefly discussed.
Collapse
Affiliation(s)
- Mohamed A Tammam
- Department of Biochemistry, Faculty of Agriculture, Fayoum University Fayoum 63514 Egypt
| | - Mariam I Gamal El-Din
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University Cairo 11566 Egypt
| | - Amira Abood
- Chemistry of Natural and Microbial Products Department, National Research Center Dokki Cairo Egypt
- School of Bioscience, University of Kent Canterbury UK
| | - Amr El-Demerdash
- Organic Chemistry Division, Department of Chemistry, Faculty of Sciences, Mansoura University Mansoura 35516 Egypt
- Department of Biochemistry and Metabolism, John Innes Centre Norwich Research Park Norwich NR4 7UH UK
| |
Collapse
|
3
|
Zhang D, Li S, Fan M, Zhao C. The Novel Compounds with Biological Activity Derived from Soil Fungi in the Past Decade. Drug Des Devel Ther 2022; 16:3493-3555. [PMID: 36248243 PMCID: PMC9553542 DOI: 10.2147/dddt.s377921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/17/2022] [Indexed: 11/30/2022] Open
Abstract
The secondary metabolites isolated from soil fungi have received more and more attention, especially new compounds that exhibited good biological activities. In this review, a total of 546 new compounds are included in the relevant literature since 2011. The new compounds are isolated from soil fungi, We divided these compounds into seven categories, including alkaloids, terpenoids, steroids, ketones, phenylpropanoids, quinones, esters, lactones, etc. In addition, the biological activities and structure-activity relationships of these compounds have also been fully discussed. The activities of these compounds are roughly divided into eight categories, including anticancer activity, antimicrobial activity, anti-inflammatory activity, antioxidant activity, antiviral activity, antimalarial activity, immunosuppressive activity and other activities. Since natural products are an important source of new drugs, this review may have a positive guiding effect on drug screening.
Collapse
Affiliation(s)
- Danyu Zhang
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Science, Beijing Normal University, Beijing, People’s Republic of China
| | - Shoujie Li
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Science, Beijing Normal University, Beijing, People’s Republic of China
| | - Mohan Fan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Changqi Zhao
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Science, Beijing Normal University, Beijing, People’s Republic of China,Correspondence: Changqi Zhao, Tel +86-5880-5046, Email
| |
Collapse
|
4
|
Tsivileva OM, Koftin OV, Evseeva NV. Coumarins as Fungal Metabolites with Potential Medicinal Properties. Antibiotics (Basel) 2022; 11:1156. [PMID: 36139936 PMCID: PMC9495007 DOI: 10.3390/antibiotics11091156] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Coumarins are a structurally varied set of 2H-chromen-2-one compounds categorized also as members of the benzopyrone group of secondary metabolites. Coumarin derivatives attract interest owing to their wide practical application and the unique reactivity of fused benzene and pyrone ring systems in molecular structure. Coumarins have their own specific fingerprints as antiviral, antimicrobial, antioxidant, anti-inflammatory, antiadipogenic, cytotoxic, apoptosis, antitumor, antitubercular, and cytotoxicity agents. Natural products have played an essential role in filling the pharmaceutical pipeline for thousands of years. Biological effects of natural coumarins have laid the basis of low-toxic and highly effective drugs. Presently, more than 1300 coumarins have been identified in plants, bacteria, and fungi. Fungi as cultivated microbes have provided many of the nature-inspired syntheses of chemically diverse drugs. Endophytic fungi bioactivities attract interest, with applications in fields as diverse as cancer and neuronal injury or degeneration, microbial and parasitic infections, and others. Fungal mycelia produce several classes of bioactive molecules, including a wide group of coumarins. Of promise are further studies of conditions and products of the natural and synthetic coumarins' biotransformation by the fungal cultures, aimed at solving the urgent problem of searching for materials for biomedical engineering. The present review evaluates the fungal coumarins, their structure-related peculiarities, and their future therapeutic potential. Special emphasis has been placed on the coumarins successfully bioprospected from fungi, whereas an industry demand for the same coumarins earlier found in plants has faced hurdles. Considerable attention has also been paid to some aspects of the molecular mechanisms underlying the coumarins' biological activity. The compounds are selected and grouped according to their cytotoxic, anticancer, antibacterial, antifungal, and miscellaneous effects.
Collapse
Affiliation(s)
- Olga M. Tsivileva
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Oleg V. Koftin
- Department of Biochemistry, V.I. Razumovsky Saratov State Medical University, 112 ul. Bol’shaya Kazach’ya, Saratov 410012, Russia
| | - Nina V. Evseeva
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia
| |
Collapse
|
5
|
KURT A, KOCA M. Optoelectronic Parameters of 2-oxo-2-(1-oxo-1H-isochromen-3-yl)ethyl methacrylate Compound Thin Film. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1028320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
6
|
Ghosh S, Nag M, Lahiri D, Sarkar T, Pati S, Joshi S, Ray RR. New holistic approach for the management of biofilm‐associated infections by myco‐metabolites. J Basic Microbiol 2022; 62:1291-1306. [PMID: 35373364 DOI: 10.1002/jobm.202200047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 03/05/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Sreejita Ghosh
- Department of Biotechnology Maulana Abul Kalam Azad University of Technology Haringhata West Bengal India
| | - Moupriya Nag
- Department of Biotechnology University of Engineering & Management Kolkata West Bengal India
| | - Dibyajit Lahiri
- Department of Biotechnology University of Engineering & Management Kolkata West Bengal India
| | - Tanmay Sarkar
- Department of Food Processing Technology Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal Malda India
| | - Siddhartha Pati
- Skills innovation & Academic network (SIAN) Institute‐ABC Balasore Odisha India
- NatNov Bioscience Private Limited Balasore Odisha India
| | - Sanket Joshi
- Oil & Gas Research Center, Central Analytical and Applied Research Unit Sultan Qaboos University Maskat Oman
| | - Rina R. Ray
- Department of Biotechnology Maulana Abul Kalam Azad University of Technology Haringhata West Bengal India
| |
Collapse
|
7
|
Gou X, Tian D, Wei J, Ma Y, Zhang Y, Chen M, Ding W, Wu B, Tang J. New Drimane Sesquiterpenes and Polyketides from Marine-Derived Fungus Penicillium sp. TW58-16 and Their Anti-Inflammatory and α-Glucosidase Inhibitory Effects. Mar Drugs 2021; 19:md19080416. [PMID: 34436259 PMCID: PMC8398500 DOI: 10.3390/md19080416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Marine fungi-derived natural products represent an excellent reservoir for the discovery of novel lead compounds with biological activities. Here, we report the identification of two new drimane sesquiterpenes (1 and 2) and six new polyketides (3–8), together with 10 known compounds (9–18), from a marine-derived fungus Penicillium sp. TW58-16. The planar structures of these compounds were elucidated by extensive 1D and 2D NMR, which was supported by HR-ESI-MS data. The absolute configurations of these compounds were determined by experimental and calculated electronic circular dichroism (ECD), and their optical rotations compared with those reported. Evaluation of the anti-inflammatory activity of compounds 1–18 revealed that compound 5 significantly inhibited the release of nitric oxide (NO) induced by lipopolysaccharide (LPS) in RAW264.7 cells, correlating with the inhibition of expression of inducible nitric oxide synthase (iNOS). In addition, we revealed that compounds 1, 3–6, 14, 16, and 18 showed strong α-glucosidase inhibitory effects with inhibition rates of 35.4%, 73.2%, 55.6%, 74.4%, 32.0%, 36.9%, 88.0%, and 91.1%, respectively, which were comparable with or even better than that of the positive control, acarbose. Together, our results illustrate the potential of discovering new marine-based therapeutic agents against inflammation and diabetes mellitus.
Collapse
Affiliation(s)
- Xiaoshuang Gou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; (X.G.); (D.T.); (M.C.); (W.D.)
| | - Danmei Tian
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; (X.G.); (D.T.); (M.C.); (W.D.)
| | - Jihua Wei
- Ocean College, Zhejiang University, Zhoushan Campus, Zhoushan 316021, China; (J.W.); (Y.M.); (Y.Z.)
| | - Yihan Ma
- Ocean College, Zhejiang University, Zhoushan Campus, Zhoushan 316021, China; (J.W.); (Y.M.); (Y.Z.)
| | - Yixue Zhang
- Ocean College, Zhejiang University, Zhoushan Campus, Zhoushan 316021, China; (J.W.); (Y.M.); (Y.Z.)
| | - Mei Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; (X.G.); (D.T.); (M.C.); (W.D.)
| | - Wenjuan Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; (X.G.); (D.T.); (M.C.); (W.D.)
| | - Bin Wu
- Ocean College, Zhejiang University, Zhoushan Campus, Zhoushan 316021, China; (J.W.); (Y.M.); (Y.Z.)
- Correspondence: (B.W.); (J.T.); Tel.: +86-580-2092258 (B.W.); +86-20-85221559 (J.T.)
| | - Jinshan Tang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; (X.G.); (D.T.); (M.C.); (W.D.)
- Correspondence: (B.W.); (J.T.); Tel.: +86-580-2092258 (B.W.); +86-20-85221559 (J.T.)
| |
Collapse
|
8
|
Hussain H, Mamadalieva NZ, Ali I, Elizbit, Green IR, Wang D, Zou L, Simal-Gandara J, Cao H, Xiao J. Fungal glycosides: Structure and biological function. Trends Food Sci Technol 2021; 110:611-651. [DOI: 10.1016/j.tifs.2021.02.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Shabir G, Saeed A, El-Seedi HR. Natural isocoumarins: Structural styles and biological activities, the revelations carry on …. PHYTOCHEMISTRY 2021; 181:112568. [PMID: 33166749 DOI: 10.1016/j.phytochem.2020.112568] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Isocoumarins and dihydroisocoumarins are lactonic phytochemicals plentiful in microbes and higher plants. These are an amazing small scaffolds consecrated with all types of pharmacological applications. Our previous review covered the period 2000-2016, documenting the then known natural products of this class; the current article is a critical account of discovery of known as well as undescribed structural types and pharmacological activities reported in the course of 2016-2020. The classification revealed in our previous review based on the biogenetic origin is further buttressed by discovery of new members of each class and some new structural types hitherto unknown have also been identified. Similarly, the biological activities and SAR conclusions identified were found to be valid as well, nonetheless with new accompaniments. The most recent available literature on the structural diversity and biological activity of these natural products has been included. The information documented in this article are collected from scientific journals, books, electronic search engines and scientific databases.
Collapse
Affiliation(s)
- Ghulam Shabir
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Hesham R El-Seedi
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; Al-Rayan Colleges, Medina, 42541, Saudi Arabia
| |
Collapse
|
10
|
Lin X, Fang Z, Zeng C, Zhu C, Pang X, Liu C, He W, Duan J, Qin N, Guo K. Continuous Electrochemical Synthesis of Iso-Coumarin Derivatives from o-(1-Alkynyl) Benzoates under Metal- and Oxidant-Free. Chemistry 2020; 26:13738-13742. [PMID: 32460407 DOI: 10.1002/chem.202001766] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/17/2020] [Indexed: 11/06/2022]
Abstract
A non-oxidant and metal-free strategy for synthesizing iso-coumarin by using a continuous electrochemical microreactor to initiate an oxidative cyclization reaction of o-(1-alkynyl) benzoate and radicals. This efficient and clean continuous electrosynthesis method not only avoids the complicated gas protection operation and production of by-products in the batch processes, but also help to overcome the difficulty that batch metal catalysis and electrocatalysis are difficult to scale up, and has the potential for pilot-scale experiment.
Collapse
Affiliation(s)
- Xinxin Lin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Cuilian Zeng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Chenlong Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Xinyan Pang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Ning Qin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| |
Collapse
|
11
|
Zhang L, Fasoyin OE, Molnár I, Xu Y. Secondary metabolites from hypocrealean entomopathogenic fungi: novel bioactive compounds. Nat Prod Rep 2020; 37:1181-1206. [PMID: 32211639 PMCID: PMC7529686 DOI: 10.1039/c9np00065h] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2014 up to the third quarter of 2019 Entomopathogens constitute a unique, specialized trophic subgroup of fungi, most of whose members belong to the order Hypocreales (class Sordariomycetes, phylum Ascomycota). These Hypocrealean Entomopathogenic Fungi (HEF) produce a large variety of secondary metabolites (SMs) and their genomes rank highly for the number of predicted, unique SM biosynthetic gene clusters. SMs from HEF have diverse roles in insect pathogenicity as virulence factors by modulating various interactions between the producer fungus and its insect host. In addition, these SMs also defend the carcass of the prey against opportunistic microbial invaders, mediate intra- and interspecies communication, and mitigate abiotic and biotic stresses. Thus, these SMs contribute to the role of HEF as commercial biopesticides in the context of integrated pest management systems, and provide lead compounds for the development of chemical pesticides for crop protection. These bioactive SMs also underpin the widespread use of certain HEF as nutraceuticals and traditional remedies, and allowed the modern pharmaceutical industry to repurpose some of these molecules as life-saving human medications. Herein, we survey the structures and biological activities of SMs described from HEF, and summarize new information on the roles of these metabolites in fungal virulence.
Collapse
Affiliation(s)
- Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China.
| | - Opemipo Esther Fasoyin
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China.
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA.
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China.
| |
Collapse
|
12
|
Zhao C, Liu G, Liu X, Zhang L, Li L, Liu L. Pycnidiophorones A–D, four new cytochalasans from the wetland derived fungus Pycnidiophora dispersa. RSC Adv 2020; 10:40384-40390. [PMID: 35520825 PMCID: PMC9057502 DOI: 10.1039/d0ra08072a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/29/2020] [Indexed: 11/29/2022] Open
Abstract
Pycnidiophorones A–D (1–4), four new cytochalasans with a rare 5/6/6/5/6 pentacyclic skeleton incorporating the unique 12-oxatricyclo[6.3.1.02,7]dodecane core, and six known depsidones (5–10) were isolated from cultures of the wetland-soil-derived fungus Pycnidiophora dispersa. Their chemical structures were unambiguously determined using NMR spectroscopic data. The absolute configurations of 1 and 3 were assigned by electronic circular dichroism (ECD) calculations. Compounds 1–10 showed moderate cytotoxicity against a panel of five human tumor cell lines. Four new 5/6/6/5/6 pentacyclic cytochalasan pycnidiophorones A–D (1–4) and six known depsidones were identified from the wetland-soil-derived fungus Pycnidiophora dispersa.![]()
Collapse
Affiliation(s)
- Chen Zhao
- Department of Pharmacy
- Xuanwu Hospital of Capital Medical University
- National Clinical Research Center for Geriatric Diseases
- Beijing Engineering Research Center for Nervous System Drugs
- Beijing Institute for Brain Disorders
| | - Gaoran Liu
- State Key Laboratory of Mycology
- Institute of Microbiology
- Chinese Academy of Sciences
- Beijing 100101
- People's Republic of China
| | - Xingzhong Liu
- State Key Laboratory of Mycology
- Institute of Microbiology
- Chinese Academy of Sciences
- Beijing 100101
- People's Republic of China
| | - Lan Zhang
- Department of Pharmacy
- Xuanwu Hospital of Capital Medical University
- National Clinical Research Center for Geriatric Diseases
- Beijing Engineering Research Center for Nervous System Drugs
- Beijing Institute for Brain Disorders
| | - Lin Li
- Department of Pharmacy
- Xuanwu Hospital of Capital Medical University
- National Clinical Research Center for Geriatric Diseases
- Beijing Engineering Research Center for Nervous System Drugs
- Beijing Institute for Brain Disorders
| | - Ling Liu
- State Key Laboratory of Mycology
- Institute of Microbiology
- Chinese Academy of Sciences
- Beijing 100101
- People's Republic of China
| |
Collapse
|
13
|
Zhao C, Fu P, Zhang Y, Liu X, Ren F, Che Y. Sporulosol, a New Ketal from the Fungus Paraconiothyrium sporulosum. Molecules 2018; 23:molecules23061263. [PMID: 29799466 PMCID: PMC6100215 DOI: 10.3390/molecules23061263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 12/04/2022] Open
Abstract
Sporulosol (1), a new ketal, together with four known compounds, has been isolated from the liquid fermentation cultures of a wetland-soil-derived fungus, Paraconiothyrium sporulosum. Its structure was elucidated primarily by NMR experiments, and was further confirmed by X-ray crystallography. Sporulosol was obtained as a racemic mixture and the resolved two enantiomers racemized immediately after chiral separation. Sporulosol appears to be the first ketal derived from a 6H-benzo[c]chromen-6-one and a benzofuranone unit. The compound showed modest cytotoxicity toward the human tumor cell line T24, with an IC50 value of 18.2 µM.
Collapse
Affiliation(s)
- Chen Zhao
- State Key Laboratory of Toxicology & Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| | - Peinan Fu
- State Key Laboratory of Toxicology & Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yang Zhang
- State Key Laboratory of Toxicology & Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China.
| | - Fengxia Ren
- State Key Laboratory of Toxicology & Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| | - Yongsheng Che
- State Key Laboratory of Toxicology & Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| |
Collapse
|
14
|
Characterization of a novel, ubiquitous fungal endophyte from the rhizosphere and root endosphere of Populus trees. FUNGAL ECOL 2017. [DOI: 10.1016/j.funeco.2017.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Fan A, Mi W, Liu Z, Zeng G, Zhang P, Hu Y, Fang W, Yin WB. Deletion of a Histone Acetyltransferase Leads to the Pleiotropic Activation of Natural Products in Metarhizium robertsii. Org Lett 2017; 19:1686-1689. [DOI: 10.1021/acs.orglett.7b00476] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Aili Fan
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid
Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wubin Mi
- Institute
of Microbiology, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Zhiguo Liu
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohong Zeng
- Institute
of Microbiology, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Peng Zhang
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Youcai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Weiguo Fang
- Institute
of Microbiology, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Wen-Bing Yin
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
16
|
Isocoumarins, miraculous natural products blessed with diverse pharmacological activities. Eur J Med Chem 2016; 116:290-317. [PMID: 27155563 DOI: 10.1016/j.ejmech.2016.03.025] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 12/17/2022]
Abstract
Isocoumarins are lactonic natural products abundant in microbes and higher plants. These are considered an amazing scaffold consecrated with more or less all types of pharmacological applications. This review is complementary to the earlier reviews and aims to focus the overlooked aspects of their fascinating chemistry with special emphasis on their classification and diverse biological activities with some SAR conclusions. The most recent available literature on the structural diversity and biological activity of these natural products has been reviewed.
Collapse
|
17
|
Liu Y, Wu Y, Zhai R, Liu Z, Huang X, She Z. Altenusin derivatives from mangrove endophytic fungus Alternaria sp. SK6YW3L. RSC Adv 2016. [DOI: 10.1039/c6ra16214b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Five new altenusin derivatives, compounds 1–5, along with six known analogues 6–11, were isolated from a culture of the endophytic fungus Alternaria sp. SK6YW3L, which was isolated from a fresh fruit of the mangrove plant Sonneratia caseolaris, collected from the South China Sea.
Collapse
Affiliation(s)
- Yayue Liu
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
- College of Food Science and Technology
| | - Yingnan Wu
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Rui Zhai
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Zhaoming Liu
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Xishan Huang
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Zhigang She
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center
| |
Collapse
|