1
|
Ma D, Tan Z, Li S, Zhao B, Yue L, Wei X, Xu S, Jiang N, Lei H, Zhai X. Discovery of Novel 4,5,6,7-Tetrahydro-7 H-pyrazolo[3,4- c]pyridin-7-one Derivatives as Orally Efficacious ATX Allosteric Inhibitors for the Treatment of Pulmonary Fibrosis. J Med Chem 2025; 68:792-818. [PMID: 39720950 DOI: 10.1021/acs.jmedchem.4c02719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Pulmonary fibrosis (PF) is a progressive, fatal lung disease lacking effective treatments. Autotaxin (ATX) plays a crucial role in exacerbating inflammation and fibrosis, making it a promising target for fibrosis therapies. Herein, starting from PAT-409 (Cudetaxestat), a series of novel ATX inhibitors bearing 1H-indole-3-carboxamide, 4,5,6,7-tetrahydro-7H-pyrazolo[3,4-c]pyridin-7-one, or 4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine cores were designed based on the structure of ATX hydrophobic tunnel. The optimal 31 and 35 inhibited ATX with IC50 values of 2.8 and 0.7 nM, respectively. In a bleomycin-induced mouse PF model, both compounds significantly reduced fibrosis by regulating the TGF-β/Smad signaling pathway and downregulating collagen deposition. Furthermore, 35 exhibited both negligibly low hERG channel inhibition (IC50 > 30 μM) and remarkable microsomal stability. Notably, 35 was characterized by favorable pharmacokinetic properties (F = 69.5%) and excellent safety in vivo. Overall, 35 turned out to be a well-characterized potent and safe ATX inhibitor warranting further investigation for the treatment of PF.
Collapse
Affiliation(s)
- Deyi Ma
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zehui Tan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sen Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bing Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lingfeng Yue
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiujian Wei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sha Xu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Nan Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongrui Lei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
2
|
Bhattacharyya S, Oon C, Diaz L, Sandborg H, Stempinski ES, Saoi M, Morgan TK, López CS, Cross JR, Sherman MH. Autotaxin-lysolipid signaling suppresses a CCL11-eosinophil axis to promote pancreatic cancer progression. NATURE CANCER 2024; 5:283-298. [PMID: 38195933 PMCID: PMC10899115 DOI: 10.1038/s43018-023-00703-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/06/2023] [Indexed: 01/11/2024]
Abstract
Lipids and their modifying enzymes regulate diverse features of the tumor microenvironment and cancer progression. The secreted enzyme autotaxin (ATX) hydrolyzes extracellular lysophosphatidylcholine to generate the multifunctional lipid mediator lysophosphatidic acid (LPA) and supports the growth of several tumor types, including pancreatic ductal adenocarcinoma (PDAC). Here we show that ATX suppresses the accumulation of eosinophils in the PDAC microenvironment. Genetic or pharmacologic ATX inhibition increased the number of intratumor eosinophils, which promote tumor cell apoptosis locally and suppress tumor progression. Mechanistically, ATX suppresses eosinophil accumulation via an autocrine feedback loop, wherein ATX-LPA signaling negatively regulates the activity of the AP-1 transcription factor c-Jun, in turn suppressing the expression of the potent eosinophil chemoattractant CCL11 (eotaxin-1). Eosinophils were identified in human PDAC specimens, and rare individuals with high intratumor eosinophil abundance had the longest overall survival. Together with recent findings, this study reveals the context-dependent, immune-modulatory potential of ATX-LPA signaling in cancer.
Collapse
Affiliation(s)
- Sohinee Bhattacharyya
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chet Oon
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luis Diaz
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Holly Sandborg
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erin S Stempinski
- Multiscale Microscopy Core Facility, Oregon Health & Science University, Portland, OR, USA
| | - Michelle Saoi
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Terry K Morgan
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Claudia S López
- Multiscale Microscopy Core Facility, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mara H Sherman
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Zhang C, Liu Y, Zhou Q, Fan H, Liu X, Hu J. Recent research advances in ATX inhibitors: An overview of primary literature. Bioorg Med Chem 2023; 90:117374. [PMID: 37354726 DOI: 10.1016/j.bmc.2023.117374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023]
Abstract
The autoglobulin gene is the main enzyme for circulating LPA production and has lysophosphatidylcholine D activity, which catalyzes the production of lysophosphatidic acid and choline with lysophosphatidylcholine as substrate. A growing body of experimental evidence suggests that autoglobulin is involved in the pathogenesis of a variety of diseases. This review summarizes the different structural ATX inhibitors classified according to their binding mode to the ATX triple orientation site, and summarizes the conformational relationships and molecular docking of each type with ATX structure, hoping to contribute to the development of novel ATX inhibitors.
Collapse
Affiliation(s)
- Cheng Zhang
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China
| | - Yue Liu
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China
| | - Qinjiang Zhou
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China
| | - Hongze Fan
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China
| | - Xiaoxiao Liu
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China.
| | - Jinxing Hu
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China.
| |
Collapse
|
4
|
Deken M, Niewola-Staszkowska K, Peyruchaud O, Mikulčić N, Antolić M, Shah P, Cheasty A, Tagliavini A, Nizzardo A, Pergher M, Ziviani L, Milleri S, Pickering C, Lahn M, van der Veen L, Di Conza G, Johnson Z. Characterization and translational development of IOA-289, a novel autotaxin inhibitor for the treatment of solid tumors. IMMUNO-ONCOLOGY TECHNOLOGY 2023; 18:100384. [PMID: 37234285 PMCID: PMC10205783 DOI: 10.1016/j.iotech.2023.100384] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Background Autotaxin-lysophosphatidic acid (ATX-LPA) signaling has a predominant role in immunological and fibrotic processes, including cancer. Several ATX inhibitors and LPA receptor antagonists have been clinically evaluated, but none in patients with solid tumors. Many cancers are burdened with a high degree of fibrosis and an immune desert phenotype (so-called 'cold' tumors). In these cold tumors, the fibrotic stroma provides an intrinsic cancer-supporting mechanism. Furthermore, the stroma prevents penetration and limits the effectiveness of existing therapies. IOA-289 is a novel ATX inhibitor with a unique chemical structure, excellent potency and an attractive safety profile. Materials and methods In vitro and in vivo pharmacology studies have been carried out to elucidate the pharmaceutical properties and mechanism of action of IOA-289. A phase I clinical study in healthy volunteers was carried out to determine the pharmacokinetics and pharmacodynamics of IOA-289 following a single oral dose. Results In vitro and in vivo studies showed that IOA-289 is a potent inhibitor of ATX and, as a monotherapy, is able to slow progression of lung fibrosis and tumor growth in mouse models. In a clinical study, IOA-289 showed a dose-dependent increase in plasma exposure levels and a corresponding decrease in circulating LPA. Conclusions Our data show that IOA-289 is a novel ATX inhibitor with a unique chemical structure, excellent potency and an attractive safety profile. Our data support the further development of IOA-289 as a novel therapeutic approach for the treatment of cancer, particularly those with a high fibrotic and immunologically cold phenotype.
Collapse
Affiliation(s)
| | | | - O. Peyruchaud
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | - P. Shah
- Cancer Research Horizons, Therapeutic Discovery Laboratories, Cambridge, UK
| | - A. Cheasty
- Cancer Research Horizons, Therapeutic Discovery Laboratories, Cambridge, UK
| | | | | | | | - L. Ziviani
- Centro Ricerche Cliniche di Verona srl, Verona, Italy
| | - S. Milleri
- Centro Ricerche Cliniche di Verona srl, Verona, Italy
| | | | - M. Lahn
- iOnctura, Geneva, Switzerland
| | | | | | | |
Collapse
|
5
|
Li X, Xu Y, Li W, Che J, Zhao X, Cao R, Li X, Li S. Design, Synthesis, Biological Evaluation, and Molecular Dynamics Simulation of Influenza Polymerase PB2 Inhibitors. Molecules 2023; 28:molecules28041849. [PMID: 36838837 PMCID: PMC9960307 DOI: 10.3390/molecules28041849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/15/2023] [Accepted: 01/29/2023] [Indexed: 02/18/2023] Open
Abstract
The PB2 subunit of the influenza RNA-dependent RNA polymerase (RdRp) has been identified as a promising target for the treatment of influenza. To expand the chemical space of the known influenza polymerase PB2 inhibitor-pimodivir (formerly VX-787) and improve its pharmacokinetic profile, two pimodivir analogs containing 2,3-dihydro-imidazopyridine fragment (comp. I and comp. II) were designed, synthesized, and evaluated for anti-influenza virus activity. In the cytopathic effect (CPE) inhibition assay, comp. I and comp. II showed IC50 values of 0.07 and 0.09 μM for A/Puerto Rico/8/34 (H1N1) and 0.04 and 0.07 μM for A/Hong Kong/8/68 (H3N2), respectively. Protein-binding affinity assay results showed a concentration-dependent association and dissociation pattern, with KD values of 1.398 and 1.670 μM, respectively. In vitro metabolic stability assays showed that comp. I and comp. II exhibited good stability to liver microsomes and considerably less sensitivity to aldehyde oxidase compared to pimodivir. The binding modes of comp. I and comp. II were similar to those of VX-787; however, comp. I and comp. II had lower structural adaptability to PB2 than VX-787. Our results provide helpful information regarding the structure-activity relationship for the design of novel PB2 inhibitors and a reference for the development of drugs containing 2,3-dihydro-imidazopyridine fragments.
Collapse
Affiliation(s)
- Xinhong Li
- National Engineering Research Center for the Emergency Strategic Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yijie Xu
- National Engineering Research Center for the Emergency Strategic Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wei Li
- National Engineering Research Center for the Emergency Strategic Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Jinjing Che
- National Engineering Research Center for the Emergency Strategic Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xu Zhao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100053, China
| | - Ruyuan Cao
- National Engineering Research Center for the Emergency Strategic Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (R.C.); (X.L.); (S.L.); Tel.: +86-10-66930673 (ext. 717) (R.C.); +86-10-66930634 (X.L.); +86-10-66930250 (S.L.)
| | - Xingzhou Li
- National Engineering Research Center for the Emergency Strategic Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (R.C.); (X.L.); (S.L.); Tel.: +86-10-66930673 (ext. 717) (R.C.); +86-10-66930634 (X.L.); +86-10-66930250 (S.L.)
| | - Song Li
- National Engineering Research Center for the Emergency Strategic Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (R.C.); (X.L.); (S.L.); Tel.: +86-10-66930673 (ext. 717) (R.C.); +86-10-66930634 (X.L.); +86-10-66930250 (S.L.)
| |
Collapse
|
6
|
Banerjee S, Lee S, Norman DD, Tigyi GJ. Designing Dual Inhibitors of Autotaxin-LPAR GPCR Axis. Molecules 2022; 27:5487. [PMID: 36080255 PMCID: PMC9458164 DOI: 10.3390/molecules27175487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
The ATX-LPA-LPAR1 signaling pathway plays a universal role in stimulating diverse cellular responses, including cell proliferation, migration, survival, and invasion in almost every cell type. The ATX-LPAR1 axis is linked to several metabolic and inflammatory diseases including cancer, fibrosis, and rheumatoid arthritis. Numerous selective ATX or LPAR1 inhibitors have been developed and so far, their clinical efficacy has only been evaluated in idiopathic pulmonary fibrosis. None of the ATX and LPAR1 inhibitors have advanced to clinical trials for cancer and rheumatoid arthritis. Nonetheless, several research groups, including ours, have shown considerable benefit of simultaneous ATX and LPAR1 inhibition through combination therapy. Recent research suggests that dual-targeting therapies are superior to combination therapies that use two selective inhibitors. However, limited reports are available on ATX-LPAR1 dual inhibitors, potentially due to co-expression of multiple different LPARs with close structural similarities at the same target. In this review, we discuss rational design and future directions of dual ATX-LPAR1 inhibitors.
Collapse
Affiliation(s)
- Souvik Banerjee
- Department of Chemistry, Middle Tennessee State University, 1301 E. Main Street, Murfreesboro, TN 37132, USA
- Molecular Biosciences Program, Middle Tennessee State University, 1301 E. Main Street, Murfreesboro, TN 37132, USA
| | - Suechin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Derek D. Norman
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Gabor J. Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3 N. Dunlap Street, Memphis, TN 38163, USA
| |
Collapse
|
7
|
Mameli M, Franchi J, Calusi G, Deken M, Johnson Z, van der Veen L, Lahn M, Vezzelli A, Cardin R, Greco A, Breda M. Validation of an LC–MS/MS method for the quantification IOA-289 in human plasma and its application in a first-in-human clinical trial. J Pharm Biomed Anal 2022; 217:114829. [DOI: 10.1016/j.jpba.2022.114829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
|
8
|
Clark JM, Salgado-Polo F, Macdonald SJF, Barrett TN, Perrakis A, Jamieson C. Structure-Based Design of a Novel Class of Autotaxin Inhibitors Based on Endogenous Allosteric Modulators. J Med Chem 2022; 65:6338-6351. [PMID: 35440138 PMCID: PMC9059126 DOI: 10.1021/acs.jmedchem.2c00368] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autotaxin (ATX) facilitates the hydrolysis of lysophosphatidylcholine to lysophosphatidic acid (LPA), a bioactive phospholipid, which facilitates a diverse range of cellular effects in multiple tissue types. Abnormal LPA expression can lead to the progression of diseases such as cancer and fibrosis. Previously, we identified a potent ATX steroid-derived hybrid (partially orthosteric and allosteric) inhibitor which did not form interactions with the catalytic site. Herein, we describe the design, synthesis, and biological evaluation of a focused library of novel steroid-derived analogues targeting the bimetallic catalytic site, representing an entirely unique class of ATX inhibitors of type V designation, which demonstrate significant pathway-relevant biochemical and phenotypic biological effects. The current compounds modulated LPA-mediated ATX allostery and achieved indirect blockage of LPA1 internalization, in line with the observed reduction in downstream signaling cascades and chemotaxis induction. These novel type V ATX inhibitors represent a promising tool to inactivate the ATX-LPA signaling axis.
Collapse
Affiliation(s)
- Jennifer M Clark
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Fernando Salgado-Polo
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Simon J F Macdonald
- Medicines Design, GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Tim N Barrett
- Medicines Design, GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Anastassis Perrakis
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Craig Jamieson
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
9
|
Jia Y, Li Y, Xu XD, Tian Y, Shang H. Design and Development of Autotaxin Inhibitors. Pharmaceuticals (Basel) 2021; 14:ph14111203. [PMID: 34832985 PMCID: PMC8622848 DOI: 10.3390/ph14111203] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022] Open
Abstract
Autotaxin (ATX) is the only enzyme of the ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP2) family with lysophospholipase D (lysoPLD) activity, which is mainly responsible for the hydrolysis of extracellular lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA). LPA can induce various responses, such as cell proliferation, migration, and cytokine production, through six G protein-coupled receptors (LPA1-6). This signaling pathway is associated with metabolic and inflammatory disorder, and inhibiting this pathway has a positive effect on the treatment of related diseases, while ATX, as an important role in the production of LPA, has been shown to be associated with the occurrence and metastasis of tumors, fibrosis and cardiovascular diseases. From mimics of ATX natural lipid substrates to the rational design of small molecule inhibitors, ATX inhibitors have made rapid progress in structural diversity and design over the past 20 years, and three drugs, GLPG1690, BBT-877, and BLD-0409, have entered clinical trials. In this paper, we will review the structure of ATX inhibitors from the perspective of the transformation of design ideas, discuss the advantages and disadvantages of each inhibitor type, and put forward prospects for the development of ATX inhibitors in the future.
Collapse
Affiliation(s)
| | | | | | - Yu Tian
- Correspondence: (Y.T.); (H.S.)
| | | |
Collapse
|
10
|
Matas-Rico E, Frijlink E, van der Haar Àvila I, Menegakis A, van Zon M, Morris AJ, Koster J, Salgado-Polo F, de Kivit S, Lança T, Mazzocca A, Johnson Z, Haanen J, Schumacher TN, Perrakis A, Verbrugge I, van den Berg JH, Borst J, Moolenaar WH. Autotaxin impedes anti-tumor immunity by suppressing chemotaxis and tumor infiltration of CD8 + T cells. Cell Rep 2021; 37:110013. [PMID: 34788605 PMCID: PMC8761359 DOI: 10.1016/j.celrep.2021.110013] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/07/2021] [Accepted: 10/26/2021] [Indexed: 01/22/2023] Open
Abstract
Autotaxin (ATX; ENPP2) produces lysophosphatidic acid (LPA) that regulates multiple biological functions via cognate G protein-coupled receptors LPAR1–6. ATX/LPA promotes tumor cell migration and metastasis via LPAR1 and T cell motility via LPAR2, yet its actions in the tumor immune microenvironment remain unclear. Here, we show that ATX secreted by melanoma cells is chemorepulsive for tumor-infiltrating lymphocytes (TILs) and circulating CD8+ T cells ex vivo, with ATX functioning as an LPA-producing chaperone. Mechanistically, T cell repulsion predominantly involves Gα12/13-coupled LPAR6. Upon anti-cancer vaccination of tumor-bearing mice, ATX does not affect the induction of systemic T cell responses but, importantly, suppresses tumor infiltration of cytotoxic CD8+ T cells and thereby impairs tumor regression. Moreover, single-cell data from melanoma tumors are consistent with intratumoral ATX acting as a T cell repellent. These findings highlight an unexpected role for the pro-metastatic ATX-LPAR axis in suppressing CD8+ T cell infiltration to impede anti-tumor immunity, suggesting new therapeutic opportunities. Through LPA production, ATX modulates the tumor microenvironment in autocrine-paracrine manners. Matas-Rico et al. show that ATX/LPA is chemorepulsive for T cells with a dominant inhibitory role for Gα12/13-coupled LPAR6. Upon anticancer vaccination, tumor-intrinsic ATX suppresses the infiltration of CD8+ T cells without affecting their cytotoxic quality.
Collapse
Affiliation(s)
- Elisa Matas-Rico
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Elselien Frijlink
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Irene van der Haar Àvila
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Apostolos Menegakis
- Oncode Institute, Utrecht, the Netherlands; Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maaike van Zon
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Andrew J Morris
- Division of Cardiovascular Medicine, Gill Heart Institute and Lexington Veterans Affairs Medical Center, University of Kentucky, Lexington, KY, USA
| | - Jan Koster
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, Amsterdam, the Netherlands
| | - Fernando Salgado-Polo
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Sander de Kivit
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Telma Lança
- Oncode Institute, Utrecht, the Netherlands; Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Bari, Italy
| | - Zoë Johnson
- iOnctura SA, Campus Biotech Innovation Park, Geneva, Switzerland
| | - John Haanen
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ton N Schumacher
- Oncode Institute, Utrecht, the Netherlands; Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anastassis Perrakis
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Inge Verbrugge
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Joost H van den Berg
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jannie Borst
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| | - Wouter H Moolenaar
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Deng X, Salgado-Polo F, Shao T, Xiao Z, Van R, Chen J, Rong J, Haider A, Shao Y, Josephson L, Perrakis A, Liang SH. Imaging Autotaxin In Vivo with 18F-Labeled Positron Emission Tomography Ligands. J Med Chem 2021; 64:15053-15068. [PMID: 34662125 DOI: 10.1021/acs.jmedchem.1c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Autotaxin (ATX) is a secreted phosphodiesterase that has been implicated in a remarkably wide array of pathologies, especially in fibrosis and cancer. While ATX inhibitors have entered the clinical arena, a validated probe for positron emission tomography (PET) is currently lacking. With the aim to develop a suitable ATX-targeted PET radioligand, we have synthesized a focused library of fluorinated imidazo[1,2-a]pyridine derivatives, determined their inhibition constants, and confirmed their binding mode by crystallographic analysis. Based on their promising in vitro properties, compounds 9c, 9f, 9h, and 9j were radiofluorinated. Also, a deuterated analog of [18F]9j, designated as [18F]ATX-1905 ([18F]20), was designed and proved to be highly stable against in vivo radiodefluorination compared with [18F]9c, [18F]9f, [18F]9h, and [18F]9j. These results along with in vitro and in vivo studies toward ATX in a mouse model of LPS-induced liver injury suggest that [18F]ATX-1905 is a suitable PET probe for the non-invasive quantification of ATX.
Collapse
Affiliation(s)
- Xiaoyun Deng
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fernando Salgado-Polo
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Tuo Shao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Zhiwei Xiao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Richard Van
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Achi Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Anastassis Perrakis
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
12
|
Design, synthesis and anti-fibrosis evaluation of imidazo[1,2-a]pyridine derivatives as potent ATX inhibitors. Bioorg Med Chem 2021; 46:116362. [PMID: 34428714 DOI: 10.1016/j.bmc.2021.116362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 11/23/2022]
Abstract
A series of imidazo[1,2-a]pyridine compounds bearing urea moiety (8-27) were designed, synthesized and evaluated for their ATX inhibitory activities in vitro by FS-3 based enzymatic assay. Delightfully, benzylamine derivatives (14-27) exhibited higher ATX inhibitory potency with IC50 value ranging from 1.72 to 497 nM superior to benzamide analogues (8-13). Remarkably, benzylamine derivative 20 bearing 4-hydroxypiperidine exerted an amazing inhibitory activity (IC50 = 1.72 nM) which exceeded the positive control GLPG1690 (IC50 = 2.90 nM). Simultaneously, the binding model of 20 with ATX was established which rationalized the well performance of 20 in enzymatic assay. Accordingly, further in vivo studies were carried out to evaluate direct anti-fibrotic effects of 20 through Masson staining. Notably, 20 effectively alleviated lung structural damage with fewer fibrotic lesions at an oral dose of 60 mg/kg, qualifying 20 as a promising ATX inhibitor for IPF treatment.
Collapse
|
13
|
Tan Z, Lei H, Guo M, Chen Y, Zhai X. An updated patent review of autotaxin inhibitors (2017-present). Expert Opin Ther Pat 2021; 31:421-434. [PMID: 33342311 DOI: 10.1080/13543776.2021.1867106] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION The ATX-LPA axis is an attractive target for therapeutic intervention in a variety of diseases, such as tumor metastasis, fibrosis, pruritus, multiple sclerosis, inflammation, autoimmune conditions, metabolic syndrome, and so on. Accordingly, considerable efforts have been devoted to the development of new chemical entities capable of modulating the ATX-LPA axis. AREAS COVERED This review aims to provide an overview of novel ATX inhibitors reported in patents from September 2016 to August 2020, discussing their structural characteristics and inhibitory potency in vitro and in vivo. EXPERT OPINION In the past four years, the classification of ATX inhibitors based on binding modes has brought great benefits to the discovery of more efficacious inhibitors. In addition to GLPG1690 currently in phase III clinical studies for IPF, BBT-877, and BLD-0409 as potent ATX inhibitors have been enrolled in phase I clinical evaluation; meanwhile, many effective molecules were also reported successively. However, most emerging ATX inhibitors in the last four years are closely analogs of previous entities, such as GLPG1690 and PF-8380, which translate into the urgently identification of ATX inhibitors with diverse structural features and promising properties in the near future.
Collapse
Affiliation(s)
- Zehui Tan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongrui Lei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Ming Guo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuxiang Chen
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
14
|
Yanagida K, Valentine WJ. Druggable Lysophospholipid Signaling Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:137-176. [DOI: 10.1007/978-3-030-50621-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
The Structural Binding Mode of the Four Autotaxin Inhibitor Types that Differentially Affect Catalytic and Non-Catalytic Functions. Cancers (Basel) 2019; 11:cancers11101577. [PMID: 31623219 PMCID: PMC6826961 DOI: 10.3390/cancers11101577] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
Autotaxin (ATX) is a secreted lysophospholipase D, catalysing the conversion of lysophosphatidylcholine (LPC) to bioactive lysophosphatidic acid (LPA). LPA acts through two families of G protein-coupled receptors (GPCRs) controlling key cellular responses, and it is implicated in many physiological processes and pathologies. ATX, therefore, has been established as an important drug target in the pharmaceutical industry. Structural and biochemical studies of ATX have shown that it has a bimetallic nucleophilic catalytic site, a substrate-binding (orthosteric) hydrophobic pocket that accommodates the lipid alkyl chain, and an allosteric tunnel that can accommodate various steroids and LPA. In this review, first, we revisit what is known about ATX-mediated catalysis, crucially in light of allosteric regulation. Then, we present the known ATX catalysis-independent functions, including binding to cell surface integrins and proteoglycans. Next, we analyse all crystal structures of ATX bound to inhibitors and present them based on the four inhibitor types that are established based on the binding to the orthosteric and/or the allosteric site. Finally, in light of these data we discuss how mechanistic differences might differentially modulate the activity of the ATX-LPA signalling axis, and clinical applications including cancer.
Collapse
|
16
|
Matralis AN, Afantitis A, Aidinis V. Development and therapeutic potential of autotaxin small molecule inhibitors: From bench to advanced clinical trials. Med Res Rev 2018; 39:976-1013. [PMID: 30462853 DOI: 10.1002/med.21551] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/21/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
Several years after its isolation from melanoma cells, an increasing body of experimental evidence has established the involvement of Autotaxin (ATX) in the pathogenesis of several diseases. ATX, an extracellular enzyme responsible for the hydrolysis of lysophosphatidylcholine (LPC) into the bioactive lipid lysophosphatidic acid (LPA), is overexpressed in a variety of human metastatic cancers and is strongly implicated in chronic inflammation and liver toxicity, fibrotic diseases, and thrombosis. Accordingly, the ATX-LPA signaling pathway is considered a tractable target for therapeutic intervention substantiated by the multitude of research campaigns that have been successful in identifying ATX inhibitors by both academia and industry. Furthermore, from a therapeutic standpoint, the entry and the so far promising results of the first ATX inhibitor in advanced clinical trials against idiopathic pulmonary fibrosis (IPF) lends support to the viability of this approach, bringing it to the forefront of drug discovery efforts. The present review article aims to provide a comprehensive overview of the most important series of ATX inhibitors developed so far. Special weight is lent to the design, structure activity relationship and mode of binding studies carried out, leading to the identification of advanced leads. The most significant in vitro and in vivo pharmacological results of these advanced leads are also summarized. Lastly, the development of the first ATX inhibitor entered in clinical trials accompanied by its phase 1 and 2a clinical trial data is disclosed.
Collapse
Affiliation(s)
- Alexios N Matralis
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Antreas Afantitis
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece.,NovaMechanics Ltd Cheminformatics Company, Nicosia, Cyprus
| | - Vassilis Aidinis
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| |
Collapse
|
17
|
Döhler C, Zebisch M, Krinke D, Robitzki A, Sträter N. Crystallization of ectonucleotide phosphodiesterase/pyrophosphatase-3 and orientation of the SMB domains in the full-length ectodomain. Acta Crystallogr F Struct Biol Commun 2018; 74:696-703. [PMID: 30387774 PMCID: PMC6213977 DOI: 10.1107/s2053230x18011111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/03/2018] [Indexed: 11/11/2022] Open
Abstract
Ectonucleotide phosphodiesterase/pyrophosphatase-3 (NPP3, ENPP3) is an ATP-hydrolyzing glycoprotein that is located in the extracellular space. The full-length ectodomain of rat NPP3 was expressed in HEK293S GntI- cells, purified using two chromatographic steps and crystallized. Its structure at 2.77 Å resolution reveals that the active-site zinc ions are missing and a large part of the active site and the surrounding residues are flexible. The SMB-like domains have the same orientation in all four molecules in the asymmetric unit. The SMB2 domain is oriented as in NPP2, but the SMB1 domain does not interact with the PDE domain but extends further away from the PDE domain. Deletion of the SMB domains resulted in crystals that diffracted to 2.4 Å resolution and are suitable for substrate-binding studies.
Collapse
Affiliation(s)
- Christoph Döhler
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Matthias Zebisch
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
- Division of Structural Biology, Evotec, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, England
| | - Dana Krinke
- Division of Molecular Biological–Biochemical Processing Technology, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Andrea Robitzki
- Division of Molecular Biological–Biochemical Processing Technology, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| |
Collapse
|
18
|
Salgado-Polo F, Fish A, Matsoukas MT, Heidebrecht T, Keune WJ, Perrakis A. Lysophosphatidic acid produced by autotaxin acts as an allosteric modulator of its catalytic efficiency. J Biol Chem 2018; 293:14312-14327. [PMID: 30026231 DOI: 10.1074/jbc.ra118.004450] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/13/2018] [Indexed: 12/18/2022] Open
Abstract
Autotaxin (ATX) is a secreted glycoprotein and the only member of the ectonucleotide pyrophosphatase/phosphodiesterase family that converts lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA). LPA controls key responses, such as cell migration, proliferation, and survival, implicating ATX-LPA signaling in various (patho)physiological processes and establishing it as a drug target. ATX structural and functional studies have revealed an orthosteric and an allosteric site, called the "pocket" and the "tunnel," respectively. However, the mechanisms in allosteric modulation of ATX's activity as a lysophospholipase D are unclear. Here, using the physiological LPC substrate, a new fluorescent substrate, and diverse ATX inhibitors, we revisited the kinetics and allosteric regulation of the ATX catalytic cycle, dissecting the different steps and pathways leading to LPC hydrolysis. We found that ATX activity is stimulated by LPA and that LPA activates ATX lysophospholipase D activity by binding to the ATX tunnel. A consolidation of all experimental kinetics data yielded a comprehensive catalytic model supported by molecular modeling simulations and suggested a positive feedback mechanism that is regulated by the abundance of the LPA products activating hydrolysis of different LPC species. Our results complement and extend the current understanding of ATX hydrolysis in light of the allosteric regulation by ATX-produced LPA species and have implications for the design and application of both orthosteric and allosteric ATX inhibitors.
Collapse
Affiliation(s)
- Fernando Salgado-Polo
- From the Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands and
| | - Alex Fish
- From the Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands and
| | - Minos-Timotheos Matsoukas
- From the Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands and.,the Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - Tatjana Heidebrecht
- From the Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands and
| | - Willem-Jan Keune
- From the Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands and
| | - Anastassis Perrakis
- From the Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands and
| |
Collapse
|
19
|
Benesch MGK, MacIntyre ITK, McMullen TPW, Brindley DN. Coming of Age for Autotaxin and Lysophosphatidate Signaling: Clinical Applications for Preventing, Detecting and Targeting Tumor-Promoting Inflammation. Cancers (Basel) 2018; 10:cancers10030073. [PMID: 29543710 PMCID: PMC5876648 DOI: 10.3390/cancers10030073] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 12/13/2022] Open
Abstract
A quarter-century after the discovery of autotaxin in cell culture, the autotaxin-lysophosphatidate (LPA)-lipid phosphate phosphatase axis is now a promising clinical target for treating chronic inflammatory conditions, mitigating fibrosis progression, and improving the efficacy of existing cancer chemotherapies and radiotherapy. Nearly half of the literature on this axis has been published during the last five years. In cancer biology, LPA signaling is increasingly being recognized as a central mediator of the progression of chronic inflammation in the establishment of a tumor microenvironment which promotes cancer growth, immune evasion, metastasis, and treatment resistance. In this review, we will summarize recent advances made in understanding LPA signaling with respect to chronic inflammation and cancer. We will also provide perspectives on the applications of inhibitors of LPA signaling in preventing cancer initiation, as adjuncts extending the efficacy of current cancer treatments by blocking inflammation caused by either the cancer or the cancer therapy itself, and by disruption of the tumor microenvironment. Overall, LPA, a simple molecule that mediates a plethora of biological effects, can be targeted at its levels of production by autotaxin, LPA receptors or through LPA degradation by lipid phosphate phosphatases. Drugs for these applications will soon be entering clinical practice.
Collapse
Affiliation(s)
- Matthew G K Benesch
- Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL AlB 3V6, Canada.
- Signal Transduction Research Group, Cancer Research Institute of Northern Alberta, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| | - Iain T K MacIntyre
- Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL AlB 3V6, Canada.
| | - Todd P W McMullen
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G7, Canada.
| | - David N Brindley
- Signal Transduction Research Group, Cancer Research Institute of Northern Alberta, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| |
Collapse
|
20
|
Pantsar T, Singha P, Nevalainen TJ, Koshevoy I, Leppänen J, Poso A, Niskanen JM, Pasonen-Seppänen S, Savinainen JR, Laitinen T, Laitinen JT. Design, synthesis, and biological evaluation of 2,4-dihydropyrano[2,3-c]pyrazole derivatives as autotaxin inhibitors. Eur J Pharm Sci 2017; 107:97-111. [DOI: 10.1016/j.ejps.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 01/19/2023]
|
21
|
Joncour A, Desroy N, Housseman C, Bock X, Bienvenu N, Cherel L, Labeguere V, Peixoto C, Annoot D, Lepissier L, Heiermann J, Hengeveld WJ, Pilzak G, Monjardet A, Wakselman E, Roncoroni V, Le Tallec S, Galien R, David C, Vandervoort N, Christophe T, Conrath K, Jans M, Wohlkonig A, Soror S, Steyaert J, Touitou R, Fleury D, Vercheval L, Mollat P, Triballeau N, van der Aar E, Brys R, Heckmann B. Discovery, Structure–Activity Relationship, and Binding Mode of an Imidazo[1,2-a]pyridine Series of Autotaxin Inhibitors. J Med Chem 2017; 60:7371-7392. [DOI: 10.1021/acs.jmedchem.7b00647] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Agnès Joncour
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Nicolas Desroy
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | | | - Xavier Bock
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Natacha Bienvenu
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Laëtitia Cherel
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | | | | | - Denis Annoot
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Luce Lepissier
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Jörg Heiermann
- Mercachem, Kerkenbos 1013, 6546 Nijmegen, The Netherlands
| | | | - Gregor Pilzak
- Mercachem, Kerkenbos 1013, 6546 Nijmegen, The Netherlands
| | - Alain Monjardet
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | | | | | | | - René Galien
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Christelle David
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Nele Vandervoort
- Galapagos NV, Generaal De Wittelaan
L11 A3, 2800 Mechelen, Belgium
| | | | - Katja Conrath
- Galapagos NV, Generaal De Wittelaan
L11 A3, 2800 Mechelen, Belgium
| | - Mia Jans
- Galapagos NV, Generaal De Wittelaan
L11 A3, 2800 Mechelen, Belgium
| | - Alexandre Wohlkonig
- VIB
Structural Biology Research Center, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Sameh Soror
- VIB
Structural Biology Research Center, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Jan Steyaert
- VIB
Structural Biology Research Center, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Robert Touitou
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Damien Fleury
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Lionel Vercheval
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | - Patrick Mollat
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| | | | | | - Reginald Brys
- Galapagos NV, Generaal De Wittelaan
L11 A3, 2800 Mechelen, Belgium
| | - Bertrand Heckmann
- Galapagos SASU, 102 Avenue Gaston
Roussel, 93230 Romainville, France
| |
Collapse
|
22
|
Desroy N, Housseman C, Bock X, Joncour A, Bienvenu N, Cherel L, Labeguere V, Rondet E, Peixoto C, Grassot JM, Picolet O, Annoot D, Triballeau N, Monjardet A, Wakselman E, Roncoroni V, Le Tallec S, Blanque R, Cottereaux C, Vandervoort N, Christophe T, Mollat P, Lamers M, Auberval M, Hrvacic B, Ralic J, Oste L, van der Aar E, Brys R, Heckmann B. Discovery of 2-[[2-Ethyl-6-[4-[2-(3-hydroxyazetidin-1-yl)-2-oxoethyl]piperazin-1-yl]-8-methylimidazo[1,2-a]pyridin-3-yl]methylamino]-4-(4-fluorophenyl)thiazole-5-carbonitrile (GLPG1690), a First-in-Class Autotaxin Inhibitor Undergoing Clinical Evaluation for the Treatment of Idiopathic Pulmonary Fibrosis. J Med Chem 2017; 60:3580-3590. [PMID: 28414242 DOI: 10.1021/acs.jmedchem.7b00032] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autotaxin is a circulating enzyme with a major role in the production of lysophosphatic acid (LPA) species in blood. A role for the autotaxin/LPA axis has been suggested in many disease areas including pulmonary fibrosis. Structural modifications of the known autotaxin inhibitor lead compound 1, to attenuate hERG inhibition, remove CYP3A4 time-dependent inhibition, and improve pharmacokinetic properties, led to the identification of clinical candidate GLPG1690 (11). Compound 11 was able to cause a sustained reduction of LPA levels in plasma in vivo and was shown to be efficacious in a bleomycin-induced pulmonary fibrosis model in mice and in reducing extracellular matrix deposition in the lung while also reducing LPA 18:2 content in bronchoalveolar lavage fluid. Compound 11 is currently being evaluated in an exploratory phase 2a study in idiopathic pulmonary fibrosis patients.
Collapse
Affiliation(s)
- Nicolas Desroy
- Galapagos SASU , 102 Avenue Gaston Roussel, 93230 Romainville, France
| | | | - Xavier Bock
- Galapagos SASU , 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Agnès Joncour
- Galapagos SASU , 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Natacha Bienvenu
- Galapagos SASU , 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Laëtitia Cherel
- Galapagos SASU , 102 Avenue Gaston Roussel, 93230 Romainville, France
| | | | - Emilie Rondet
- Galapagos SASU , 102 Avenue Gaston Roussel, 93230 Romainville, France
| | | | | | - Olivier Picolet
- Galapagos SASU , 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Denis Annoot
- Galapagos SASU , 102 Avenue Gaston Roussel, 93230 Romainville, France
| | | | - Alain Monjardet
- Galapagos SASU , 102 Avenue Gaston Roussel, 93230 Romainville, France
| | | | | | | | - Roland Blanque
- Galapagos SASU , 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Celine Cottereaux
- Galapagos SASU , 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Nele Vandervoort
- Galapagos NV , Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | | | - Patrick Mollat
- Galapagos SASU , 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Marieke Lamers
- Charles River Laboratories , Chesterford Research Park, CB10 1XL Saffron Walden, United Kingdom
| | - Marielle Auberval
- Galapagos SASU , 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Boska Hrvacic
- Fidelta Ltd. , Prilaz baruna Filipovića 29, Zagreb, HR-10000, Croatia
| | - Jovica Ralic
- Fidelta Ltd. , Prilaz baruna Filipovića 29, Zagreb, HR-10000, Croatia
| | - Line Oste
- Galapagos NV , Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | | | - Reginald Brys
- Galapagos NV , Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Bertrand Heckmann
- Galapagos SASU , 102 Avenue Gaston Roussel, 93230 Romainville, France
| |
Collapse
|
23
|
Keune WJ, Potjewyd F, Heidebrecht T, Salgado-Polo F, Macdonald SJF, Chelvarajan L, Abdel Latif A, Soman S, Morris AJ, Watson AJB, Jamieson C, Perrakis A. Rational Design of Autotaxin Inhibitors by Structural Evolution of Endogenous Modulators. J Med Chem 2017; 60:2006-2017. [DOI: 10.1021/acs.jmedchem.6b01743] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Willem-Jan Keune
- Division
of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Frances Potjewyd
- Department
of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, U.K
| | - Tatjana Heidebrecht
- Division
of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Fernando Salgado-Polo
- Division
of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | | | - Lakshman Chelvarajan
- Division
of Cardiovascular Medicine and the Gill Heart Institute, Lexington Veterans Affairs Medical Center, Lexington Kentucky 40536, United States
| | - Ahmed Abdel Latif
- Division
of Cardiovascular Medicine and the Gill Heart Institute, Lexington Veterans Affairs Medical Center, Lexington Kentucky 40536, United States
| | - Sony Soman
- Division
of Cardiovascular Medicine and the Gill Heart Institute, Lexington Veterans Affairs Medical Center, Lexington Kentucky 40536, United States
| | - Andrew J. Morris
- Division
of Cardiovascular Medicine and the Gill Heart Institute, Lexington Veterans Affairs Medical Center, Lexington Kentucky 40536, United States
| | - Allan J. B. Watson
- Department
of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, U.K
| | - Craig Jamieson
- Department
of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, U.K
| | - Anastassis Perrakis
- Division
of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| |
Collapse
|