1
|
Cui P, Liu K, Yang Z, Sun P, Meng Y, Yang Q, Wu X, Lv Y, Yang Y, Wu J. Design, Synthesis, and Antiviral and Fungicidal Activities of 4-Oxo-4 H-quinolin-1-yl Acylhydrazone Derivatives. ACS OMEGA 2024; 9:36671-36681. [PMID: 39220544 PMCID: PMC11360041 DOI: 10.1021/acsomega.4c05046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
To discover novel antiviral agents, based on the high antiviral activity of (4-oxo-4H-quinolin-1-yl)-acetic acid hydrazide (C), a series of 4-oxo-4H-quinoline acylhydrazone derivatives were designed, synthesized, and first evaluated for their antiviral and fungicidal activities. Most acylhydrazone derivatives exhibited moderate to good antiviral activities in vivo. The inactive, curative, and protective activities of compounds 4 (51.2, 47.6, and 46.3%), 11 (49.6, 43.0, and 45.2% at 500 mg/L), and 17 (47.1, 49.2, and 44.1%) were higher than those of ribavirin (39.2, 38.0, and 40.8%) at 500 mg/L. Molecular docking showed that compound 4 exhibited a stronger affinity to TMV coat protein (TMV-CP) than ribavirin, with a binding energy (-6.89 kcal/mol) slightly lower than that of ribavirin (-6.08 kcal/mol). Microscale thermophoresis showed that compound 4 (K d = 0.142 ± 0.060 μM) exhibited a strong binding ability to TMV-CP, superior to that of ribavirin (K d = 0.512 ± 0.257 μM). The results of transmission electron microscopy showed that compound 4 hindered the self-assembly and growth of TMV. The antifungal activities of most compounds were moderate at 50 mg/L, among which compounds 12 and 21 exhibited a 72.1 and 76.5% inhibitory rate against Physalospora piricola, respectively. Meanwhile, compound 16 exhibited a 60% inhibitory rate against Cercospora arachidicola Hori at 50 mg/L.
Collapse
Affiliation(s)
- Peipei Cui
- College
of Architecture and Arts, Taiyuan University
of Technology, Jinzhong, Shanxi 030060, People’s Republic of China
| | - Kaisi Liu
- College
of Chemistry and Chemical Engineering, Taiyuan
University of Technology, Taiyuan, Shanxi 030024, People’s Republic of China
| | - Zhaokai Yang
- State
Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide
and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People’s Republic
of China
| | - Ping Sun
- State
Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide
and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People’s Republic
of China
| | - Yanan Meng
- College
of Chemistry and Chemical Engineering, Taiyuan
University of Technology, Taiyuan, Shanxi 030024, People’s Republic of China
| | - Qilong Yang
- College
of Chemistry and Chemical Engineering, Taiyuan
University of Technology, Taiyuan, Shanxi 030024, People’s Republic of China
| | - Xinyang Wu
- College
of Chemistry and Chemical Engineering, Taiyuan
University of Technology, Taiyuan, Shanxi 030024, People’s Republic of China
| | - Yongkang Lv
- College
of Chemistry and Chemical Engineering, Taiyuan
University of Technology, Taiyuan, Shanxi 030024, People’s Republic of China
| | - Yan Yang
- College
of Chemistry and Chemical Engineering, Taiyuan
University of Technology, Taiyuan, Shanxi 030024, People’s Republic of China
| | - Jian Wu
- State
Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide
and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People’s Republic
of China
| |
Collapse
|
2
|
Tai G, Zhang Q, He J, Li X, Gan X. Ferulic Acid Dimers as Potential Antiviral Agents by Inhibiting TMV Self-Assembly. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14610-14619. [PMID: 38896477 DOI: 10.1021/acs.jafc.4c03713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A series of ferulic acid dimers were designed, synthesized, and evaluated for anti-TMV activity. Biological assays demonstrated that compounds A6, E3, and E5 displayed excellent inactivating against tobacco mosaic virus (TMV) with EC50 values of 62.8, 94.4, and 85.2 μg mL-1, respectively, which were superior to that of ningnanmycin (108.1 μg mL-1). Microscale thermophoresis indicated that compounds A6, E3, and E5 showed strong binding capacity to TMV coat protein with binding affinity values of 1.862, 3.439, and 2.926 μM, respectively. Molecular docking and molecular dynamics simulation revealed that compound A6 could firmly bind to the TMV coat protein through hydrogen and hydrophobic bonds. Transmission electron microscopy and self-assembly experiments indicated that compound A6 obviously destroyed the integrity of the TMV particles and blocked the virus from infecting the host. This study revealed that A6 can be used as a promising leading structure for the development of antiviral agents by inhibiting TMV self-assembly.
Collapse
Affiliation(s)
- Gangyin Tai
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Qi Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Jiangqin He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Xiangyang Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Xiuhai Gan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
3
|
Gan X, Zhang W, Lan S, Hu D. Novel Cyclized Derivatives of Ferulic Acid as Potential Antiviral Agents through Activation of Photosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1369-1380. [PMID: 36626162 DOI: 10.1021/acs.jafc.2c06422] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To further develop new antiviral agents, several novel cyclized derivatives of ferulic acid were designed and synthesized. Their antiviral activities were evaluated against the cucumber mosaic virus (CMV), pepper mild mottle virus (PMMoV), and tomato spotted wilt virus (TSWV). The results showed that some ferulic acid derivatives exhibited desirable antiviral activities. Particularly, compound 5e exhibited excellent protective activities against CMV, PMMoV, and TSWV, with EC50 values of 167.2, 102.5, and 145.8 μg mL-1, respectively, which were superior to those obtained for trans-ferulic acid (581.7, 611.2, and 615.4 μg mL-1), dufulin (312.6, 302.5, and 298.2 μg mL-1), and ningnanmycin (264.3, 282.5, and 276.5 μg mL-1). Thereafter, the protective mechanisms of 5e were evaluated through photosynthesis evaluation, transcriptome profiling, and proteomic analysis. The results indicated that 5e significantly activated the expression levels of photosynthesis-related regulatory genes and proteins in tobacco plants and promoted the accumulation of defense molecules to resist viral infection. Thus, the findings of this study indicated that novel cyclized ferulic acid derivatives are potential antiviral agents that act via regulating photosynthesis in the host.
Collapse
Affiliation(s)
- Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shichao Lan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- School of Biological Sciences, Guizhou Education University, Guiyang 550018, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
4
|
Jin J, Shen T, Shu L, Huang Y, Deng Y, Li B, Jin Z, Li X, Wu J. Recent Achievements in Antiviral Agent Development for Plant Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1291-1309. [PMID: 36625507 DOI: 10.1021/acs.jafc.2c07315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plant virus disease is the second most prevalent plant diseases and can cause extensive loss in global agricultural economy. Extensive work has been carried out on the development of novel antiplant virus agents for preventing and treating plant virus diseases. In this review, we summarize the achievements of the research and development of new antiviral agents in the recent five years and provide our own perspective on the future development in this highly active research field.
Collapse
Affiliation(s)
- Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Tingwei Shen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Liangzhen Shu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yixian Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Youlin Deng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Benpeng Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Sharma S, Utreja D. Synthesis and antiviral activity of diverse heterocyclic scaffolds. Chem Biol Drug Des 2022; 100:870-920. [PMID: 34551197 DOI: 10.1111/cbdd.13953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 01/25/2023]
Abstract
Heterocyclic moieties form a major part of organic chemistry as they are widely distributed in nature and have wide scale practical applications ranging from extensive clinical use to diverse fields such as medicine, agriculture, photochemistry, biocidal formulations, and polymer science. By virtue of their therapeutic properties, they could be employed in combating many infectious diseases. Among the common infectious diseases, viral infections are of great public health importance worldwide. Thus, there is an urgent need for the discovery and development of antiviral drugs and clinical methods to prevent various viral infections so as to increase the life expectancy. This review presents the comprehensive overview of the synthesis and antiviral activity of different heterocyclic compounds 2015 onwards, which aids in present knowledge and helps the researchers and other stakeholders to explore their field.
Collapse
Affiliation(s)
- Shivali Sharma
- Department of Chemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| | - Divya Utreja
- Department of Chemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
6
|
Antonopoulou I, Sapountzaki E, Rova U, Christakopoulos P. The Inhibitory Potential of Ferulic Acid Derivatives against the SARS-CoV-2 Main Protease: Molecular Docking, Molecular Dynamics, and ADMET Evaluation. Biomedicines 2022; 10:biomedicines10081787. [PMID: 35892687 PMCID: PMC9329733 DOI: 10.3390/biomedicines10081787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
The main protease (Mpro) of SARS-CoV-2 is an appealing target for the development of antiviral compounds, due to its critical role in the viral life cycle and its high conservation among different coronaviruses and the continuously emerging mutants of SARS-CoV-2. Ferulic acid (FA) is a phytochemical with several health benefits that is abundant in plant biomass and has been used as a basis for the enzymatic or chemical synthesis of derivatives with improved properties, including antiviral activity against a range of viruses. This study tested 54 reported FA derivatives for their inhibitory potential against Mpro by in silico simulations. Molecular docking was performed using Autodock Vina, resulting in comparable or better binding affinities for 14 compounds compared to the known inhibitors N3 and GC376. ADMET analysis showed limited bioavailability but significantly improved the solubility for the enzymatically synthesized hits while better bioavailability and druglikeness properties but higher toxicity were observed for the chemically synthesized ones. MD simulations confirmed the stability of the complexes of the most promising compounds with Mpro, highlighting FA rutinoside and compound e27 as the best candidates from each derivative category.
Collapse
|
7
|
Yuan T, Wang Z, Lan S, Gan X. Design, synthesis, antiviral activity, and mechanisms of novel ferulic acid derivatives containing amide moiety. Bioorg Chem 2022; 128:106054. [PMID: 35905694 DOI: 10.1016/j.bioorg.2022.106054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 11/02/2022]
Abstract
To explore the novel compounds with high antiviral activity, three series ferulic acid derivatives containing amide moiety were gradually designed and synthesized based on antiviral activity tracking. The bioassay results exhibited that some target compounds had notable antiviral activities against tomato spotted wilt virus (TSWV) and cucumber mosaic virus (CMV). Compounds Y1, Y2, Y8, Z1 and Z2 presented splendid curative, protective, and inactivating activities to TSWV and CMV at 500 μg/mL. Especially, these compounds displayed outstanding inactivating effects on TSWV with the EC50 values of 225.9, 126.1, 224.6, 216.1, and 147.3 μg/mL, which were superior to ningnanmycin (249.1 μg/mL) and ribavirin (315.7 μg/mL). Furthermore, the antiviral mechanisms of compound Y2 were investigated by conducting microscale thermophoresis experiment and molecular docking experiment. The results suggested that compound Y2 performed excellent binding affinity to TSWV coat protein (TSWV CP) with the binding constant of 2.14 μM, which due to two strong hydrogen bonds of compound Y2 to the key amino acids ARG94 of TSWV CP. Therefore, compound Y2 can be regarded as a leading structure for development of the potential antiviral agent.
Collapse
Affiliation(s)
- Ting Yuan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhengxing Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shichao Lan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China; School of Biological Sciences, Guizhou Education University, Guiyang 550018, China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| |
Collapse
|
8
|
Chen J, Luo X, Chen Y, Wang Y, Peng J, Xing Z. Recent Research Progress: Discovery of Anti-Plant Virus Agents Based on Natural Scaffold. Front Chem 2022; 10:926202. [PMID: 35711962 PMCID: PMC9196591 DOI: 10.3389/fchem.2022.926202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Plant virus diseases, also known as “plant cancers”, cause serious harm to the agriculture of the world and huge economic losses every year. Antiviral agents are one of the most effective ways to control plant virus diseases. Ningnanmycin is currently the most successful anti-plant virus agent, but its field control effect is not ideal due to its instability. In recent years, great progress has been made in the research and development of antiviral agents, the mainstream research direction is to obtain antiviral agents or lead compounds based on structural modification of natural products. However, no antiviral agent has been able to completely inhibit plant viruses. Therefore, the development of highly effective antiviral agents still faces enormous challenges. Therefore, we reviewed the recent research progress of anti-plant virus agents based on natural products in the past decade, and discussed their structure-activity relationship (SAR) and mechanism of action. It is hoped that this review can provide new inspiration for the discovery and mechanism of action of novel antiviral agents.
Collapse
Affiliation(s)
- Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- *Correspondence: Jixiang Chen,
| | - Xin Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yifang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yu Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Ju Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhifu Xing
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
9
|
Tian J, Ji R, Wang H, Li S, Zhang G. Discovery of Novel α-Aminophosphonates with Hydrazone as Potential Antiviral Agents Combined With Active Fragment and Molecular Docking. Front Chem 2022; 10:911453. [PMID: 37868694 PMCID: PMC10588822 DOI: 10.3389/fchem.2022.911453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 10/24/2023] Open
Abstract
A series of novel α-aminophosphonate derivatives containing hydrazone were designed and synthesized based on active fragments. Bioassay results demonstrated that title compounds possessed good activities against tobacco mosaic virus. Among them, compounds 6a, 6g, 6i, and 6j were equivalent to the commercial antiviral agents like dufulin. On structure optimization-based molecular docking, compound 6k was synthesized and displayed excellent activity with values of 65.1% curative activity, 74.3% protective activity, and 94.3% inactivation activity, which were significantly superior to the commercial antiviral agents dufulin and ningnanmycin. Therefore, this study indicated that new lead compounds could be developed by adopting a joint strategy with active fragments and molecular docking.
Collapse
Affiliation(s)
- Jia Tian
- Chemistry and Material Science College, Huaibei Normal University, Huaibei, China
| | - Renjing Ji
- Chemistry and Material Science College, Huaibei Normal University, Huaibei, China
| | - Huan Wang
- Chemistry and Material Science College, Huaibei Normal University, Huaibei, China
| | - Siyu Li
- Chemistry and Material Science College, Huaibei Normal University, Huaibei, China
| | - Guoping Zhang
- Chemistry and Material Science College, Huaibei Normal University, Huaibei, China
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, China
| |
Collapse
|
10
|
Dai A, Huang Y, Yu L, Zheng Z, Wu J. Design, synthesis, and bioactivity of ferulic acid derivatives containing an β-amino alcohol. BMC Chem 2022; 16:34. [PMID: 35581619 PMCID: PMC9115944 DOI: 10.1186/s13065-022-00828-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/06/2022] [Indexed: 01/08/2023] Open
Abstract
Background Plant diseases caused by viruses and bacteria cause huge economic losses due to the lack of effective control agents. New potential pesticides can be discovered through biomimetic synthesis and structural modification of natural products. A series of ferulic acid derivatives containing an β-amino alcohol were designed and synthesized, and their biological activities were evaluated. Result Bioassays results showed that the EC50 values of compound D24 against Xanthomonas oryzae pv. oryzae (Xoo) was 14.5 μg/mL, which was better than that of bismerthiazol (BT, EC50 = 16.2 μg/mL) and thiodiazole copper (TC, EC50 = 44.5 μg/mL). The in vivo curative and protective activities of compound D24 against Xoo were 50.5% and 50.1%, respectively. The inactivation activities of compounds D2, D3 and D4 against tobacco mosaic virus (TMV) at 500 μg/mL were 89.1, 93.7 and 89.5%, respectively, superior to ningnanmycin (93.2%) and ribavirin (73.5%). In particular, the EC50 value of compound D3 was 38.1 μg/mL, and its molecular docking results showed that compound D3 had a strong affinity for TMV-CP with a binding energy of − 7.54 kcal/mol, which was superior to that of ningnanmycin (− 6.88 kcal /mol). Conclusions The preliminary mechanism research results indicated that compound D3 may disrupt the three-dimensional structure of the TMV coat protein, making TMV particles unable to self-assemble, which may provide potential lead compounds for the discovery of novel plant antiviral agents. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13065-022-00828-8.
Collapse
Affiliation(s)
- Ali Dai
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yuanqin Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Lijiao Yu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Zhiguo Zheng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Jian Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China.
| |
Collapse
|
11
|
Antonopoulou I, Sapountzaki E, Rova U, Christakopoulos P. Ferulic Acid From Plant Biomass: A Phytochemical With Promising Antiviral Properties. Front Nutr 2022; 8:777576. [PMID: 35198583 PMCID: PMC8860162 DOI: 10.3389/fnut.2021.777576] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Plant biomass is a magnificent renewable resource for phytochemicals that carry bioactive properties. Ferulic acid (FA) is a hydroxycinnamic acid that is found widespread in plant cell walls, mainly esterified to polysaccharides. It is well known of its strong antioxidant activity, together with numerous properties, such as antimicrobial, anti-inflammatory and neuroprotective effects. This review article provides insights into the potential for valorization of FA as a potent antiviral agent. Its pharmacokinetic properties (absorption, metabolism, distribution and excretion) and the proposed mechanisms that are purported to provide antiviral activity are presented. Novel strategies on extraction and derivatization routes, for enhancing even further the antiviral activity of FA and potentially favor its metabolism, distribution and residence time in the human body, are discussed. These routes may lead to novel high-added value biorefinery pathways to utilize plant biomass toward the production of nutraceuticals as functional foods with attractive bioactive properties, such as enhancing immunity toward viral infections.
Collapse
Affiliation(s)
- Io Antonopoulou
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Eleftheria Sapountzaki
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
12
|
Gan X, Wang Z, Hu D. Synthesis of Novel Antiviral Ferulic Acid-Eugenol and Isoeugenol Hybrids Using Various Link Reactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13724-13733. [PMID: 34751031 DOI: 10.1021/acs.jafc.1c05521] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To develop novel antiviral agents, some novel conjugates between ferulic acid and eugenol or isoeugenol were designed and synthesized by the link reaction. The antiviral activities of compounds were evaluated using the half leaf dead spot method. Bioassay results showed acceptable antiviral activities of some conjugates against the tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). Compounds A9, A10, E1, and E4 showed remarkable curative, protective, and inactivating effects on TMV and CMV at 500 μg mL-1. Notably, these compounds exhibited excellent protective effects on TMV and CMV. The EC50 values of compounds A9, A10, E1, and E4 against TMV were 180.5, 169.5, 211.4, and 135.5 μg mL-1, respectively, and those against CMV were 210.5, 239.1, 218.4, and 178.6 μg mL-1, respectively, which were superior to those of ferulic acid (471.5 and 489.2 μg mL-1), eugenol (456.3 and 463.2 μg mL-1), isoeugenol (478.4 and 487.5 μg mL-1), and ningnanmycin (246.5 and 286.6 μg mL-1). Then, the antiviral mechanisms of compound E4 were investigated by determining defensive enzyme activities and multi-omics analysis. The results indicated that compound E4 resisted the virus infection by enhancing defensive responses via inducing the accumulation of secondary metabolites from the phenylpropanoid biosynthesis pathway in tobacco.
Collapse
Affiliation(s)
- Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhengxing Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
13
|
Synthesis and Antifungal and Insecticidal Activities of Novel N-Phenylbenzamide Derivatives Bearing a Trifluoromethylpyrimidine Moiety. J CHEM-NY 2021. [DOI: 10.1155/2021/8370407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Seventeen novel N-phenylbenzamide derivatives bearing a trifluoromethylpyrimidine moiety were synthesized via four-step reactions. Their antifungal and insecticidal properties were evaluated. Antifungal test results demonstrated that some of the synthesized compounds showed better in vitro bioactivities against Phomopsis sp., Botryosphaeria dothidea (B. dothidea), and Botrytis cinerea (B. cinerea) at 50 μg/mL than pyrimethanil. Unfortunately, the synthesized compounds revealed lower insecticidal activities against Spodoptera frugiperda (S. frugiperda) and Mythimna separata (M. separata) at 500 μg/mL than chlorantraniliprole.
Collapse
|
14
|
Zhang R, Guo S, Deng P, Wang Y, Dai A, Wu J. Novel Ferulic Amide Ac6c Derivatives: Design, Synthesis, and Their Antipest Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10082-10092. [PMID: 34432441 DOI: 10.1021/acs.jafc.1c03892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Thirty-eight novel ferulic amide 1-aminocyclohexane carboxylic acid (Ac6c) derivatives D1-D19 and E1-E19 were designed and synthesized, and their antibacterial, antifungal, and insecticidal activities were tested. Most of the synthesized compounds displayed excellent activity againstXanthomonas oryzae pv. oryzae (Xoo), with EC50 values ranging from 11.6 to 83.1 μg/mL better than that of commercial bismerthiazol (BMT, EC50 = 84.3 μg/mL), as well as much better performance compared to that of thiediazole copper (TDC, EC50 = 137.8 μg/mL). D6 (EC50 = 17.3 μg/mL), D19 (EC50 = 29.4 μg/mL), E3 (EC50 = 29.7 μg/mL), E9 (EC50 = 27.0 μg/mL), E10 (EC50 = 18.6 μg/mL), and E18 (EC50 = 20.8 μg/mL) showed much higher activity on Xanthomonas oryzae pv. oryzicola compared with BMT (EC50 = 80.1 μg/mL) and TDC (EC50 = 124.7 μg/mL). In relation to controlling the fungus, Rhizoctonia solani, E1, E10, and E13 had much lower EC50 values of 0.005, 0.140, and 0.159 μg/mL compared to hymexazol at 74.8 μg/mL. Further in vivo experiments demonstrated that E6 and E12 controlled rice bacterial leaf blight disease better than BMT and TDC did. Scanning electron microscopy (SEM) studies revealed that E12 induced the Xoo cell membrane collapse. Moreover, D13 (73.7%), E5 (80.6%), and E10 (73.4%) also showed moderate activity against Plutella xylostella. These results indicated that the synthesized ferulic amide Ac6c derivatives showed promise as candidates for treating crop diseases.
Collapse
Affiliation(s)
- Renfeng Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shengxin Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Peng Deng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ya Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ali Dai
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jian Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
15
|
Synthesis of trans- methyl ferulate bearing an oxadiazole ether as potential activators for controlling plant virus. Bioorg Chem 2021; 115:105248. [PMID: 34392177 DOI: 10.1016/j.bioorg.2021.105248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/23/2022]
Abstract
A series of new ferulic acid derivatives bearing an oxadiazole ether was synthesized by introducing a structure of oxadiazole into trans-ferulic acid via an ether linkage. The synthesized target compounds were evaluated in vivo for their anti-TMV (tobacco mosaic virus) activity, which indicated that some synthesized compounds displayed strong activity for controlling TMV. For protective activity, compounds 6f and 6h had the most activities of 65% and 69.8% at 500 mg L-1, respectively. Compounds 6a, 6b, 6e, 6f and 6h showed > 60% curative activities at 500 mg L-1. Preliminary proteomics analysis showed that compound 6h could regulate the phenylpropanoid biosynthesis pathway and chloroplast function. These results indicated that synthesized novel ferulic acid derivatives could be used for controlling TMV.
Collapse
|
16
|
Wu Z, Shi J, Chen J, Hu D, Song B. Design, Synthesis, Antibacterial Activity, and Mechanisms of Novel 1,3,4-Thiadiazole Derivatives Containing an Amide Moiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8660-8670. [PMID: 34319116 DOI: 10.1021/acs.jafc.1c01626] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To discover novel antibacterial agents, a series of novel 1,3,4-thiadiazole derivatives containing an amide moiety were designed and synthesized, and their antibacterial activities were tested. Compound 30 was designed and synthesized according to the CoMFA model. Compound 30 exhibited higher antibacterial activities against Xanthomonas oryzae pv. oryzicola and Xanthomonas oryzae pv. oryzae, with EC50 values of 2.1 and 1.8 mg/L, respectively, which were superior to those of thiodiazole copper (99.6 and 92.5 mg/L). The protective and curative activities of compound 30 against rice bacterial leaf blight were 51.3 and 46.1%, respectively, which were better than those of thiodiazole copper (37.8 and 38.5%). The protective and curative activities of compound 30 against rice bacterial leaf streak were 45.9 and 40.5%, respectively, which were better than those of thiodiazole copper (36.2 and 31.1%). In addition, the protective activity of compound 30 against rice bacterial leaf streak was related to increased activities of related defense enzymes and upregulated the differentially expressed proteins of the glycolysis/gluconeogenesis pathway.
Collapse
Affiliation(s)
- Zhibing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P.R. China
| | - Jin Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P.R. China
| | - Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P.R. China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P.R. China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P.R. China
| |
Collapse
|
17
|
Brahmachari G, Begam S, Karmakar I, Gupta VK. Development of a straightforward and efficient protocol for the one-pot multicomponent synthesis of substituted alpha-aminoallylphosphonates under catalyst-free condition. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1920593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, India
| | - Sanchari Begam
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, India
| | - Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, India
| | - Vivek K Gupta
- Department of Physics, University of Jammu, Jammu-Tawi, India
| |
Collapse
|
18
|
Synthesis of α-Aminophosphonic Acid Derivatives Through the Addition of O- and S-Nucleophiles to 2 H-Azirines and Their Antiproliferative Effect on A549 Human Lung Adenocarcinoma Cells. Molecules 2020; 25:molecules25153332. [PMID: 32708018 PMCID: PMC7435673 DOI: 10.3390/molecules25153332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 01/04/2023] Open
Abstract
This work reports a straightforward regioselective synthetic methodology to prepare α-aminophosphine oxides and phosphonates through the addition of oxygen and sulfur nucleophiles to the C–N double bond of 2H-azirine derivatives. Determined by the nature of the nucleophile, different α-aminophosphorus compounds may be obtained. For instance, aliphatic alcohols such as methanol or ethanol afford α-aminophosphine oxide and phosphonate acetals after N–C3 ring opening of the intermediate aziridine. However, addition of 2,2,2-trifluoroethanol, phenols, substituted benzenthiols or ethanethiol to 2H-azirine phosphine oxides or phosphonates yields allylic α-aminophosphine oxides and phosphonates in good to high general yields. In some cases, the intermediate aziridine attained by the nucleophilic addition of O- or S-nucleophiles to the starting 2H-azirine may be isolated and characterized before ring opening. Additionally, the cytotoxic effect on cell lines derived from human lung adenocarcinoma (A549) and non-malignant cells (MCR-5) was also screened. Some α-aminophosphorus derivatives exhibited very good activity against the A549 cell line in vitro. Furthermore, selectivity towards cancer cell (A549) over non-malignant cells (MCR-5) has been detected in almost all compounds tested.
Collapse
|
19
|
|
20
|
Kaur G, Shamim M, Bhardwaj V, Gupta VK, Banerjee B. Mandelic acid catalyzed one-pot three-component synthesis of α-aminonitriles and α-aminophosphonates under solvent-free conditions at room temperature. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1745844] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Gurpreet Kaur
- Department of Chemistry, Indus International University, Una, Himachal Pradesh, India
| | - Mussarat Shamim
- Department of Chemistry, Indus International University, Una, Himachal Pradesh, India
| | - Vaishali Bhardwaj
- Department of Chemistry, Indus International University, Una, Himachal Pradesh, India
| | - Vivek Kumar Gupta
- Post-Graduate Department of Physics, University of Jammu, Jammu, India
| | - Bubun Banerjee
- Department of Chemistry, Indus International University, Una, Himachal Pradesh, India
| |
Collapse
|
21
|
Khalid M, Ali A, De la Torre AF, Marrugo KP, Concepcion O, Kamal GM, Muhammad S, Al‐Sehemi AG. Facile Synthesis, Spectral (IR, Mass, UV−Vis, NMR), Linear and Nonlinear Investigation of the Novel Phosphonate Compounds: A Combined Experimental and Simulation Study. ChemistrySelect 2020. [DOI: 10.1002/slct.201904224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Muhammad Khalid
- Department of ChemistryKhwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Akbar Ali
- Department of ChemistryUniversity of Sargodha, 40100 Pakistan
| | - Alexander F. De la Torre
- Departamento de Química Orgánica, Facultad de Ciencias QuímicasUniversidad de Concepción, Concepción, Chile
| | - Kelly P. Marrugo
- Departamento de Química Orgánica, Facultad de Ciencias QuímicasUniversidad de Concepción, Concepción, Chile
| | - Odette Concepcion
- Departamento de Química Orgánica, Facultad de Ciencias QuímicasUniversidad de Concepción, Concepción, Chile
| | - Ghulam Mustafa Kamal
- Department of ChemistryKhwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Shabbir Muhammad
- Department of Physics, College of ScienceKing Khalid University Abha 61413, P.O. Box 9004 Saudi Arabia
| | - Abdullah G. Al‐Sehemi
- Department of Chemistry, College of ScienceKing Khalid University Abha 61413, P.O. Box 9004 Saudi Arabia
| |
Collapse
|
22
|
Wang Y, He F, Wu S, Luo Y, Wu R, Hu D, Song B. Design, synthesis, anti-TMV activity, and preliminary mechanism of cinnamic acid derivatives containing dithioacetal moiety. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 164:115-121. [PMID: 32284116 DOI: 10.1016/j.pestbp.2020.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/29/2019] [Accepted: 01/03/2020] [Indexed: 05/24/2023]
Abstract
A series of cinnamic acid derivatives, which contained dithioacetal moiety, were designed and synthesized, and their anti-plant virus activity against Tobacco mosaic virus (TMV) were evaluated. Most target compounds exhibited good anti-plant virus activities. Compound 2y, especially at 500 mg/L concentration, had an excellent activity against TMV, and its curative, protective, and inactivating activities were 62.5%, 61.8%, and 83.5%, respectively. These activity values were significantly superior to those of ribavirin (45.9%, 39.8%, and 70.3%) and xiangcaoliusuobingmi (44.7%, 48.3%, and 71.7%) and comparable to those of ningnanmycin (61.9%, 53.3%, and 85.2%). Compound 2y presented an EC50 value of 50.7 mg/L for inactivating activity against TMV, which was superior to those of ningnanmycin (51.5 mg/L), ribavirin (160.4 mg/L), and xiangcaoliusuobingmi (83.0 mg/L). Through transmission electron microscopy, we found that compound 2y caused a certain degree of damage to TMV particles, which caused them to break and bend. Four conventional hydrogen bonds were formed with amino acid residues GLN34, THR37, ARG90, and ARG46 of TMV coat protein (CP) through molecular docking. Microscale thermophoresis test results showed that compound 2y with TMV CP had a strong binding force, and the dissociation constant (Kd) was 1.6 μM. In summary, the cinnamic acid derivatives containing dithioacetal moiety provide a foundation for further research on antiviral agents.
Collapse
Affiliation(s)
- Yanju Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Fangcheng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Sikai Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yuqin Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Rong Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| |
Collapse
|
23
|
|
24
|
Wu W, Jiang Y, Fei Q, Du H, Yang M. Synthesis and antifungal activity of novel 1,2,4‐triazole derivatives containing an amide moiety. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wen‐Neng Wu
- Institute of Entomology, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationGuizhou University Guiyang China
- Food and Pharmaceutical Engineering InstituteGuiyang University Guiyang China
| | - Yang‐Ming Jiang
- State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical University Guiyang China
| | - Qiang Fei
- Food and Pharmaceutical Engineering InstituteGuiyang University Guiyang China
| | - Hai‐Tang Du
- Food and Pharmaceutical Engineering InstituteGuiyang University Guiyang China
| | - Mao‐Fa Yang
- Institute of Entomology, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationGuizhou University Guiyang China
| |
Collapse
|
25
|
Gao D, Wang D, Chen K, Huang M, Xie X, Li X. Activation of biochemical factors in CMV-infected tobacco by ningnanmycin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 156:116-122. [PMID: 31027570 DOI: 10.1016/j.pestbp.2019.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/09/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Cucumber mosaic virus (CMV) is a plant virus with one of the largest host ranges, the widest distribution, and economic importance, and ningnanmycin (NNM) is a commercial antiviral agent. Studies have shown that NNM induces and promotes pathogenesis-related proteins in tobacco mosaic virus-inoculated tobacco. In the present study, the defense enzymes and the biochemical factors of CMV-inoculated tobacco treated with NNM were measured. The biochemical factors of CMV-inoculated tobacco leaves treated with NNM were analyzed. Results showed that the phenylalanine ammonia-lyase, peroxidase, polypheuoloxidase, and superoxide in the CMV-inoculated tobacco leaves treated with NNM were higher than those in non-treated tobacco leaves. Furthermore, NNM activated the oxidation-reduction process, metabolic process, and oxidoreductase activity in the CMV-infected tobacco.
Collapse
Affiliation(s)
- Di Gao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Dongmei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Kai Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Maoxi Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Xin Xie
- College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
26
|
Novel Phosphorylated Penta-1,4-dien-3-one Derivatives: Design, Synthesis, and Biological Activity. Molecules 2019; 24:molecules24050925. [PMID: 30866406 PMCID: PMC6429309 DOI: 10.3390/molecules24050925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022] Open
Abstract
A series of novel phosphorylated penta-1,4-dien-3-one derivatives were designed and synthesized. The structures of all title compounds were determined by 1H-NMR, 13C-NMR, 31P-NMR, and high-resolution mass spectrometry (HRMS). Bioassay results showed that several of the title compounds exhibited remarkable antibacterial and antiviral activities. Among these, compound 3g exhibited substantial antibacterial activity against Xanthomonas oryzae pv. Oryzae (Xoo), with a 50% effective concentration (EC50) value of 8.6 μg/mL, which was significantly superior to bismerthiazol (BT) (58.8 µg/mL) and thiodiazole-copper (TC) (78.7 μg/mL). In addition, compound 3h showed remarkable protective activity against tobacco mosaic virus (TMV), with an EC50 value of 104.2 μg/mL, which was superior to that of ningnanmycin (386.2 μg/mL). Furthermore, the microscale thermophoresis and molecular docking experiments on the interaction of compounds 3h and 3j with TMV coat protein (TMV CP) were also investigated. Compounds 3h and 3j bound to TMV CP with dissociation constants of 0.028 and 0.23 μmol/L, which were better than that of ningnanmycin (0.52 μmol/L). These results suggest that novel phosphorylated penta-1,4-dien-3-one derivatives may be considered as an activator for antibacterial and antiviral agents.
Collapse
|
27
|
Yin L, Gan X, Shi J, Zan N, Zhang A, Ren X, Li M, Xie D, Hu D, Song B. Induced Resistance Mechanism of Novel Curcumin Analogs Bearing a Quinazoline Moiety to Plant Virus. Int J Mol Sci 2018; 19:E4065. [PMID: 30558295 PMCID: PMC6321402 DOI: 10.3390/ijms19124065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/08/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022] Open
Abstract
Plant immune activators can protect crops from plant virus pathogens by activating intrinsic immune mechanisms in plants and are widely used in agricultural production. In our previous work, we found that curcumin analogs exhibit excellent biological activity against plant viruses, especially protective activity. Inspired by these results, the active substructure of pentadienone and quinazoline were spliced to obtain curcumin analogs as potential exogenously induced resistant molecule. Bioassay results showed that compound A13 exhibited excellent protective activity for tobacco to against Tobacco mosaic virus (TMV) at 500 μg/mL, with a value of 70.4 ± 2.6% compared with control treatments, which was better than that of the plant immune activator chitosan oligosaccharide (49.0 ± 5.9%). The protective activity is due to compound A13 inducing tobacco resistance to TMV, which was related to defense-related enzymes, defense-related genes, and photosynthesis. This was confirmed by the up-regulated expression of proteins that mediate stress responses and oxidative phosphorylation.
Collapse
Affiliation(s)
- Limin Yin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Jing Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Ningning Zan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Awei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Xiaoli Ren
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Miao Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Dandan Xie
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
28
|
Xie D, Shi J, Zhang A, Lei Z, Zu G, Fu Y, Gan X, Yin L, Song B, Hu D. Syntheses, antiviral activities and induced resistance mechanisms of novel quinazoline derivatives containing a dithioacetal moiety. Bioorg Chem 2018; 80:433-443. [PMID: 29986188 DOI: 10.1016/j.bioorg.2018.06.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/09/2018] [Accepted: 06/20/2018] [Indexed: 11/26/2022]
Abstract
A series of novel quinazoline derivatives containing a dithioacetal moiety were designed and synthesized, and their structures were characterized by 1H nuclear magnetic resonance, 13C nuclear magnetic resonance, and high-resolution mass spectrometry. Bioassay results indicated that compound 4b exhibited remarkable protective activity against cucumber mosaic virus (CMV, EC50 = 248.6 μg/mL) and curative activity against potato virus Y (EC50 = 350.5 μg/mL), which were better than those of ningnanmycin (357.7 μg/mL and 493.7 μg/mL, respectively). Moreover, compound 4b could increase the chlorophyll content in plants, improve photosynthesis, and effectively induce tobacco anti-CMV activity.
Collapse
Affiliation(s)
- Dandan Xie
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jing Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Awei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhiwei Lei
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Guangcheng Zu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yun Fu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Limin Yin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| |
Collapse
|
29
|
Cai N, Liu C, Feng Z, Li X, Qi Z, Ji M, Qin P, Ahmed W, Cui Z. Design, Synthesis, and SAR of Novel 2-Glycinamide Cyclohexyl Sulfonamide Derivatives against Botrytis cinerea. Molecules 2018; 23:molecules23040740. [PMID: 29570637 PMCID: PMC6017058 DOI: 10.3390/molecules23040740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/14/2018] [Accepted: 03/19/2018] [Indexed: 02/01/2023] Open
Abstract
N-(2-trifluoromethyl-4-chlorophenyl)-2-oxocyclohexyl sulfonamide (chesulfamide) is in the limelight as a novel fungicide, and has fungicidal activity against Botrytis cinerea. For exploring more novel structures, 33 new compounds were synthesized by N-alkylation and acid–amine coupling reactions with chesulfamide as the core moiety, and their structures were characterized and established by 1H-NMR, 13C-NMR, MS, and elemental analysis. The structure of (1R,2S)-2-(2-(N-(4-chloro-2-trifluoromethylphenyl)sulfamoyl)-cyclohexylamino)-N-(2-trifluoromethylphenyl) acetamide (II-19) was defined by X-ray single crystal diffraction. The in vivo and in vitro fungicidal activities against B. cinerea were evaluated. The bioassay results of mycelial growth demonstrated that most compounds exhibited excellent inhibitory activity against B. cinerea at 50 μg mL−1, and 7 compounds showed lower EC50 values than boscalid (EC50 = 4.46 μg mL−1) against B. cinerea (CY-09). In cucumber pot experiment, the inhibitory rates of four compounds (II-4, II-5, II-12, and II-13) against B. cinerea were 90.48, 93.45, 92.86, and 91.07, which were better than cyprodinil (88.69%), the best performing of all controls. In tomato pot experiment, the control efficacy of two analogs (II-8 and II-15) were 87.98 and 87.97% at 200 μg mL−1, which were significantly higher than boscalid (78.10%). Most compounds have an excellent fungicidal effect on B. cinerea, with potential as a lead compound for developing new pesticides.
Collapse
Affiliation(s)
- Nan Cai
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| | - Caixiu Liu
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| | - Zhihui Feng
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| | - Xinghai Li
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| | - Zhiqiu Qi
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| | - Mingshan Ji
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| | - Peiwen Qin
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| | - Wasim Ahmed
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Zining Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
30
|
Synthesis, Crystal Structure, Herbicide Safening, and Antifungal Activity of N-(4,6-Dichloropyrimidine-2-Yl)Benzamide. CRYSTALS 2018. [DOI: 10.3390/cryst8020075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|