1
|
Wei K, Guo K, Tao Y, Gong X, Yan G, Wang L, Guo M. Design, synthesis, biological evaluation and molecular docking of novel isatin-oxime ether derivatives as potential IDH1 inhibitors. Mol Divers 2025:10.1007/s11030-024-11084-4. [PMID: 39747799 DOI: 10.1007/s11030-024-11084-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
A series of novel isatin-oxime ether derivatives were designed, synthesized and characterized by 1H NMR and 13C NMR and HRMS. These compounds were evaluated for their in vitro cytotoxicity against three human cancer cell lines (A549, HepG2 and Hela) by MTT assay. According to the experimental results, compounds 6a (IC50 = 0.34μM), 6c (IC50 = 14nM) and 6r (IC50 = 45nM) were found as the excellent selectivity and high activity against A549, whereas compounds 6m (IC50 = 12nM) and 6n (IC50 = 25nM) displayed the significant activity for HepG2, respectively. Compound 6f (IC50 = 30nM), 6n (IC50 = 9nM) and 6o (IC50 = 20nM) also showed the excellent activity against Hela. From the experiments of cell migration and colony formation assays, the findings demonstrated that 6m can effectively suppress the migration and growth of HepG2 cells. In addition, the results of molecular docking studies determined the strong binding interactions between the potential active compounds 6m and 6n and the active sites of isocitrate dehydrogenase 1 (IDH1) with the lowest binding affinity energy.
Collapse
Affiliation(s)
- Kangning Wei
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China
- College of Jiyang, Zhejiang A&F University, Zhuji, 311800, China
| | - Kaige Guo
- College of Jiyang, Zhejiang A&F University, Zhuji, 311800, China
| | - Ye Tao
- College of Jiyang, Zhejiang A&F University, Zhuji, 311800, China
| | - Xuanming Gong
- College of Jiyang, Zhejiang A&F University, Zhuji, 311800, China
| | - Guobing Yan
- College of Jiyang, Zhejiang A&F University, Zhuji, 311800, China.
| | - Liangliang Wang
- Department of Biology, Lishui University, Lishui, 323000, China
| | - Ming Guo
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China
- College of Jiyang, Zhejiang A&F University, Zhuji, 311800, China
| |
Collapse
|
2
|
Khandelwal R, Vasava M, Abhirami RB, Karsharma M. Recent advances in triazole synthesis via click chemistry and their pharmacological applications: A review. Bioorg Med Chem Lett 2024; 112:129927. [PMID: 39153663 DOI: 10.1016/j.bmcl.2024.129927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Click chemistry is a flexible method featuring only the most feasible and efficient chemical reactions. The synthesis of 1,2,3-triazole from azides and terminal acetylenes using copper(I) as a catalyst is an extremely powerful reaction due to the extreme dependability, good selectivity, and biocompatibility of the starting materials. Triazole molecules are more than simple passive linkers; through hydrogen bonding and dipole interactions, they rapidly bind with biological targets. Its applications in drug development are expanding, ranging from target-oriented in situ chemistry and combinatorial mechanisms for lead generation to bioconjugation methods to study proteins and DNA. The click chemistry has frequently been used to speed up drug discovery and optimization processes in the past few years. The click chemistry reaction based on copper-catalyzed azide-alkyne cycloaddition (CuAAC) is a biochemical process with applications in medicinal chemistry and chemical biology. Thus, click reactions are an essential component of the toolkit for medicinal chemistry and help medicinal chemists overcome the barriers in chemical reactions, increase throughput, and improve the standards of compound libraries. The review highlights the recent advancements in the copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry approach for synthesizing biologically important triazole moieties with a greater emphasis on synthesis methodologies and pharmacological applications. Additionally, the triazole-based FDA-approved drugs are also discussed with their mode of action to highlight the importance of the click chemistry approach in synthesizing the bioactive triazole compounds.
Collapse
Affiliation(s)
- Riya Khandelwal
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, India
| | - Mahesh Vasava
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, India.
| | - R B Abhirami
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, India
| | - Manaswini Karsharma
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, India
| |
Collapse
|
3
|
Ahmad G, Sohail M, Bilal M, Rasool N, Qamar MU, Ciurea C, Marceanu LG, Misarca C. N-Heterocycles as Promising Antiviral Agents: A Comprehensive Overview. Molecules 2024; 29:2232. [PMID: 38792094 PMCID: PMC11123935 DOI: 10.3390/molecules29102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Viruses are a real threat to every organism at any stage of life leading to extensive infections and casualties. N-heterocycles can affect the viral life cycle at many points, including viral entrance into host cells, viral genome replication, and the production of novel viral species. Certain N-heterocycles can also stimulate the host's immune system, producing antiviral cytokines and chemokines that can stop the reproduction of viruses. This review focused on recent five- or six-membered synthetic N-heterocyclic molecules showing antiviral activity through SAR analyses. The review will assist in identifying robust scaffolds that might be utilized to create effective antiviral drugs with either no or few side effects.
Collapse
Affiliation(s)
- Gulraiz Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Maria Sohail
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan;
- Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Codrut Ciurea
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Luigi Geo Marceanu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Catalin Misarca
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| |
Collapse
|
4
|
Liu C, Zhang Y, Li P, Jia H, Ju H, Zhang J, Ferreira da Silva-Júnior E, Samanta S, Kar P, Huang B, Liu X, Zhan P. Development of chalcone-like derivatives and their biological and mechanistic investigations as novel influenza nuclear export inhibitors. Eur J Med Chem 2023; 261:115845. [PMID: 37804770 DOI: 10.1016/j.ejmech.2023.115845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Concerning the emergence of resistance to current anti-influenza drugs, our previous phenotypic-based screening study identified the compound A9 as a promising lead compound. This chalcone analog, containing a 2,6-dimethoxyphenyl moiety, exhibited significant inhibitory activity against oseltamivir-resistant strains (H1N1 pdm09), with an EC50 value of 1.34 μM. However, it also displayed notable cytotoxicity, with a CC50 value of 41.46 μM. Therefore, compound A9 was selected as a prototype structure for further structural optimization in this study. Initially, it was confirmed that the substituting the α,β-unsaturated ketone with pent-1,4-diene-3-one as a linker group significantly reduced the cytotoxicity of the final compounds. Subsequently, the penta-1,4-dien-3-one group was utilized as a privileged fragment for further structural optimization. Following two subsequent rounds of optimizations, we identified compound IIB-2, which contains a 2,6-dimethoxyphenyl- and 1,4-pentadiene-3-one moieties. This compound exhibited inhibitory effects on oseltamivir-resistant strains comparable to its precursor (compound A9), while demonstrating reduced toxicity (CC50 > 100 μM). Furthermore, we investigated its mechanism of action against anti-influenza virus through immunofluorescence, Western blot, and surface plasmon resonance (SPR) experiments. The results revealed that compound IIB-2 can impede virus proliferation by blocking the export of influenza virus nucleoprotein. Thusly, our findings further emphasize influenza nuclear export as a viable target for designing novel chalcone-like derivatives with potential inhibitory properties that could be explored in future lead optimization studies.
Collapse
Affiliation(s)
- Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; Suzhou Research Institute of Shandong University, Room607, Building B of NUSP, NO.388 Ruoshui Road, SIP, Suzhou, Jiangsu, 215123, PR China
| | - Ying Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Ping Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Huinan Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Han Ju
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Jiwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Edeildo Ferreira da Silva-Júnior
- Research Group of Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - Sunanda Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India.
| | - Bing Huang
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
5
|
Wang J, Shahed-Ai-Mahmud M, Chen A, Li K, Tan H, Joyce R. An Overview of Antivirals against Monkeypox Virus and Other Orthopoxviruses. J Med Chem 2023; 66:4468-4490. [PMID: 36961984 DOI: 10.1021/acs.jmedchem.3c00069] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The current monkeypox outbreaks during the COVID-19 pandemic have reignited interest in orthopoxvirus antivirals. Monkeypox belongs to the Orthopoxvirus genus of the Poxviridae family, which also includes the variola virus, vaccinia virus, and cowpox virus. Two orally bioavailable drugs, tecovirimat and brincidofovir, have been approved for treating smallpox infections. Given their human safety profiles and in vivo antiviral efficacy in animal models, both drugs have also been recommended to treat monkeypox infection. To facilitate the development of additional orthopoxvirus antivirals, we summarize the antiviral activity, mechanism of action, and mechanism of resistance of orthopoxvirus antivirals. This perspective covers both direct-acting and host-targeting antivirals with an emphasis on drug candidates showing in vivo antiviral efficacy in animal models. We hope to speed the orthopoxvirus antiviral drug discovery by providing medicinal chemists with insights into prioritizing proper drug targets and hits for further development.
Collapse
Affiliation(s)
- Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Md Shahed-Ai-Mahmud
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Angelo Chen
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Kan Li
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Ryan Joyce
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
6
|
Sharma S, Utreja D. Synthesis and antiviral activity of diverse heterocyclic scaffolds. Chem Biol Drug Des 2022; 100:870-920. [PMID: 34551197 DOI: 10.1111/cbdd.13953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 01/25/2023]
Abstract
Heterocyclic moieties form a major part of organic chemistry as they are widely distributed in nature and have wide scale practical applications ranging from extensive clinical use to diverse fields such as medicine, agriculture, photochemistry, biocidal formulations, and polymer science. By virtue of their therapeutic properties, they could be employed in combating many infectious diseases. Among the common infectious diseases, viral infections are of great public health importance worldwide. Thus, there is an urgent need for the discovery and development of antiviral drugs and clinical methods to prevent various viral infections so as to increase the life expectancy. This review presents the comprehensive overview of the synthesis and antiviral activity of different heterocyclic compounds 2015 onwards, which aids in present knowledge and helps the researchers and other stakeholders to explore their field.
Collapse
Affiliation(s)
- Shivali Sharma
- Department of Chemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| | - Divya Utreja
- Department of Chemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
7
|
Silva-Júnior EFD. The 2022 Monkeypox outbreak: How the medicinal chemistry could help us? Bioorg Med Chem 2022; 73:117036. [PMID: 36183614 PMCID: PMC9534107 DOI: 10.1016/j.bmc.2022.117036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Edeildo Ferreira da Silva-Júnior
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões campus, 57072-970 Alagoas, Maceió, Brazil.
| |
Collapse
|
8
|
Soda AK, C S PK, Chilaka SK, E VK, Misra S, Madabhushi S. I 2/TBHP mediated domino synthesis of 2-(2,4-dioxo-1,4-dihydroquinazolin-3(2 H)-yl)- N-aryl/alkyl benzamides and evaluation of their anticancer and docking studies. RSC Adv 2022; 12:16589-16598. [PMID: 35754904 PMCID: PMC9169238 DOI: 10.1039/d2ra02216h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
A novel I2/TBHP mediated domino synthesis of 2-(2,4-dioxo-1,4-dihydroquinazolin-3(2H)-yl)-N-phenyl benzamides by reaction of isatins with o-amino N-aryl/alkyl benzamides was described. This was the first application of o-amino N-aryl/alkyl benzamides participating in oxidative rearrangement with isatins for synthesis of desired products. The synthesized compounds contained amide and quinazoline units and their combination resulted in molecular hybridization of two important pharmacophores. In this study, the synthesized compounds 3a-r were screened for cytotoxicity against four cancer cell lines A549, DU145, B16-F10, and HepG2 and also non-cancerous cell line CHO-K1. The compounds 3c, 3l and 3o gave promising results. The in silico molecular docking studies (PDB ID 1N37) also validated the anticancer activity of these compounds showing good binding affinity with target DNA and by acting as DNA intercalators.
Collapse
Affiliation(s)
- Anil Kumar Soda
- Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Phani Krishna C S
- Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
| | - Sai Krishna Chilaka
- Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Vamshi Krishna E
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
| | - Sunil Misra
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
| | - Sridhar Madabhushi
- Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| |
Collapse
|
9
|
Soda AK, Bontha IR, Chilaka SK, Chellu RK, Madabhushi S. Lewis acid catalyzed tandem synthesis of quinazoline‐2,4‐diones by reaction of isatins with aryl/alkyl amines using TBHP as oxidant. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anil Kumar Soda
- Indian Institute of Chemical Technology CSIR: Indian Institute of Chemical Technology Fluoro-Agrochemicals Fluoro-Agrochemicals, CSIR-IICT,Tarnaka 500007 Hyderabad INDIA
| | - Indrasena Reddy Bontha
- Indian Institute of Chemical Technology CSIR: Indian Institute of Chemical Technology Fluoro-Agrochemicals Fluoro-Agrochemicals, CSIR-IICT,Tarnaka 500007 Hyderabad INDIA
| | - Sai Krishna Chilaka
- Indian Institute of Chemical Technology CSIR: Indian Institute of Chemical Technology Fluoro-Agrochemicals Fluoro-Agrochemicals, CSIR-IICT,Tarnaka 500007 Hyderabad INDIA
| | - Ramesh Kumar Chellu
- Indian Institute of Chemical Technology CSIR: Indian Institute of Chemical Technology Fluoro-Agrochemicals Fluoro-Agrochemicals, CSIR-IICT,Tarnaka 500007 Hyderabad INDIA
| | - Sridhar Madabhushi
- Indian Institute of Chemical Technology Fluoro&Agrochemicals Department Taranaka 500007 Hyderabad INDIA
| |
Collapse
|
10
|
Jeminejs A, Novosjolova I, Bizdēna Ē, Turks M. Nucleophile-nucleofuge duality of azide and arylthiolate groups in the synthesis of quinazoline and tetrazoloquinazoline derivatives. Org Biomol Chem 2021; 19:7706-7723. [PMID: 34524320 DOI: 10.1039/d1ob01315g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
5-Arylthio-tetrazolo[1,5-c]quinazolines (tautomers of 2-arylthio-4-azido-quinazolines) undergo facile nucleophilic aromatic substitution reactions with amines, alcohols and alkylthiols. This, combined with the recently reported arylsulfanyl group dance, provides straightforward access to 4-azido-2-N-, O-, S-substituted quinazolines and/or their tetrazolo tautomers from commercially available 2,4-dichloroquinazoline. The azidoazomethine-tetrazole tautomeric equilibrium and the electron-withdrawing character of the fused tetrazolo system plays a central role in the developed transformations. 5-Amino-substituted tetrazolo[1,5-c]quinazolines undergo media-controlled tautomeric equilibrium, which permits them to demonstrate the reactivity traditionally associated with the azido substituent. Furthermore, a method for 5-O-substitited tetrazolo[1,5-a]quinazolines from 2,4-diazidoquinazoline was developed during the structural elucidation of the substitution products. The developed methodology will facilitate medicinal chemistry investigations into quinazoline derivatives and the discovered fluorescent properties of some of the products (e.g., 4-(4-phenyl-1H-1,2,3-triazol-1-yl)-2-(4-methylpiperazin-1-yl)quinazoline: λem. = 461 nm, ΦDCM = 0.89) could serve as a starting point for their further applications in analytical and materials science.
Collapse
Affiliation(s)
- Andris Jeminejs
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena Str. 3, Riga, LV-1048, Latvia.
| | - Irina Novosjolova
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena Str. 3, Riga, LV-1048, Latvia.
| | - Ērika Bizdēna
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena Str. 3, Riga, LV-1048, Latvia.
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena Str. 3, Riga, LV-1048, Latvia.
| |
Collapse
|
11
|
Mazzotta S, Berastegui-Cabrera J, Vega-Holm M, García-Lozano MDR, Carretero-Ledesma M, Aiello F, Vega-Pérez JM, Pachón J, Iglesias-Guerra F, Sánchez-Céspedes J. Design, synthesis and in vitro biological evaluation of a novel class of anti-adenovirus agents based on 3-amino-1,2-propanediol. Bioorg Chem 2021; 114:105095. [PMID: 34175724 DOI: 10.1016/j.bioorg.2021.105095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/09/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Nowadays there is not an effective drug for the treatment of infections caused by human adenovirus (HAdV) which supposes a clinical challenge, especially for paediatric and immunosuppressed patients. Here, we describe the design, synthesis and biological evaluation as anti-adenovirus agents of a new library (57 compounds) of diester, monoester and triazole derivatives based on 3-amino-1,2-propanediol skeleton. Seven compounds (17, 20, 26, 34, 44, 60 and 66) were selected based on their high anti-HAdV activity at low micromolar concentration (IC50 from 2.47 to 5.75 µM) and low cytotoxicity (CC50 from 28.70 to >200 µM). In addition, our mechanistic assays revealed that compounds 20 and 44 might be targeting specifically the HAdV DNA replication process, and compound 66 would be targeting HAdV E1A mRNA transcription. For compounds 17, 20, 34 and 60, the mechanism of action seems to be associated with later steps after HAdV DNA replication.
Collapse
Affiliation(s)
- Sarah Mazzotta
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain; Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Judith Berastegui-Cabrera
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Margarita Vega-Holm
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain.
| | - María Del Rosario García-Lozano
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain; Institute of Biomedicine of Seville (IBiS), SeLiver Group, University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Marta Carretero-Ledesma
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - José Manuel Vega-Pérez
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain
| | - Jerónimo Pachón
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain; Department of Medicine, University of Seville, E-41009 Seville, Spain
| | - Fernando Iglesias-Guerra
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain.
| | - Javier Sánchez-Céspedes
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain.
| |
Collapse
|
12
|
Mazzotta S, Berastegui-Cabrera J, Carullo G, Vega-Holm M, Carretero-Ledesma M, Mendolia L, Aiello F, Iglesias-Guerra F, Pachón J, Vega-Pérez JM, Sánchez-Céspedes J. Serinol-Based Benzoic Acid Esters as New Scaffolds for the Development of Adenovirus Infection Inhibitors: Design, Synthesis, and In Vitro Biological Evaluation. ACS Infect Dis 2021; 7:1433-1444. [PMID: 33073569 DOI: 10.1021/acsinfecdis.0c00515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the years, human adenovirus (HAdV) has progressively been recognized as a significant viral pathogen. Traditionally associated with self-limited respiratory, gastrointestinal, and conjunctival infections, mainly in immunocompromised patients, HAdV is currently considered to be a pathogen presenting significant morbidity and mortality in both immunosuppressed and otherwise healthy individuals. Currently available therapeutic options are limited because of their lack of effectivity and related side effects. In this context, there is an urgent need to develop effective anti-HAdV drugs with suitable therapeutic indexes. In this work, we identified new serinol-derived benzoic acid esters as novel scaffolds for the inhibition of HAdV infections. A set of 38 compounds were designed and synthesized, and their antiviral activity and cytotoxicity were evaluated. Four compounds (13, 14, 27, and 32) inhibited HAdV infection at low micromolar concentrations (2.82-5.35 μM). Their half maximal inhibitory concentration (IC50) values were lower compared to that of cidofovir, the current drug of choice. All compounds significantly reduced the HAdV DNA replication process, while they did not block any step of the viral entry. Our results showed that compounds 13, 14, and 32 seem to be targeting the expression of the E1A early gene. Moreover, all four derivatives demonstrated a significant inhibition of human cytomegalovirus (HCMV) DNA replication. This new scaffold may represent a potential tool useful for the development of effective anti-HAdV drugs.
Collapse
Affiliation(s)
- Sarah Mazzotta
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, E-41071 Seville, Spain
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Judith Berastegui-Cabrera
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Gabriele Carullo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Margarita Vega-Holm
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, E-41071 Seville, Spain
| | - Marta Carretero-Ledesma
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Lara Mendolia
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, E-41071 Seville, Spain
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Fernando Iglesias-Guerra
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, E-41071 Seville, Spain
| | - Jerónimo Pachón
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
- Department of Medicine, University of Seville, E-41009 Seville, Spain
| | - José Manuel Vega-Pérez
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, E-41071 Seville, Spain
| | - Javier Sánchez-Céspedes
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| |
Collapse
|
13
|
Antiviral Agents - Benzazine Derivatives. Chem Heterocycl Compd (N Y) 2021; 57:374-382. [PMID: 34007084 PMCID: PMC8118681 DOI: 10.1007/s10593-021-02915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/06/2021] [Indexed: 11/15/2022]
Abstract
The review outlines the results of studies of the antiviral activity of quinoline, quinoxaline, and quinazoline derivatives published over the past 5 years. The supplied data indicate the enormous potential of benzazines for the design of effective antiviral drugs.
Collapse
|
14
|
Kang D, Feng D, Jing L, Sun Y, Wei F, Jiang X, Wu G, De Clercq E, Pannecouque C, Zhan P, Liu X. In situ click chemistry-based rapid discovery of novel HIV-1 NNRTIs by exploiting the hydrophobic channel and tolerant regions of NNIBP. Eur J Med Chem 2020; 193:112237. [DOI: 10.1016/j.ejmech.2020.112237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
|
15
|
Xu J, Berastegui-Cabrera J, Chen H, Pachón J, Zhou J, Sánchez-Céspedes J. Structure-Activity Relationship Studies on Diversified Salicylamide Derivatives as Potent Inhibitors of Human Adenovirus Infection. J Med Chem 2020; 63:3142-3160. [PMID: 32045239 DOI: 10.1021/acs.jmedchem.9b01950] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The effective treatment of adenovirus (HAdV) infections in immunocompromised patients still poses great challenges. Herein, we reported our continued efforts to optimize a series of salicylamide derivatives as potent inhibitors of HAdV infection. Of these, nine compounds (11, 13, 14, 17, 20, 58, 60, 62, and 70) showed significantly improved anti-HAdV activities with nanomolar to submicromolar IC50 values and high selectivity indexes (SI > 100), indicating better safety windows, compared to those of the lead compound niclosamide. Our mechanistic assays suggest that compounds 13, 62, and 70 exert their activities in the HAdV entry pathway, while compounds 14 and 60 likely target the HAdV DNA replication, and 11, 17, 20, and 58 inhibit later steps after DNA replication. Given the broad anti-viral activity profile of niclosamide, these derivatives may also offer therapeutic potential for other viral infections.
Collapse
Affiliation(s)
- Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Judith Berastegui-Cabrera
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jerónimo Pachón
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain.,Department of Medicine, University of Seville, E-41009 Seville, Spain
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Javier Sánchez-Céspedes
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| |
Collapse
|
16
|
Taily IM, Saha D, Banerjee P. [3+3] Annulation via Ring Opening/Cyclization of Donor-Acceptor Cyclopropanes with (Un)symmetrical Ureas: A Quick Access to Highly Functionalized Tetrahydropyrimidinones. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901400] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Irshad Maajid Taily
- Department of Chemistry; Indian Institute of Technology Ropar; Nangal Road 140001 Rupnagar Punjab India
| | - Debarshi Saha
- Department of Chemistry; Indian Institute of Technology Ropar; Nangal Road 140001 Rupnagar Punjab India
| | - Prabal Banerjee
- Department of Chemistry; Indian Institute of Technology Ropar; Nangal Road 140001 Rupnagar Punjab India
| |
Collapse
|
17
|
Mazzotta S, Marrugal-Lorenzo JA, Vega-Holm M, Serna-Gallego A, Álvarez-Vidal J, Berastegui-Cabrera J, Pérez Del Palacio J, Díaz C, Aiello F, Pachón J, Iglesias-Guerra F, Vega-Pérez JM, Sánchez-Céspedes J. Optimization of piperazine-derived ureas privileged structures for effective antiadenovirus agents. Eur J Med Chem 2019; 185:111840. [PMID: 31711794 DOI: 10.1016/j.ejmech.2019.111840] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022]
Abstract
In recent years, human adenovirus (HAdV) infections have shown a high clinical impact in both immunosuppressed and immunocompetent patients. The research into specific antiviral drugs for the treatment of HAdV infections in immunocompromised patients constitutes a principal objective for medicinal chemistry due to the lack of any specific secure drug to treat these infections. In this study, we report a small-molecule library (67 compounds) designed from an optimization process of piperazine-derived urea privileged structures and their biological evaluation: antiviral activity and cytotoxicity. The active compounds selected were further evaluated to gain mechanistic understanding for their inhibition. Twelve derivatives were identified that inhibited HAdV infections at nanomolar and low micromolar concentrations (IC50 from 0.6 to 5.1 μM) with low cytotoxicity. In addition, our mechanistic assays suggested differences in the way the derivatives exert their anti-HAdV activity targeting transcription, DNA replication and later steps in the HAdV replication cycle. Furthermore, eight of the 12 studied derivatives blocked human cytomegalovirus (HCMV) DNA replication at low micromolar concentrations. The data provided herein indicates that the 12 thiourea/urea piperazine derivatives studied may represent potential lead compounds for clinical evaluation and development of new anti-HAdV drugs.
Collapse
Affiliation(s)
- Sarah Mazzotta
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071, Seville, Spain; Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - José Antonio Marrugal-Lorenzo
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Margarita Vega-Holm
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071, Seville, Spain.
| | - Ana Serna-Gallego
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Jaime Álvarez-Vidal
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071, Seville, Spain
| | - Judith Berastegui-Cabrera
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | | | - Caridad Díaz
- Fundación Medina, Parque Tecnológico de Ciencias de la Salud, E-18016, Granada, Spain
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Jerónimo Pachón
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain; Department of Medicine, University of Seville, E-41009, Seville, Spain
| | - Fernando Iglesias-Guerra
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071, Seville, Spain
| | - José Manuel Vega-Pérez
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071, Seville, Spain
| | - Javier Sánchez-Céspedes
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.
| |
Collapse
|
18
|
Long QS, Liu LW, Zhao YL, Wang PY, Chen B, Li Z, Yang S. Fabrication of Furan-Functionalized Quinazoline Hybrids: Their Antibacterial Evaluation, Quantitative Proteomics, and Induced Phytopathogen Morphological Variation Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11005-11017. [PMID: 31532657 DOI: 10.1021/acs.jafc.9b03419] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The limited number of agrochemicals targeting plant bacterial diseases has driven us to develop highly efficient, low-cost, and versatile antibacterial alternatives. Herein, a novel type of simple furan-functionalized quinazolin-4-amines was systematically fabricated and screened for their antibacterial activity. Bioassay results revealed that compounds C1 and E4 could substantially block the growth of two frequently mentioned pathogens Xanthomonas oryzae pv oryzae and X. axonopodis pv citri in vitro, displaying appreciable EC50 values of 7.13 and 10.3 mg/L, respectively. This effect was prominently improved by comparing those of mainly used agrochemicals. An in vivo experiment against bacterial blight further illustrated their viable applications as antimicrobial ingredients. Quantitative proteomics demonstrated that C1 possessed a remarkable ability to manipulate the upregulation and downregulation of expressed proteins, which probably involved d-glucose and biotin metabolic pathways. This finding was substantially verified by parallel reaction monitoring analysis. Scanning electron microscopy images and fluorescence spectra also indicated that the designed compounds had versatile capacities for destroying the integrity of bacteria. Given these remarkable characteristics, furan-functionalized quinazoline hybrids can serve as a viable platform for developing innovative antibiotic alternatives against bacterial infections.
Collapse
Affiliation(s)
- Qing-Su Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Yong-Liang Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Biao Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Zhong Li
- College of Pharmacy , East China University of Science & Technology , Shanghai 200237 , China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
- College of Pharmacy , East China University of Science & Technology , Shanghai 200237 , China
| |
Collapse
|
19
|
Wold WSM, Tollefson AE, Ying B, Spencer JF, Toth K. Drug development against human adenoviruses and its advancement by Syrian hamster models. FEMS Microbiol Rev 2019; 43:380-388. [PMID: 30916746 DOI: 10.1093/femsre/fuz008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/25/2019] [Indexed: 02/02/2023] Open
Abstract
The symptoms of human adenovirus infections are generally mild and self-limiting. However, these infections have been gaining importance in recent years because of a growing number of immunocompromised patients. Solid organ and hematopoietic stem cell transplant patients are subjected to severe immunosuppressive regimes and cannot efficaciously eliminate virus infections. In these patients, adenovirus infections can develop into deadly multi-organ disseminated disease. Presently, in the absence of approved therapies, physicians rely on drugs developed for other purposes to treat adenovirus infections. As there is a need for anti-adenoviral therapies, researchers have been developing new agents and repurposing existing ones to treat adenovirus infections. There are several small molecule drugs that are being tested for their efficacy against human adenoviruses; some of these have reached clinical trials, while others are still in the preclinical phase. Besides these compounds, research on immunotherapy against adenoviral infection has made significant progress, promising another modality for treatment. The availability of an animal model confirmed the activity of some drugs already in clinical use while proving that others are inactive. This led to the identification of several lead compounds that await further development. In the present article, we review the current status of anti-adenoviral therapies and their advancement by in vivo studies in the Syrian hamster model.
Collapse
Affiliation(s)
- William S M Wold
- Saint Louis University School of Medicine, Department of Molecular Microbiology and Immunology, 1100 S. Grand Boulevard, St. Louis, MO, USA
| | - Ann E Tollefson
- Saint Louis University School of Medicine, Department of Molecular Microbiology and Immunology, 1100 S. Grand Boulevard, St. Louis, MO, USA
| | - Baoling Ying
- Saint Louis University School of Medicine, Department of Molecular Microbiology and Immunology, 1100 S. Grand Boulevard, St. Louis, MO, USA
| | - Jacqueline F Spencer
- Saint Louis University School of Medicine, Department of Molecular Microbiology and Immunology, 1100 S. Grand Boulevard, St. Louis, MO, USA
| | - Karoly Toth
- Saint Louis University School of Medicine, Department of Molecular Microbiology and Immunology, 1100 S. Grand Boulevard, St. Louis, MO, USA
| |
Collapse
|
20
|
Jiang X, Hao X, Jing L, Wu G, Kang D, Liu X, Zhan P. Recent applications of click chemistry in drug discovery. Expert Opin Drug Discov 2019; 14:779-789. [PMID: 31094231 DOI: 10.1080/17460441.2019.1614910] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Introduction: Click chemistry has been exploited widely in the past to expedite lead discovery and optimization. Indeed, Copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry is a bioorthogonal reaction of widespread utility throughout medicinal chemistry and chemical biology. Areas covered: The authors review recent applications of CuAAC click chemistry to drug discovery based on the literature published since 2013. Furthermore, the authors provide the reader with their expert perspectives on the area including their outlook on future developments. Expert opinion: Click chemistry reactions are an important part of the medicinal chemistry toolbox and offer substantial advantages to medicinal chemists in terms of overcoming the limitations of useful chemical synthesis, increasing throughput, and improving the quality of compound libraries. To explore new chemical spaces for drug-like molecules containing a high degree of structural diversity, it may be useful to merge the diversity-oriented synthesis and 'privileged' substructure-based strategy with bioorthogonal reactions using sophisticated automation and flow systems to improve productivity. Large compound libraries obtained in this way should be of great value for the discovery of bioactive compounds and therapeutic agents.
Collapse
Affiliation(s)
- Xiangyi Jiang
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Xia Hao
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Lanlan Jing
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Gaochan Wu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Dongwei Kang
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Xinyong Liu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Peng Zhan
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| |
Collapse
|
21
|
|
22
|
Gao F, Wang T, Gao M, Zhang X, Liu Z, Zhao S, Lv Z, Xiao J. Benzofuran-isatin-imine hybrids tethered via different length alkyl linkers: Design, synthesis and in vitro evaluation of anti-tubercular and anti-bacterial activities as well as cytotoxicity. Eur J Med Chem 2019; 165:323-331. [DOI: 10.1016/j.ejmech.2019.01.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
|
23
|
Designing influenza polymerase acidic endonuclease inhibitors via ‘privileged scaffold’ re-evolution/refining strategy. Future Med Chem 2019; 11:265-268. [PMID: 30763130 DOI: 10.4155/fmc-2018-0489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Zhou Z, Liu T, Wu G, Kang D, Fu Z, Wang Z, De Clercq E, Pannecouque C, Zhan P, Liu X. Targeting the hydrophobic channel of NNIBP: discovery of novel 1,2,3-triazole-derived diarylpyrimidines as novel HIV-1 NNRTIs with high potency against wild-type and K103N mutant virus. Org Biomol Chem 2019; 17:3202-3217. [DOI: 10.1039/c9ob00032a] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Novel 1,2,3-triazole-derived diarylpyrimidines were discovered as potent HIV-1 NNRTIs.
Collapse
Affiliation(s)
- Zhongxia Zhou
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| | - Tao Liu
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| | - Gaochan Wu
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| | - Dongwei Kang
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| | - Zhipeng Fu
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| | - Zhao Wang
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| | - Erik De Clercq
- Rega Institute for Medical Research
- K.U. Leuven
- B-3000 Leuven
- Belgium
| | | | - Peng Zhan
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| | - Xinyong Liu
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| |
Collapse
|
25
|
Design, synthesis and evaluation of novel hybrids between 4-anilinoquinazolines and substituted triazoles as potent cytotoxic agents. Bioorg Med Chem Lett 2018; 28:3741-3747. [DOI: 10.1016/j.bmcl.2018.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/08/2023]
|
26
|
Elías-Rodríguez P, Pingitore V, Carmona AT, Moreno-Vargas AJ, Ide D, Miyawaki S, Kato A, Álvarez E, Robina I. Discovery of a Potent α-Galactosidase Inhibitor by in Situ Analysis of a Library of Pyrrolizidine–(Thio)urea Hybrid Molecules Generated via Click Chemistry. J Org Chem 2018; 83:8863-8873. [DOI: 10.1021/acs.joc.8b01073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pilar Elías-Rodríguez
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González, 1, 41012 Seville, Spain
| | - Valeria Pingitore
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González, 1, 41012 Seville, Spain
| | - Ana T. Carmona
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González, 1, 41012 Seville, Spain
| | - Antonio J. Moreno-Vargas
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González, 1, 41012 Seville, Spain
| | - Daisuke Ide
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Shota Miyawaki
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Eleuterio Álvarez
- Instituto de Investigaciones Químicas, C.S.I.C-Universidad de Sevilla, Américo Vespucio 49, 41092 Seville, Spain
| | - Inmaculada Robina
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González, 1, 41012 Seville, Spain
| |
Collapse
|
27
|
Sun L, Gao P, Dong G, Zhang X, Cheng X, Ding X, Wang X, Daelemans D, De Clercq E, Pannecouque C, Menéndez-Arias L, Zhan P, Liu X. 5-Hydroxypyrido[2,3-b]pyrazin-6(5H)-one derivatives as novel dual inhibitors of HIV-1 reverse transcriptase-associated ribonuclease H and integrase. Eur J Med Chem 2018; 155:714-724. [DOI: 10.1016/j.ejmech.2018.06.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 11/26/2022]
|
28
|
Wang L, Liu X, Duan Y, Li X, Zhao B, Wang C, Xiao Z, Zheng P, Tang Q, Zhu W. Discovery of novel pyrrolopyrimidine/pyrazolopyrimidine derivatives bearing 1,2,3-triazole moiety as c-Met kinase inhibitors. Chem Biol Drug Des 2018; 92:1301-1314. [PMID: 29575727 DOI: 10.1111/cbdd.13192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/20/2017] [Accepted: 02/10/2018] [Indexed: 12/16/2022]
Abstract
Six series of pyrrolo[2,3-d]pyrimidine and pyrazolo[3,4-d]pyrimidine derivatives bearing 1,2,3-triazole moiety were designed and synthesized, and some bio-evaluation was also carried out. As a result, four points can be summarized: Firstly, some of compounds exhibited excellent cytotoxicity activity and selectivity with the IC50 values in single-digit μm level. In particular, the most promising compound 16d showed equal activity to lead compound foretinib against A549, HepG2, and MCF-7 cell lines, with the IC50 values of 4.79 ± 0.82, 2.03 ± 0.39, and 2.90 ± 0.43 μm, respectively. Secondly, the SARs and docking studies indicated that the in vitro antitumor activity of pyrrolo[2,3-d]pyrimidine derivatives bearing 1,2,3-triazole moiety was superior to the pyrazolo[3,4-d]pyrimidine derivatives bearing 1,2,3-triazole moiety. Thirdly, three selected compounds (16d, 18d, and 20d) were further evaluated for inhibitory activity against the c-Met kinase, and the 16d could inhibit the c-Met kinase selectively by experiments of enzyme-based selectivity. What is more, 16d could induce apoptosis of HepG2 cells and inhibitor the cell cycle of HepG2 on G2/M phase by acridine orange staining and cell cycle experiments, respectively.
Collapse
Affiliation(s)
- Linxiao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Xiaobo Liu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yongli Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Xiaojing Li
- College of Service, Naval University of Academy of PLA, Tianjin, China
| | - Bingbing Zhao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Caolin Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Zhen Xiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Qidong Tang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
29
|
Toth K, Spencer JF, Ying B, Tollefson AE, Hartline CB, Richard ET, Fan J, Lyu J, Kashemirov BA, Harteg C, Reyna D, Lipka E, Prichard MN, McKenna CE, Wold WSM. USC-087 protects Syrian hamsters against lethal challenge with human species C adenoviruses. Antiviral Res 2018; 153:1-9. [PMID: 29510156 PMCID: PMC5891362 DOI: 10.1016/j.antiviral.2018.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 02/08/2023]
Abstract
Human adenoviruses (AdV) cause generally mild infections of the respiratory and GI tracts as well as some other tissues. However, AdV can cause serious infection in severely immunosuppressed individuals, especially pediatric patients undergoing allogeneic hematopoietic stem cell transplantation, where mortality rates are up to 80% with disseminated disease. Despite the seriousness of AdV disease, there are no drugs approved specifically to treat AdV infections. We report here that USC-087, an N-alkyl tyrosinamide phosphonate ester prodrug of HPMPA, the adenine analog of cidofovir, is highly effective against multiple AdV types in cell culture. USC-087 is also effective against AdV-C6 in our immunosuppressed permissive Syrian hamster model. In this model, hamsters are immunosuppressed by treatment with high dose cyclophosphamide. Injection of AdV-C6 (or AdV-C5) intravenously leads to a disseminated infection that resembles the disease seen in humans, including death. We have tested the efficacy of orally-administered USC-087 against the median lethal dose of intravenously administered AdV-C6. USC-087 completely prevented or significantly decreased mortality when administered up to 4 days post challenge. USC-087 also prevented or significantly decreased liver damage caused by AdV-C6 infection, and suppressed virus replication even when administered 4 days post challenge. These results imply that USC-087 is a promising candidate for drug development against HAdV infections.
Collapse
Affiliation(s)
- Karoly Toth
- Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | - Baoling Ying
- Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Ann E Tollefson
- Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | - Eric T Richard
- University of Southern California, Los Angeles, CA 90089, USA
| | - Jiajun Fan
- University of Southern California, Los Angeles, CA 90089, USA
| | - Jinglei Lyu
- University of Southern California, Los Angeles, CA 90089, USA
| | | | - Cheryl Harteg
- Therapeutic Systems Research Laboratories, Inc, Ann Arbor, MI 48108, USA
| | - Dawn Reyna
- Therapeutic Systems Research Laboratories, Inc, Ann Arbor, MI 48108, USA
| | - Elke Lipka
- Therapeutic Systems Research Laboratories, Inc, Ann Arbor, MI 48108, USA
| | - Mark N Prichard
- University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - William S M Wold
- Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
30
|
An overview of quinazolines: Pharmacological significance and recent developments. Eur J Med Chem 2018; 151:628-685. [DOI: 10.1016/j.ejmech.2018.03.076] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/18/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022]
|
31
|
Tian Y, Liu Z, Liu J, Huang B, Kang D, Zhang H, De Clercq E, Daelemans D, Pannecouque C, Lee KH, Chen CH, Zhan P, Liu X. Targeting the entrance channel of NNIBP: Discovery of diarylnicotinamide 1,4-disubstituted 1,2,3-triazoles as novel HIV-1 NNRTIs with high potency against wild-type and E138K mutant virus. Eur J Med Chem 2018; 151:339-350. [PMID: 29635166 DOI: 10.1016/j.ejmech.2018.03.059] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022]
Abstract
Inspired by our previous efforts on the modifications of diarylpyrimidines as HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTI) and reported crystallography study, novel diarylnicotinamide derivatives were designed with a "triazole tail" occupying the entrance channel in the NNRTI binding pocket of the reverse transcriptase to afford additional interactions. The newly designed compounds were then synthesized and evaluated for their anti-HIV activities in MT-4 cells. All the compounds showed excellent to good activity against wild-type HIV-1 strain with EC50 of 0.02-1.77 μM. Evaluations of selected compounds against more drug-resistant strains showed these compounds had advantage of inhibiting E138K mutant virus which is a key drug-resistant mutant to the new generation of NNRTIs. Among this series, propionitrile (3b2, EC50(IIIB) = 0.020 μM, EC50(E138K) = 0.015 μM, CC50 = 40.15 μM), pyrrolidin-1-ylmethanone (3b8, EC50(IIIB) = 0.020 μM, EC50(E138K) = 0.014 μM, CC50 = 58.09 μM) and morpholinomethanone (3b9, EC50(IIIB) = 0.020 μM, EC50(E138K) = 0.027 μM, CC50 = 180.90 μM) derivatives are the three most promising compounds which are equally potent to the marketed drug Etravirine against E138K mutant strain but with much lower cytotoxicity. Furthermore, detailed SAR, inhibitory activity against RT and docking study of the representative compounds are also discussed.
Collapse
Affiliation(s)
- Ye Tian
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Zhaoqiang Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Jinghan Liu
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, 210009, Nanjing, PR China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Dirk Daelemans
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599-7568, United States; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| | - Chin-Ho Chen
- Surgical Science, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, United States
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
32
|
1-Hydroxypyrido[2,3-d]pyrimidin-2(1H)-ones as novel selective HIV integrase inhibitors obtained via privileged substructure-based compound libraries. Bioorg Med Chem 2017; 25:5779-5789. [DOI: 10.1016/j.bmc.2017.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/03/2017] [Accepted: 09/06/2017] [Indexed: 12/24/2022]
|