1
|
Murray AP, Biscussi B, Cavallaro V, Donozo M, Rodriguez SA. Naturally Occurring Cholinesterase Inhibitors from Plants, Fungi, Algae, and Animals: A Review of the Most Effective Inhibitors Reported in 2012-2022. Curr Neuropharmacol 2024; 22:1621-1649. [PMID: 37357520 PMCID: PMC11284722 DOI: 10.2174/1570159x21666230623105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/11/2023] [Accepted: 02/26/2023] [Indexed: 06/27/2023] Open
Abstract
Since the development of the "cholinergic hypothesis" as an important therapeutic approach in the treatment of Alzheimer's disease (AD), the scientific community has made a remarkable effort to discover new and effective molecules with the ability to inhibit the enzyme acetylcholinesterase (AChE). The natural function of this enzyme is to catalyze the hydrolysis of the neurotransmitter acetylcholine in the brain. Thus, its inhibition increases the levels of this neurochemical and improves the cholinergic functions in patients with AD alleviating the symptoms of this neurological disorder. In recent years, attention has also been focused on the role of another enzyme, butyrylcholinesterase (BChE), mainly in the advanced stages of AD, transforming this enzyme into another target of interest in the search for new anticholinesterase agents. Over the past decades, Nature has proven to be a rich source of bioactive compounds relevant to the discovery of new molecules with potential applications in AD therapy. Bioprospecting of new cholinesterase inhibitors among natural products has led to the discovery of an important number of new AChE and BChE inhibitors that became potential lead compounds for the development of anti-AD drugs. This review summarizes a total of 260 active compounds from 142 studies which correspond to the most relevant (IC50 ≤ 15 μM) research work published during 2012-2022 on plant-derived anticholinesterase compounds, as well as several potent inhibitors obtained from other sources like fungi, algae, and animals.
Collapse
Affiliation(s)
- Ana Paula Murray
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Brunella Biscussi
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Valeria Cavallaro
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Martina Donozo
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvana A. Rodriguez
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
2
|
Leong ST, Liew SY, Khaw KY, Ahmad Hassali H, Richomme P, Derbré S, Lee VS, Yahya R, Awang K. 13C NMR-based dereplication using MixONat software to decipher potent anti-cholinesterase compounds in Mesua lepidota bark. Bioorg Chem 2023; 141:106859. [PMID: 37742494 DOI: 10.1016/j.bioorg.2023.106859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/26/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023]
Abstract
A bio-assay guided fractionation strategy based on cholinesterase assay combined with 13C NMR-based dereplication was used to identify active metabolites from the bark of Mesua lepidota. Eight compounds were identified with the aid of the 13C NMR-based dereplication software, MixONat, i.e., sitosterol (1), stigmasterol (2), α-amyrin (3), friedelin (6), 3β-friedelinol (7), betulinic acid (9), lepidotol A (10) and lepidotol B (11). Further bio-assay guided isolation of active compounds afforded one xanthone, pyranojacareubin (12) and six coumarins; lepidotol A (10), lepidotol B (11), lepidotol E (13), lepidotin A (14), and lepidotin B (15), including a new Mammea coumarin, lepidotin C (16). All the metabolites showed strong to moderate butyrylcholinesterase (BChE) inhibition. Lepidotin B (15) exhibited the most potent inhibition towards BChE with a mix-mode inhibition profile and a Ki value of 1.03 µM. Molecular docking and molecular dynamics simulations have revealed that lepidotin B (15) forms stable interactions with key residues within five critical regions of BChE. These regions encompass residues Asp70 and Tyr332, the acyl hydrophobic pocket marked by Leu286, the catalytic triad represented by Ser198 and His438, the oxyanion hole (OH) constituted by Gly116 and Gly117, and the choline binding site featuring Trp82. To gauge the binding strength of lepidotin B (15) and to pinpoint pivotal residues at the binding interface, free energy calculations were conducted using the Molecular Mechanics Generalized Born Surface Area (MM-GBSA) approach. This analysis not only predicted a favourable binding affinity for lepidotin B (15) but also facilitated the identification of significant residues crucial for the binding interaction.
Collapse
Affiliation(s)
- Sow Tein Leong
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sook Yee Liew
- Chemistry Division, Centre for Foundation Studies in Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Hazlina Ahmad Hassali
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Medical Technology Division, Malaysian Nuclear Agency, 43000 Kajang, Selangor Darul Ehsan, Malaysia
| | | | | | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ruzanna Yahya
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Khalijah Awang
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Ahmed U, Sivasothy Y, Khan KM, Khan NA, Wahab SMA, Awang K, Othman MA, Anwar A. Malabaricones from the fruit of Myristica cinnamomea King as potential agents against Acanthamoeba castellanii. Acta Trop 2023; 248:107033. [PMID: 37783284 DOI: 10.1016/j.actatropica.2023.107033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/13/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Acanthamoeba castellanii is an opportunistic free-living amoeba (FLA) pathogen which can cause fatal central nervous system (CNS) infection, granulomatous amoebic encephalitis (GAE) and potentially blinding ocular infection, Acanthamoeba keratitis (AK). Acanthamoeba species remain a challenging protist to treat due to the unavailability of safe and effective therapeutic drugs and their ability to protect themselves in the cyst stage. Natural products and their secondary metabolites play a pivotal role in drug discovery against various pathogenic microorganisms. In the present study, the ethyl acetate extract of Myristica cinnamomea King fruit was evaluated against A. castellanii (ATCC 50492), showing an IC50 of 45.102 ± 4.62 µg/mL. Previously, the bio-guided fractionation of the extract resulted in the identification of three active compounds, namely Malabaricones (A-C). The isolated and thoroughly characterized acylphenols were evaluated for their anti-amoebic activity against A. castellanii for the first time. Among tested compounds, Malabaricone B (IC50 of 101.31 ± 17.41 µM) and Malabaricone C (IC50 of 49.95 ± 6.33 µM) showed potent anti-amoebic activity against A. castellanii trophozoites and reduced their viability up-to 75 and 80 %, respectively. Moreover, both extract and Malabaricones also significantly (p < 0.05) inhibit the encystation and excystation of A. castellanii, while showed minimal toxicity against human keratinocyte cells (HaCaT cells) at lower tested concentrations. Following that, the explanation of the possible mechanism of action of purified compounds were assessed by detection of the state of chromatin. Hoechst/PI 33342 double staining showed that necrotic cell death occurred in A. castellanii trophozoites after 8 h treatment of Malabaricones (A-C). These findings demonstrate that Malabaricones B and C could serve as promising therapeutic options against A. castellanii infections.
Collapse
Affiliation(s)
- Usman Ahmed
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, 47500, Selangor, Malaysia
| | - Yasodha Sivasothy
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
| | - Siti Mariam Abdul Wahab
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, 30450, Malaysia
| | - Khalijah Awang
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Centre for Natural Products and Drug Discovery (CENAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Muhamad Aqmal Othman
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Centre for Natural Products and Drug Discovery (CENAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, 47500, Selangor, Malaysia.
| |
Collapse
|
4
|
Husna Hasnan MH, Sivasothy Y, Khaw KY, Nafiah MA, Hazni H, Litaudon M, Wan Ruzali WA, Liew SY, Awang K. N-Methyl Costaricine and Costaricine, Two Potent Butyrylcholinesterase Inhibitors from Alseodaphne pendulifolia Gamb. Int J Mol Sci 2023; 24:10699. [PMID: 37445877 DOI: 10.3390/ijms241310699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Studies have been conducted over the last decade to identify secondary metabolites from plants, in particular those from the class of alkaloids, for the development of new anti-Alzheimer's disease (AD) drugs. The genus Alseodaphne, comprising a wide range of alkaloids, is a promising source for the discovery of new cholinesterase inhibitors, the first-line treatment for AD. With regard to this, a phytochemical investigation of the dichloromethane extract of the bark of A. pendulifolia Gamb. was conducted. Repeated column chromatography and preparative thin-layer chromatography led to the isolation of a new bisbenzylisoquinoline alkaloid, N-methyl costaricine (1), together with costaricine (2), hernagine (3), N-methyl hernagine (4), corydine (5), and oxohernagine (6). Their structures were elucidated by the 1D- and 2D-NMR techniques and LCMS-IT-TOF analysis. Compounds 1 and 2 were more-potent BChE inhibitors than galantamine with IC50 values of 3.51 ± 0.80 µM and 2.90 ± 0.56 µM, respectively. The Lineweaver-Burk plots of compounds 1 and 2 indicated they were mixed-mode inhibitors. Compounds 1 and 2 have the potential to be employed as lead compounds for the development of new drugs or medicinal supplements to treat AD.
Collapse
Affiliation(s)
- Muhammad Hafiz Husna Hasnan
- Chemistry Division, Centre for Foundation Studies in Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Yasodha Sivasothy
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Mohd Azlan Nafiah
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - Hazrina Hazni
- Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Wan Adriyani Wan Ruzali
- Chemistry Division, Centre for Foundation Studies in Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sook Yee Liew
- Chemistry Division, Centre for Foundation Studies in Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Khalijah Awang
- Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
5
|
Othman MA, Sivasothy Y. Acylphenols and Dimeric Acylphenols from the Genus Myristica: A Review of Their Phytochemistry and Pharmacology. PLANTS (BASEL, SWITZERLAND) 2023; 12:1589. [PMID: 37111813 PMCID: PMC10143527 DOI: 10.3390/plants12081589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
The genus Myristica is a medicinally important genus belonging to the Myristicaceae. Traditional medicinal systems in Asia have employed plants from the genus Myristica to treat a variety of ailments. Acylphenols and dimeric acylphenols are a rare group of secondary metabolites, which, to date, have only been identified in the Myristicaceae, in particular, in the genus Myristica. The aim of the review would be to provide scientific evidence that the medicinal properties of the genus Myristica could be attributed to the acylphenols and dimeric acylphenols present in the various parts of its plants and highlight the potential in the development of the acylphenols and dimeric acylphenols as pharmaceutical products. SciFinder-n, Web of Science, Scopus, ScienceDirect, and PubMed were used to conduct the literature search between 2013-2022 on the phytochemistry and the pharmacology of acylphenols and dimeric acylphenols from the genus Myristica. The review discusses the distribution of the 25 acylphenols and dimeric acylphenols within the genus Myristica, their extraction, isolation, and characterization from the respective Myristica species, the structural similarities and differences within each group and between the different groups of the acylphenols and dimeric acylphenols, and their in vitro pharmacological activities.
Collapse
Affiliation(s)
- Muhamad Aqmal Othman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Natural Products Research and Drug Discovery (CENAR), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yasodha Sivasothy
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| |
Collapse
|
6
|
Neuroprotective Activities of New Monoterpenoid Indole Alkaloid from Nauclea officinalis. Processes (Basel) 2023. [DOI: 10.3390/pr11030646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Phytochemical investigation on the bark of Nauclea officinalis led to the isolation of a new monoterpenoid indole alkaloid, nauclediol. The structure of the compound was identified through extensive spectroscopic analysis. Nauclediol displayed cholinesterase-inhibitory activities towards AChE and BChE with IC50 values of 15.429 and 8.756 µM, respectively. Statistical analysis revealed that the mode of inhibition of nauclediol was non-competitive inhibitor for both AChE and BChE. Molecular docking revealed that nauclediol interacts with the choline-binding site and the catalytic triad of TcAChE and hBChE. This study also demonstrated the neuroprotective potential of nauclediol against amyloid beta-induced cytotoxicity and LPS-induced neuroinflammation activity in a dose-dependent manner.
Collapse
|
7
|
Bauri AK, Du Y, Brodie PJ, Foro S, Kingston DGI. Anti-Proliferative Acyl Phenols and Arylnonanoids from the Fruit Rind of Myristica malabarica Lam. Chem Biodivers 2022; 19:e202200343. [PMID: 36263966 DOI: 10.1002/cbdv.202200343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/20/2022] [Indexed: 12/27/2022]
Abstract
Phytochemical investigation of the methanol extract of the fruit rind of Myristica malabarica led to the isolation of eight known compounds that were identified as malabaricones A-D, promalabaricones B and C, 1-(2,6-dihydroxyphenyl)tetradecan-1-one, and ericanone by comparison with literature spectroscopic data. The structures of malabaricones A-D, promalabaricone B, and 1-(2,6-dihydroxyphenyl)tetradecan-1-one were confirmed by X-ray crystallography. In vitro assay of the isolated phenols indicated that they exhibited moderate anti-proliferative activity against the A2780 human ovarian cancer cell. Compounds (1, 3, 5, 6 and 7) had the most potent activities, whereas the anti-proliferative activities of compounds 2 and 4 were less potent.
Collapse
Affiliation(s)
- Ajoy Kumar Bauri
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 85, India
| | - Yongle Du
- Department of Chemistry, M/C 0212, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Peggy Jane Brodie
- Department of Chemistry, M/C 0212, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Sabine Foro
- Institute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287, Darmstadt, Germany
| | - David G I Kingston
- Department of Chemistry, M/C 0212, Virginia Tech, Blacksburg, Virginia, 24061, USA
| |
Collapse
|
8
|
Qu Z, Zhou L. Drug Development in the Field of Sphinogolipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:169-188. [DOI: 10.1007/978-981-19-0394-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Tamfu AN, Kucukaydin S, Yeskaliyeva B, Ozturk M, Dinica RM. Non-Alkaloid Cholinesterase Inhibitory Compounds from Natural Sources. Molecules 2021; 26:5582. [PMID: 34577053 PMCID: PMC8472022 DOI: 10.3390/molecules26185582] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder of different brain regions accompanied by distresses and affecting more than 25 million people in the world. This progressive brain deterioration affects the central nervous system and has negative impacts on a patient's daily activities such as memory impairment. The most important challenge concerning AD is the development of new drugs for long-term treatment or prevention, with lesser side effects and greater efficiency as cholinesterases inhibitors and the ability to remove amyloid-beta(Aβ) deposits and other related AD neuropathologies. Natural sources provide promising alternatives to synthetic cholinesterase inhibitors and many have been reported for alkaloids while neglecting other classes with potential cholinesterase inhibition. This review summarizes information about the therapeutic potential of small natural molecules from medicinal herbs, belonging to terpenoids, coumarins, and phenolic compounds, and others, which have gained special attention due to their specific modes of action and their advantages of low toxicity and high efficiency in the treatment of AD. Some show superior drug-like features in comparison to synthetic cholinesterase inhibitors. We expect that the listed phytoconstituents in this review will serve as promising tools and chemical scaffolds for the discovery of new potent therapeutic leads for the amelioration and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Alfred Ngenge Tamfu
- School of Chemical Engineering and Mineral Industries, University of Ngaoundere, 454 Ngaoundere, Cameroon
- Department of Chemistry, Mugla Sitki Kocman University, Mugla 48000, Turkey; (B.Y.); (M.O.)
| | - Selcuk Kucukaydin
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health Services, Mugla Sitki Kocman University, Mugla 48800, Turkey;
| | - Balakyz Yeskaliyeva
- Department of Chemistry, Mugla Sitki Kocman University, Mugla 48000, Turkey; (B.Y.); (M.O.)
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Mehmet Ozturk
- Department of Chemistry, Mugla Sitki Kocman University, Mugla 48000, Turkey; (B.Y.); (M.O.)
| | - Rodica Mihaela Dinica
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University, 47 Domneasca Str., 800008 Galati, Romania
| |
Collapse
|
10
|
Gulcan HO, Orhan IE. A Recent Look into Natural Products that have Potential to Inhibit Cholinesterases and Monoamine Oxidase B: Update for 2010-2019. Comb Chem High Throughput Screen 2021; 23:862-876. [PMID: 31985374 DOI: 10.2174/1386207323666200127145246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 11/22/2022]
Abstract
With respect to the unknowns of pathophysiology of Alzheimer's Disease (AD)-, and Parkinson's Disease (PD)-like neurodegenerative disorders, natural product research is still one of the valid tools in order to provide alternative and/or better treatment options. At one hand, various extracts of herbals provide a combination of actions targeting multiple receptors, on the other hand, the discovery of active natural products (i.e., secondary metabolites) generally offers alternative chemical structures either ready to be employed in clinical studies or available to be utilized as important scaffolds for the design of novel agents. Regarding the importance of certain enzymes (e.g. cholinesterase and monoamine oxidase B), for the treatment of AD and PD, we have surveyed the natural product research within this area in the last decade. Particularly novel natural agents discovered within this period, concomitant to novel biological activities displayed for known natural products, are harmonized within the present study.
Collapse
Affiliation(s)
- Hayrettin O Gulcan
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, TR. North Cyprus, via Mersin 10, Turkey
| | - Ilkay E Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06300, Turkey
| |
Collapse
|
11
|
Barman R, Bora PK, Saikia J, Kemprai P, Saikia SP, Haldar S, Banik D. Nutmegs and wild nutmegs: An update on ethnomedicines, phytochemicals, pharmacology, and toxicity of the Myristicaceae species. Phytother Res 2021; 35:4632-4659. [PMID: 33987899 DOI: 10.1002/ptr.7098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/09/2022]
Abstract
Prized medicinal spice true nutmeg is obtained from Myristica fragrans Houtt. Rest species of the family Myristicaceae are known as wild nutmegs. Nutmegs and wild nutmegs are a rich reservoir of bioactive molecules and used in traditional medicines of Europe, Asia, Africa, America against madness, convulsion, cancer, skin infection, malaria, diarrhea, rheumatism, asthma, cough, cold, as stimulant, tonics, and psychotomimetic agents. Nutmegs are cultivated around the tropics for high-value commercial spice, used in global cuisine. A thorough literature survey of peer-reviewed publications, scientific online databases, authentic webpages, and regulatory guidelines found major phytochemicals namely, terpenes, fatty acids, phenylpropanoids, alkanes, lignans, flavonoids, coumarins, and indole alkaloids. Scientific names, synonyms were verified with www.theplantlist.org. Pharmacological evaluation of extracts and isolated biomarkers showed cholinesterase inhibitory, anxiolytic, neuroprotective, anti-inflammatory, immunomodulatory, antinociceptive, anticancer, antimicrobial, antiprotozoal, antidiabetic, antidiarrhoeal activities, and toxicity through in-vitro, in-vivo studies. Human clinical trials were very few. Most of the pharmacological studies were not conducted as per current guidelines of natural products to ensure repeatability, safety, and translational use in human therapeutics. Rigorous pharmacological evaluation and randomized double-blind clinical trials are recommended to analyze the efficacy and therapeutic potential of nutmeg and wild nutmegs in anxiety, Alzheimer's disease, autism, schizophrenia, stroke, cancer, and others.
Collapse
Affiliation(s)
- Rubi Barman
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Pranjit Kumar Bora
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Jadumoni Saikia
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, Assam, India
| | - Phirose Kemprai
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Siddhartha Proteem Saikia
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Saikat Haldar
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Dipanwita Banik
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
12
|
Sivasothy Y, Leong KH, Loo KY, Adbul Wahab SM, Othman MA, Awang K. Giganteone A and malabaricone C as potential pharmacotherapy for diabetes mellitus. Nat Prod Res 2021; 36:1581-1586. [PMID: 33593208 DOI: 10.1080/14786419.2021.1885405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The use of antidiabetic agents which control glycemic levels in the blood and simultaneously inhibit oxidative stress is an important strategy in the prevention of Diabetes Mellitus and its complications. In our previous study, malabaricone C (3) and its dimer, giganteone A (5) exhibited significant DPPH free radical scavenging activities which were lower than the activity of the positive control, ascorbic acid. These compounds were evaluated for their α-glucosidase inhibitory activities at different concentrations (0.02-2.5 mM) in the present study. Compounds 3 (IC50 59.61 µM) and 5 (IC50 39.52 µM) were identified as active alpha-glucosidase inhibitors, each respectively being 24 and 37 folds more potent than the standard inhibitor, acarbose. Based on the molecular docking studies, compounds 3 and 5 docked into the active site of the α-glucosidase enzyme, forming mainly hydrogen bonds in the active site.
Collapse
Affiliation(s)
- Yasodha Sivasothy
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Kok Hoong Leong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia.,Center for Natural Product and Drug Discovery (CENAR), Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Kong Yong Loo
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Siti Mariam Adbul Wahab
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Muhamad Aqmal Othman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Khalijah Awang
- Center for Natural Product and Drug Discovery (CENAR), Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Pourshojaei Y, Eskandari K, Asadipour A. Highly Significant Scaffolds to Design and Synthesis Cholinesterase Inhibitors as Anti-Alzheimer Agents. Mini Rev Med Chem 2019; 19:1577-1598. [DOI: 10.2174/1389557519666190719143112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/02/2019] [Accepted: 06/25/2019] [Indexed: 12/19/2022]
Abstract
:
Alzheimer, a progressive disease, is a common term for memory loss which interferes with
daily life through severe influence on cognitive abilities. Based on the cholinergic hypothesis, and Xray
crystallographic determination of the structure of acetylcholinesterase (AChE) enzyme, the level of
acetylcholine (ACh, an important neurotransmitter associated with memory) in the hippocampus and
cortex area of the brain has a direct effect on Alzheimer. This fact encourages scientists to design and
synthesize a wide range of acetylcholinesterase inhibitors (AChEIs) to control the level of ACh in the
brain, keeping in view the crystallographic structure of AChE enzyme and drugs approved by the Food
and Drug Administration (FDA).
:
AChEIs have slightly diverse pharmacological properties, but all of them work by inhibiting the segregation
of ACh by blocking AChE. We reviewed significant scaffolds introduced as AChEIs. In some
studies, the activity against butyrylcholinesterase (BuChE) has been evaluated as well because BuChE
is a similar enzyme to neuronal acetylcholinesterase and is capable of hydrolyzing ACh. In order to
study AChEIs effectively, we divided them structurally into 12 classes and briefly explained effective
AChEIs and compared their activities against AChE enzyme.
Collapse
Affiliation(s)
- Yaghoub Pourshojaei
- Department of Medicinal Chemistry, Faculty of Pharmacy & Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khalil Eskandari
- Department of Medicinal Chemistry, Faculty of Pharmacy & Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Asadipour
- Department of Medicinal Chemistry, Faculty of Pharmacy & Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
14
|
Othman MA, Yuyama K, Murai Y, Igarashi Y, Mikami D, Sivasothy Y, Awang K, Monde K. Malabaricone C as Natural Sphingomyelin Synthase Inhibitor against Diet-Induced Obesity and Its Lipid Metabolism in Mice. ACS Med Chem Lett 2019; 10:1154-1158. [PMID: 31413799 DOI: 10.1021/acsmedchemlett.9b00171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/03/2019] [Indexed: 01/16/2023] Open
Abstract
The interaction between natural occurring inhibitors and targeted membrane proteins could be an alternative medicinal strategy for the treatment of metabolic syndrome, notably, obesity. In this study, we identified malabaricones A-C and E (1-4) isolated from the fruits of Myristica cinnamomea King as natural inhibitors for sphingomyelin synthase (SMS), a membrane protein responsible for sphingolipid biosynthesis. Having the most promising inhibition, oral administration of compound 3 exhibited multiple efficacies in reducing weight gain, improving glucose tolerance, and reducing hepatic steatosis in high fat diet-induced obesity mice models. Liver lipid analysis revealed a crucial link between the SMS activities of compound 3 and its lipid metabolism in vitro and in vivo. The nontoxic nature of compound 3 makes it a suitable candidate in search of drugs which can be employed in the treatment and prevention of obesity.
Collapse
Affiliation(s)
- Muhamad Aqmal Othman
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
| | - Kohei Yuyama
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, 001-0021, Japan
| | - Yuta Murai
- Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
| | - Yasuyuki Igarashi
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, 001-0021, Japan
| | - Daisuke Mikami
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, 001-0021, Japan
| | - Yasodha Sivasothy
- Research Centre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia
| | - Khalijah Awang
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kenji Monde
- Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
| |
Collapse
|
15
|
Loo KY, Leong KH, Sivasothy Y, Ibrahim H, Awang K. Molecular Insight and Mode of Inhibition of α-Glucosidase and α-Amylase by Pahangensin A from Alpinia pahangensis Ridl. Chem Biodivers 2019; 16:e1900032. [PMID: 30957403 DOI: 10.1002/cbdv.201900032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/08/2019] [Indexed: 11/12/2022]
Abstract
The inhibition of carbohydrate-hydrolyzing enzymes in human digestive organs is crucial in controlling blood sugar levels, which is important in treating type 2 diabetes. In the current study, pahangensin A (1), a bis-labdanic diterpene characterized previously in the rhizomes of Alpinia pahangensis Ridl., was identified as an active dual inhibitor for α-amylase (IC50 =114.80 μm) and α-glucosidase (IC50 =153.87 μm). This is the first report on the dual α-amylase and α-glucosidase inhibitory activities of a bis-labdanic diterpene. The Lineweaver-Burk plots of compound 1 indicate that it is a mixed-type inhibitor with regard to both enzymes. Based on molecular docking studies, compound 1 docked in a non-active site of both enzymes. The dual inhibitory activity of compound 1 makes it a suitable natural alternative in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Kong Yong Loo
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kok Hoong Leong
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Center for Natural Product and Drug Discovery (CENAR), Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yasodha Sivasothy
- Research Center for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Halijah Ibrahim
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Khalijah Awang
- Center for Natural Product and Drug Discovery (CENAR), Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Kundu K, Nayak SK. Total Syntheses of Malabaricones B and C via a Cross-Metathesis Strategy. JOURNAL OF NATURAL PRODUCTS 2017; 80:1776-1782. [PMID: 28581739 DOI: 10.1021/acs.jnatprod.6b01119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The malabaricones A-D belong to the class of diarylnonanoids isolated from the Myristicaceae family of plants. Although malabaricone C displayed various interesting biological activities, its isolation remains tedious due to its close chemical similarity to malabaricones A, B, and D. Therefore, development of an efficient synthesis route has become essential to cater to the need of large amounts of malabaricone C for its pharmacological profiling. So far there is only one report of the synthesis of malabaricone C through a lengthy sequence of reactions. We have developed an efficient and short route for the syntheses of malabaricones B and C, which will also provide a convenient access to all other members of the malabaricone family. Synthesis of an important building block, ω-aryl heptyl bromide, employed in the synthesis was realized by adopting a cross-metathesis reaction as the key step.
Collapse
Affiliation(s)
- Kshama Kundu
- Bio-Organic Division, Bhabha Atomic Research Centre , Trombay, Mumbai 400085, India
| | - Sandip K Nayak
- Bio-Organic Division, Bhabha Atomic Research Centre , Trombay, Mumbai 400085, India
| |
Collapse
|
17
|
Kim YJ, Lim HS, Kim Y, Lee J, Kim BY, Jeong SJ. Neuroprotective Effect of Corydalis ternata Extract and Its Phytochemical Quantitative Analysis. Chem Pharm Bull (Tokyo) 2017; 65:826-832. [DOI: 10.1248/cpb.c17-00300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yu Jin Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine
- College of Pharmacy, Chungnam National University
| | - Hye-Sun Lim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine
| | - Yoonju Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine
| | - Jun Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine
- Korean Medicine of Life Science, University of Science & Technology
| | - Bu-Yeo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine
| | - Soo-Jin Jeong
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine
- Korean Medicine of Life Science, University of Science & Technology
| |
Collapse
|
18
|
Cholinesterase inhibitory activity of isoquinoline alkaloids from three Cryptocarya species (Lauraceae). Bioorg Med Chem 2016; 24:4464-4469. [PMID: 27492195 DOI: 10.1016/j.bmc.2016.07.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease is the most common form of dementia among older adults. Acetylcholinesterase and butyrylcholinesterase are two enzymes involved in the breaking down of the neurotransmitter acetylcholine. Inhibitors for these enzymes have potential to prolong the availability of acetylcholine. Hence, the search for such inhibitors especially from natural products is needed in developing potential drugs for Alzheimer's disease. The present study investigates the cholinesterase inhibitory activity of compounds isolated from three Cryptocarya species towards acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Nine alkaloids were isolated; (+)-nornantenine 1, (-)-desmethylsecoantofine 2, (+)-oridine 3, (+)-laurotetanine 4 from the leaves of Cryptocarya densiflora BI., atherosperminine 5, (+)-N-methylisococlaurine 6, (+)-N-methyllaurotetanine 7 from the bark of Cryptocarya infectoria Miq., 2-methoxyatherosperminine 8 and (+)-reticuline 9 from the bark of Cryptocarya griffithiana Wight. In general, most of the alkaloids showed higher inhibition towards BChE as compared to AChE. The phenanthrene type alkaloid; 2-methoxyatherosperminine 8, exhibited the most potent inhibition against BChE with IC50 value of 3.95μM. Analysis of the Lineweaver-Burk (LB) plot of BChE activity over a range of substrate concentration suggested that 2-methoxyatherosperminine 8 exhibited mixed-mode inhibition with an inhibition constant (Ki) of 6.72μM. Molecular docking studies revealed that 2-methoxyatherosperminine 8 docked well at the choline binding site and catalytic triad of hBChE (butyrylcholinesterase from Homo sapiens); hydrogen bonding with Tyr 128 and His 438 residues respectively.
Collapse
|